This file is indexed.

/usr/lib/python3/dist-packages/Cython/Compiler/ParseTreeTransforms.py is in cython3 0.25.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
from __future__ import absolute_import

import cython
cython.declare(PyrexTypes=object, Naming=object, ExprNodes=object, Nodes=object,
               Options=object, UtilNodes=object, LetNode=object,
               LetRefNode=object, TreeFragment=object, EncodedString=object,
               error=object, warning=object, copy=object, _unicode=object)

import copy

from . import PyrexTypes
from . import Naming
from . import ExprNodes
from . import Nodes
from . import Options
from . import Builtin

from .Visitor import VisitorTransform, TreeVisitor
from .Visitor import CythonTransform, EnvTransform, ScopeTrackingTransform
from .UtilNodes import LetNode, LetRefNode
from .TreeFragment import TreeFragment
from .StringEncoding import EncodedString, _unicode
from .Errors import error, warning, CompileError, InternalError
from .Code import UtilityCode


class NameNodeCollector(TreeVisitor):
    """Collect all NameNodes of a (sub-)tree in the ``name_nodes``
    attribute.
    """
    def __init__(self):
        super(NameNodeCollector, self).__init__()
        self.name_nodes = []

    def visit_NameNode(self, node):
        self.name_nodes.append(node)

    def visit_Node(self, node):
        self._visitchildren(node, None)


class SkipDeclarations(object):
    """
    Variable and function declarations can often have a deep tree structure,
    and yet most transformations don't need to descend to this depth.

    Declaration nodes are removed after AnalyseDeclarationsTransform, so there
    is no need to use this for transformations after that point.
    """
    def visit_CTypeDefNode(self, node):
        return node

    def visit_CVarDefNode(self, node):
        return node

    def visit_CDeclaratorNode(self, node):
        return node

    def visit_CBaseTypeNode(self, node):
        return node

    def visit_CEnumDefNode(self, node):
        return node

    def visit_CStructOrUnionDefNode(self, node):
        return node

class NormalizeTree(CythonTransform):
    """
    This transform fixes up a few things after parsing
    in order to make the parse tree more suitable for
    transforms.

    a) After parsing, blocks with only one statement will
    be represented by that statement, not by a StatListNode.
    When doing transforms this is annoying and inconsistent,
    as one cannot in general remove a statement in a consistent
    way and so on. This transform wraps any single statements
    in a StatListNode containing a single statement.

    b) The PassStatNode is a noop and serves no purpose beyond
    plugging such one-statement blocks; i.e., once parsed a
`    "pass" can just as well be represented using an empty
    StatListNode. This means less special cases to worry about
    in subsequent transforms (one always checks to see if a
    StatListNode has no children to see if the block is empty).
    """

    def __init__(self, context):
        super(NormalizeTree, self).__init__(context)
        self.is_in_statlist = False
        self.is_in_expr = False

    def visit_ExprNode(self, node):
        stacktmp = self.is_in_expr
        self.is_in_expr = True
        self.visitchildren(node)
        self.is_in_expr = stacktmp
        return node

    def visit_StatNode(self, node, is_listcontainer=False):
        stacktmp = self.is_in_statlist
        self.is_in_statlist = is_listcontainer
        self.visitchildren(node)
        self.is_in_statlist = stacktmp
        if not self.is_in_statlist and not self.is_in_expr:
            return Nodes.StatListNode(pos=node.pos, stats=[node])
        else:
            return node

    def visit_StatListNode(self, node):
        self.is_in_statlist = True
        self.visitchildren(node)
        self.is_in_statlist = False
        return node

    def visit_ParallelAssignmentNode(self, node):
        return self.visit_StatNode(node, True)

    def visit_CEnumDefNode(self, node):
        return self.visit_StatNode(node, True)

    def visit_CStructOrUnionDefNode(self, node):
        return self.visit_StatNode(node, True)

    def visit_PassStatNode(self, node):
        """Eliminate PassStatNode"""
        if not self.is_in_statlist:
            return Nodes.StatListNode(pos=node.pos, stats=[])
        else:
            return []

    def visit_ExprStatNode(self, node):
        """Eliminate useless string literals"""
        if node.expr.is_string_literal:
            return self.visit_PassStatNode(node)
        else:
            return self.visit_StatNode(node)

    def visit_CDeclaratorNode(self, node):
        return node


class PostParseError(CompileError): pass

# error strings checked by unit tests, so define them
ERR_CDEF_INCLASS = 'Cannot assign default value to fields in cdef classes, structs or unions'
ERR_BUF_DEFAULTS = 'Invalid buffer defaults specification (see docs)'
ERR_INVALID_SPECIALATTR_TYPE = 'Special attributes must not have a type declared'
class PostParse(ScopeTrackingTransform):
    """
    Basic interpretation of the parse tree, as well as validity
    checking that can be done on a very basic level on the parse
    tree (while still not being a problem with the basic syntax,
    as such).

    Specifically:
    - Default values to cdef assignments are turned into single
    assignments following the declaration (everywhere but in class
    bodies, where they raise a compile error)

    - Interpret some node structures into Python runtime values.
    Some nodes take compile-time arguments (currently:
    TemplatedTypeNode[args] and __cythonbufferdefaults__ = {args}),
    which should be interpreted. This happens in a general way
    and other steps should be taken to ensure validity.

    Type arguments cannot be interpreted in this way.

    - For __cythonbufferdefaults__ the arguments are checked for
    validity.

    TemplatedTypeNode has its directives interpreted:
    Any first positional argument goes into the "dtype" attribute,
    any "ndim" keyword argument goes into the "ndim" attribute and
    so on. Also it is checked that the directive combination is valid.
    - __cythonbufferdefaults__ attributes are parsed and put into the
    type information.

    Note: Currently Parsing.py does a lot of interpretation and
    reorganization that can be refactored into this transform
    if a more pure Abstract Syntax Tree is wanted.
    """

    def __init__(self, context):
        super(PostParse, self).__init__(context)
        self.specialattribute_handlers = {
            '__cythonbufferdefaults__' : self.handle_bufferdefaults
        }

    def visit_LambdaNode(self, node):
        # unpack a lambda expression into the corresponding DefNode
        collector = YieldNodeCollector()
        collector.visitchildren(node.result_expr)
        if collector.yields or collector.awaits or isinstance(node.result_expr, ExprNodes.YieldExprNode):
            body = Nodes.ExprStatNode(
                node.result_expr.pos, expr=node.result_expr)
        else:
            body = Nodes.ReturnStatNode(
                node.result_expr.pos, value=node.result_expr)
        node.def_node = Nodes.DefNode(
            node.pos, name=node.name,
            args=node.args, star_arg=node.star_arg,
            starstar_arg=node.starstar_arg,
            body=body, doc=None)
        self.visitchildren(node)
        return node

    def visit_GeneratorExpressionNode(self, node):
        # unpack a generator expression into the corresponding DefNode
        node.def_node = Nodes.DefNode(node.pos, name=node.name,
                                      doc=None,
                                      args=[], star_arg=None,
                                      starstar_arg=None,
                                      body=node.loop)
        self.visitchildren(node)
        return node

    # cdef variables
    def handle_bufferdefaults(self, decl):
        if not isinstance(decl.default, ExprNodes.DictNode):
            raise PostParseError(decl.pos, ERR_BUF_DEFAULTS)
        self.scope_node.buffer_defaults_node = decl.default
        self.scope_node.buffer_defaults_pos = decl.pos

    def visit_CVarDefNode(self, node):
        # This assumes only plain names and pointers are assignable on
        # declaration. Also, it makes use of the fact that a cdef decl
        # must appear before the first use, so we don't have to deal with
        # "i = 3; cdef int i = i" and can simply move the nodes around.
        try:
            self.visitchildren(node)
            stats = [node]
            newdecls = []
            for decl in node.declarators:
                declbase = decl
                while isinstance(declbase, Nodes.CPtrDeclaratorNode):
                    declbase = declbase.base
                if isinstance(declbase, Nodes.CNameDeclaratorNode):
                    if declbase.default is not None:
                        if self.scope_type in ('cclass', 'pyclass', 'struct'):
                            if isinstance(self.scope_node, Nodes.CClassDefNode):
                                handler = self.specialattribute_handlers.get(decl.name)
                                if handler:
                                    if decl is not declbase:
                                        raise PostParseError(decl.pos, ERR_INVALID_SPECIALATTR_TYPE)
                                    handler(decl)
                                    continue # Remove declaration
                            raise PostParseError(decl.pos, ERR_CDEF_INCLASS)
                        first_assignment = self.scope_type != 'module'
                        stats.append(Nodes.SingleAssignmentNode(node.pos,
                            lhs=ExprNodes.NameNode(node.pos, name=declbase.name),
                            rhs=declbase.default, first=first_assignment))
                        declbase.default = None
                newdecls.append(decl)
            node.declarators = newdecls
            return stats
        except PostParseError as e:
            # An error in a cdef clause is ok, simply remove the declaration
            # and try to move on to report more errors
            self.context.nonfatal_error(e)
            return None

    # Split parallel assignments (a,b = b,a) into separate partial
    # assignments that are executed rhs-first using temps.  This
    # restructuring must be applied before type analysis so that known
    # types on rhs and lhs can be matched directly.  It is required in
    # the case that the types cannot be coerced to a Python type in
    # order to assign from a tuple.

    def visit_SingleAssignmentNode(self, node):
        self.visitchildren(node)
        return self._visit_assignment_node(node, [node.lhs, node.rhs])

    def visit_CascadedAssignmentNode(self, node):
        self.visitchildren(node)
        return self._visit_assignment_node(node, node.lhs_list + [node.rhs])

    def _visit_assignment_node(self, node, expr_list):
        """Flatten parallel assignments into separate single
        assignments or cascaded assignments.
        """
        if sum([ 1 for expr in expr_list
                 if expr.is_sequence_constructor or expr.is_string_literal ]) < 2:
            # no parallel assignments => nothing to do
            return node

        expr_list_list = []
        flatten_parallel_assignments(expr_list, expr_list_list)
        temp_refs = []
        eliminate_rhs_duplicates(expr_list_list, temp_refs)

        nodes = []
        for expr_list in expr_list_list:
            lhs_list = expr_list[:-1]
            rhs = expr_list[-1]
            if len(lhs_list) == 1:
                node = Nodes.SingleAssignmentNode(rhs.pos,
                    lhs = lhs_list[0], rhs = rhs)
            else:
                node = Nodes.CascadedAssignmentNode(rhs.pos,
                    lhs_list = lhs_list, rhs = rhs)
            nodes.append(node)

        if len(nodes) == 1:
            assign_node = nodes[0]
        else:
            assign_node = Nodes.ParallelAssignmentNode(nodes[0].pos, stats = nodes)

        if temp_refs:
            duplicates_and_temps = [ (temp.expression, temp)
                                     for temp in temp_refs ]
            sort_common_subsequences(duplicates_and_temps)
            for _, temp_ref in duplicates_and_temps[::-1]:
                assign_node = LetNode(temp_ref, assign_node)

        return assign_node

    def _flatten_sequence(self, seq, result):
        for arg in seq.args:
            if arg.is_sequence_constructor:
                self._flatten_sequence(arg, result)
            else:
                result.append(arg)
        return result

    def visit_DelStatNode(self, node):
        self.visitchildren(node)
        node.args = self._flatten_sequence(node, [])
        return node

    def visit_ExceptClauseNode(self, node):
        if node.is_except_as:
            # except-as must delete NameNode target at the end
            del_target = Nodes.DelStatNode(
                node.pos,
                args=[ExprNodes.NameNode(
                    node.target.pos, name=node.target.name)],
                ignore_nonexisting=True)
            node.body = Nodes.StatListNode(
                node.pos,
                stats=[Nodes.TryFinallyStatNode(
                    node.pos,
                    body=node.body,
                    finally_clause=Nodes.StatListNode(
                        node.pos,
                        stats=[del_target]))])
        self.visitchildren(node)
        return node


def eliminate_rhs_duplicates(expr_list_list, ref_node_sequence):
    """Replace rhs items by LetRefNodes if they appear more than once.
    Creates a sequence of LetRefNodes that set up the required temps
    and appends them to ref_node_sequence.  The input list is modified
    in-place.
    """
    seen_nodes = set()
    ref_nodes = {}
    def find_duplicates(node):
        if node.is_literal or node.is_name:
            # no need to replace those; can't include attributes here
            # as their access is not necessarily side-effect free
            return
        if node in seen_nodes:
            if node not in ref_nodes:
                ref_node = LetRefNode(node)
                ref_nodes[node] = ref_node
                ref_node_sequence.append(ref_node)
        else:
            seen_nodes.add(node)
            if node.is_sequence_constructor:
                for item in node.args:
                    find_duplicates(item)

    for expr_list in expr_list_list:
        rhs = expr_list[-1]
        find_duplicates(rhs)
    if not ref_nodes:
        return

    def substitute_nodes(node):
        if node in ref_nodes:
            return ref_nodes[node]
        elif node.is_sequence_constructor:
            node.args = list(map(substitute_nodes, node.args))
        return node

    # replace nodes inside of the common subexpressions
    for node in ref_nodes:
        if node.is_sequence_constructor:
            node.args = list(map(substitute_nodes, node.args))

    # replace common subexpressions on all rhs items
    for expr_list in expr_list_list:
        expr_list[-1] = substitute_nodes(expr_list[-1])

def sort_common_subsequences(items):
    """Sort items/subsequences so that all items and subsequences that
    an item contains appear before the item itself.  This is needed
    because each rhs item must only be evaluated once, so its value
    must be evaluated first and then reused when packing sequences
    that contain it.

    This implies a partial order, and the sort must be stable to
    preserve the original order as much as possible, so we use a
    simple insertion sort (which is very fast for short sequences, the
    normal case in practice).
    """
    def contains(seq, x):
        for item in seq:
            if item is x:
                return True
            elif item.is_sequence_constructor and contains(item.args, x):
                return True
        return False
    def lower_than(a,b):
        return b.is_sequence_constructor and contains(b.args, a)

    for pos, item in enumerate(items):
        key = item[1] # the ResultRefNode which has already been injected into the sequences
        new_pos = pos
        for i in range(pos-1, -1, -1):
            if lower_than(key, items[i][0]):
                new_pos = i
        if new_pos != pos:
            for i in range(pos, new_pos, -1):
                items[i] = items[i-1]
            items[new_pos] = item

def unpack_string_to_character_literals(literal):
    chars = []
    pos = literal.pos
    stype = literal.__class__
    sval = literal.value
    sval_type = sval.__class__
    for char in sval:
        cval = sval_type(char)
        chars.append(stype(pos, value=cval, constant_result=cval))
    return chars

def flatten_parallel_assignments(input, output):
    #  The input is a list of expression nodes, representing the LHSs
    #  and RHS of one (possibly cascaded) assignment statement.  For
    #  sequence constructors, rearranges the matching parts of both
    #  sides into a list of equivalent assignments between the
    #  individual elements.  This transformation is applied
    #  recursively, so that nested structures get matched as well.
    rhs = input[-1]
    if (not (rhs.is_sequence_constructor or isinstance(rhs, ExprNodes.UnicodeNode))
        or not sum([lhs.is_sequence_constructor for lhs in input[:-1]])):
        output.append(input)
        return

    complete_assignments = []

    if rhs.is_sequence_constructor:
        rhs_args = rhs.args
    elif rhs.is_string_literal:
        rhs_args = unpack_string_to_character_literals(rhs)

    rhs_size = len(rhs_args)
    lhs_targets = [[] for _ in range(rhs_size)]
    starred_assignments = []
    for lhs in input[:-1]:
        if not lhs.is_sequence_constructor:
            if lhs.is_starred:
                error(lhs.pos, "starred assignment target must be in a list or tuple")
            complete_assignments.append(lhs)
            continue
        lhs_size = len(lhs.args)
        starred_targets = sum([1 for expr in lhs.args if expr.is_starred])
        if starred_targets > 1:
            error(lhs.pos, "more than 1 starred expression in assignment")
            output.append([lhs,rhs])
            continue
        elif lhs_size - starred_targets > rhs_size:
            error(lhs.pos, "need more than %d value%s to unpack"
                  % (rhs_size, (rhs_size != 1) and 's' or ''))
            output.append([lhs,rhs])
            continue
        elif starred_targets:
            map_starred_assignment(lhs_targets, starred_assignments,
                                   lhs.args, rhs_args)
        elif lhs_size < rhs_size:
            error(lhs.pos, "too many values to unpack (expected %d, got %d)"
                  % (lhs_size, rhs_size))
            output.append([lhs,rhs])
            continue
        else:
            for targets, expr in zip(lhs_targets, lhs.args):
                targets.append(expr)

    if complete_assignments:
        complete_assignments.append(rhs)
        output.append(complete_assignments)

    # recursively flatten partial assignments
    for cascade, rhs in zip(lhs_targets, rhs_args):
        if cascade:
            cascade.append(rhs)
            flatten_parallel_assignments(cascade, output)

    # recursively flatten starred assignments
    for cascade in starred_assignments:
        if cascade[0].is_sequence_constructor:
            flatten_parallel_assignments(cascade, output)
        else:
            output.append(cascade)

def map_starred_assignment(lhs_targets, starred_assignments, lhs_args, rhs_args):
    # Appends the fixed-position LHS targets to the target list that
    # appear left and right of the starred argument.
    #
    # The starred_assignments list receives a new tuple
    # (lhs_target, rhs_values_list) that maps the remaining arguments
    # (those that match the starred target) to a list.

    # left side of the starred target
    for i, (targets, expr) in enumerate(zip(lhs_targets, lhs_args)):
        if expr.is_starred:
            starred = i
            lhs_remaining = len(lhs_args) - i - 1
            break
        targets.append(expr)
    else:
        raise InternalError("no starred arg found when splitting starred assignment")

    # right side of the starred target
    for i, (targets, expr) in enumerate(zip(lhs_targets[-lhs_remaining:],
                                            lhs_args[starred + 1:])):
        targets.append(expr)

    # the starred target itself, must be assigned a (potentially empty) list
    target = lhs_args[starred].target # unpack starred node
    starred_rhs = rhs_args[starred:]
    if lhs_remaining:
        starred_rhs = starred_rhs[:-lhs_remaining]
    if starred_rhs:
        pos = starred_rhs[0].pos
    else:
        pos = target.pos
    starred_assignments.append([
        target, ExprNodes.ListNode(pos=pos, args=starred_rhs)])


class PxdPostParse(CythonTransform, SkipDeclarations):
    """
    Basic interpretation/validity checking that should only be
    done on pxd trees.

    A lot of this checking currently happens in the parser; but
    what is listed below happens here.

    - "def" functions are let through only if they fill the
    getbuffer/releasebuffer slots

    - cdef functions are let through only if they are on the
    top level and are declared "inline"
    """
    ERR_INLINE_ONLY = "function definition in pxd file must be declared 'cdef inline'"
    ERR_NOGO_WITH_INLINE = "inline function definition in pxd file cannot be '%s'"

    def __call__(self, node):
        self.scope_type = 'pxd'
        return super(PxdPostParse, self).__call__(node)

    def visit_CClassDefNode(self, node):
        old = self.scope_type
        self.scope_type = 'cclass'
        self.visitchildren(node)
        self.scope_type = old
        return node

    def visit_FuncDefNode(self, node):
        # FuncDefNode always come with an implementation (without
        # an imp they are CVarDefNodes..)
        err = self.ERR_INLINE_ONLY

        if (isinstance(node, Nodes.DefNode) and self.scope_type == 'cclass'
            and node.name in ('__getbuffer__', '__releasebuffer__')):
            err = None # allow these slots

        if isinstance(node, Nodes.CFuncDefNode):
            if (u'inline' in node.modifiers and
                self.scope_type in ('pxd', 'cclass')):
                node.inline_in_pxd = True
                if node.visibility != 'private':
                    err = self.ERR_NOGO_WITH_INLINE % node.visibility
                elif node.api:
                    err = self.ERR_NOGO_WITH_INLINE % 'api'
                else:
                    err = None # allow inline function
            else:
                err = self.ERR_INLINE_ONLY

        if err:
            self.context.nonfatal_error(PostParseError(node.pos, err))
            return None
        else:
            return node

class InterpretCompilerDirectives(CythonTransform, SkipDeclarations):
    """
    After parsing, directives can be stored in a number of places:
    - #cython-comments at the top of the file (stored in ModuleNode)
    - Command-line arguments overriding these
    - @cython.directivename decorators
    - with cython.directivename: statements

    This transform is responsible for interpreting these various sources
    and store the directive in two ways:
    - Set the directives attribute of the ModuleNode for global directives.
    - Use a CompilerDirectivesNode to override directives for a subtree.

    (The first one is primarily to not have to modify with the tree
    structure, so that ModuleNode stay on top.)

    The directives are stored in dictionaries from name to value in effect.
    Each such dictionary is always filled in for all possible directives,
    using default values where no value is given by the user.

    The available directives are controlled in Options.py.

    Note that we have to run this prior to analysis, and so some minor
    duplication of functionality has to occur: We manually track cimports
    and which names the "cython" module may have been imported to.
    """
    unop_method_nodes = {
        'typeof': ExprNodes.TypeofNode,

        'operator.address': ExprNodes.AmpersandNode,
        'operator.dereference': ExprNodes.DereferenceNode,
        'operator.preincrement' : ExprNodes.inc_dec_constructor(True, '++'),
        'operator.predecrement' : ExprNodes.inc_dec_constructor(True, '--'),
        'operator.postincrement': ExprNodes.inc_dec_constructor(False, '++'),
        'operator.postdecrement': ExprNodes.inc_dec_constructor(False, '--'),
        'operator.typeid'       : ExprNodes.TypeidNode,

        # For backwards compatibility.
        'address': ExprNodes.AmpersandNode,
    }

    binop_method_nodes = {
        'operator.comma'        : ExprNodes.c_binop_constructor(','),
    }

    special_methods = set(['declare', 'union', 'struct', 'typedef',
                           'sizeof', 'cast', 'pointer', 'compiled',
                           'NULL', 'fused_type', 'parallel'])
    special_methods.update(unop_method_nodes)

    valid_parallel_directives = set([
        "parallel",
        "prange",
        "threadid",
        #"threadsavailable",
    ])

    def __init__(self, context, compilation_directive_defaults):
        super(InterpretCompilerDirectives, self).__init__(context)
        self.cython_module_names = set()
        self.directive_names = {'staticmethod': 'staticmethod'}
        self.parallel_directives = {}
        directives = copy.deepcopy(Options.get_directive_defaults())
        for key, value in compilation_directive_defaults.items():
            directives[_unicode(key)] = copy.deepcopy(value)
        self.directives = directives

    def check_directive_scope(self, pos, directive, scope):
        legal_scopes = Options.directive_scopes.get(directive, None)
        if legal_scopes and scope not in legal_scopes:
            self.context.nonfatal_error(PostParseError(pos, 'The %s compiler directive '
                                        'is not allowed in %s scope' % (directive, scope)))
            return False
        else:
            if directive not in Options.directive_types:
                error(pos, "Invalid directive: '%s'." % (directive,))
            return True

    # Set up processing and handle the cython: comments.
    def visit_ModuleNode(self, node):
        for key in sorted(node.directive_comments):
            if not self.check_directive_scope(node.pos, key, 'module'):
                self.wrong_scope_error(node.pos, key, 'module')
                del node.directive_comments[key]

        self.module_scope = node.scope

        self.directives.update(node.directive_comments)
        node.directives = self.directives
        node.parallel_directives = self.parallel_directives
        self.visitchildren(node)
        node.cython_module_names = self.cython_module_names
        return node

    # The following four functions track imports and cimports that
    # begin with "cython"
    def is_cython_directive(self, name):
        return (name in Options.directive_types or
                name in self.special_methods or
                PyrexTypes.parse_basic_type(name))

    def is_parallel_directive(self, full_name, pos):
        """
        Checks to see if fullname (e.g. cython.parallel.prange) is a valid
        parallel directive. If it is a star import it also updates the
        parallel_directives.
        """
        result = (full_name + ".").startswith("cython.parallel.")

        if result:
            directive = full_name.split('.')
            if full_name == u"cython.parallel":
                self.parallel_directives[u"parallel"] = u"cython.parallel"
            elif full_name == u"cython.parallel.*":
                for name in self.valid_parallel_directives:
                    self.parallel_directives[name] = u"cython.parallel.%s" % name
            elif (len(directive) != 3 or
                  directive[-1] not in self.valid_parallel_directives):
                error(pos, "No such directive: %s" % full_name)

            self.module_scope.use_utility_code(
                UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c"))

        return result

    def visit_CImportStatNode(self, node):
        if node.module_name == u"cython":
            self.cython_module_names.add(node.as_name or u"cython")
        elif node.module_name.startswith(u"cython."):
            if node.module_name.startswith(u"cython.parallel."):
                error(node.pos, node.module_name + " is not a module")
            if node.module_name == u"cython.parallel":
                if node.as_name and node.as_name != u"cython":
                    self.parallel_directives[node.as_name] = node.module_name
                else:
                    self.cython_module_names.add(u"cython")
                    self.parallel_directives[
                                    u"cython.parallel"] = node.module_name
                self.module_scope.use_utility_code(
                    UtilityCode.load_cached("InitThreads", "ModuleSetupCode.c"))
            elif node.as_name:
                self.directive_names[node.as_name] = node.module_name[7:]
            else:
                self.cython_module_names.add(u"cython")
            # if this cimport was a compiler directive, we don't
            # want to leave the cimport node sitting in the tree
            return None
        return node

    def visit_FromCImportStatNode(self, node):
        if not node.relative_level and (
                node.module_name == u"cython" or node.module_name.startswith(u"cython.")):
            submodule = (node.module_name + u".")[7:]
            newimp = []

            for pos, name, as_name, kind in node.imported_names:
                full_name = submodule + name
                qualified_name = u"cython." + full_name

                if self.is_parallel_directive(qualified_name, node.pos):
                    # from cython cimport parallel, or
                    # from cython.parallel cimport parallel, prange, ...
                    self.parallel_directives[as_name or name] = qualified_name
                elif self.is_cython_directive(full_name):
                    self.directive_names[as_name or name] = full_name
                    if kind is not None:
                        self.context.nonfatal_error(PostParseError(pos,
                            "Compiler directive imports must be plain imports"))
                else:
                    newimp.append((pos, name, as_name, kind))

            if not newimp:
                return None

            node.imported_names = newimp
        return node

    def visit_FromImportStatNode(self, node):
        if (node.module.module_name.value == u"cython") or \
               node.module.module_name.value.startswith(u"cython."):
            submodule = (node.module.module_name.value + u".")[7:]
            newimp = []
            for name, name_node in node.items:
                full_name = submodule + name
                qualified_name = u"cython." + full_name
                if self.is_parallel_directive(qualified_name, node.pos):
                    self.parallel_directives[name_node.name] = qualified_name
                elif self.is_cython_directive(full_name):
                    self.directive_names[name_node.name] = full_name
                else:
                    newimp.append((name, name_node))
            if not newimp:
                return None
            node.items = newimp
        return node

    def visit_SingleAssignmentNode(self, node):
        if isinstance(node.rhs, ExprNodes.ImportNode):
            module_name = node.rhs.module_name.value
            is_parallel = (module_name + u".").startswith(u"cython.parallel.")

            if module_name != u"cython" and not is_parallel:
                return node

            module_name = node.rhs.module_name.value
            as_name = node.lhs.name

            node = Nodes.CImportStatNode(node.pos,
                                         module_name = module_name,
                                         as_name = as_name)
            node = self.visit_CImportStatNode(node)
        else:
            self.visitchildren(node)

        return node

    def visit_NameNode(self, node):
        if node.name in self.cython_module_names:
            node.is_cython_module = True
        else:
            node.cython_attribute = self.directive_names.get(node.name)
        return node

    def try_to_parse_directives(self, node):
        # If node is the contents of an directive (in a with statement or
        # decorator), returns a list of (directivename, value) pairs.
        # Otherwise, returns None
        if isinstance(node, ExprNodes.CallNode):
            self.visit(node.function)
            optname = node.function.as_cython_attribute()
            if optname:
                directivetype = Options.directive_types.get(optname)
                if directivetype:
                    args, kwds = node.explicit_args_kwds()
                    directives = []
                    key_value_pairs = []
                    if kwds is not None and directivetype is not dict:
                        for keyvalue in kwds.key_value_pairs:
                            key, value = keyvalue
                            sub_optname = "%s.%s" % (optname, key.value)
                            if Options.directive_types.get(sub_optname):
                                directives.append(self.try_to_parse_directive(sub_optname, [value], None, keyvalue.pos))
                            else:
                                key_value_pairs.append(keyvalue)
                        if not key_value_pairs:
                            kwds = None
                        else:
                            kwds.key_value_pairs = key_value_pairs
                        if directives and not kwds and not args:
                            return directives
                    directives.append(self.try_to_parse_directive(optname, args, kwds, node.function.pos))
                    return directives
        elif isinstance(node, (ExprNodes.AttributeNode, ExprNodes.NameNode)):
            self.visit(node)
            optname = node.as_cython_attribute()
            if optname:
                directivetype = Options.directive_types.get(optname)
                if directivetype is bool:
                    return [(optname, True)]
                elif directivetype is None:
                    return [(optname, None)]
                else:
                    raise PostParseError(
                        node.pos, "The '%s' directive should be used as a function call." % optname)
        return None

    def try_to_parse_directive(self, optname, args, kwds, pos):
        directivetype = Options.directive_types.get(optname)
        if len(args) == 1 and isinstance(args[0], ExprNodes.NoneNode):
            return optname, Options.get_directive_defaults()[optname]
        elif directivetype is bool:
            if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.BoolNode):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time boolean argument' % optname)
            return (optname, args[0].value)
        elif directivetype is int:
            if kwds is not None or len(args) != 1 or not isinstance(args[0], ExprNodes.IntNode):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time integer argument' % optname)
            return (optname, int(args[0].value))
        elif directivetype is str:
            if kwds is not None or len(args) != 1 or not isinstance(
                    args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time string argument' % optname)
            return (optname, str(args[0].value))
        elif directivetype is type:
            if kwds is not None or len(args) != 1:
                raise PostParseError(pos,
                    'The %s directive takes one type argument' % optname)
            return (optname, args[0])
        elif directivetype is dict:
            if len(args) != 0:
                raise PostParseError(pos,
                    'The %s directive takes no prepositional arguments' % optname)
            return optname, dict([(key.value, value) for key, value in kwds.key_value_pairs])
        elif directivetype is list:
            if kwds and len(kwds) != 0:
                raise PostParseError(pos,
                    'The %s directive takes no keyword arguments' % optname)
            return optname, [ str(arg.value) for arg in args ]
        elif callable(directivetype):
            if kwds is not None or len(args) != 1 or not isinstance(
                    args[0], (ExprNodes.StringNode, ExprNodes.UnicodeNode)):
                raise PostParseError(pos,
                    'The %s directive takes one compile-time string argument' % optname)
            return (optname, directivetype(optname, str(args[0].value)))
        else:
            assert False

    def visit_with_directives(self, body, directives):
        olddirectives = self.directives
        newdirectives = copy.copy(olddirectives)
        newdirectives.update(directives)
        self.directives = newdirectives
        assert isinstance(body, Nodes.StatListNode), body
        retbody = self.visit_Node(body)
        directive = Nodes.CompilerDirectivesNode(pos=retbody.pos, body=retbody,
                                                 directives=newdirectives)
        self.directives = olddirectives
        return directive

    # Handle decorators
    def visit_FuncDefNode(self, node):
        directives = self._extract_directives(node, 'function')
        if not directives:
            return self.visit_Node(node)
        body = Nodes.StatListNode(node.pos, stats=[node])
        return self.visit_with_directives(body, directives)

    def visit_CVarDefNode(self, node):
        directives = self._extract_directives(node, 'function')
        if not directives:
            return node
        for name, value in directives.items():
            if name == 'locals':
                node.directive_locals = value
            elif name not in ('final', 'staticmethod'):
                self.context.nonfatal_error(PostParseError(
                    node.pos,
                    "Cdef functions can only take cython.locals(), "
                    "staticmethod, or final decorators, got %s." % name))
        body = Nodes.StatListNode(node.pos, stats=[node])
        return self.visit_with_directives(body, directives)

    def visit_CClassDefNode(self, node):
        directives = self._extract_directives(node, 'cclass')
        if not directives:
            return self.visit_Node(node)
        body = Nodes.StatListNode(node.pos, stats=[node])
        return self.visit_with_directives(body, directives)

    def visit_CppClassNode(self, node):
        directives = self._extract_directives(node, 'cppclass')
        if not directives:
            return self.visit_Node(node)
        body = Nodes.StatListNode(node.pos, stats=[node])
        return self.visit_with_directives(body, directives)

    def visit_PyClassDefNode(self, node):
        directives = self._extract_directives(node, 'class')
        if not directives:
            return self.visit_Node(node)
        body = Nodes.StatListNode(node.pos, stats=[node])
        return self.visit_with_directives(body, directives)

    def _extract_directives(self, node, scope_name):
        if not node.decorators:
            return {}
        # Split the decorators into two lists -- real decorators and directives
        directives = []
        realdecs = []
        both = []
        for dec in node.decorators:
            new_directives = self.try_to_parse_directives(dec.decorator)
            if new_directives is not None:
                for directive in new_directives:
                    if self.check_directive_scope(node.pos, directive[0], scope_name):
                        name, value = directive
                        if self.directives.get(name, object()) != value:
                            directives.append(directive)
                        if directive[0] == 'staticmethod':
                            both.append(dec)
            else:
                realdecs.append(dec)
        if realdecs and isinstance(node, (Nodes.CFuncDefNode, Nodes.CClassDefNode, Nodes.CVarDefNode)):
            raise PostParseError(realdecs[0].pos, "Cdef functions/classes cannot take arbitrary decorators.")
        else:
            node.decorators = realdecs + both
        # merge or override repeated directives
        optdict = {}
        directives.reverse() # Decorators coming first take precedence
        for directive in directives:
            name, value = directive
            if name in optdict:
                old_value = optdict[name]
                # keywords and arg lists can be merged, everything
                # else overrides completely
                if isinstance(old_value, dict):
                    old_value.update(value)
                elif isinstance(old_value, list):
                    old_value.extend(value)
                else:
                    optdict[name] = value
            else:
                optdict[name] = value
        return optdict

    # Handle with statements
    def visit_WithStatNode(self, node):
        directive_dict = {}
        for directive in self.try_to_parse_directives(node.manager) or []:
            if directive is not None:
                if node.target is not None:
                    self.context.nonfatal_error(
                        PostParseError(node.pos, "Compiler directive with statements cannot contain 'as'"))
                else:
                    name, value = directive
                    if name in ('nogil', 'gil'):
                        # special case: in pure mode, "with nogil" spells "with cython.nogil"
                        node = Nodes.GILStatNode(node.pos, state = name, body = node.body)
                        return self.visit_Node(node)
                    if self.check_directive_scope(node.pos, name, 'with statement'):
                        directive_dict[name] = value
        if directive_dict:
            return self.visit_with_directives(node.body, directive_dict)
        return self.visit_Node(node)


class ParallelRangeTransform(CythonTransform, SkipDeclarations):
    """
    Transform cython.parallel stuff. The parallel_directives come from the
    module node, set there by InterpretCompilerDirectives.

        x = cython.parallel.threadavailable()   -> ParallelThreadAvailableNode
        with nogil, cython.parallel.parallel(): -> ParallelWithBlockNode
            print cython.parallel.threadid()    -> ParallelThreadIdNode
            for i in cython.parallel.prange(...):  -> ParallelRangeNode
                ...
    """

    # a list of names, maps 'cython.parallel.prange' in the code to
    # ['cython', 'parallel', 'prange']
    parallel_directive = None

    # Indicates whether a namenode in an expression is the cython module
    namenode_is_cython_module = False

    # Keep track of whether we are the context manager of a 'with' statement
    in_context_manager_section = False

    # One of 'prange' or 'with parallel'. This is used to disallow closely
    # nested 'with parallel:' blocks
    state = None

    directive_to_node = {
        u"cython.parallel.parallel": Nodes.ParallelWithBlockNode,
        # u"cython.parallel.threadsavailable": ExprNodes.ParallelThreadsAvailableNode,
        u"cython.parallel.threadid": ExprNodes.ParallelThreadIdNode,
        u"cython.parallel.prange": Nodes.ParallelRangeNode,
    }

    def node_is_parallel_directive(self, node):
        return node.name in self.parallel_directives or node.is_cython_module

    def get_directive_class_node(self, node):
        """
        Figure out which parallel directive was used and return the associated
        Node class.

        E.g. for a cython.parallel.prange() call we return ParallelRangeNode
        """
        if self.namenode_is_cython_module:
            directive = '.'.join(self.parallel_directive)
        else:
            directive = self.parallel_directives[self.parallel_directive[0]]
            directive = '%s.%s' % (directive,
                                   '.'.join(self.parallel_directive[1:]))
            directive = directive.rstrip('.')

        cls = self.directive_to_node.get(directive)
        if cls is None and not (self.namenode_is_cython_module and
                                self.parallel_directive[0] != 'parallel'):
            error(node.pos, "Invalid directive: %s" % directive)

        self.namenode_is_cython_module = False
        self.parallel_directive = None

        return cls

    def visit_ModuleNode(self, node):
        """
        If any parallel directives were imported, copy them over and visit
        the AST
        """
        if node.parallel_directives:
            self.parallel_directives = node.parallel_directives
            return self.visit_Node(node)

        # No parallel directives were imported, so they can't be used :)
        return node

    def visit_NameNode(self, node):
        if self.node_is_parallel_directive(node):
            self.parallel_directive = [node.name]
            self.namenode_is_cython_module = node.is_cython_module
        return node

    def visit_AttributeNode(self, node):
        self.visitchildren(node)
        if self.parallel_directive:
            self.parallel_directive.append(node.attribute)
        return node

    def visit_CallNode(self, node):
        self.visit(node.function)
        if not self.parallel_directive:
            return node

        # We are a parallel directive, replace this node with the
        # corresponding ParallelSomethingSomething node

        if isinstance(node, ExprNodes.GeneralCallNode):
            args = node.positional_args.args
            kwargs = node.keyword_args
        else:
            args = node.args
            kwargs = {}

        parallel_directive_class = self.get_directive_class_node(node)
        if parallel_directive_class:
            # Note: in case of a parallel() the body is set by
            # visit_WithStatNode
            node = parallel_directive_class(node.pos, args=args, kwargs=kwargs)

        return node

    def visit_WithStatNode(self, node):
        "Rewrite with cython.parallel.parallel() blocks"
        newnode = self.visit(node.manager)

        if isinstance(newnode, Nodes.ParallelWithBlockNode):
            if self.state == 'parallel with':
                error(node.manager.pos,
                      "Nested parallel with blocks are disallowed")

            self.state = 'parallel with'
            body = self.visit(node.body)
            self.state = None

            newnode.body = body
            return newnode
        elif self.parallel_directive:
            parallel_directive_class = self.get_directive_class_node(node)

            if not parallel_directive_class:
                # There was an error, stop here and now
                return None

            if parallel_directive_class is Nodes.ParallelWithBlockNode:
                error(node.pos, "The parallel directive must be called")
                return None

        node.body = self.visit(node.body)
        return node

    def visit_ForInStatNode(self, node):
        "Rewrite 'for i in cython.parallel.prange(...):'"
        self.visit(node.iterator)
        self.visit(node.target)

        in_prange = isinstance(node.iterator.sequence,
                               Nodes.ParallelRangeNode)
        previous_state = self.state

        if in_prange:
            # This will replace the entire ForInStatNode, so copy the
            # attributes
            parallel_range_node = node.iterator.sequence

            parallel_range_node.target = node.target
            parallel_range_node.body = node.body
            parallel_range_node.else_clause = node.else_clause

            node = parallel_range_node

            if not isinstance(node.target, ExprNodes.NameNode):
                error(node.target.pos,
                      "Can only iterate over an iteration variable")

            self.state = 'prange'

        self.visit(node.body)
        self.state = previous_state
        self.visit(node.else_clause)
        return node

    def visit(self, node):
        "Visit a node that may be None"
        if node is not None:
            return super(ParallelRangeTransform, self).visit(node)


class WithTransform(CythonTransform, SkipDeclarations):
    def visit_WithStatNode(self, node):
        self.visitchildren(node, 'body')
        pos = node.pos
        is_async = node.is_async
        body, target, manager = node.body, node.target, node.manager
        node.enter_call = ExprNodes.SimpleCallNode(
            pos, function=ExprNodes.AttributeNode(
                pos, obj=ExprNodes.CloneNode(manager),
                attribute=EncodedString('__aenter__' if is_async else '__enter__'),
                is_special_lookup=True),
            args=[],
            is_temp=True)

        if is_async:
            node.enter_call = ExprNodes.AwaitExprNode(pos, arg=node.enter_call)

        if target is not None:
            body = Nodes.StatListNode(
                pos, stats=[
                    Nodes.WithTargetAssignmentStatNode(
                        pos, lhs=target, with_node=node),
                    body])

        excinfo_target = ExprNodes.TupleNode(pos, slow=True, args=[
            ExprNodes.ExcValueNode(pos) for _ in range(3)])
        except_clause = Nodes.ExceptClauseNode(
            pos, body=Nodes.IfStatNode(
                pos, if_clauses=[
                    Nodes.IfClauseNode(
                        pos, condition=ExprNodes.NotNode(
                            pos, operand=ExprNodes.WithExitCallNode(
                                pos, with_stat=node,
                                test_if_run=False,
                                args=excinfo_target,
                                await=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)),
                        body=Nodes.ReraiseStatNode(pos),
                    ),
                ],
                else_clause=None),
            pattern=None,
            target=None,
            excinfo_target=excinfo_target,
        )

        node.body = Nodes.TryFinallyStatNode(
            pos, body=Nodes.TryExceptStatNode(
                pos, body=body,
                except_clauses=[except_clause],
                else_clause=None,
            ),
            finally_clause=Nodes.ExprStatNode(
                pos, expr=ExprNodes.WithExitCallNode(
                    pos, with_stat=node,
                    test_if_run=True,
                    args=ExprNodes.TupleNode(
                        pos, args=[ExprNodes.NoneNode(pos) for _ in range(3)]),
                    await=ExprNodes.AwaitExprNode(pos, arg=None) if is_async else None)),
            handle_error_case=False,
        )
        return node

    def visit_ExprNode(self, node):
        # With statements are never inside expressions.
        return node


class DecoratorTransform(ScopeTrackingTransform, SkipDeclarations):
    """
    Transforms method decorators in cdef classes into nested calls or properties.

    Python-style decorator properties are transformed into a PropertyNode
    with up to the three getter, setter and deleter DefNodes.
    The functional style isn't supported yet.
    """
    _properties = None

    _map_property_attribute = {
        'getter': '__get__',
        'setter': '__set__',
        'deleter': '__del__',
    }.get

    def visit_CClassDefNode(self, node):
        if self._properties is None:
            self._properties = []
        self._properties.append({})
        super(DecoratorTransform, self).visit_CClassDefNode(node)
        self._properties.pop()
        return node

    def visit_PropertyNode(self, node):
        # Low-level warning for other code until we can convert all our uses over.
        level = 2 if isinstance(node.pos[0], str) else 0
        warning(node.pos, "'property %s:' syntax is deprecated, use '@property'" % node.name, level)
        return node

    def visit_DefNode(self, node):
        scope_type = self.scope_type
        node = self.visit_FuncDefNode(node)
        if scope_type != 'cclass' or not node.decorators:
            return node

        # transform @property decorators
        properties = self._properties[-1]
        for decorator_node in node.decorators[::-1]:
            decorator = decorator_node.decorator
            if decorator.is_name and decorator.name == 'property':
                if len(node.decorators) > 1:
                    return self._reject_decorated_property(node, decorator_node)
                name = node.name
                node.name = EncodedString('__get__')
                node.decorators.remove(decorator_node)
                stat_list = [node]
                if name in properties:
                    prop = properties[name]
                    prop.pos = node.pos
                    prop.doc = node.doc
                    prop.body.stats = stat_list
                    return []
                prop = Nodes.PropertyNode(node.pos, name=name)
                prop.doc = node.doc
                prop.body = Nodes.StatListNode(node.pos, stats=stat_list)
                properties[name] = prop
                return [prop]
            elif decorator.is_attribute and decorator.obj.name in properties:
                handler_name = self._map_property_attribute(decorator.attribute)
                if handler_name:
                    assert decorator.obj.name == node.name
                    if len(node.decorators) > 1:
                        return self._reject_decorated_property(node, decorator_node)
                    return self._add_to_property(properties, node, handler_name, decorator_node)

        # transform normal decorators
        return self.chain_decorators(node, node.decorators, node.name)

    @staticmethod
    def _reject_decorated_property(node, decorator_node):
        # restrict transformation to outermost decorator as wrapped properties will probably not work
        for deco in node.decorators:
            if deco != decorator_node:
                error(deco.pos, "Property methods with additional decorators are not supported")
        return node

    @staticmethod
    def _add_to_property(properties, node, name, decorator):
        prop = properties[node.name]
        node.name = name
        node.decorators.remove(decorator)
        stats = prop.body.stats
        for i, stat in enumerate(stats):
            if stat.name == name:
                stats[i] = node
                break
        else:
            stats.append(node)
        return []

    @staticmethod
    def chain_decorators(node, decorators, name):
        """
        Decorators are applied directly in DefNode and PyClassDefNode to avoid
        reassignments to the function/class name - except for cdef class methods.
        For those, the reassignment is required as methods are originally
        defined in the PyMethodDef struct.

        The IndirectionNode allows DefNode to override the decorator.
        """
        decorator_result = ExprNodes.NameNode(node.pos, name=name)
        for decorator in decorators[::-1]:
            decorator_result = ExprNodes.SimpleCallNode(
                decorator.pos,
                function=decorator.decorator,
                args=[decorator_result])

        name_node = ExprNodes.NameNode(node.pos, name=name)
        reassignment = Nodes.SingleAssignmentNode(
            node.pos,
            lhs=name_node,
            rhs=decorator_result)

        reassignment = Nodes.IndirectionNode([reassignment])
        node.decorator_indirection = reassignment
        return [node, reassignment]


class CnameDirectivesTransform(CythonTransform, SkipDeclarations):
    """
    Only part of the CythonUtilityCode pipeline. Must be run before
    DecoratorTransform in case this is a decorator for a cdef class.
    It filters out @cname('my_cname') decorators and rewrites them to
    CnameDecoratorNodes.
    """

    def handle_function(self, node):
        if not getattr(node, 'decorators', None):
            return self.visit_Node(node)

        for i, decorator in enumerate(node.decorators):
            decorator = decorator.decorator

            if (isinstance(decorator, ExprNodes.CallNode) and
                    decorator.function.is_name and
                    decorator.function.name == 'cname'):
                args, kwargs = decorator.explicit_args_kwds()

                if kwargs:
                    raise AssertionError(
                            "cname decorator does not take keyword arguments")

                if len(args) != 1:
                    raise AssertionError(
                            "cname decorator takes exactly one argument")

                if not (args[0].is_literal and
                        args[0].type == Builtin.str_type):
                    raise AssertionError(
                            "argument to cname decorator must be a string literal")

                cname = args[0].compile_time_value(None)
                del node.decorators[i]
                node = Nodes.CnameDecoratorNode(pos=node.pos, node=node,
                                                cname=cname)
                break

        return self.visit_Node(node)

    visit_FuncDefNode = handle_function
    visit_CClassDefNode = handle_function
    visit_CEnumDefNode = handle_function
    visit_CStructOrUnionDefNode = handle_function


class ForwardDeclareTypes(CythonTransform):

    def visit_CompilerDirectivesNode(self, node):
        env = self.module_scope
        old = env.directives
        env.directives = node.directives
        self.visitchildren(node)
        env.directives = old
        return node

    def visit_ModuleNode(self, node):
        self.module_scope = node.scope
        self.module_scope.directives = node.directives
        self.visitchildren(node)
        return node

    def visit_CDefExternNode(self, node):
        old_cinclude_flag = self.module_scope.in_cinclude
        self.module_scope.in_cinclude = 1
        self.visitchildren(node)
        self.module_scope.in_cinclude = old_cinclude_flag
        return node

    def visit_CEnumDefNode(self, node):
        node.declare(self.module_scope)
        return node

    def visit_CStructOrUnionDefNode(self, node):
        if node.name not in self.module_scope.entries:
            node.declare(self.module_scope)
        return node

    def visit_CClassDefNode(self, node):
        if node.class_name not in self.module_scope.entries:
            node.declare(self.module_scope)
        return node


class AnalyseDeclarationsTransform(EnvTransform):

    basic_property = TreeFragment(u"""
property NAME:
    def __get__(self):
        return ATTR
    def __set__(self, value):
        ATTR = value
    """, level='c_class', pipeline=[NormalizeTree(None)])
    basic_pyobject_property = TreeFragment(u"""
property NAME:
    def __get__(self):
        return ATTR
    def __set__(self, value):
        ATTR = value
    def __del__(self):
        ATTR = None
    """, level='c_class', pipeline=[NormalizeTree(None)])
    basic_property_ro = TreeFragment(u"""
property NAME:
    def __get__(self):
        return ATTR
    """, level='c_class', pipeline=[NormalizeTree(None)])

    struct_or_union_wrapper = TreeFragment(u"""
cdef class NAME:
    cdef TYPE value
    def __init__(self, MEMBER=None):
        cdef int count
        count = 0
        INIT_ASSIGNMENTS
        if IS_UNION and count > 1:
            raise ValueError, "At most one union member should be specified."
    def __str__(self):
        return STR_FORMAT % MEMBER_TUPLE
    def __repr__(self):
        return REPR_FORMAT % MEMBER_TUPLE
    """, pipeline=[NormalizeTree(None)])

    init_assignment = TreeFragment(u"""
if VALUE is not None:
    ATTR = VALUE
    count += 1
    """, pipeline=[NormalizeTree(None)])

    fused_function = None
    in_lambda = 0

    def __call__(self, root):
        # needed to determine if a cdef var is declared after it's used.
        self.seen_vars_stack = []
        self.fused_error_funcs = set()
        super_class = super(AnalyseDeclarationsTransform, self)
        self._super_visit_FuncDefNode = super_class.visit_FuncDefNode
        return super_class.__call__(root)

    def visit_NameNode(self, node):
        self.seen_vars_stack[-1].add(node.name)
        return node

    def visit_ModuleNode(self, node):
        self.seen_vars_stack.append(set())
        node.analyse_declarations(self.current_env())
        self.visitchildren(node)
        self.seen_vars_stack.pop()
        return node

    def visit_LambdaNode(self, node):
        self.in_lambda += 1
        node.analyse_declarations(self.current_env())
        self.visitchildren(node)
        self.in_lambda -= 1
        return node

    def visit_CClassDefNode(self, node):
        node = self.visit_ClassDefNode(node)
        if node.scope and node.scope.implemented and node.body:
            stats = []
            for entry in node.scope.var_entries:
                if entry.needs_property:
                    property = self.create_Property(entry)
                    property.analyse_declarations(node.scope)
                    self.visit(property)
                    stats.append(property)
            if stats:
                node.body.stats += stats
        return node

    def _handle_fused_def_decorators(self, old_decorators, env, node):
        """
        Create function calls to the decorators and reassignments to
        the function.
        """
        # Delete staticmethod and classmethod decorators, this is
        # handled directly by the fused function object.
        decorators = []
        for decorator in old_decorators:
            func = decorator.decorator
            if (not func.is_name or
                func.name not in ('staticmethod', 'classmethod') or
                env.lookup_here(func.name)):
                # not a static or classmethod
                decorators.append(decorator)

        if decorators:
            transform = DecoratorTransform(self.context)
            def_node = node.node
            _, reassignments = transform.chain_decorators(
                def_node, decorators, def_node.name)
            reassignments.analyse_declarations(env)
            node = [node, reassignments]

        return node

    def _handle_def(self, decorators, env, node):
        "Handle def or cpdef fused functions"
        # Create PyCFunction nodes for each specialization
        node.stats.insert(0, node.py_func)
        node.py_func = self.visit(node.py_func)
        node.update_fused_defnode_entry(env)
        pycfunc = ExprNodes.PyCFunctionNode.from_defnode(node.py_func, binding=True)
        pycfunc = ExprNodes.ProxyNode(pycfunc.coerce_to_temp(env))
        node.resulting_fused_function = pycfunc
        # Create assignment node for our def function
        node.fused_func_assignment = self._create_assignment(
            node.py_func, ExprNodes.CloneNode(pycfunc), env)

        if decorators:
            node = self._handle_fused_def_decorators(decorators, env, node)

        return node

    def _create_fused_function(self, env, node):
        "Create a fused function for a DefNode with fused arguments"
        from . import FusedNode

        if self.fused_function or self.in_lambda:
            if self.fused_function not in self.fused_error_funcs:
                if self.in_lambda:
                    error(node.pos, "Fused lambdas not allowed")
                else:
                    error(node.pos, "Cannot nest fused functions")

            self.fused_error_funcs.add(self.fused_function)

            node.body = Nodes.PassStatNode(node.pos)
            for arg in node.args:
                if arg.type.is_fused:
                    arg.type = arg.type.get_fused_types()[0]

            return node

        decorators = getattr(node, 'decorators', None)
        node = FusedNode.FusedCFuncDefNode(node, env)
        self.fused_function = node
        self.visitchildren(node)
        self.fused_function = None
        if node.py_func:
            node = self._handle_def(decorators, env, node)

        return node

    def _handle_nogil_cleanup(self, lenv, node):
        "Handle cleanup for 'with gil' blocks in nogil functions."
        if lenv.nogil and lenv.has_with_gil_block:
            # Acquire the GIL for cleanup in 'nogil' functions, by wrapping
            # the entire function body in try/finally.
            # The corresponding release will be taken care of by
            # Nodes.FuncDefNode.generate_function_definitions()
            node.body = Nodes.NogilTryFinallyStatNode(
                node.body.pos,
                body=node.body,
                finally_clause=Nodes.EnsureGILNode(node.body.pos),
                finally_except_clause=Nodes.EnsureGILNode(node.body.pos))

    def _handle_fused(self, node):
        if node.is_generator and node.has_fused_arguments:
            node.has_fused_arguments = False
            error(node.pos, "Fused generators not supported")
            node.gbody = Nodes.StatListNode(node.pos,
                                            stats=[],
                                            body=Nodes.PassStatNode(node.pos))

        return node.has_fused_arguments

    def visit_FuncDefNode(self, node):
        """
        Analyse a function and its body, as that hasn't happend yet.  Also
        analyse the directive_locals set by @cython.locals().

        Then, if we are a function with fused arguments, replace the function
        (after it has declared itself in the symbol table!) with a
        FusedCFuncDefNode, and analyse its children (which are in turn normal
        functions). If we're a normal function, just analyse the body of the
        function.
        """
        env = self.current_env()

        self.seen_vars_stack.append(set())
        lenv = node.local_scope
        node.declare_arguments(lenv)

        # @cython.locals(...)
        for var, type_node in node.directive_locals.items():
            if not lenv.lookup_here(var):   # don't redeclare args
                type = type_node.analyse_as_type(lenv)
                if type:
                    lenv.declare_var(var, type, type_node.pos)
                else:
                    error(type_node.pos, "Not a type")

        if self._handle_fused(node):
            node = self._create_fused_function(env, node)
        else:
            node.body.analyse_declarations(lenv)
            self._handle_nogil_cleanup(lenv, node)
            self._super_visit_FuncDefNode(node)

        self.seen_vars_stack.pop()
        return node

    def visit_DefNode(self, node):
        node = self.visit_FuncDefNode(node)
        env = self.current_env()
        if isinstance(node, Nodes.DefNode) and node.is_wrapper:
            env = env.parent_scope
        if (not isinstance(node, Nodes.DefNode) or
                node.fused_py_func or node.is_generator_body or
                not node.needs_assignment_synthesis(env)):
            return node
        return [node, self._synthesize_assignment(node, env)]

    def visit_GeneratorBodyDefNode(self, node):
        return self.visit_FuncDefNode(node)

    def _synthesize_assignment(self, node, env):
        # Synthesize assignment node and put it right after defnode
        genv = env
        while genv.is_py_class_scope or genv.is_c_class_scope:
            genv = genv.outer_scope

        if genv.is_closure_scope:
            rhs = node.py_cfunc_node = ExprNodes.InnerFunctionNode(
                node.pos, def_node=node,
                pymethdef_cname=node.entry.pymethdef_cname,
                code_object=ExprNodes.CodeObjectNode(node))
        else:
            binding = self.current_directives.get('binding')
            rhs = ExprNodes.PyCFunctionNode.from_defnode(node, binding)
            node.code_object = rhs.code_object

        if env.is_py_class_scope:
            rhs.binding = True

        node.is_cyfunction = rhs.binding
        return self._create_assignment(node, rhs, env)

    def _create_assignment(self, def_node, rhs, env):
        if def_node.decorators:
            for decorator in def_node.decorators[::-1]:
                rhs = ExprNodes.SimpleCallNode(
                    decorator.pos,
                    function = decorator.decorator,
                    args = [rhs])
            def_node.decorators = None

        assmt = Nodes.SingleAssignmentNode(
            def_node.pos,
            lhs=ExprNodes.NameNode(def_node.pos, name=def_node.name),
            rhs=rhs)
        assmt.analyse_declarations(env)
        return assmt

    def visit_ScopedExprNode(self, node):
        env = self.current_env()
        node.analyse_declarations(env)
        # the node may or may not have a local scope
        if node.has_local_scope:
            self.seen_vars_stack.append(set(self.seen_vars_stack[-1]))
            self.enter_scope(node, node.expr_scope)
            node.analyse_scoped_declarations(node.expr_scope)
            self.visitchildren(node)
            self.exit_scope()
            self.seen_vars_stack.pop()
        else:
            node.analyse_scoped_declarations(env)
            self.visitchildren(node)
        return node

    def visit_TempResultFromStatNode(self, node):
        self.visitchildren(node)
        node.analyse_declarations(self.current_env())
        return node

    def visit_CppClassNode(self, node):
        if node.visibility == 'extern':
            return None
        else:
            return self.visit_ClassDefNode(node)

    def visit_CStructOrUnionDefNode(self, node):
        # Create a wrapper node if needed.
        # We want to use the struct type information (so it can't happen
        # before this phase) but also create new objects to be declared
        # (so it can't happen later).
        # Note that we don't return the original node, as it is
        # never used after this phase.
        if True: # private (default)
            return None

        self_value = ExprNodes.AttributeNode(
            pos = node.pos,
            obj = ExprNodes.NameNode(pos=node.pos, name=u"self"),
            attribute = EncodedString(u"value"))
        var_entries = node.entry.type.scope.var_entries
        attributes = []
        for entry in var_entries:
            attributes.append(ExprNodes.AttributeNode(pos = entry.pos,
                                                      obj = self_value,
                                                      attribute = entry.name))
        # __init__ assignments
        init_assignments = []
        for entry, attr in zip(var_entries, attributes):
            # TODO: branch on visibility
            init_assignments.append(self.init_assignment.substitute({
                    u"VALUE": ExprNodes.NameNode(entry.pos, name = entry.name),
                    u"ATTR": attr,
                }, pos = entry.pos))

        # create the class
        str_format = u"%s(%s)" % (node.entry.type.name, ("%s, " * len(attributes))[:-2])
        wrapper_class = self.struct_or_union_wrapper.substitute({
            u"INIT_ASSIGNMENTS": Nodes.StatListNode(node.pos, stats = init_assignments),
            u"IS_UNION": ExprNodes.BoolNode(node.pos, value = not node.entry.type.is_struct),
            u"MEMBER_TUPLE": ExprNodes.TupleNode(node.pos, args=attributes),
            u"STR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format)),
            u"REPR_FORMAT": ExprNodes.StringNode(node.pos, value = EncodedString(str_format.replace("%s", "%r"))),
        }, pos = node.pos).stats[0]
        wrapper_class.class_name = node.name
        wrapper_class.shadow = True
        class_body = wrapper_class.body.stats

        # fix value type
        assert isinstance(class_body[0].base_type, Nodes.CSimpleBaseTypeNode)
        class_body[0].base_type.name = node.name

        # fix __init__ arguments
        init_method = class_body[1]
        assert isinstance(init_method, Nodes.DefNode) and init_method.name == '__init__'
        arg_template = init_method.args[1]
        if not node.entry.type.is_struct:
            arg_template.kw_only = True
        del init_method.args[1]
        for entry, attr in zip(var_entries, attributes):
            arg = copy.deepcopy(arg_template)
            arg.declarator.name = entry.name
            init_method.args.append(arg)

        # setters/getters
        for entry, attr in zip(var_entries, attributes):
            # TODO: branch on visibility
            if entry.type.is_pyobject:
                template = self.basic_pyobject_property
            else:
                template = self.basic_property
            property = template.substitute({
                    u"ATTR": attr,
                }, pos = entry.pos).stats[0]
            property.name = entry.name
            wrapper_class.body.stats.append(property)

        wrapper_class.analyse_declarations(self.current_env())
        return self.visit_CClassDefNode(wrapper_class)

    # Some nodes are no longer needed after declaration
    # analysis and can be dropped. The analysis was performed
    # on these nodes in a seperate recursive process from the
    # enclosing function or module, so we can simply drop them.
    def visit_CDeclaratorNode(self, node):
        # necessary to ensure that all CNameDeclaratorNodes are visited.
        self.visitchildren(node)
        return node

    def visit_CTypeDefNode(self, node):
        return node

    def visit_CBaseTypeNode(self, node):
        return None

    def visit_CEnumDefNode(self, node):
        if node.visibility == 'public':
            return node
        else:
            return None

    def visit_CNameDeclaratorNode(self, node):
        if node.name in self.seen_vars_stack[-1]:
            entry = self.current_env().lookup(node.name)
            if (entry is None or entry.visibility != 'extern'
                and not entry.scope.is_c_class_scope):
                warning(node.pos, "cdef variable '%s' declared after it is used" % node.name, 2)
        self.visitchildren(node)
        return node

    def visit_CVarDefNode(self, node):
        # to ensure all CNameDeclaratorNodes are visited.
        self.visitchildren(node)
        return None

    def visit_CnameDecoratorNode(self, node):
        child_node = self.visit(node.node)
        if not child_node:
            return None
        if type(child_node) is list: # Assignment synthesized
            node.child_node = child_node[0]
            return [node] + child_node[1:]
        node.node = child_node
        return node

    def create_Property(self, entry):
        if entry.visibility == 'public':
            if entry.type.is_pyobject:
                template = self.basic_pyobject_property
            else:
                template = self.basic_property
        elif entry.visibility == 'readonly':
            template = self.basic_property_ro
        property = template.substitute({
                u"ATTR": ExprNodes.AttributeNode(pos=entry.pos,
                                                 obj=ExprNodes.NameNode(pos=entry.pos, name="self"),
                                                 attribute=entry.name),
            }, pos=entry.pos).stats[0]
        property.name = entry.name
        property.doc = entry.doc
        return property


class CalculateQualifiedNamesTransform(EnvTransform):
    """
    Calculate and store the '__qualname__' and the global
    module name on some nodes.
    """
    def visit_ModuleNode(self, node):
        self.module_name = self.global_scope().qualified_name
        self.qualified_name = []
        _super = super(CalculateQualifiedNamesTransform, self)
        self._super_visit_FuncDefNode = _super.visit_FuncDefNode
        self._super_visit_ClassDefNode = _super.visit_ClassDefNode
        self.visitchildren(node)
        return node

    def _set_qualname(self, node, name=None):
        if name:
            qualname = self.qualified_name[:]
            qualname.append(name)
        else:
            qualname = self.qualified_name
        node.qualname = EncodedString('.'.join(qualname))
        node.module_name = self.module_name

    def _append_entry(self, entry):
        if entry.is_pyglobal and not entry.is_pyclass_attr:
            self.qualified_name = [entry.name]
        else:
            self.qualified_name.append(entry.name)

    def visit_ClassNode(self, node):
        self._set_qualname(node, node.name)
        self.visitchildren(node)
        return node

    def visit_PyClassNamespaceNode(self, node):
        # class name was already added by parent node
        self._set_qualname(node)
        self.visitchildren(node)
        return node

    def visit_PyCFunctionNode(self, node):
        orig_qualified_name = self.qualified_name[:]
        if node.def_node.is_wrapper and self.qualified_name and self.qualified_name[-1] == '<locals>':
            self.qualified_name.pop()
            self._set_qualname(node)
        else:
            self._set_qualname(node, node.def_node.name)
        self.visitchildren(node)
        self.qualified_name = orig_qualified_name
        return node

    def visit_DefNode(self, node):
        if node.is_wrapper and self.qualified_name:
            assert self.qualified_name[-1] == '<locals>', self.qualified_name
            orig_qualified_name = self.qualified_name[:]
            self.qualified_name.pop()
            self._set_qualname(node)
            self._super_visit_FuncDefNode(node)
            self.qualified_name = orig_qualified_name
        else:
            self._set_qualname(node, node.name)
            self.visit_FuncDefNode(node)
        return node

    def visit_FuncDefNode(self, node):
        orig_qualified_name = self.qualified_name[:]
        if getattr(node, 'name', None) == '<lambda>':
            self.qualified_name.append('<lambda>')
        else:
            self._append_entry(node.entry)
        self.qualified_name.append('<locals>')
        self._super_visit_FuncDefNode(node)
        self.qualified_name = orig_qualified_name
        return node

    def visit_ClassDefNode(self, node):
        orig_qualified_name = self.qualified_name[:]
        entry = (getattr(node, 'entry', None) or             # PyClass
                 self.current_env().lookup_here(node.name))  # CClass
        self._append_entry(entry)
        self._super_visit_ClassDefNode(node)
        self.qualified_name = orig_qualified_name
        return node


class AnalyseExpressionsTransform(CythonTransform):

    def visit_ModuleNode(self, node):
        node.scope.infer_types()
        node.body = node.body.analyse_expressions(node.scope)
        self.visitchildren(node)
        return node

    def visit_FuncDefNode(self, node):
        node.local_scope.infer_types()
        node.body = node.body.analyse_expressions(node.local_scope)
        self.visitchildren(node)
        return node

    def visit_ScopedExprNode(self, node):
        if node.has_local_scope:
            node.expr_scope.infer_types()
            node = node.analyse_scoped_expressions(node.expr_scope)
        self.visitchildren(node)
        return node

    def visit_IndexNode(self, node):
        """
        Replace index nodes used to specialize cdef functions with fused
        argument types with the Attribute- or NameNode referring to the
        function. We then need to copy over the specialization properties to
        the attribute or name node.

        Because the indexing might be a Python indexing operation on a fused
        function, or (usually) a Cython indexing operation, we need to
        re-analyse the types.
        """
        self.visit_Node(node)
        if node.is_fused_index and not node.type.is_error:
            node = node.base
        return node


class FindInvalidUseOfFusedTypes(CythonTransform):

    def visit_FuncDefNode(self, node):
        # Errors related to use in functions with fused args will already
        # have been detected
        if not node.has_fused_arguments:
            if not node.is_generator_body and node.return_type.is_fused:
                error(node.pos, "Return type is not specified as argument type")
            else:
                self.visitchildren(node)

        return node

    def visit_ExprNode(self, node):
        if node.type and node.type.is_fused:
            error(node.pos, "Invalid use of fused types, type cannot be specialized")
        else:
            self.visitchildren(node)

        return node


class ExpandInplaceOperators(EnvTransform):

    def visit_InPlaceAssignmentNode(self, node):
        lhs = node.lhs
        rhs = node.rhs
        if lhs.type.is_cpp_class:
            # No getting around this exact operator here.
            return node
        if isinstance(lhs, ExprNodes.BufferIndexNode):
            # There is code to handle this case in InPlaceAssignmentNode
            return node

        env = self.current_env()
        def side_effect_free_reference(node, setting=False):
            if node.is_name:
                return node, []
            elif node.type.is_pyobject and not setting:
                node = LetRefNode(node)
                return node, [node]
            elif node.is_subscript:
                base, temps = side_effect_free_reference(node.base)
                index = LetRefNode(node.index)
                return ExprNodes.IndexNode(node.pos, base=base, index=index), temps + [index]
            elif node.is_attribute:
                obj, temps = side_effect_free_reference(node.obj)
                return ExprNodes.AttributeNode(node.pos, obj=obj, attribute=node.attribute), temps
            elif isinstance(node, ExprNodes.BufferIndexNode):
                raise ValueError("Don't allow things like attributes of buffer indexing operations")
            else:
                node = LetRefNode(node)
                return node, [node]
        try:
            lhs, let_ref_nodes = side_effect_free_reference(lhs, setting=True)
        except ValueError:
            return node
        dup = lhs.__class__(**lhs.__dict__)
        binop = ExprNodes.binop_node(node.pos,
                                     operator = node.operator,
                                     operand1 = dup,
                                     operand2 = rhs,
                                     inplace=True)
        # Manually analyse types for new node.
        lhs.analyse_target_types(env)
        dup.analyse_types(env)
        binop.analyse_operation(env)
        node = Nodes.SingleAssignmentNode(
            node.pos,
            lhs = lhs,
            rhs=binop.coerce_to(lhs.type, env))
        # Use LetRefNode to avoid side effects.
        let_ref_nodes.reverse()
        for t in let_ref_nodes:
            node = LetNode(t, node)
        return node

    def visit_ExprNode(self, node):
        # In-place assignments can't happen within an expression.
        return node


class AdjustDefByDirectives(CythonTransform, SkipDeclarations):
    """
    Adjust function and class definitions by the decorator directives:

    @cython.cfunc
    @cython.cclass
    @cython.ccall
    @cython.inline
    """

    def visit_ModuleNode(self, node):
        self.directives = node.directives
        self.in_py_class = False
        self.visitchildren(node)
        return node

    def visit_CompilerDirectivesNode(self, node):
        old_directives = self.directives
        self.directives = node.directives
        self.visitchildren(node)
        self.directives = old_directives
        return node

    def visit_DefNode(self, node):
        modifiers = []
        if 'inline' in self.directives:
            modifiers.append('inline')
        if 'ccall' in self.directives:
            node = node.as_cfunction(
                overridable=True, returns=self.directives.get('returns'), modifiers=modifiers)
            return self.visit(node)
        if 'cfunc' in self.directives:
            if self.in_py_class:
                error(node.pos, "cfunc directive is not allowed here")
            else:
                node = node.as_cfunction(
                    overridable=False, returns=self.directives.get('returns'), modifiers=modifiers)
                return self.visit(node)
        if 'inline' in modifiers:
            error(node.pos, "Python functions cannot be declared 'inline'")
        self.visitchildren(node)
        return node

    def visit_PyClassDefNode(self, node):
        if 'cclass' in self.directives:
            node = node.as_cclass()
            return self.visit(node)
        else:
            old_in_pyclass = self.in_py_class
            self.in_py_class = True
            self.visitchildren(node)
            self.in_py_class = old_in_pyclass
            return node

    def visit_CClassDefNode(self, node):
        old_in_pyclass = self.in_py_class
        self.in_py_class = False
        self.visitchildren(node)
        self.in_py_class = old_in_pyclass
        return node


class AlignFunctionDefinitions(CythonTransform):
    """
    This class takes the signatures from a .pxd file and applies them to
    the def methods in a .py file.
    """

    def visit_ModuleNode(self, node):
        self.scope = node.scope
        self.directives = node.directives
        self.imported_names = set()  # hack, see visit_FromImportStatNode()
        self.visitchildren(node)
        return node

    def visit_PyClassDefNode(self, node):
        pxd_def = self.scope.lookup(node.name)
        if pxd_def:
            if pxd_def.is_cclass:
                return self.visit_CClassDefNode(node.as_cclass(), pxd_def)
            elif not pxd_def.scope or not pxd_def.scope.is_builtin_scope:
                error(node.pos, "'%s' redeclared" % node.name)
                if pxd_def.pos:
                    error(pxd_def.pos, "previous declaration here")
                return None
        return node

    def visit_CClassDefNode(self, node, pxd_def=None):
        if pxd_def is None:
            pxd_def = self.scope.lookup(node.class_name)
        if pxd_def:
            if not pxd_def.defined_in_pxd:
                return node
            outer_scope = self.scope
            self.scope = pxd_def.type.scope
        self.visitchildren(node)
        if pxd_def:
            self.scope = outer_scope
        return node

    def visit_DefNode(self, node):
        pxd_def = self.scope.lookup(node.name)
        if pxd_def and (not pxd_def.scope or not pxd_def.scope.is_builtin_scope):
            if not pxd_def.is_cfunction:
                error(node.pos, "'%s' redeclared" % node.name)
                if pxd_def.pos:
                    error(pxd_def.pos, "previous declaration here")
                return None
            node = node.as_cfunction(pxd_def)
        elif (self.scope.is_module_scope and self.directives['auto_cpdef']
              and not node.name in self.imported_names
              and node.is_cdef_func_compatible()):
            # FIXME: cpdef-ing should be done in analyse_declarations()
            node = node.as_cfunction(scope=self.scope)
        # Enable this when nested cdef functions are allowed.
        # self.visitchildren(node)
        return node

    def visit_FromImportStatNode(self, node):
        # hack to prevent conditional import fallback functions from
        # being cdpef-ed (global Python variables currently conflict
        # with imports)
        if self.scope.is_module_scope:
            for name, _ in node.items:
                self.imported_names.add(name)
        return node

    def visit_ExprNode(self, node):
        # ignore lambdas and everything else that appears in expressions
        return node


class RemoveUnreachableCode(CythonTransform):
    def visit_StatListNode(self, node):
        if not self.current_directives['remove_unreachable']:
            return node
        self.visitchildren(node)
        for idx, stat in enumerate(node.stats):
            idx += 1
            if stat.is_terminator:
                if idx < len(node.stats):
                    if self.current_directives['warn.unreachable']:
                        warning(node.stats[idx].pos, "Unreachable code", 2)
                    node.stats = node.stats[:idx]
                node.is_terminator = True
                break
        return node

    def visit_IfClauseNode(self, node):
        self.visitchildren(node)
        if node.body.is_terminator:
            node.is_terminator = True
        return node

    def visit_IfStatNode(self, node):
        self.visitchildren(node)
        if node.else_clause and node.else_clause.is_terminator:
            for clause in node.if_clauses:
                if not clause.is_terminator:
                    break
            else:
                node.is_terminator = True
        return node

    def visit_TryExceptStatNode(self, node):
        self.visitchildren(node)
        if node.body.is_terminator and node.else_clause:
            if self.current_directives['warn.unreachable']:
                warning(node.else_clause.pos, "Unreachable code", 2)
            node.else_clause = None
        return node


class YieldNodeCollector(TreeVisitor):

    def __init__(self):
        super(YieldNodeCollector, self).__init__()
        self.yields = []
        self.awaits = []
        self.returns = []
        self.has_return_value = False

    def visit_Node(self, node):
        self.visitchildren(node)

    def visit_YieldExprNode(self, node):
        self.yields.append(node)
        self.visitchildren(node)

    def visit_AwaitExprNode(self, node):
        self.awaits.append(node)
        self.visitchildren(node)

    def visit_ReturnStatNode(self, node):
        self.visitchildren(node)
        if node.value:
            self.has_return_value = True
        self.returns.append(node)

    def visit_ClassDefNode(self, node):
        pass

    def visit_FuncDefNode(self, node):
        pass

    def visit_LambdaNode(self, node):
        pass

    def visit_GeneratorExpressionNode(self, node):
        pass

    def visit_CArgDeclNode(self, node):
        # do not look into annotations
        # FIXME: support (yield) in default arguments (currently crashes)
        pass


class MarkClosureVisitor(CythonTransform):

    def visit_ModuleNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        return node

    def visit_FuncDefNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        node.needs_closure = self.needs_closure
        self.needs_closure = True

        collector = YieldNodeCollector()
        collector.visitchildren(node)

        if node.is_async_def:
            if collector.yields:
                error(collector.yields[0].pos, "'yield' not allowed in async coroutines (use 'await')")
            yields = collector.awaits
        elif collector.yields:
            if collector.awaits:
                error(collector.yields[0].pos, "'await' not allowed in generators (use 'yield')")
            yields = collector.yields
        else:
            return node

        for i, yield_expr in enumerate(yields, 1):
            yield_expr.label_num = i
        for retnode in collector.returns:
            retnode.in_generator = True

        gbody = Nodes.GeneratorBodyDefNode(
            pos=node.pos, name=node.name, body=node.body)
        coroutine = (Nodes.AsyncDefNode if node.is_async_def else Nodes.GeneratorDefNode)(
            pos=node.pos, name=node.name, args=node.args,
            star_arg=node.star_arg, starstar_arg=node.starstar_arg,
            doc=node.doc, decorators=node.decorators,
            gbody=gbody, lambda_name=node.lambda_name)
        return coroutine

    def visit_CFuncDefNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        node.needs_closure = self.needs_closure
        self.needs_closure = True
        if node.needs_closure and node.overridable:
            error(node.pos, "closures inside cpdef functions not yet supported")
        return node

    def visit_LambdaNode(self, node):
        self.needs_closure = False
        self.visitchildren(node)
        node.needs_closure = self.needs_closure
        self.needs_closure = True
        return node

    def visit_ClassDefNode(self, node):
        self.visitchildren(node)
        self.needs_closure = True
        return node


class CreateClosureClasses(CythonTransform):
    # Output closure classes in module scope for all functions
    # that really need it.

    def __init__(self, context):
        super(CreateClosureClasses, self).__init__(context)
        self.path = []
        self.in_lambda = False

    def visit_ModuleNode(self, node):
        self.module_scope = node.scope
        self.visitchildren(node)
        return node

    def find_entries_used_in_closures(self, node):
        from_closure = []
        in_closure = []
        for name, entry in node.local_scope.entries.items():
            if entry.from_closure:
                from_closure.append((name, entry))
            elif entry.in_closure:
                in_closure.append((name, entry))
        return from_closure, in_closure

    def create_class_from_scope(self, node, target_module_scope, inner_node=None):
        # move local variables into closure
        if node.is_generator:
            for entry in node.local_scope.entries.values():
                if not entry.from_closure:
                    entry.in_closure = True

        from_closure, in_closure = self.find_entries_used_in_closures(node)
        in_closure.sort()

        # Now from the begining
        node.needs_closure = False
        node.needs_outer_scope = False

        func_scope = node.local_scope
        cscope = node.entry.scope
        while cscope.is_py_class_scope or cscope.is_c_class_scope:
            cscope = cscope.outer_scope

        if not from_closure and (self.path or inner_node):
            if not inner_node:
                if not node.py_cfunc_node:
                    raise InternalError("DefNode does not have assignment node")
                inner_node = node.py_cfunc_node
            inner_node.needs_self_code = False
            node.needs_outer_scope = False

        if node.is_generator:
            pass
        elif not in_closure and not from_closure:
            return
        elif not in_closure:
            func_scope.is_passthrough = True
            func_scope.scope_class = cscope.scope_class
            node.needs_outer_scope = True
            return

        as_name = '%s_%s' % (
            target_module_scope.next_id(Naming.closure_class_prefix),
            node.entry.cname)

        entry = target_module_scope.declare_c_class(
            name=as_name, pos=node.pos, defining=True,
            implementing=True)
        entry.type.is_final_type = True

        func_scope.scope_class = entry
        class_scope = entry.type.scope
        class_scope.is_internal = True
        if Options.closure_freelist_size:
            class_scope.directives['freelist'] = Options.closure_freelist_size

        if from_closure:
            assert cscope.is_closure_scope
            class_scope.declare_var(pos=node.pos,
                                    name=Naming.outer_scope_cname,
                                    cname=Naming.outer_scope_cname,
                                    type=cscope.scope_class.type,
                                    is_cdef=True)
            node.needs_outer_scope = True
        for name, entry in in_closure:
            closure_entry = class_scope.declare_var(pos=entry.pos,
                                    name=entry.name,
                                    cname=entry.cname,
                                    type=entry.type,
                                    is_cdef=True)
            if entry.is_declared_generic:
                closure_entry.is_declared_generic = 1
        node.needs_closure = True
        # Do it here because other classes are already checked
        target_module_scope.check_c_class(func_scope.scope_class)

    def visit_LambdaNode(self, node):
        if not isinstance(node.def_node, Nodes.DefNode):
            # fused function, an error has been previously issued
            return node

        was_in_lambda = self.in_lambda
        self.in_lambda = True
        self.create_class_from_scope(node.def_node, self.module_scope, node)
        self.visitchildren(node)
        self.in_lambda = was_in_lambda
        return node

    def visit_FuncDefNode(self, node):
        if self.in_lambda:
            self.visitchildren(node)
            return node
        if node.needs_closure or self.path:
            self.create_class_from_scope(node, self.module_scope)
            self.path.append(node)
            self.visitchildren(node)
            self.path.pop()
        return node

    def visit_GeneratorBodyDefNode(self, node):
        self.visitchildren(node)
        return node

    def visit_CFuncDefNode(self, node):
        if not node.overridable:
            return self.visit_FuncDefNode(node)
        else:
            self.visitchildren(node)
            return node


class GilCheck(VisitorTransform):
    """
    Call `node.gil_check(env)` on each node to make sure we hold the
    GIL when we need it.  Raise an error when on Python operations
    inside a `nogil` environment.

    Additionally, raise exceptions for closely nested with gil or with nogil
    statements. The latter would abort Python.
    """

    def __call__(self, root):
        self.env_stack = [root.scope]
        self.nogil = False

        # True for 'cdef func() nogil:' functions, as the GIL may be held while
        # calling this function (thus contained 'nogil' blocks may be valid).
        self.nogil_declarator_only = False
        return super(GilCheck, self).__call__(root)

    def visit_FuncDefNode(self, node):
        self.env_stack.append(node.local_scope)
        was_nogil = self.nogil
        self.nogil = node.local_scope.nogil

        if self.nogil:
            self.nogil_declarator_only = True

        if self.nogil and node.nogil_check:
            node.nogil_check(node.local_scope)

        self.visitchildren(node)

        # This cannot be nested, so it doesn't need backup/restore
        self.nogil_declarator_only = False

        self.env_stack.pop()
        self.nogil = was_nogil
        return node

    def visit_GILStatNode(self, node):
        if self.nogil and node.nogil_check:
            node.nogil_check()

        was_nogil = self.nogil
        self.nogil = (node.state == 'nogil')

        if was_nogil == self.nogil and not self.nogil_declarator_only:
            if not was_nogil:
                error(node.pos, "Trying to acquire the GIL while it is "
                                "already held.")
            else:
                error(node.pos, "Trying to release the GIL while it was "
                                "previously released.")

        if isinstance(node.finally_clause, Nodes.StatListNode):
            # The finally clause of the GILStatNode is a GILExitNode,
            # which is wrapped in a StatListNode. Just unpack that.
            node.finally_clause, = node.finally_clause.stats

        self.visitchildren(node)
        self.nogil = was_nogil
        return node

    def visit_ParallelRangeNode(self, node):
        if node.nogil:
            node.nogil = False
            node = Nodes.GILStatNode(node.pos, state='nogil', body=node)
            return self.visit_GILStatNode(node)

        if not self.nogil:
            error(node.pos, "prange() can only be used without the GIL")
            # Forget about any GIL-related errors that may occur in the body
            return None

        node.nogil_check(self.env_stack[-1])
        self.visitchildren(node)
        return node

    def visit_ParallelWithBlockNode(self, node):
        if not self.nogil:
            error(node.pos, "The parallel section may only be used without "
                            "the GIL")
            return None

        if node.nogil_check:
            # It does not currently implement this, but test for it anyway to
            # avoid potential future surprises
            node.nogil_check(self.env_stack[-1])

        self.visitchildren(node)
        return node

    def visit_TryFinallyStatNode(self, node):
        """
        Take care of try/finally statements in nogil code sections.
        """
        if not self.nogil or isinstance(node, Nodes.GILStatNode):
            return self.visit_Node(node)

        node.nogil_check = None
        node.is_try_finally_in_nogil = True
        self.visitchildren(node)
        return node

    def visit_Node(self, node):
        if self.env_stack and self.nogil and node.nogil_check:
            node.nogil_check(self.env_stack[-1])
        self.visitchildren(node)
        node.in_nogil_context = self.nogil
        return node


class TransformBuiltinMethods(EnvTransform):
    """
    Replace Cython's own cython.* builtins by the corresponding tree nodes.
    """

    def visit_SingleAssignmentNode(self, node):
        if node.declaration_only:
            return None
        else:
            self.visitchildren(node)
            return node

    def visit_AttributeNode(self, node):
        self.visitchildren(node)
        return self.visit_cython_attribute(node)

    def visit_NameNode(self, node):
        return self.visit_cython_attribute(node)

    def visit_cython_attribute(self, node):
        attribute = node.as_cython_attribute()
        if attribute:
            if attribute == u'compiled':
                node = ExprNodes.BoolNode(node.pos, value=True)
            elif attribute == u'__version__':
                from .. import __version__ as version
                node = ExprNodes.StringNode(node.pos, value=EncodedString(version))
            elif attribute == u'NULL':
                node = ExprNodes.NullNode(node.pos)
            elif attribute in (u'set', u'frozenset', u'staticmethod'):
                node = ExprNodes.NameNode(node.pos, name=EncodedString(attribute),
                                          entry=self.current_env().builtin_scope().lookup_here(attribute))
            elif PyrexTypes.parse_basic_type(attribute):
                pass
            elif self.context.cython_scope.lookup_qualified_name(attribute):
                pass
            else:
                error(node.pos, u"'%s' not a valid cython attribute or is being used incorrectly" % attribute)
        return node

    def visit_ExecStatNode(self, node):
        lenv = self.current_env()
        self.visitchildren(node)
        if len(node.args) == 1:
            node.args.append(ExprNodes.GlobalsExprNode(node.pos))
            if not lenv.is_module_scope:
                node.args.append(
                    ExprNodes.LocalsExprNode(
                        node.pos, self.current_scope_node(), lenv))
        return node

    def _inject_locals(self, node, func_name):
        # locals()/dir()/vars() builtins
        lenv = self.current_env()
        entry = lenv.lookup_here(func_name)
        if entry:
            # not the builtin
            return node
        pos = node.pos
        if func_name in ('locals', 'vars'):
            if func_name == 'locals' and len(node.args) > 0:
                error(self.pos, "Builtin 'locals()' called with wrong number of args, expected 0, got %d"
                      % len(node.args))
                return node
            elif func_name == 'vars':
                if len(node.args) > 1:
                    error(self.pos, "Builtin 'vars()' called with wrong number of args, expected 0-1, got %d"
                          % len(node.args))
                if len(node.args) > 0:
                    return node # nothing to do
            return ExprNodes.LocalsExprNode(pos, self.current_scope_node(), lenv)
        else: # dir()
            if len(node.args) > 1:
                error(self.pos, "Builtin 'dir()' called with wrong number of args, expected 0-1, got %d"
                      % len(node.args))
            if len(node.args) > 0:
                # optimised in Builtin.py
                return node
            if lenv.is_py_class_scope or lenv.is_module_scope:
                if lenv.is_py_class_scope:
                    pyclass = self.current_scope_node()
                    locals_dict = ExprNodes.CloneNode(pyclass.dict)
                else:
                    locals_dict = ExprNodes.GlobalsExprNode(pos)
                return ExprNodes.SortedDictKeysNode(locals_dict)
            local_names = sorted(var.name for var in lenv.entries.values() if var.name)
            items = [ExprNodes.IdentifierStringNode(pos, value=var)
                     for var in local_names]
            return ExprNodes.ListNode(pos, args=items)

    def visit_PrimaryCmpNode(self, node):
        # special case: for in/not-in test, we do not need to sort locals()
        self.visitchildren(node)
        if node.operator in 'not_in':  # in/not_in
            if isinstance(node.operand2, ExprNodes.SortedDictKeysNode):
                arg = node.operand2.arg
                if isinstance(arg, ExprNodes.NoneCheckNode):
                    arg = arg.arg
                node.operand2 = arg
        return node

    def visit_CascadedCmpNode(self, node):
        return self.visit_PrimaryCmpNode(node)

    def _inject_eval(self, node, func_name):
        lenv = self.current_env()
        entry = lenv.lookup_here(func_name)
        if entry or len(node.args) != 1:
            return node
        # Inject globals and locals
        node.args.append(ExprNodes.GlobalsExprNode(node.pos))
        if not lenv.is_module_scope:
            node.args.append(
                ExprNodes.LocalsExprNode(
                    node.pos, self.current_scope_node(), lenv))
        return node

    def _inject_super(self, node, func_name):
        lenv = self.current_env()
        entry = lenv.lookup_here(func_name)
        if entry or node.args:
            return node
        # Inject no-args super
        def_node = self.current_scope_node()
        if (not isinstance(def_node, Nodes.DefNode) or not def_node.args or
            len(self.env_stack) < 2):
            return node
        class_node, class_scope = self.env_stack[-2]
        if class_scope.is_py_class_scope:
            def_node.requires_classobj = True
            class_node.class_cell.is_active = True
            node.args = [
                ExprNodes.ClassCellNode(
                    node.pos, is_generator=def_node.is_generator),
                ExprNodes.NameNode(node.pos, name=def_node.args[0].name)
                ]
        elif class_scope.is_c_class_scope:
            node.args = [
                ExprNodes.NameNode(
                    node.pos, name=class_node.scope.name,
                    entry=class_node.entry),
                ExprNodes.NameNode(node.pos, name=def_node.args[0].name)
                ]
        return node

    def visit_SimpleCallNode(self, node):
        # cython.foo
        function = node.function.as_cython_attribute()
        if function:
            if function in InterpretCompilerDirectives.unop_method_nodes:
                if len(node.args) != 1:
                    error(node.function.pos, u"%s() takes exactly one argument" % function)
                else:
                    node = InterpretCompilerDirectives.unop_method_nodes[function](
                        node.function.pos, operand=node.args[0])
            elif function in InterpretCompilerDirectives.binop_method_nodes:
                if len(node.args) != 2:
                    error(node.function.pos, u"%s() takes exactly two arguments" % function)
                else:
                    node = InterpretCompilerDirectives.binop_method_nodes[function](
                        node.function.pos, operand1=node.args[0], operand2=node.args[1])
            elif function == u'cast':
                if len(node.args) != 2:
                    error(node.function.pos,
                          u"cast() takes exactly two arguments and an optional typecheck keyword")
                else:
                    type = node.args[0].analyse_as_type(self.current_env())
                    if type:
                        node = ExprNodes.TypecastNode(
                            node.function.pos, type=type, operand=node.args[1], typecheck=False)
                    else:
                        error(node.args[0].pos, "Not a type")
            elif function == u'sizeof':
                if len(node.args) != 1:
                    error(node.function.pos, u"sizeof() takes exactly one argument")
                else:
                    type = node.args[0].analyse_as_type(self.current_env())
                    if type:
                        node = ExprNodes.SizeofTypeNode(node.function.pos, arg_type=type)
                    else:
                        node = ExprNodes.SizeofVarNode(node.function.pos, operand=node.args[0])
            elif function == 'cmod':
                if len(node.args) != 2:
                    error(node.function.pos, u"cmod() takes exactly two arguments")
                else:
                    node = ExprNodes.binop_node(node.function.pos, '%', node.args[0], node.args[1])
                    node.cdivision = True
            elif function == 'cdiv':
                if len(node.args) != 2:
                    error(node.function.pos, u"cdiv() takes exactly two arguments")
                else:
                    node = ExprNodes.binop_node(node.function.pos, '/', node.args[0], node.args[1])
                    node.cdivision = True
            elif function == u'set':
                node.function = ExprNodes.NameNode(node.pos, name=EncodedString('set'))
            elif function == u'staticmethod':
                node.function = ExprNodes.NameNode(node.pos, name=EncodedString('staticmethod'))
            elif self.context.cython_scope.lookup_qualified_name(function):
                pass
            else:
                error(node.function.pos,
                      u"'%s' not a valid cython language construct" % function)

        self.visitchildren(node)

        if isinstance(node, ExprNodes.SimpleCallNode) and node.function.is_name:
            func_name = node.function.name
            if func_name in ('dir', 'locals', 'vars'):
                return self._inject_locals(node, func_name)
            if func_name == 'eval':
                return self._inject_eval(node, func_name)
            if func_name == 'super':
                return self._inject_super(node, func_name)
        return node

    def visit_GeneralCallNode(self, node):
        function = node.function.as_cython_attribute()
        if function:
            args = node.positional_args.args
            kwargs = node.keyword_args.compile_time_value(None)
            if function == u'cast':
                if (len(args) != 2 or len(kwargs) > 1 or
                        (len(kwargs) == 1 and 'typecheck' not in kwargs)):
                    error(node.function.pos,
                          u"cast() takes exactly two arguments and an optional typecheck keyword")
                else:
                    type = args[0].analyse_as_type(self.current_env())
                    if type:
                        typecheck = kwargs.get('typecheck', False)
                        node = ExprNodes.TypecastNode(
                            node.function.pos, type=type, operand=args[1], typecheck=typecheck)
                    else:
                        error(args[0].pos, "Not a type")

        self.visitchildren(node)
        return node


class ReplaceFusedTypeChecks(VisitorTransform):
    """
    This is not a transform in the pipeline. It is invoked on the specific
    versions of a cdef function with fused argument types. It filters out any
    type branches that don't match. e.g.

        if fused_t is mytype:
            ...
        elif fused_t in other_fused_type:
            ...
    """
    def __init__(self, local_scope):
        super(ReplaceFusedTypeChecks, self).__init__()
        self.local_scope = local_scope
        # defer the import until now to avoid circular import time dependencies
        from .Optimize import ConstantFolding
        self.transform = ConstantFolding(reevaluate=True)

    def visit_IfStatNode(self, node):
        """
        Filters out any if clauses with false compile time type check
        expression.
        """
        self.visitchildren(node)
        return self.transform(node)

    def visit_PrimaryCmpNode(self, node):
        type1 = node.operand1.analyse_as_type(self.local_scope)
        type2 = node.operand2.analyse_as_type(self.local_scope)

        if type1 and type2:
            false_node = ExprNodes.BoolNode(node.pos, value=False)
            true_node = ExprNodes.BoolNode(node.pos, value=True)

            type1 = self.specialize_type(type1, node.operand1.pos)
            op = node.operator

            if op in ('is', 'is_not', '==', '!='):
                type2 = self.specialize_type(type2, node.operand2.pos)

                is_same = type1.same_as(type2)
                eq = op in ('is', '==')

                if (is_same and eq) or (not is_same and not eq):
                    return true_node

            elif op in ('in', 'not_in'):
                # We have to do an instance check directly, as operand2
                # needs to be a fused type and not a type with a subtype
                # that is fused. First unpack the typedef
                if isinstance(type2, PyrexTypes.CTypedefType):
                    type2 = type2.typedef_base_type

                if type1.is_fused:
                    error(node.operand1.pos, "Type is fused")
                elif not type2.is_fused:
                    error(node.operand2.pos,
                          "Can only use 'in' or 'not in' on a fused type")
                else:
                    types = PyrexTypes.get_specialized_types(type2)

                    for specialized_type in types:
                        if type1.same_as(specialized_type):
                            if op == 'in':
                                return true_node
                            else:
                                return false_node

                    if op == 'not_in':
                        return true_node

            return false_node

        return node

    def specialize_type(self, type, pos):
        try:
            return type.specialize(self.local_scope.fused_to_specific)
        except KeyError:
            error(pos, "Type is not specific")
            return type

    def visit_Node(self, node):
        self.visitchildren(node)
        return node


class DebugTransform(CythonTransform):
    """
    Write debug information for this Cython module.
    """

    def __init__(self, context, options, result):
        super(DebugTransform, self).__init__(context)
        self.visited = set()
        # our treebuilder and debug output writer
        # (see Cython.Debugger.debug_output.CythonDebugWriter)
        self.tb = self.context.gdb_debug_outputwriter
        #self.c_output_file = options.output_file
        self.c_output_file = result.c_file

        # Closure support, basically treat nested functions as if the AST were
        # never nested
        self.nested_funcdefs = []

        # tells visit_NameNode whether it should register step-into functions
        self.register_stepinto = False

    def visit_ModuleNode(self, node):
        self.tb.module_name = node.full_module_name
        attrs = dict(
            module_name=node.full_module_name,
            filename=node.pos[0].filename,
            c_filename=self.c_output_file)

        self.tb.start('Module', attrs)

        # serialize functions
        self.tb.start('Functions')
        # First, serialize functions normally...
        self.visitchildren(node)

        # ... then, serialize nested functions
        for nested_funcdef in self.nested_funcdefs:
            self.visit_FuncDefNode(nested_funcdef)

        self.register_stepinto = True
        self.serialize_modulenode_as_function(node)
        self.register_stepinto = False
        self.tb.end('Functions')

        # 2.3 compatibility. Serialize global variables
        self.tb.start('Globals')
        entries = {}

        for k, v in node.scope.entries.items():
            if (v.qualified_name not in self.visited and not
                    v.name.startswith('__pyx_') and not
                    v.type.is_cfunction and not
                    v.type.is_extension_type):
                entries[k]= v

        self.serialize_local_variables(entries)
        self.tb.end('Globals')
        # self.tb.end('Module') # end Module after the line number mapping in
        # Cython.Compiler.ModuleNode.ModuleNode._serialize_lineno_map
        return node

    def visit_FuncDefNode(self, node):
        self.visited.add(node.local_scope.qualified_name)

        if getattr(node, 'is_wrapper', False):
            return node

        if self.register_stepinto:
            self.nested_funcdefs.append(node)
            return node

        # node.entry.visibility = 'extern'
        if node.py_func is None:
            pf_cname = ''
        else:
            pf_cname = node.py_func.entry.func_cname

        attrs = dict(
            name=node.entry.name or getattr(node, 'name', '<unknown>'),
            cname=node.entry.func_cname,
            pf_cname=pf_cname,
            qualified_name=node.local_scope.qualified_name,
            lineno=str(node.pos[1]))

        self.tb.start('Function', attrs=attrs)

        self.tb.start('Locals')
        self.serialize_local_variables(node.local_scope.entries)
        self.tb.end('Locals')

        self.tb.start('Arguments')
        for arg in node.local_scope.arg_entries:
            self.tb.start(arg.name)
            self.tb.end(arg.name)
        self.tb.end('Arguments')

        self.tb.start('StepIntoFunctions')
        self.register_stepinto = True
        self.visitchildren(node)
        self.register_stepinto = False
        self.tb.end('StepIntoFunctions')
        self.tb.end('Function')

        return node

    def visit_NameNode(self, node):
        if (self.register_stepinto and
            node.type is not None and
            node.type.is_cfunction and
            getattr(node, 'is_called', False) and
            node.entry.func_cname is not None):
            # don't check node.entry.in_cinclude, as 'cdef extern: ...'
            # declared functions are not 'in_cinclude'.
            # This means we will list called 'cdef' functions as
            # "step into functions", but this is not an issue as they will be
            # recognized as Cython functions anyway.
            attrs = dict(name=node.entry.func_cname)
            self.tb.start('StepIntoFunction', attrs=attrs)
            self.tb.end('StepIntoFunction')

        self.visitchildren(node)
        return node

    def serialize_modulenode_as_function(self, node):
        """
        Serialize the module-level code as a function so the debugger will know
        it's a "relevant frame" and it will know where to set the breakpoint
        for 'break modulename'.
        """
        name = node.full_module_name.rpartition('.')[-1]

        cname_py2 = 'init' + name
        cname_py3 = 'PyInit_' + name

        py2_attrs = dict(
            name=name,
            cname=cname_py2,
            pf_cname='',
            # Ignore the qualified_name, breakpoints should be set using
            # `cy break modulename:lineno` for module-level breakpoints.
            qualified_name='',
            lineno='1',
            is_initmodule_function="True",
        )

        py3_attrs = dict(py2_attrs, cname=cname_py3)

        self._serialize_modulenode_as_function(node, py2_attrs)
        self._serialize_modulenode_as_function(node, py3_attrs)

    def _serialize_modulenode_as_function(self, node, attrs):
        self.tb.start('Function', attrs=attrs)

        self.tb.start('Locals')
        self.serialize_local_variables(node.scope.entries)
        self.tb.end('Locals')

        self.tb.start('Arguments')
        self.tb.end('Arguments')

        self.tb.start('StepIntoFunctions')
        self.register_stepinto = True
        self.visitchildren(node)
        self.register_stepinto = False
        self.tb.end('StepIntoFunctions')

        self.tb.end('Function')

    def serialize_local_variables(self, entries):
        for entry in entries.values():
            if not entry.cname:
                # not a local variable
                continue
            if entry.type.is_pyobject:
                vartype = 'PythonObject'
            else:
                vartype = 'CObject'

            if entry.from_closure:
                # We're dealing with a closure where a variable from an outer
                # scope is accessed, get it from the scope object.
                cname = '%s->%s' % (Naming.cur_scope_cname,
                                    entry.outer_entry.cname)

                qname = '%s.%s.%s' % (entry.scope.outer_scope.qualified_name,
                                      entry.scope.name,
                                      entry.name)
            elif entry.in_closure:
                cname = '%s->%s' % (Naming.cur_scope_cname,
                                    entry.cname)
                qname = entry.qualified_name
            else:
                cname = entry.cname
                qname = entry.qualified_name

            if not entry.pos:
                # this happens for variables that are not in the user's code,
                # e.g. for the global __builtins__, __doc__, etc. We can just
                # set the lineno to 0 for those.
                lineno = '0'
            else:
                lineno = str(entry.pos[1])

            attrs = dict(
                name=entry.name,
                cname=cname,
                qualified_name=qname,
                type=vartype,
                lineno=lineno)

            self.tb.start('LocalVar', attrs)
            self.tb.end('LocalVar')