This file is indexed.

/usr/lib/python3/dist-packages/Cython/Utility/MemoryView.pyx is in cython3 0.25.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
#################### View.MemoryView ####################

# This utility provides cython.array and cython.view.memoryview

from __future__ import absolute_import

cimport cython

# from cpython cimport ...
cdef extern from "Python.h":
    int PyIndex_Check(object)
    object PyLong_FromVoidPtr(void *)

cdef extern from "pythread.h":
    ctypedef void *PyThread_type_lock

    PyThread_type_lock PyThread_allocate_lock()
    void PyThread_free_lock(PyThread_type_lock)
    int PyThread_acquire_lock(PyThread_type_lock, int mode) nogil
    void PyThread_release_lock(PyThread_type_lock) nogil

cdef extern from "<string.h>":
    void *memset(void *b, int c, size_t len)

cdef extern from *:
    int __Pyx_GetBuffer(object, Py_buffer *, int) except -1
    void __Pyx_ReleaseBuffer(Py_buffer *)

    ctypedef struct PyObject
    ctypedef Py_ssize_t Py_intptr_t
    void Py_INCREF(PyObject *)
    void Py_DECREF(PyObject *)

    void* PyMem_Malloc(size_t n)
    void PyMem_Free(void *p)
    void* PyObject_Malloc(size_t n)
    void PyObject_Free(void *p)

    cdef struct __pyx_memoryview "__pyx_memoryview_obj":
        Py_buffer view
        PyObject *obj
        __Pyx_TypeInfo *typeinfo

    ctypedef struct {{memviewslice_name}}:
        __pyx_memoryview *memview
        char *data
        Py_ssize_t shape[{{max_dims}}]
        Py_ssize_t strides[{{max_dims}}]
        Py_ssize_t suboffsets[{{max_dims}}]

    void __PYX_INC_MEMVIEW({{memviewslice_name}} *memslice, int have_gil)
    void __PYX_XDEC_MEMVIEW({{memviewslice_name}} *memslice, int have_gil)

    ctypedef struct __pyx_buffer "Py_buffer":
        PyObject *obj

    PyObject *Py_None

    cdef enum:
        PyBUF_C_CONTIGUOUS,
        PyBUF_F_CONTIGUOUS,
        PyBUF_ANY_CONTIGUOUS
        PyBUF_FORMAT
        PyBUF_WRITABLE
        PyBUF_STRIDES
        PyBUF_INDIRECT
        PyBUF_RECORDS

    ctypedef struct __Pyx_TypeInfo:
        pass

    cdef object capsule "__pyx_capsule_create" (void *p, char *sig)
    cdef int __pyx_array_getbuffer(PyObject *obj, Py_buffer view, int flags)
    cdef int __pyx_memoryview_getbuffer(PyObject *obj, Py_buffer view, int flags)

cdef extern from *:
    ctypedef int __pyx_atomic_int
    {{memviewslice_name}} slice_copy_contig "__pyx_memoryview_copy_new_contig"(
                                 __Pyx_memviewslice *from_mvs,
                                 char *mode, int ndim,
                                 size_t sizeof_dtype, int contig_flag,
                                 bint dtype_is_object) nogil except *
    bint slice_is_contig "__pyx_memviewslice_is_contig" (
                            {{memviewslice_name}} mvs, char order, int ndim) nogil
    bint slices_overlap "__pyx_slices_overlap" ({{memviewslice_name}} *slice1,
                                                {{memviewslice_name}} *slice2,
                                                int ndim, size_t itemsize) nogil


cdef extern from "<stdlib.h>":
    void *malloc(size_t) nogil
    void free(void *) nogil
    void *memcpy(void *dest, void *src, size_t n) nogil




#
### cython.array class
#

@cname("__pyx_array")
cdef class array:

    cdef:
        char *data
        Py_ssize_t len
        char *format
        int ndim
        Py_ssize_t *_shape
        Py_ssize_t *_strides
        Py_ssize_t itemsize
        unicode mode  # FIXME: this should have been a simple 'char'
        bytes _format
        void (*callback_free_data)(void *data)
        # cdef object _memview
        cdef bint free_data
        cdef bint dtype_is_object

    def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None,
                  mode="c", bint allocate_buffer=True):

        cdef int idx
        cdef Py_ssize_t i, dim
        cdef PyObject **p

        self.ndim = <int> len(shape)
        self.itemsize = itemsize

        if not self.ndim:
            raise ValueError("Empty shape tuple for cython.array")

        if itemsize <= 0:
            raise ValueError("itemsize <= 0 for cython.array")

        if not isinstance(format, bytes):
            format = format.encode('ASCII')
        self._format = format  # keep a reference to the byte string
        self.format = self._format

        # use single malloc() for both shape and strides
        self._shape = <Py_ssize_t *> PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2)
        self._strides = self._shape + self.ndim

        if not self._shape:
            raise MemoryError("unable to allocate shape and strides.")

        # cdef Py_ssize_t dim, stride
        for idx, dim in enumerate(shape):
            if dim <= 0:
                raise ValueError("Invalid shape in axis %d: %d." % (idx, dim))
            self._shape[idx] = dim

        cdef char order
        if mode == 'fortran':
            order = b'F'
            self.mode = u'fortran'
        elif mode == 'c':
            order = b'C'
            self.mode = u'c'
        else:
            raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode)

        self.len = fill_contig_strides_array(self._shape, self._strides,
                                             itemsize, self.ndim, order)

        self.free_data = allocate_buffer
        self.dtype_is_object = format == b'O'
        if allocate_buffer:
            # use malloc() for backwards compatibility
            # in case external code wants to change the data pointer
            self.data = <char *>malloc(self.len)
            if not self.data:
                raise MemoryError("unable to allocate array data.")

            if self.dtype_is_object:
                p = <PyObject **> self.data
                for i in range(self.len / itemsize):
                    p[i] = Py_None
                    Py_INCREF(Py_None)

    @cname('getbuffer')
    def __getbuffer__(self, Py_buffer *info, int flags):
        cdef int bufmode = -1
        if self.mode == u"c":
            bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS
        elif self.mode == u"fortran":
            bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS
        if not (flags & bufmode):
            raise ValueError("Can only create a buffer that is contiguous in memory.")
        info.buf = self.data
        info.len = self.len
        info.ndim = self.ndim
        info.shape = self._shape
        info.strides = self._strides
        info.suboffsets = NULL
        info.itemsize = self.itemsize
        info.readonly = 0

        if flags & PyBUF_FORMAT:
            info.format = self.format
        else:
            info.format = NULL

        info.obj = self

    __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)")

    def __dealloc__(array self):
        if self.callback_free_data != NULL:
            self.callback_free_data(self.data)
        elif self.free_data:
            if self.dtype_is_object:
                refcount_objects_in_slice(self.data, self._shape,
                                          self._strides, self.ndim, False)
            free(self.data)
        PyObject_Free(self._shape)

    @property
    def memview(self):
        return self.get_memview()

    @cname('get_memview')
    cdef get_memview(self):
        flags =  PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE
        return  memoryview(self, flags, self.dtype_is_object)


    def __getattr__(self, attr):
        return getattr(self.memview, attr)

    def __getitem__(self, item):
        return self.memview[item]

    def __setitem__(self, item, value):
        self.memview[item] = value


@cname("__pyx_array_new")
cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format,
                          char *mode, char *buf):
    cdef array result

    if buf == NULL:
        result = array(shape, itemsize, format, mode.decode('ASCII'))
    else:
        result = array(shape, itemsize, format, mode.decode('ASCII'),
                       allocate_buffer=False)
        result.data = buf

    return result


#
### Memoryview constants and cython.view.memoryview class
#

# Disable generic_contiguous, as it makes trouble verifying contiguity:
#   - 'contiguous' or '::1' means the dimension is contiguous with dtype
#   - 'indirect_contiguous' means a contiguous list of pointers
#   - dtype contiguous must be contiguous in the first or last dimension
#     from the start, or from the dimension following the last indirect dimension
#
#   e.g.
#           int[::indirect_contiguous, ::contiguous, :]
#
#   is valid (list of pointers to 2d fortran-contiguous array), but
#
#           int[::generic_contiguous, ::contiguous, :]
#
#   would mean you'd have assert dimension 0 to be indirect (and pointer contiguous) at runtime.
#   So it doesn't bring any performance benefit, and it's only confusing.

@cname('__pyx_MemviewEnum')
cdef class Enum(object):
    cdef object name
    def __init__(self, name):
        self.name = name
    def __repr__(self):
        return self.name

cdef generic = Enum("<strided and direct or indirect>")
cdef strided = Enum("<strided and direct>") # default
cdef indirect = Enum("<strided and indirect>")
# Disable generic_contiguous, as it is a troublemaker
#cdef generic_contiguous = Enum("<contiguous and direct or indirect>")
cdef contiguous = Enum("<contiguous and direct>")
cdef indirect_contiguous = Enum("<contiguous and indirect>")

# 'follow' is implied when the first or last axis is ::1


@cname('__pyx_align_pointer')
cdef void *align_pointer(void *memory, size_t alignment) nogil:
    "Align pointer memory on a given boundary"
    cdef Py_intptr_t aligned_p = <Py_intptr_t> memory
    cdef size_t offset

    with cython.cdivision(True):
        offset = aligned_p % alignment

    if offset > 0:
        aligned_p += alignment - offset

    return <void *> aligned_p


# pre-allocate thread locks for reuse
## note that this could be implemented in a more beautiful way in "normal" Cython,
## but this code gets merged into the user module and not everything works there.
DEF THREAD_LOCKS_PREALLOCATED = 8
cdef int __pyx_memoryview_thread_locks_used = 0
cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [
    PyThread_allocate_lock(),
    PyThread_allocate_lock(),
    PyThread_allocate_lock(),
    PyThread_allocate_lock(),
    PyThread_allocate_lock(),
    PyThread_allocate_lock(),
    PyThread_allocate_lock(),
    PyThread_allocate_lock(),
]


@cname('__pyx_memoryview')
cdef class memoryview(object):

    cdef object obj
    cdef object _size
    cdef object _array_interface
    cdef PyThread_type_lock lock
    # the following array will contain a single __pyx_atomic int with
    # suitable alignment
    cdef __pyx_atomic_int acquisition_count[2]
    cdef __pyx_atomic_int *acquisition_count_aligned_p
    cdef Py_buffer view
    cdef int flags
    cdef bint dtype_is_object
    cdef __Pyx_TypeInfo *typeinfo

    def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False):
        self.obj = obj
        self.flags = flags
        if type(self) is memoryview or obj is not None:
            __Pyx_GetBuffer(obj, &self.view, flags)
            if <PyObject *> self.view.obj == NULL:
                (<__pyx_buffer *> &self.view).obj = Py_None
                Py_INCREF(Py_None)

        global __pyx_memoryview_thread_locks_used
        if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED:
            self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]
            __pyx_memoryview_thread_locks_used += 1
        if self.lock is NULL:
            self.lock = PyThread_allocate_lock()
            if self.lock is NULL:
                raise MemoryError

        if flags & PyBUF_FORMAT:
            self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0')
        else:
            self.dtype_is_object = dtype_is_object

        self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer(
                  <void *> &self.acquisition_count[0], sizeof(__pyx_atomic_int))
        self.typeinfo = NULL

    def __dealloc__(memoryview self):
        if self.obj is not None:
            __Pyx_ReleaseBuffer(&self.view)

        cdef int i
        global __pyx_memoryview_thread_locks_used
        if self.lock != NULL:
            for i in range(__pyx_memoryview_thread_locks_used):
                if __pyx_memoryview_thread_locks[i] is self.lock:
                    __pyx_memoryview_thread_locks_used -= 1
                    if i != __pyx_memoryview_thread_locks_used:
                        __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = (
                            __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i])
                    break
            else:
                PyThread_free_lock(self.lock)

    cdef char *get_item_pointer(memoryview self, object index) except NULL:
        cdef Py_ssize_t dim
        cdef char *itemp = <char *> self.view.buf

        for dim, idx in enumerate(index):
            itemp = pybuffer_index(&self.view, itemp, idx, dim)

        return itemp

    #@cname('__pyx_memoryview_getitem')
    def __getitem__(memoryview self, object index):
        if index is Ellipsis:
            return self

        have_slices, indices = _unellipsify(index, self.view.ndim)

        cdef char *itemp
        if have_slices:
            return memview_slice(self, indices)
        else:
            itemp = self.get_item_pointer(indices)
            return self.convert_item_to_object(itemp)

    def __setitem__(memoryview self, object index, object value):
        have_slices, index = _unellipsify(index, self.view.ndim)

        if have_slices:
            obj = self.is_slice(value)
            if obj:
                self.setitem_slice_assignment(self[index], obj)
            else:
                self.setitem_slice_assign_scalar(self[index], value)
        else:
            self.setitem_indexed(index, value)

    cdef is_slice(self, obj):
        if not isinstance(obj, memoryview):
            try:
                obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS,
                                 self.dtype_is_object)
            except TypeError:
                return None

        return obj

    cdef setitem_slice_assignment(self, dst, src):
        cdef {{memviewslice_name}} dst_slice
        cdef {{memviewslice_name}} src_slice

        memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0],
                                 get_slice_from_memview(dst, &dst_slice)[0],
                                 src.ndim, dst.ndim, self.dtype_is_object)

    cdef setitem_slice_assign_scalar(self, memoryview dst, value):
        cdef int array[128]
        cdef void *tmp = NULL
        cdef void *item

        cdef {{memviewslice_name}} *dst_slice
        cdef {{memviewslice_name}} tmp_slice
        dst_slice = get_slice_from_memview(dst, &tmp_slice)

        if <size_t>self.view.itemsize > sizeof(array):
            tmp = PyMem_Malloc(self.view.itemsize)
            if tmp == NULL:
                raise MemoryError
            item = tmp
        else:
            item = <void *> array

        try:
            if self.dtype_is_object:
                (<PyObject **> item)[0] = <PyObject *> value
            else:
                self.assign_item_from_object(<char *> item, value)

            # It would be easy to support indirect dimensions, but it's easier
            # to disallow :)
            if self.view.suboffsets != NULL:
                assert_direct_dimensions(self.view.suboffsets, self.view.ndim)
            slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize,
                                item, self.dtype_is_object)
        finally:
            PyMem_Free(tmp)

    cdef setitem_indexed(self, index, value):
        cdef char *itemp = self.get_item_pointer(index)
        self.assign_item_from_object(itemp, value)

    cdef convert_item_to_object(self, char *itemp):
        """Only used if instantiated manually by the user, or if Cython doesn't
        know how to convert the type"""
        import struct
        cdef bytes bytesitem
        # Do a manual and complete check here instead of this easy hack
        bytesitem = itemp[:self.view.itemsize]
        try:
            result = struct.unpack(self.view.format, bytesitem)
        except struct.error:
            raise ValueError("Unable to convert item to object")
        else:
            if len(self.view.format) == 1:
                return result[0]
            return result

    cdef assign_item_from_object(self, char *itemp, object value):
        """Only used if instantiated manually by the user, or if Cython doesn't
        know how to convert the type"""
        import struct
        cdef char c
        cdef bytes bytesvalue
        cdef Py_ssize_t i

        if isinstance(value, tuple):
            bytesvalue = struct.pack(self.view.format, *value)
        else:
            bytesvalue = struct.pack(self.view.format, value)

        for i, c in enumerate(bytesvalue):
            itemp[i] = c

    @cname('getbuffer')
    def __getbuffer__(self, Py_buffer *info, int flags):
        if flags & PyBUF_STRIDES:
            info.shape = self.view.shape
        else:
            info.shape = NULL

        if flags & PyBUF_STRIDES:
            info.strides = self.view.strides
        else:
            info.strides = NULL

        if flags & PyBUF_INDIRECT:
            info.suboffsets = self.view.suboffsets
        else:
            info.suboffsets = NULL

        if flags & PyBUF_FORMAT:
            info.format = self.view.format
        else:
            info.format = NULL

        info.buf = self.view.buf
        info.ndim = self.view.ndim
        info.itemsize = self.view.itemsize
        info.len = self.view.len
        info.readonly = 0
        info.obj = self

    __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)")

    # Some properties that have the same sematics as in NumPy
    @property
    def T(self):
        cdef _memoryviewslice result = memoryview_copy(self)
        transpose_memslice(&result.from_slice)
        return result

    @property
    def base(self):
        return self.obj

    @property
    def shape(self):
        return tuple([length for length in self.view.shape[:self.view.ndim]])

    @property
    def strides(self):
        if self.view.strides == NULL:
            # Note: we always ask for strides, so if this is not set it's a bug
            raise ValueError("Buffer view does not expose strides")

        return tuple([stride for stride in self.view.strides[:self.view.ndim]])

    @property
    def suboffsets(self):
        if self.view.suboffsets == NULL:
            return (-1,) * self.view.ndim

        return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]])

    @property
    def ndim(self):
        return self.view.ndim

    @property
    def itemsize(self):
        return self.view.itemsize

    @property
    def nbytes(self):
        return self.size * self.view.itemsize

    @property
    def size(self):
        if self._size is None:
            result = 1

            for length in self.view.shape[:self.view.ndim]:
                result *= length

            self._size = result

        return self._size

    def __len__(self):
        if self.view.ndim >= 1:
            return self.view.shape[0]

        return 0

    def __repr__(self):
        return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__,
                                               id(self))

    def __str__(self):
        return "<MemoryView of %r object>" % (self.base.__class__.__name__,)

    # Support the same attributes as memoryview slices
    def is_c_contig(self):
        cdef {{memviewslice_name}} *mslice
        cdef {{memviewslice_name}} tmp
        mslice = get_slice_from_memview(self, &tmp)
        return slice_is_contig(mslice[0], 'C', self.view.ndim)

    def is_f_contig(self):
        cdef {{memviewslice_name}} *mslice
        cdef {{memviewslice_name}} tmp
        mslice = get_slice_from_memview(self, &tmp)
        return slice_is_contig(mslice[0], 'F', self.view.ndim)

    def copy(self):
        cdef {{memviewslice_name}} mslice
        cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS

        slice_copy(self, &mslice)
        mslice = slice_copy_contig(&mslice, "c", self.view.ndim,
                                   self.view.itemsize,
                                   flags|PyBUF_C_CONTIGUOUS,
                                   self.dtype_is_object)

        return memoryview_copy_from_slice(self, &mslice)

    def copy_fortran(self):
        cdef {{memviewslice_name}} src, dst
        cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS

        slice_copy(self, &src)
        dst = slice_copy_contig(&src, "fortran", self.view.ndim,
                                self.view.itemsize,
                                flags|PyBUF_F_CONTIGUOUS,
                                self.dtype_is_object)

        return memoryview_copy_from_slice(self, &dst)


@cname('__pyx_memoryview_new')
cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo):
    cdef memoryview result = memoryview(o, flags, dtype_is_object)
    result.typeinfo = typeinfo
    return result

@cname('__pyx_memoryview_check')
cdef inline bint memoryview_check(object o):
    return isinstance(o, memoryview)

cdef tuple _unellipsify(object index, int ndim):
    """
    Replace all ellipses with full slices and fill incomplete indices with
    full slices.
    """
    if not isinstance(index, tuple):
        tup = (index,)
    else:
        tup = index

    result = []
    have_slices = False
    seen_ellipsis = False
    for idx, item in enumerate(tup):
        if item is Ellipsis:
            if not seen_ellipsis:
                result.extend([slice(None)] * (ndim - len(tup) + 1))
                seen_ellipsis = True
            else:
                result.append(slice(None))
            have_slices = True
        else:
            if not isinstance(item, slice) and not PyIndex_Check(item):
                raise TypeError("Cannot index with type '%s'" % type(item))

            have_slices = have_slices or isinstance(item, slice)
            result.append(item)

    nslices = ndim - len(result)
    if nslices:
        result.extend([slice(None)] * nslices)

    return have_slices or nslices, tuple(result)

cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim):
    for suboffset in suboffsets[:ndim]:
        if suboffset >= 0:
            raise ValueError("Indirect dimensions not supported")

#
### Slicing a memoryview
#

@cname('__pyx_memview_slice')
cdef memoryview memview_slice(memoryview memview, object indices):
    cdef int new_ndim = 0, suboffset_dim = -1, dim
    cdef bint negative_step
    cdef {{memviewslice_name}} src, dst
    cdef {{memviewslice_name}} *p_src

    # dst is copied by value in memoryview_fromslice -- initialize it
    # src is never copied
    memset(&dst, 0, sizeof(dst))

    cdef _memoryviewslice memviewsliceobj

    assert memview.view.ndim > 0

    if isinstance(memview, _memoryviewslice):
        memviewsliceobj = memview
        p_src = &memviewsliceobj.from_slice
    else:
        slice_copy(memview, &src)
        p_src = &src

    # Note: don't use variable src at this point
    # SubNote: we should be able to declare variables in blocks...

    # memoryview_fromslice() will inc our dst slice
    dst.memview = p_src.memview
    dst.data = p_src.data

    # Put everything in temps to avoid this bloody warning:
    # "Argument evaluation order in C function call is undefined and
    #  may not be as expected"
    cdef {{memviewslice_name}} *p_dst = &dst
    cdef int *p_suboffset_dim = &suboffset_dim
    cdef Py_ssize_t start, stop, step
    cdef bint have_start, have_stop, have_step

    for dim, index in enumerate(indices):
        if PyIndex_Check(index):
            slice_memviewslice(
                p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim],
                dim, new_ndim, p_suboffset_dim,
                index, 0, 0, # start, stop, step
                0, 0, 0, # have_{start,stop,step}
                False)
        elif index is None:
            p_dst.shape[new_ndim] = 1
            p_dst.strides[new_ndim] = 0
            p_dst.suboffsets[new_ndim] = -1
            new_ndim += 1
        else:
            start = index.start or 0
            stop = index.stop or 0
            step = index.step or 0

            have_start = index.start is not None
            have_stop = index.stop is not None
            have_step = index.step is not None

            slice_memviewslice(
                p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim],
                dim, new_ndim, p_suboffset_dim,
                start, stop, step,
                have_start, have_stop, have_step,
                True)
            new_ndim += 1

    if isinstance(memview, _memoryviewslice):
        return memoryview_fromslice(dst, new_ndim,
                                    memviewsliceobj.to_object_func,
                                    memviewsliceobj.to_dtype_func,
                                    memview.dtype_is_object)
    else:
        return memoryview_fromslice(dst, new_ndim, NULL, NULL,
                                    memview.dtype_is_object)


#
### Slicing in a single dimension of a memoryviewslice
#

cdef extern from "<stdlib.h>":
    void abort() nogil
    void printf(char *s, ...) nogil

cdef extern from "<stdio.h>":
    ctypedef struct FILE
    FILE *stderr
    int fputs(char *s, FILE *stream)

cdef extern from "pystate.h":
    void PyThreadState_Get() nogil

    # These are not actually nogil, but we check for the GIL before calling them
    void PyErr_SetString(PyObject *type, char *msg) nogil
    PyObject *PyErr_Format(PyObject *exc, char *msg, ...) nogil

@cname('__pyx_memoryview_slice_memviewslice')
cdef int slice_memviewslice(
        {{memviewslice_name}} *dst,
        Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset,
        int dim, int new_ndim, int *suboffset_dim,
        Py_ssize_t start, Py_ssize_t stop, Py_ssize_t step,
        int have_start, int have_stop, int have_step,
        bint is_slice) nogil except -1:
    """
    Create a new slice dst given slice src.

    dim             - the current src dimension (indexing will make dimensions
                                                 disappear)
    new_dim         - the new dst dimension
    suboffset_dim   - pointer to a single int initialized to -1 to keep track of
                      where slicing offsets should be added
    """

    cdef Py_ssize_t new_shape
    cdef bint negative_step

    if not is_slice:
        # index is a normal integer-like index
        if start < 0:
            start += shape
        if not 0 <= start < shape:
            _err_dim(IndexError, "Index out of bounds (axis %d)", dim)
    else:
        # index is a slice
        negative_step = have_step != 0 and step < 0

        if have_step and step == 0:
            _err_dim(ValueError, "Step may not be zero (axis %d)", dim)

        # check our bounds and set defaults
        if have_start:
            if start < 0:
                start += shape
                if start < 0:
                    start = 0
            elif start >= shape:
                if negative_step:
                    start = shape - 1
                else:
                    start = shape
        else:
            if negative_step:
                start = shape - 1
            else:
                start = 0

        if have_stop:
            if stop < 0:
                stop += shape
                if stop < 0:
                    stop = 0
            elif stop > shape:
                stop = shape
        else:
            if negative_step:
                stop = -1
            else:
                stop = shape

        if not have_step:
            step = 1

        # len = ceil( (stop - start) / step )
        with cython.cdivision(True):
            new_shape = (stop - start) // step

            if (stop - start) - step * new_shape:
                new_shape += 1

        if new_shape < 0:
            new_shape = 0

        # shape/strides/suboffsets
        dst.strides[new_ndim] = stride * step
        dst.shape[new_ndim] = new_shape
        dst.suboffsets[new_ndim] = suboffset

    # Add the slicing or idexing offsets to the right suboffset or base data *
    if suboffset_dim[0] < 0:
        dst.data += start * stride
    else:
        dst.suboffsets[suboffset_dim[0]] += start * stride

    if suboffset >= 0:
        if not is_slice:
            if new_ndim == 0:
                dst.data = (<char **> dst.data)[0] + suboffset
            else:
                _err_dim(IndexError, "All dimensions preceding dimension %d "
                                     "must be indexed and not sliced", dim)
        else:
            suboffset_dim[0] = new_ndim

    return 0

#
### Index a memoryview
#
@cname('__pyx_pybuffer_index')
cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index,
                          Py_ssize_t dim) except NULL:
    cdef Py_ssize_t shape, stride, suboffset = -1
    cdef Py_ssize_t itemsize = view.itemsize
    cdef char *resultp

    if view.ndim == 0:
        shape = view.len / itemsize
        stride = itemsize
    else:
        shape = view.shape[dim]
        stride = view.strides[dim]
        if view.suboffsets != NULL:
            suboffset = view.suboffsets[dim]

    if index < 0:
        index += view.shape[dim]
        if index < 0:
            raise IndexError("Out of bounds on buffer access (axis %d)" % dim)

    if index >= shape:
        raise IndexError("Out of bounds on buffer access (axis %d)" % dim)

    resultp = bufp + index * stride
    if suboffset >= 0:
        resultp = (<char **> resultp)[0] + suboffset

    return resultp

#
### Transposing a memoryviewslice
#
@cname('__pyx_memslice_transpose')
cdef int transpose_memslice({{memviewslice_name}} *memslice) nogil except 0:
    cdef int ndim = memslice.memview.view.ndim

    cdef Py_ssize_t *shape = memslice.shape
    cdef Py_ssize_t *strides = memslice.strides

    # reverse strides and shape
    cdef int i, j
    for i in range(ndim / 2):
        j = ndim - 1 - i
        strides[i], strides[j] = strides[j], strides[i]
        shape[i], shape[j] = shape[j], shape[i]

        if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0:
            _err(ValueError, "Cannot transpose memoryview with indirect dimensions")

    return 1

#
### Creating new memoryview objects from slices and memoryviews
#
@cname('__pyx_memoryviewslice')
cdef class _memoryviewslice(memoryview):
    "Internal class for passing memoryview slices to Python"

    # We need this to keep our shape/strides/suboffset pointers valid
    cdef {{memviewslice_name}} from_slice
    # We need this only to print it's class' name
    cdef object from_object

    cdef object (*to_object_func)(char *)
    cdef int (*to_dtype_func)(char *, object) except 0

    def __dealloc__(self):
        __PYX_XDEC_MEMVIEW(&self.from_slice, 1)

    cdef convert_item_to_object(self, char *itemp):
        if self.to_object_func != NULL:
            return self.to_object_func(itemp)
        else:
            return memoryview.convert_item_to_object(self, itemp)

    cdef assign_item_from_object(self, char *itemp, object value):
        if self.to_dtype_func != NULL:
            self.to_dtype_func(itemp, value)
        else:
            memoryview.assign_item_from_object(self, itemp, value)

    @property
    def base(self):
        return self.from_object

    __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)")


@cname('__pyx_memoryview_fromslice')
cdef memoryview_fromslice({{memviewslice_name}} memviewslice,
                          int ndim,
                          object (*to_object_func)(char *),
                          int (*to_dtype_func)(char *, object) except 0,
                          bint dtype_is_object):

    cdef _memoryviewslice result

    if <PyObject *> memviewslice.memview == Py_None:
        return None

    # assert 0 < ndim <= memviewslice.memview.view.ndim, (
    #                 ndim, memviewslice.memview.view.ndim)

    result = _memoryviewslice(None, 0, dtype_is_object)

    result.from_slice = memviewslice
    __PYX_INC_MEMVIEW(&memviewslice, 1)

    result.from_object = (<memoryview> memviewslice.memview).base
    result.typeinfo = memviewslice.memview.typeinfo

    result.view = memviewslice.memview.view
    result.view.buf = <void *> memviewslice.data
    result.view.ndim = ndim
    (<__pyx_buffer *> &result.view).obj = Py_None
    Py_INCREF(Py_None)

    result.flags = PyBUF_RECORDS

    result.view.shape = <Py_ssize_t *> result.from_slice.shape
    result.view.strides = <Py_ssize_t *> result.from_slice.strides

    # only set suboffsets if actually used, otherwise set to NULL to improve compatibility
    result.view.suboffsets = NULL
    for suboffset in result.from_slice.suboffsets[:ndim]:
        if suboffset >= 0:
            result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets
            break

    result.view.len = result.view.itemsize
    for length in result.view.shape[:ndim]:
        result.view.len *= length

    result.to_object_func = to_object_func
    result.to_dtype_func = to_dtype_func

    return result

@cname('__pyx_memoryview_get_slice_from_memoryview')
cdef {{memviewslice_name}} *get_slice_from_memview(memoryview memview,
                                                   {{memviewslice_name}} *mslice):
    cdef _memoryviewslice obj
    if isinstance(memview, _memoryviewslice):
        obj = memview
        return &obj.from_slice
    else:
        slice_copy(memview, mslice)
        return mslice

@cname('__pyx_memoryview_slice_copy')
cdef void slice_copy(memoryview memview, {{memviewslice_name}} *dst):
    cdef int dim
    cdef (Py_ssize_t*) shape, strides, suboffsets

    shape = memview.view.shape
    strides = memview.view.strides
    suboffsets = memview.view.suboffsets

    dst.memview = <__pyx_memoryview *> memview
    dst.data = <char *> memview.view.buf

    for dim in range(memview.view.ndim):
        dst.shape[dim] = shape[dim]
        dst.strides[dim] = strides[dim]
        dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1

@cname('__pyx_memoryview_copy_object')
cdef memoryview_copy(memoryview memview):
    "Create a new memoryview object"
    cdef {{memviewslice_name}} memviewslice
    slice_copy(memview, &memviewslice)
    return memoryview_copy_from_slice(memview, &memviewslice)

@cname('__pyx_memoryview_copy_object_from_slice')
cdef memoryview_copy_from_slice(memoryview memview, {{memviewslice_name}} *memviewslice):
    """
    Create a new memoryview object from a given memoryview object and slice.
    """
    cdef object (*to_object_func)(char *)
    cdef int (*to_dtype_func)(char *, object) except 0

    if isinstance(memview, _memoryviewslice):
        to_object_func = (<_memoryviewslice> memview).to_object_func
        to_dtype_func = (<_memoryviewslice> memview).to_dtype_func
    else:
        to_object_func = NULL
        to_dtype_func = NULL

    return memoryview_fromslice(memviewslice[0], memview.view.ndim,
                                to_object_func, to_dtype_func,
                                memview.dtype_is_object)


#
### Copy the contents of a memoryview slices
#
cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil:
    if arg < 0:
        return -arg
    else:
        return arg

@cname('__pyx_get_best_slice_order')
cdef char get_best_order({{memviewslice_name}} *mslice, int ndim) nogil:
    """
    Figure out the best memory access order for a given slice.
    """
    cdef int i
    cdef Py_ssize_t c_stride = 0
    cdef Py_ssize_t f_stride = 0

    for i in range(ndim - 1, -1, -1):
        if mslice.shape[i] > 1:
            c_stride = mslice.strides[i]
            break

    for i in range(ndim):
        if mslice.shape[i] > 1:
            f_stride = mslice.strides[i]
            break

    if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride):
        return 'C'
    else:
        return 'F'

@cython.cdivision(True)
cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides,
                                   char *dst_data, Py_ssize_t *dst_strides,
                                   Py_ssize_t *src_shape, Py_ssize_t *dst_shape,
                                   int ndim, size_t itemsize) nogil:
    # Note: src_extent is 1 if we're broadcasting
    # dst_extent always >= src_extent as we don't do reductions
    cdef Py_ssize_t i
    cdef Py_ssize_t src_extent = src_shape[0]
    cdef Py_ssize_t dst_extent = dst_shape[0]
    cdef Py_ssize_t src_stride = src_strides[0]
    cdef Py_ssize_t dst_stride = dst_strides[0]

    if ndim == 1:
       if (src_stride > 0 and dst_stride > 0 and
           <size_t> src_stride == itemsize == <size_t> dst_stride):
           memcpy(dst_data, src_data, itemsize * dst_extent)
       else:
           for i in range(dst_extent):
               memcpy(dst_data, src_data, itemsize)
               src_data += src_stride
               dst_data += dst_stride
    else:
        for i in range(dst_extent):
            _copy_strided_to_strided(src_data, src_strides + 1,
                                     dst_data, dst_strides + 1,
                                     src_shape + 1, dst_shape + 1,
                                     ndim - 1, itemsize)
            src_data += src_stride
            dst_data += dst_stride

cdef void copy_strided_to_strided({{memviewslice_name}} *src,
                                  {{memviewslice_name}} *dst,
                                  int ndim, size_t itemsize) nogil:
    _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides,
                             src.shape, dst.shape, ndim, itemsize)

@cname('__pyx_memoryview_slice_get_size')
cdef Py_ssize_t slice_get_size({{memviewslice_name}} *src, int ndim) nogil:
    "Return the size of the memory occupied by the slice in number of bytes"
    cdef int i
    cdef Py_ssize_t size = src.memview.view.itemsize

    for i in range(ndim):
        size *= src.shape[i]

    return size

@cname('__pyx_fill_contig_strides_array')
cdef Py_ssize_t fill_contig_strides_array(
                Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride,
                int ndim, char order) nogil:
    """
    Fill the strides array for a slice with C or F contiguous strides.
    This is like PyBuffer_FillContiguousStrides, but compatible with py < 2.6
    """
    cdef int idx

    if order == 'F':
        for idx in range(ndim):
            strides[idx] = stride
            stride = stride * shape[idx]
    else:
        for idx in range(ndim - 1, -1, -1):
            strides[idx] = stride
            stride = stride * shape[idx]

    return stride

@cname('__pyx_memoryview_copy_data_to_temp')
cdef void *copy_data_to_temp({{memviewslice_name}} *src,
                             {{memviewslice_name}} *tmpslice,
                             char order,
                             int ndim) nogil except NULL:
    """
    Copy a direct slice to temporary contiguous memory. The caller should free
    the result when done.
    """
    cdef int i
    cdef void *result

    cdef size_t itemsize = src.memview.view.itemsize
    cdef size_t size = slice_get_size(src, ndim)

    result = malloc(size)
    if not result:
        _err(MemoryError, NULL)

    # tmpslice[0] = src
    tmpslice.data = <char *> result
    tmpslice.memview = src.memview
    for i in range(ndim):
        tmpslice.shape[i] = src.shape[i]
        tmpslice.suboffsets[i] = -1

    fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize,
                              ndim, order)

    # We need to broadcast strides again
    for i in range(ndim):
        if tmpslice.shape[i] == 1:
            tmpslice.strides[i] = 0

    if slice_is_contig(src[0], order, ndim):
        memcpy(result, src.data, size)
    else:
        copy_strided_to_strided(src, tmpslice, ndim, itemsize)

    return result

# Use 'with gil' functions and avoid 'with gil' blocks, as the code within the blocks
# has temporaries that need the GIL to clean up
@cname('__pyx_memoryview_err_extents')
cdef int _err_extents(int i, Py_ssize_t extent1,
                             Py_ssize_t extent2) except -1 with gil:
    raise ValueError("got differing extents in dimension %d (got %d and %d)" %
                                                        (i, extent1, extent2))

@cname('__pyx_memoryview_err_dim')
cdef int _err_dim(object error, char *msg, int dim) except -1 with gil:
    raise error(msg.decode('ascii') % dim)

@cname('__pyx_memoryview_err')
cdef int _err(object error, char *msg) except -1 with gil:
    if msg != NULL:
        raise error(msg.decode('ascii'))
    else:
        raise error

@cname('__pyx_memoryview_copy_contents')
cdef int memoryview_copy_contents({{memviewslice_name}} src,
                                  {{memviewslice_name}} dst,
                                  int src_ndim, int dst_ndim,
                                  bint dtype_is_object) nogil except -1:
    """
    Copy memory from slice src to slice dst.
    Check for overlapping memory and verify the shapes.
    """
    cdef void *tmpdata = NULL
    cdef size_t itemsize = src.memview.view.itemsize
    cdef int i
    cdef char order = get_best_order(&src, src_ndim)
    cdef bint broadcasting = False
    cdef bint direct_copy = False
    cdef {{memviewslice_name}} tmp

    if src_ndim < dst_ndim:
        broadcast_leading(&src, src_ndim, dst_ndim)
    elif dst_ndim < src_ndim:
        broadcast_leading(&dst, dst_ndim, src_ndim)

    cdef int ndim = max(src_ndim, dst_ndim)

    for i in range(ndim):
        if src.shape[i] != dst.shape[i]:
            if src.shape[i] == 1:
                broadcasting = True
                src.strides[i] = 0
            else:
                _err_extents(i, dst.shape[i], src.shape[i])

        if src.suboffsets[i] >= 0:
            _err_dim(ValueError, "Dimension %d is not direct", i)

    if slices_overlap(&src, &dst, ndim, itemsize):
        # slices overlap, copy to temp, copy temp to dst
        if not slice_is_contig(src, order, ndim):
            order = get_best_order(&dst, ndim)

        tmpdata = copy_data_to_temp(&src, &tmp, order, ndim)
        src = tmp

    if not broadcasting:
        # See if both slices have equal contiguity, in that case perform a
        # direct copy. This only works when we are not broadcasting.
        if slice_is_contig(src, 'C', ndim):
            direct_copy = slice_is_contig(dst, 'C', ndim)
        elif slice_is_contig(src, 'F', ndim):
            direct_copy = slice_is_contig(dst, 'F', ndim)

        if direct_copy:
            # Contiguous slices with same order
            refcount_copying(&dst, dtype_is_object, ndim, False)
            memcpy(dst.data, src.data, slice_get_size(&src, ndim))
            refcount_copying(&dst, dtype_is_object, ndim, True)
            free(tmpdata)
            return 0

    if order == 'F' == get_best_order(&dst, ndim):
        # see if both slices have Fortran order, transpose them to match our
        # C-style indexing order
        transpose_memslice(&src)
        transpose_memslice(&dst)

    refcount_copying(&dst, dtype_is_object, ndim, False)
    copy_strided_to_strided(&src, &dst, ndim, itemsize)
    refcount_copying(&dst, dtype_is_object, ndim, True)

    free(tmpdata)
    return 0

@cname('__pyx_memoryview_broadcast_leading')
cdef void broadcast_leading({{memviewslice_name}} *mslice,
                            int ndim,
                            int ndim_other) nogil:
    cdef int i
    cdef int offset = ndim_other - ndim

    for i in range(ndim - 1, -1, -1):
        mslice.shape[i + offset] = mslice.shape[i]
        mslice.strides[i + offset] = mslice.strides[i]
        mslice.suboffsets[i + offset] = mslice.suboffsets[i]

    for i in range(offset):
        mslice.shape[i] = 1
        mslice.strides[i] = mslice.strides[0]
        mslice.suboffsets[i] = -1

#
### Take care of refcounting the objects in slices. Do this seperately from any copying,
### to minimize acquiring the GIL
#

@cname('__pyx_memoryview_refcount_copying')
cdef void refcount_copying({{memviewslice_name}} *dst, bint dtype_is_object,
                           int ndim, bint inc) nogil:
    # incref or decref the objects in the destination slice if the dtype is
    # object
    if dtype_is_object:
        refcount_objects_in_slice_with_gil(dst.data, dst.shape,
                                           dst.strides, ndim, inc)

@cname('__pyx_memoryview_refcount_objects_in_slice_with_gil')
cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape,
                                             Py_ssize_t *strides, int ndim,
                                             bint inc) with gil:
    refcount_objects_in_slice(data, shape, strides, ndim, inc)

@cname('__pyx_memoryview_refcount_objects_in_slice')
cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape,
                                    Py_ssize_t *strides, int ndim, bint inc):
    cdef Py_ssize_t i

    for i in range(shape[0]):
        if ndim == 1:
            if inc:
                Py_INCREF((<PyObject **> data)[0])
            else:
                Py_DECREF((<PyObject **> data)[0])
        else:
            refcount_objects_in_slice(data, shape + 1, strides + 1,
                                      ndim - 1, inc)

        data += strides[0]

#
### Scalar to slice assignment
#
@cname('__pyx_memoryview_slice_assign_scalar')
cdef void slice_assign_scalar({{memviewslice_name}} *dst, int ndim,
                              size_t itemsize, void *item,
                              bint dtype_is_object) nogil:
    refcount_copying(dst, dtype_is_object, ndim, False)
    _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim,
                         itemsize, item)
    refcount_copying(dst, dtype_is_object, ndim, True)


@cname('__pyx_memoryview__slice_assign_scalar')
cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape,
                              Py_ssize_t *strides, int ndim,
                              size_t itemsize, void *item) nogil:
    cdef Py_ssize_t i
    cdef Py_ssize_t stride = strides[0]
    cdef Py_ssize_t extent = shape[0]

    if ndim == 1:
        for i in range(extent):
            memcpy(data, item, itemsize)
            data += stride
    else:
        for i in range(extent):
            _slice_assign_scalar(data, shape + 1, strides + 1,
                                ndim - 1, itemsize, item)
            data += stride


############### BufferFormatFromTypeInfo ###############
cdef extern from *:
    ctypedef struct __Pyx_StructField

    cdef enum:
        __PYX_BUF_FLAGS_PACKED_STRUCT
        __PYX_BUF_FLAGS_INTEGER_COMPLEX

    ctypedef struct __Pyx_TypeInfo:
      char* name
      __Pyx_StructField* fields
      size_t size
      size_t arraysize[8]
      int ndim
      char typegroup
      char is_unsigned
      int flags

    ctypedef struct __Pyx_StructField:
      __Pyx_TypeInfo* type
      char* name
      size_t offset

    ctypedef struct __Pyx_BufFmt_StackElem:
      __Pyx_StructField* field
      size_t parent_offset

    #ctypedef struct __Pyx_BufFmt_Context:
    #  __Pyx_StructField root
      __Pyx_BufFmt_StackElem* head

    struct __pyx_typeinfo_string:
        char string[3]

    __pyx_typeinfo_string __Pyx_TypeInfoToFormat(__Pyx_TypeInfo *)


@cname('__pyx_format_from_typeinfo')
cdef bytes format_from_typeinfo(__Pyx_TypeInfo *type):
    cdef __Pyx_StructField *field
    cdef __pyx_typeinfo_string fmt
    cdef bytes part, result

    if type.typegroup == 'S':
        assert type.fields != NULL and type.fields.type != NULL

        if type.flags & __PYX_BUF_FLAGS_PACKED_STRUCT:
            alignment = b'^'
        else:
            alignment = b''

        parts = [b"T{"]
        field = type.fields

        while field.type:
            part = format_from_typeinfo(field.type)
            parts.append(part + b':' + field.name + b':')
            field += 1

        result = alignment.join(parts) + b'}'
    else:
        fmt = __Pyx_TypeInfoToFormat(type)
        if type.arraysize[0]:
            extents = [unicode(type.arraysize[i]) for i in range(type.ndim)]
            result = (u"(%s)" % u','.join(extents)).encode('ascii') + fmt.string
        else:
            result = fmt.string

    return result