/usr/games/xracer-mktrack is in xracer-tools 0.96.9.1-8.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | #!/usr/bin/perl -w
# XRACER (C) 1999-2000 Richard W.M. Jones <rich@annexia.org> and other AUTHORS
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# $Id: xracer-mktrack.pl,v 1.9 2000/01/01 15:51:41 rich Exp $
# You have created the basic track shape in Blender and saved it
# as a VideoScape file. This file defines the basic shape of the
# track. This basic shape defines the surfaces which exert their
# levitation effect on the craft. At this stage, we are NOT talking
# about what the track actually looks like, or any textures, etc.
# (Although in the common case, these two things can be the same).
# This script takes this information and builds the C file necessary
# for XRacer to work out what forces are exerted on the craft at
# each point on the track.
use strict;
use Getopt::Long;
use lib '../../XRacer/blib/lib'; # So you can run this without installing it.
use XRacer::Math;
# Read command line arguments.
my $nr_steps;
my $tubefilename;
my $coutputfilename;
my $verbose;
my $help;
GetOptions ("steps=i" => \$nr_steps,
"tubefile=s" => \$tubefilename,
"outputc=s" => \$coutputfilename,
"verbose" => \$verbose,
"help|?" => \$help);
if ($help)
{
print STDERR "$0 --steps STEPS [--outputc OUTPUTFILE] [--verbose] --tubefile TUBEFILE [INPUTFILE]\n";
print STDERR "where: STEPS is the number of vertices in each segment\n";
print STDERR " OUTPUTFILE is the C file to write\n";
print STDERR " TUBEFILE is the tube file generated by mktube prog\n";
print STDERR " INPUTFILE is the input VideoScape file\n";
exit 1;
}
die "--steps argument is required" if !$nr_steps;
die "--tubefile argument is required" if !$tubefilename;
# Read the segments from the tubefile.
my $segmentsref = do $tubefilename
or die "$tubefilename: $!";
my @segments = @$segmentsref;
print "number of segments in tube file: ", scalar (@segments), "\n"
if $verbose;
# Read input lines.
my $state = "expect 3DG1";
my $vcount;
my $nr_segments;
my @vertices = ();
my @faces = ();
while (<>)
{
s/[\n\r]+$//g; # Removes trailing CR, LF.
if ($state eq "expect 3DG1")
{
die "expecting first line to be 3DG1" if $_ ne "3DG1";
$state = "expect vcount";
}
elsif ($state eq "expect vcount")
{
die "expecting vertex count" if $_ !~ m/^[1-9][0-9]*$/;
$vcount = $_;
# Check that steps divides number of vertices.
die "number of steps must divide number of vertices ($vcount)"
if ($vcount / $nr_steps != int ($vcount / $nr_steps));
$nr_segments = $vcount / $nr_steps;
die "number of segments found does not match tube file"
if $nr_segments != @segments;
$state = "reading vertices";
}
elsif ($state eq "reading vertices")
{
my @vs = split /[ \t]+/, $_;
push @vertices, \@vs;
$vcount--;
$state = "reading faces" if $vcount == 0;
}
elsif ($state eq "reading faces")
{
my @fs = split /[ \t]+/, $_;
die "oops - expecting only four-sided faces"
if $fs[0] != 4;
push @faces, { 'vertices' => [ $fs[1], $fs[2], $fs[3], $fs[4] ] };
}
}
# Print a summary of the file.
print "number of vertices: ", scalar (@vertices), "\n" if $verbose;
print "number of segments: $nr_segments\n" if $verbose;
print "number of faces: ", scalar (@faces), "\n" if $verbose;
# For convenience, number each face and also convert it to
# a set of plane coefficients.
for (my $i = 0; $i < @faces; ++$i)
{
$faces[$i]->{n} = $i;
$faces[$i]->{faceplane}
= plane_coefficients ($vertices[$faces[$i]->{vertices}->[0]],
$vertices[$faces[$i]->{vertices}->[1]],
$vertices[$faces[$i]->{vertices}->[2]]);
}
# Map faces into segments.
foreach (@segments) { $_->{faces} = [] };
my $face;
foreach $face (@faces)
{
# Map vertex numbers to segment numbers.
my @sns = map { int ($_ / $nr_steps) } @{$face->{vertices}};
#print "segments: ", join (" ", @sns), "\n" if $verbose;
# Take the minimum and maximum segment numbers.
my $min_seg = $nr_segments+1;
foreach (@sns) { $min_seg = $_ if $_ < $min_seg }
my $max_seg = -1;
foreach (@sns) { $max_seg = $_ if $_ > $max_seg }
# The minimum segment number must be max segment number - 1 (but
# take into account the wrap-around case ...)
my $segnum;
if ($min_seg == $max_seg) # Equal is OK too.
{
$segnum = $min_seg;
}
elsif ($min_seg == $max_seg-1)
{
$segnum = $min_seg;
}
elsif ($min_seg == 0 && $max_seg == $nr_segments-1) # wraparound case
{
$segnum = $nr_segments-1;
}
else
{
die "oops - track face covers more than 1 segment";
}
#print "putting it into segment: $segnum\n" if $verbose;
# Put the face into the segment.
my $facesref = $segments[$segnum]->{faces};
push @$facesref, $face;
}
# Examine each face in turn and create the list of planes.
foreach $face (@faces)
{
# Get the four vertices from the face.
my $v0 = $vertices[$face->{vertices}->[0]];
my $v1 = $vertices[$face->{vertices}->[1]];
my $v2 = $vertices[$face->{vertices}->[2]];
my $v3 = $vertices[$face->{vertices}->[3]];
# Construct the midpoint of the face (point MP in diagram).
my $mp = midpoint ($v0, $v1, $v2, $v3);
# Construct a plane from the face.
my $faceplane = plane_coefficients ($v2, $v1, $v0);
# Construct a unit normal vector to the face (vector MQ-MP in diagram).
my $n = unit_normal ($faceplane);
# Construct midpoint of plane one unit normal from face (point MQ).
my $mq = sum_vectors ($mp, $n);
# Construct points V4, ..., V7 (see diagram).
my $v4 = sum_vectors ($v0, $n);
my $v5 = sum_vectors ($v1, $n);
my $v6 = sum_vectors ($v2, $n);
my $v7 = sum_vectors ($v3, $n);
# Points V8, ..., V11 are just points V4, ..., V7 extended
# outwards by a small percentage. So, for example,
# V8 = MQ + (V4 - MQ) * (expansion_percentage / 100)
# where expansion_percentage is, perhaps, 110.
# XXX Constant!
my $expansion = 1.1;
my $v8 = sum_vectors ($mq,
multiply_scalar_vector ($expansion,
subtract_vectors ($v4, $mq)));
my $v9 = sum_vectors ($mq,
multiply_scalar_vector ($expansion,
subtract_vectors ($v5, $mq)));
my $v10 = sum_vectors ($mq,
multiply_scalar_vector ($expansion,
subtract_vectors ($v6, $mq)));
my $v11 = sum_vectors ($mq,
multiply_scalar_vector ($expansion,
subtract_vectors ($v7, $mq)));
if ($verbose)
{
print "face: ", cinitializer ($v0, $v1, $v2, $v3), "\n";
print "inner: ", cinitializer ($v4, $v5, $v6, $v7), "\n";
print "outer: ", cinitializer ($v8, $v9, $v10, $v11), "\n";
}
# Now we can construct the planes for real (see right
# hand side of diagram). For example, one plane is
# V0, V1, V9, V8
my $plane0 = plane_coefficients ($v8, $v0, $v1);
my $plane1 = plane_coefficients ($v9, $v1, $v2);
my $plane2 = plane_coefficients ($v10, $v2, $v3);
my $plane3 = plane_coefficients ($v11, $v3, $v0);
# Assertion: Check that the midpoints $mp and $mq are both
# inside all of the planes. This is just a sanity check
# on the above calculations.
die "assertion failed: midpoints not inside planes"
if distance_point_to_plane ($plane0, $mp) < 0 ||
distance_point_to_plane ($plane0, $mq) < 0 ||
distance_point_to_plane ($plane1, $mp) < 0 ||
distance_point_to_plane ($plane1, $mq) < 0 ||
distance_point_to_plane ($plane2, $mp) < 0 ||
distance_point_to_plane ($plane2, $mq) < 0 ||
distance_point_to_plane ($plane3, $mp) < 0 ||
distance_point_to_plane ($plane3, $mq) < 0;
# Store these planes in the face description.
$face->{planes} = [ $plane0, $plane1, $plane2, $plane3 ];
}
# Save what we have to the C output file.
if ($coutputfilename)
{
open C, ">$coutputfilename"
or die "$coutputfilename: $!";
print C "/* This file describes the shape of the track itself.\n * It is automatically generated.\n */\n\n#include \"common.h\"\n\n";
# Save a list of vertices.
print C "int nr_face_vertices = ", scalar (@vertices), ";\n";
print C "GLfloat face_vertices[][3] = ",
cinitializer (@vertices), ";\n";
# Construct the list of faces.
print C "int nr_faces = ", scalar (@faces), ";\n";
print C "struct xrFace faces[] = {\n";
print C join (",\n",
map ({
my $faceplane = $_->{faceplane};
my $planes = $_->{planes};
my $vertices = $_->{vertices};
"{ " . cinitializer (@$faceplane) . ", " .
cinitializer (@$planes) . ", " .
cinitializer (@$vertices) . " }"
} @faces));
print C "};\n";
# Construct the mapping of segments onto faces.
for (my $i = 0; $i < @segments; ++$i)
{
print C "static int _faces$i [] = ",
cinitializer (map { $_->{n} } @{$segments[$i]->{faces}}), ";\n";
}
print C "struct xrSegmentFaces segment_to_faces[] = {\n";
my $i = 0;
print C join (",\n",
map ({
my $faces = $_->{faces};
my $nr_faces = @$faces;
"{ " . $nr_faces . ", _faces" . $i++ . " }"
} @segments));
print C "};\n";
print C "/* End of file. */\n";
close C;
}
exit 0;
#----------------------------------------------------------------------
# This small helper function takes a list of either numbers of
# array refs, and returns an equivalent C string for initializing
# a C multi-dimensional array or structure.
sub cinitializer
{
return "{ " . join (", ",
map ({ ref ($_) eq 'ARRAY' ? cinitializer (@$_) : $_ }
@_)) . " }";
}
#----------------------------------------------------------------------
sub is_cbc
{
my $plane0 = shift;
my $plane1 = shift;
my $cylinder = shift;
# Calculate line of intersection of the two planes.
my $intersection = intersection_of_two_planes ($plane0,
$plane1);
return line_intersects_cylinder ($intersection, $cylinder);
}
# Return true if $plane1 is inside $plane0. Both planes are
# CBC-related.
#
# Since the planes are CBC-related, we know that they do
# not intersect at any points within the cylinder. Therefore
# we can simply pick any point on $plane1 which is inside
# the cylinder and test that point for insidedness with
# respect to $plane0. The problem is to find a point inside
# the cylinder on $plane1.
sub is_inside
{
my $plane0 = shift;
my $plane1 = shift;
my $cylinder = shift;
# XXXXXXXXXXXXXXXXXXX
}
# Build a decision tree, recursively. This function takes the
# following arguments:
# $current_depth
# $max_depthref (reference to $max_depth variable)
# $nr_nodesref (reference to $nr_nodes variable)
# $planesref (reference to list of planes left -- DO NOT CHANGE THIS!)
# $insideref (references to inside planes -- DO NOT CHANGE THIS!)
# $cylinder (bounding cylinder)
# It returns a tree.
sub build_decision_tree
{
my $current_depth = shift;
my $max_depthref = shift;
my $nr_nodesref = shift;
my $planesref = shift;
my $insideref = shift;
my $cylinder = shift;
# Update global $max_depth variable.
$$max_depthref = $current_depth if $$max_depthref < $current_depth;
# Update global $nr_nodes variable.
$$nr_nodesref++;
my %node = ();
# Base case: no planes left: build the list of faces now.
if (@$planesref == 0)
{
$node{type} = "base";
# Find out which faces are fully inside (all four planes inside).
my %inside_count = ();
my @faces_inside = ();
foreach (@$insideref)
{
if (exists $inside_count{$_->{face}})
{
$inside_count{$_->{face}}++;
}
else
{
$inside_count{$_->{face}} = 0;
}
}
foreach (keys %inside_count)
{
if ($inside_count{$_} == 4)
{
push @faces_inside, $_;
}
elsif ($inside_count{$_} > 4)
{
die "oops: face $_ has inside_count == ",
$inside_count{$_};
}
}
# Construct the base node.
$node{faces} = \@faces_inside;
print "constructing base node, faces == { ",
join (", ", @faces_inside), " }\n" if $verbose;
}
# Recursive case: pick a plane and build an interior node.
else
{
$node{type} = "interior";
# Pick a plane at random. Well, OK, pick the first plane.
my $plane = $planesref->[0];
# Here we build up:
# (1) a list of CBC-related planes inside $plane.
# (2) a list of CBC-related planes outside $plane.
# (3) a list of non-CBC-related planes.
my @cbc_related_inside = ();
my @cbc_related_outside = ();
my @not_cbc_related = ();
for (my $i = 1; $i < @$planesref; $i++)
{
if (is_cbc ($plane->{plane}, $planesref->[$i]->{plane},
$cylinder))
{
if (is_inside ($plane->{plane}, $planesref->[$i]->{plane},
$cylinder))
{
push @cbc_related_inside, $planesref->[$i];
}
else
{
push @cbc_related_outside, $planesref->[$i];
}
}
else
{
push @not_cbc_related, $planesref->[$i];
}
}
# Build the inside tree.
my @remaining_planes = ();
push @remaining_planes, @not_cbc_related;
my @inside_planes = ();
push @inside_planes, @$insideref, @cbc_related_inside;
my $inside_tree = build_decision_tree ($current_depth+1,
$max_depthref,
\@remaining_planes,
\@inside_planes,
$cylinder);
# Build the outside tree.
@remaining_planes = ();
push @remaining_planes, @not_cbc_related, @cbc_related_outside;
@inside_planes = ();
push @inside_planes, @$insideref;
my $outside_tree = build_decision_tree ($current_depth+1,
$max_depthref,
\@remaining_planes,
\@inside_planes,
$cylinder);
$node{inside} = $inside_tree;
$node{outside} = $outside_tree;
}
return \%node;
}
|