/usr/share/perl5/XRacer/Math.pm is in xracer-tools 0.96.9.1-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 | # XRACER (C) 1999-2000 Richard W.M. Jones <rich@annexia.org> and other AUTHORS
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# $Id: Math.pm,v 1.6 2000/02/19 18:24:46 rich Exp $
package XRacer::Math;
use Exporter;
use Carp qw( confess );
@ISA = qw( Exporter );
@EXPORT = qw( midpoint distance normal unit_normal normalize magnitude
multiply_scalar_vector sum_vectors subtract_vectors
plane_coefficients distance_point_to_plane
distance_point_to_line intersection_of_two_planes
dot_product cross_product minimum_distance_between_two_lines
minimum_distance_between_line_and_line_segment
line_intersects_cylinder matrix_multiply
matrix_vector_multiply is_coplanar angle_between
magnitude_in_direction split_convex_face_in_plane
intersection_line_and_plane bbox );
use strict;
use POSIX qw( acos );
# Compute the midpoint (average) of a set of vertices.
sub midpoint
{
my $sum = sum_vectors (@_);
my $nr_vertices = @_;
my @r = map { $_ / $nr_vertices } @$sum;
return \@r;
}
# Compute the distance from point $a to point $b.
sub distance
{
my $a = shift;
my $b = shift;
return sqrt (($a->[0] - $b->[0]) * ($a->[0] - $b->[0]) +
($a->[1] - $b->[1]) * ($a->[1] - $b->[1]) +
($a->[2] - $b->[2]) * ($a->[2] - $b->[2]));
}
# This function returns the normal vector to a plane (not the
# unit length normal vector!).
sub normal
{
my $plane = shift;
return [ $plane->[0], $plane->[1], $plane->[2] ];
}
# This function returns the unit length normal vector to a plane.
sub unit_normal
{
my $plane = shift;
my $normal = normal ($plane);
return normalize ($normal);
}
# Normalize a vector (make it unit length).
sub normalize
{
my $vector = shift;
my $w = magnitude ($vector);
my @r = map { $_ / $w } @$vector;
return \@r;
}
# Return the magnitude of a vector.
sub magnitude
{
my $vector = shift;
return sqrt ($vector->[0] * $vector->[0] +
$vector->[1] * $vector->[1] +
$vector->[2] * $vector->[2]);
}
# Return the magnitude of vector v1 in direction vector v2.
sub magnitude_in_direction
{
my $v1 = shift;
my $v2 = shift;
my $v1n = normalize ($v1);
my $v2n = normalize ($v2);
return dot_product ($v1, $v2);
}
# Return the angle between two vectors.
sub angle_between
{
return acos (magnitude_in_direction (@_));
}
# Multiply a scalar and a vector.
sub multiply_scalar_vector
{
my $scalar = shift;
my $vector = shift;
my @r = map { $scalar * $_ } @$vector;
return \@r;
}
# Multiply two matrices.
sub matrix_multiply
{
my $a = shift;
my $b = shift;
my $p = [];
for (my $i = 0; $i < 4; $i++)
{
my ($ai0, $ai1, $ai2, $ai3)
= ($a->[$i][0], $a->[$i][1], $a->[$i][2], $a->[$i][3]);
$p->[$i][0] = $ai0 * $b->[0][0] + $ai1 * $b->[1][0] +
$ai2 * $b->[2][0] + $ai3 * $b->[3][0];
$p->[$i][1] = $ai0 * $b->[0][1] + $ai1 * $b->[1][1] +
$ai2 * $b->[2][1] + $ai3 * $b->[3][1];
$p->[$i][2] = $ai0 * $b->[0][2] + $ai1 * $b->[1][2] +
$ai2 * $b->[2][2] + $ai3 * $b->[3][2];
$p->[$i][3] = $ai0 * $b->[0][3] + $ai1 * $b->[1][3] +
$ai2 * $b->[2][3] + $ai3 * $b->[3][3];
}
return $p;
}
# Multiply matrix and vector.
sub matrix_vector_multiply
{
my $m = shift;
my $v = shift;
my $p = [];
$p->[0] = $m->[0][0]*$v->[0] + $m->[0][1]*$v->[1] + $m->[0][2]*$v->[2] + $m->[0][3]*$v->[3];
$p->[1] = $m->[1][0]*$v->[0] + $m->[1][1]*$v->[1] + $m->[1][2]*$v->[2] + $m->[1][3]*$v->[3];
$p->[2] = $m->[2][0]*$v->[0] + $m->[2][1]*$v->[1] + $m->[2][2]*$v->[2] + $m->[2][3]*$v->[3];
$p->[3] = $m->[3][0]*$v->[0] + $m->[3][1]*$v->[1] + $m->[3][2]*$v->[2] + $m->[3][3]*$v->[3];
return $p;
}
# Add a collection of vectors.
sub sum_vectors
{
my @sum = (0, 0, 0);
foreach (@_)
{
$sum[0] += $_->[0];
$sum[1] += $_->[1];
$sum[2] += $_->[2];
}
return \@sum;
}
# Compute: $vector0 - $vector1.
sub subtract_vectors
{
my $vector0 = shift;
my $vector1 = shift;
my @r = ();
push @r, $vector0->[0] - $vector1->[0];
push @r, $vector0->[1] - $vector1->[1];
push @r, $vector0->[2] - $vector1->[2];
return \@r;
}
sub bbox
{
my ($min_x, $max_x, $min_y, $max_y, $min_z, $max_z)
= ($_[0]->[0], $_[0]->[0],
$_[0]->[1], $_[0]->[1],
$_[0]->[2], $_[0]->[2]);
shift;
foreach (@_)
{
if ($_->[0] < $min_x) {
$min_x = $_->[0]
} elsif ($_->[0] > $max_x) {
$max_x = $_->[0]
}
if ($_->[1] < $min_y) {
$min_y = $_->[1]
} elsif ($_->[1] > $max_y) {
$max_y = $_->[1]
}
if ($_->[2] < $min_z) {
$min_z = $_->[2]
} elsif ($_->[2] > $max_z) {
$max_z = $_->[2]
}
}
return ($min_x, $max_x, $min_y, $max_y, $min_z, $max_z);
}
# Compute the four coefficients of a plane which uniquely
# specify that plane, given three points (not colinear) on
# that plane. Most of the variables in this function are
# redundant, but they get it into the same form as I found
# it in Lansdown, p. 178.
sub plane_coefficients
{
my $p = shift;
my $q = shift;
my $r = shift;
my $x2 = $p->[0];
my $y2 = $p->[1];
my $z2 = $p->[2];
my $x1 = $q->[0];
my $y1 = $q->[1];
my $z1 = $q->[2];
my $x3 = $r->[0];
my $y3 = $r->[1];
my $z3 = $r->[2];
confess "not a plane (points: ($x1,$y1,$z1), ($x2,$y2,$z2), ($x3,$y3,$z3))"
if ($x1 == $x2 && $y1 == $y2 && $z1 == $z2) ||
($x1 == $x3 && $y1 == $y3 && $z1 == $z3) ||
($x3 == $x2 && $y3 == $y2 && $z3 == $z2);
my $xa = $x1 + $x2;
my $xb = $x2 + $x3;
my $xc = $x3 + $x1;
my $ya = $y1 + $y2;
my $yb = $y2 + $y3;
my $yc = $y3 + $y1;
my $za = $z1 + $z2;
my $zb = $z2 + $z3;
my $zc = $z3 + $z1;
my @co = ();
$co[0] = ($y1-$y2) * $za + ($y2-$y3) * $zb + ($y3-$y1) * $zc;
$co[1] = ($z1-$z2) * $xa + ($z2-$z3) * $xb + ($z3-$z1) * $xc;
$co[2] = ($x1-$x2) * $ya + ($x2-$x3) * $yb + ($x3-$x1) * $yc;
$co[3] = - ($co[0]*$x1 + $co[1]*$y1 + $co[2]*$z1);
return \@co;
}
# Return true if the four points given are coplanar, else false.
sub is_coplanar
{
my $a = shift;
my $b = shift;
my $c = shift;
my $d = shift;
my $c1 = plane_coefficients ($a, $b, $c);
my $c2 = plane_coefficients ($a, $b, $d);
return $c1->[0] == $c2->[0] && $c1->[1] == $c2->[1] &&
$c1->[2] == $c2->[2] && $c1->[3] == $c2->[3];
}
# Construct a line segment object.
sub line_segment
{
my $point0 = shift;
my $point1 = shift;
my %lineseg = ( 'p' => $point0,
'v' => subtract_vectors ($point1, $point0),
'a' => 0,
'b' => 1 );
return \%lineseg;
}
# Distance from a point to a plane.
sub distance_point_to_plane
{
my $plane = shift;
my $point = shift;
my $a = $plane->[0];
my $b = $plane->[1];
my $c = $plane->[2];
my $d = $plane->[3];
my $x = $point->[0];
my $y = $point->[1];
my $z = $point->[2];
my $denom = $a*$a + $b*$b + $c*$c;
confess "denom = $denom, plane = [$a, $b, $c, $d]" if $denom == 0;
my $t = ($a*$x + $b*$y + $c*$z + $d) / -$denom;
my $t2 = $t*$t;
my $dist = sqrt ($t2*$a*$a + $t2*$b*$b + $t2*$c*$c);
# Don't lose the sign of t.
if ($t < 0) { return $dist; } else { return -$dist; }
}
# Distance from a point to a line.
sub distance_point_to_line
{
my $line = shift;
my $point = shift;
# Normalize the vector u along the line.
my $u = normalize ($line->{v});
# The distance is given by: | (p-a) x u |
# where p is the point, a is a point on the line, and x is cross product.
my $dist = magnitude (cross_product (subtract_vectors ($point, $line->{p}),
$u));
return $dist;
}
# This function calculates the equation of the line which forms
# the intersection of two planes. If the two planes are coplanar
# or parallel, then undef is returned.
sub intersection_of_two_planes
{
my $plane0 = shift;
my $plane1 = shift;
my $normal0 = normal ($plane0);
my $normal1 = normal ($plane1);
my $n00 = dot_product ($normal0, $normal0);
my $n01 = dot_product ($normal0, $normal1);
my $n11 = dot_product ($normal1, $normal1);
my $det = $n00 * $n11 - $n01 * $n01;
# Coplanar or parallel planes.
return undef if abs ($det) < 1e-6;
my $invdet = 1 / $det;
my $c0 = ($n11 * $plane0->[3] - $n01 * $plane1->[3]) * $invdet;
my $c1 = ($n00 * $plane1->[3] - $n01 * $plane0->[3]) * $invdet;
return { v => cross_product ($normal0, $normal1),
p => sum_vectors (multiply_scalar_vector ($c0, $normal0),
multiply_scalar_vector ($c1, $normal1)) };
}
# Calculate the point where a line intersects a plane.
sub intersection_line_and_plane
{
my $plane = shift;
my $line = shift;
my $denom = ($plane->[0] * $line->{v}->[0] +
$plane->[1] * $line->{v}->[1] +
$plane->[2] * $line->{v}->[2]);
return undef if $denom == 0; # Parallel.
my $t = - ($plane->[0] * $line->{p}->[0] +
$plane->[1] * $line->{p}->[1] +
$plane->[2] * $line->{p}->[2] +
$plane->[3]) / $denom;
my $point = [ $line->{p}->[0] + $t * $line->{v}->[0],
$line->{p}->[1] + $t * $line->{v}->[1],
$line->{p}->[2] + $t * $line->{v}->[2] ];
return $point;
}
# Split a convex face in a plane.
sub split_convex_face_in_plane
{
my $face = shift;
my $plane = shift;
my $i;
my @distance = map { distance_point_to_plane ($plane, $_) } @$face;
# Compare adjacent vertices to find out which ones cross the plane.
my @splits = ();
my @split_point = ();
for ($i = 0; $i < @$face; ++$i)
{
my $j = $i+1;
if ($j >= @$face) { $j -= @$face }
if (($distance[$i] >= 0 && $distance[$j] < 0) ||
($distance[$i] < 0 && $distance[$j] >= 0))
{
# Record the split location (eg. [0,1] here indicates that
# we are splitting the edge from vertex 0 to vertex 1.
push @splits, [ $i, $j ];
# Find the point along this edge where we will split. However,
# if the point is actually coincident with one of the end
# vertices, then we have to fudge it slightly by splitting
# close to that end vertex.
my $splitting_point;
my $point_i = $face->[$i];
my $point_j = $face->[$j];
if (abs ($distance[$i]) > 0.001 && abs ($distance[$j]) > 0.001)
{
# Normal case: split somewhere in the middle.
my $lineseg = line_segment ($point_i, $point_j);
$splitting_point
= intersection_line_and_plane ($plane, $lineseg)
or confess "strange: line and plane are parallel";
}
elsif (abs ($distance[$i]) <= 0.001)
{
# Split near to vertex $i.
$splitting_point
= sum_vectors (multiply_scalar_vector (0.99, $point_i),
multiply_scalar_vector (0.01, $point_j));
}
else # abs ($distance[$j]) <= 0.001
{
# Split near to vertex $j.
$splitting_point
= sum_vectors (multiply_scalar_vector (0.01, $point_i),
multiply_scalar_vector (0.99, $point_j));
}
push @split_point, $splitting_point;
}
}
if (@splits != 2)
{
print STDERR "\@splits = (", join (", ", @splits), ")\n";
print STDERR "faces = (", join (", ", @$face), ")\n";
confess;
}
die if @splits != @split_point;
# Construct the first face.
my @face0 = ();
for ($i = 0; $i <= $splits[0][0]; ++$i)
{
push @face0, $face->[$i];
}
push @face0, $split_point[0];
push @face0, $split_point[1];
if ($splits[1][1] != 0)
{
for ($i = $splits[1][1]; $i <= @$face-1; ++$i)
{
push @face0, $face->[$i];
}
}
foreach (@face0) { confess "splits = ",
$splits[0][0], ",",
$splits[0][1], ":",
$splits[1][0], ",",
$splits[1][1], ", nr faces = ",
0+@$face, ", \@face0 = ",
0+@face0
if !defined $_ }
# Construct the second face.
my @face1 = ();
for ($i = $splits[0][1]; $i <= $splits[1][0]; ++$i)
{
push @face1, $face->[$i];
}
push @face1, $split_point[1];
push @face1, $split_point[0];
foreach (@face1) { confess if !defined $_ }
# Which one is which?
my ($inside_face, $outside_face);
if ($distance[0] >= 0)
{
$inside_face = \@face0;
$outside_face = \@face1;
}
else
{
$outside_face = \@face0;
$inside_face = \@face1;
}
return ($inside_face, $outside_face);
}
# Compute the dot product of two vectors.
sub dot_product
{
my $vector0 = shift;
my $vector1 = shift;
return $vector0->[0] * $vector1->[0] +
$vector0->[1] * $vector1->[1] +
$vector0->[2] * $vector1->[2];
}
# Compute the cross product of two vectors.
sub cross_product
{
my $v = shift;
my $w = shift;
my @r = ();
push @r, $v->[1]*$w->[2] - $v->[2]*$w->[1];
push @r, $v->[2]*$w->[0] - $v->[0]*$w->[2];
push @r, $v->[0]*$w->[1] - $v->[1]*$w->[0];
return \@r;
}
# Compute the minimum distance between two lines.
sub minimum_distance_between_two_lines
{
my $line0 = shift;
my $line1 = shift;
my $diff = subtract_vectors ($line0->{p}, $line1->{p});
my $a = dot_product ($line0->{v}, $line0->{v});
my $b = - dot_product ($line0->{v}, $line1->{v});
my $c = dot_product ($line1->{v}, $line1->{v});
my $d = dot_product ($line0->{v}, $diff);
my $f = dot_product ($diff, $diff);
my $det = abs ($a*$c - $b*$b);
if ($det >= 1e-6) # Not parallel.
{
my $e = - dot_product ($line1->{v}, $diff);
my $invdet = 1 / $det;
my $s = ($b*$e - $c*$d) * $invdet;
my $t = ($b*$d - $a*$e) * $invdet;
return sqrt (abs ($s * ($a*$s + $b*$t + 2*$d) +
$t * ($b*$s + $c*$t + 2*$e) + $f));
}
else # Parallel.
{
my $s = -$d / $a;
my $t = 0;
return sqrt (abs ($d * $s + $f));
}
}
# Return the minimum distance between a line and a line segment.
sub minimum_distance_between_line_and_line_segment
{
my $line;
my $lineseg;
# XXXXX
}
# Return true if line intersects cylinder.
sub line_intersects_cylinder
{
my $line = shift;
my $cylinder = shift;
return minimum_distance_between_line_and_line_segment ($line, $cylinder)
<= $cylinder->{radius};
}
1;
__END__
=head1 NAME
XRacer::Math - Library of miscellaneous 3D math functions used by XRacer tools.
=head1 SYNOPSIS
use XRacer::Math;
Basic mathematics:
$midpoint = midpoint (@vertices);
$normalize_vector = normalize ($vector);
$magnitude = magnitude ($vector);
$magnitude = magnitude_in_direction ($v1, $v2);
$angle = angle_between ($v1, $v2);
$vector = multiply_scalar_vector ($scalar, $vector);
$matrix = matrix_multiply ($a, $b);
$vector = matrix_vector_multiply ($m, $v);
$sum = sum_vectors (@vectors);
$vector = subtract_vectors ($vector1, $vector2);
($min_x, $max_x, $min_y, $max_y, $min_z, $max_z) = bbox (@vertices);
Dot products and cross products:
$product = dot_product ($vector1, $vector2);
$vector = cross_product ($vector1, $vector2);
Distances:
$distance = distance ($point1, $point2);
$distance = distance_point_to_line ($line, $point);
$distance = distance_point_to_plane ($plane, $point);
$distance = minimum_distance_between_two_lines ($line1, $line2);
Planes:
$plane = plane_coefficients ($point1, $point2, $point3);
$boolean_result = is_coplanar ($point1, $point2, $point3, $point4);
$normal = normal ($plane);
$unit_normal = unit_normal ($plane);
$line = intersection_of_two_planes ($plane1, $plane2);
$point = intersection_line_and_plane ($plane, $line);
($inside_face, $outside_face) = split_convex_face_in_place ($face, $plane);
Line segments:
$lineseg = line_segment ($point1, $point2);
Cylinders:
$boolean_result = line_intersects_cylinder ($line, $cylinder);
=head1 DESCRIPTION
This library contains miscellaneous functions which are used
by the XRacer track building tools. The functions perform
various 3D mathematical operations on points (vertices),
vectors, lines and planes.
Points or vertices are represented by a reference to an array
containing three elements. That is to say, to initialize a
point, do this:
$point = [ $x, $y, $z ];
Vectors are represented by a reference to an array containing
three elements:
$vector = [ $dx, $dy, $dz ];
Lines are represented by the formula:
p + t.v
where p is a point on the line and v is a vector parallel
to the line. Therefore a line is simply a reference to a
hash containing the point and vector:
$line = {'p' => $point, 'v' => $vector};
A line segment is represented by the formula:
p + t.v where a <= t <= b
implying the following representation:
$lineseg = { 'p' => $point, 'v' => $vector, 'a' => $a, 'b' => $b };
Notice that you can use a line segment wherever you
would use a line.
Cylinders are represented by the hash reference:
$cylinder = { 'radius' => $radius,
'p' => $point, 'v' => $vector, 'a' => $a, 'b' => $b };
where C<$radius> is the radius of the cylinder, and
the other fields are a line segment running from the midpoint
of one end of the cylinder to the midpoint of the other
end of the cylinder. In other words, a cylinder is simply
a line segment with added radius field.
Planes are represented by the formula:
ax + by + cz + d = 0
where a, b, c and d are coefficients which uniquely define
the plane. A plane is a reference to an array containing
these four constants:
$plane = [ $a, $b, $c, $d ];
Use the C<plane_coefficients> function to
compute the four coefficients of a plane, given any
three points (not colinear) on the plane.
The following page was enormously useful in working
out these formulae: C<http://www.magic-software.com/ComputerGraphics.html>
=head1 PACKAGE FUNCTIONS
=over 4
=item $midpoint = midpoint (@vertices);
Compute the midpoint (average) of a list of vertices.
=item $distance = distance ($point1, $point2);
Compute the distance between two points.
=item $plane = plane_coefficients ($point1, $point2, $point3);
Compute the four coefficients of a plane. The three points
given as parameters lie on the plane, but must not be
colinear. Returns a reference to the array of four coefficients.
=item $boolean_result = is_coplanar ($point1, $point2, $point3, $point4);
Return true if the four points given are coplanar.
=item $distance = distance_point_to_line ($line, $point);
Compute the shortest distance from a point to a line.
=item $distance = distance_point_to_plane ($plane, $point);
Compute the shortest distance from a point to a plane. This function
preserves the sign of the distance, so C<$distance> will be
I<positive> if the point is above/inside the plane and
I<negative> if the point is below/outside the plane.
=item $normal = normal ($plane);
Compute the normal vector to the plane. This vector is
not unit length (see the C<unit_normal> function for that).
=item $unit_normal = unit_normal ($plane);
Compute the unit length normal vector to a plane.
=item $normalize_vector = normalize ($vector);
Take a vector and return a normalized vector, of unit length.
=item $magnitude = magnitude ($vector);
Return the magnitude of a vector.
=item $magnitude = magnitude_in_direction ($v1, $v2);
Compute the magnitude of vector v1 in direction vector v2.
If v1 == v2, then this returns 1. If v1 = -v2, this returns
-1. If v1 is perpendicular to v2, this returns 0.
=item $angle = angle_between ($v1, $v2);
Return the angle (in radians) between two vectors.
=item $vector = multiply_scalar_vector ($scalar, $vector);
Multiply a scalar and a vector and return the result.
=item $matrix = matrix_multiply ($a, $b);
Multiply two matrices 4x4 together. The resulting matrix is returned.
=item $vector = matrix_vector_multiply ($m, $v);
Multiply a 4x1 vector and a 4x4 matrix together. The resulting
4x1 vector is returned.
=item $sum = sum_vectors (@vectors);
Sum a collection of vectors and return the result.
=item $line = intersection_of_two_planes ($plane1, $plane2);
Compute the intersection (a line) of two planes. If the
two planes are coplanar or parallel, then this function
will return undef.
=item $point = intersection_line_and_plane ($plane, $line);
Compute the intersection of a line with a plane. This returns
a point. If the line and plane are parallel, it returns undef.
=item ($inside_face, $outside_face) = split_convex_face_in_place ($face, $plane);
Given a convex face, specified as follows:
$face = [ $vertex0, $vertex1, ... ];
we split the face into two faces. The first face returned is
inside the plane. The second face returned is outside the
plane.
=item $vector = subtract_vectors ($vector1, $vector2);
Compute: C<$vector1 - $vector2>, and return the resulting vector.
=item ($min_x, $max_x, $min_y, $max_y, $min_z, $max_z) = bbox (@vertices);
Construct the bounding box (minima and maxima of each
coordinate) of a list of vertices.
=item $product = dot_product ($vector1, $vector2);
Compute the dot product (a scalar number) of the two vector arguments.
=item $vector = cross_product ($vector1, $vector2);
Compute the cross product (a vector) of the two vector arguments.
=item $distance = minimum_distance_between_two_lines ($line1, $line2);
Compute the minimum distance between two lines.
=item $lineseg = line_segment ($point1, $point2);
Construct a line segment from C<$point1> to C<$point2>.
=item $boolean_result = line_intersects_cylinder ($line, $cylinder);
Returns true if the C<$line> intersects the C<$cylinder> at any point.
=back
=head1 AUTHOR
Richard W.M. Jones, <rich@annexia.org>
=head1 COPYRIGHT
XRacer is copyright (C) 1999-2000 Richard W.M. Jones (rich@annexia.org)
and other contributors listed in the AUTHORS file.
=head1 SEE ALSO
L<perl(1)>, L<xracer(6)>.
=cut
|