/usr/src/spl-0.6.5.9/module/spl/spl-taskq.c is in spl-dkms 0.6.5.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 | /*****************************************************************************\
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
* For details, see <http://zfsonlinux.org/>.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*****************************************************************************
* Solaris Porting Layer (SPL) Task Queue Implementation.
\*****************************************************************************/
#include <sys/taskq.h>
#include <sys/kmem.h>
int spl_taskq_thread_bind = 0;
module_param(spl_taskq_thread_bind, int, 0644);
MODULE_PARM_DESC(spl_taskq_thread_bind, "Bind taskq thread to CPU by default");
int spl_taskq_thread_dynamic = 0;
module_param(spl_taskq_thread_dynamic, int, 0644);
MODULE_PARM_DESC(spl_taskq_thread_dynamic, "Allow dynamic taskq threads");
int spl_taskq_thread_priority = 1;
module_param(spl_taskq_thread_priority, int, 0644);
MODULE_PARM_DESC(spl_taskq_thread_priority,
"Allow non-default priority for taskq threads");
int spl_taskq_thread_sequential = 4;
module_param(spl_taskq_thread_sequential, int, 0644);
MODULE_PARM_DESC(spl_taskq_thread_sequential,
"Create new taskq threads after N sequential tasks");
/* Global system-wide dynamic task queue available for all consumers */
taskq_t *system_taskq;
EXPORT_SYMBOL(system_taskq);
/* Private dedicated taskq for creating new taskq threads on demand. */
static taskq_t *dynamic_taskq;
static taskq_thread_t *taskq_thread_create(taskq_t *);
static int
task_km_flags(uint_t flags)
{
if (flags & TQ_NOSLEEP)
return KM_NOSLEEP;
if (flags & TQ_PUSHPAGE)
return KM_PUSHPAGE;
return KM_SLEEP;
}
/*
* NOTE: Must be called with tq->tq_lock held, returns a list_t which
* is not attached to the free, work, or pending taskq lists.
*/
static taskq_ent_t *
task_alloc(taskq_t *tq, uint_t flags)
{
taskq_ent_t *t;
int count = 0;
ASSERT(tq);
ASSERT(spin_is_locked(&tq->tq_lock));
retry:
/* Acquire taskq_ent_t's from free list if available */
if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
ASSERT(!(t->tqent_flags & TQENT_FLAG_CANCEL));
ASSERT(!timer_pending(&t->tqent_timer));
list_del_init(&t->tqent_list);
return (t);
}
/* Free list is empty and memory allocations are prohibited */
if (flags & TQ_NOALLOC)
return (NULL);
/* Hit maximum taskq_ent_t pool size */
if (tq->tq_nalloc >= tq->tq_maxalloc) {
if (flags & TQ_NOSLEEP)
return (NULL);
/*
* Sleep periodically polling the free list for an available
* taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
* but we cannot block forever waiting for an taskq_ent_t to
* show up in the free list, otherwise a deadlock can happen.
*
* Therefore, we need to allocate a new task even if the number
* of allocated tasks is above tq->tq_maxalloc, but we still
* end up delaying the task allocation by one second, thereby
* throttling the task dispatch rate.
*/
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
schedule_timeout(HZ / 100);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
if (count < 100) {
count++;
goto retry;
}
}
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
t = kmem_alloc(sizeof(taskq_ent_t), task_km_flags(flags));
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
if (t) {
taskq_init_ent(t);
tq->tq_nalloc++;
}
return (t);
}
/*
* NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
* to already be removed from the free, work, or pending taskq lists.
*/
static void
task_free(taskq_t *tq, taskq_ent_t *t)
{
ASSERT(tq);
ASSERT(t);
ASSERT(spin_is_locked(&tq->tq_lock));
ASSERT(list_empty(&t->tqent_list));
ASSERT(!timer_pending(&t->tqent_timer));
kmem_free(t, sizeof(taskq_ent_t));
tq->tq_nalloc--;
}
/*
* NOTE: Must be called with tq->tq_lock held, either destroys the
* taskq_ent_t if too many exist or moves it to the free list for later use.
*/
static void
task_done(taskq_t *tq, taskq_ent_t *t)
{
ASSERT(tq);
ASSERT(t);
ASSERT(spin_is_locked(&tq->tq_lock));
/* Wake tasks blocked in taskq_wait_id() */
wake_up_all(&t->tqent_waitq);
list_del_init(&t->tqent_list);
if (tq->tq_nalloc <= tq->tq_minalloc) {
t->tqent_id = 0;
t->tqent_func = NULL;
t->tqent_arg = NULL;
t->tqent_flags = 0;
list_add_tail(&t->tqent_list, &tq->tq_free_list);
} else {
task_free(tq, t);
}
}
/*
* When a delayed task timer expires remove it from the delay list and
* add it to the priority list in order for immediate processing.
*/
static void
task_expire(unsigned long data)
{
taskq_ent_t *w, *t = (taskq_ent_t *)data;
taskq_t *tq = t->tqent_taskq;
struct list_head *l;
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
if (t->tqent_flags & TQENT_FLAG_CANCEL) {
ASSERT(list_empty(&t->tqent_list));
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return;
}
/*
* The priority list must be maintained in strict task id order
* from lowest to highest for lowest_id to be easily calculable.
*/
list_del(&t->tqent_list);
list_for_each_prev(l, &tq->tq_prio_list) {
w = list_entry(l, taskq_ent_t, tqent_list);
if (w->tqent_id < t->tqent_id) {
list_add(&t->tqent_list, l);
break;
}
}
if (l == &tq->tq_prio_list)
list_add(&t->tqent_list, &tq->tq_prio_list);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
wake_up(&tq->tq_work_waitq);
}
/*
* Returns the lowest incomplete taskqid_t. The taskqid_t may
* be queued on the pending list, on the priority list, on the
* delay list, or on the work list currently being handled, but
* it is not 100% complete yet.
*/
static taskqid_t
taskq_lowest_id(taskq_t *tq)
{
taskqid_t lowest_id = tq->tq_next_id;
taskq_ent_t *t;
taskq_thread_t *tqt;
ASSERT(tq);
ASSERT(spin_is_locked(&tq->tq_lock));
if (!list_empty(&tq->tq_pend_list)) {
t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
lowest_id = MIN(lowest_id, t->tqent_id);
}
if (!list_empty(&tq->tq_prio_list)) {
t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
lowest_id = MIN(lowest_id, t->tqent_id);
}
if (!list_empty(&tq->tq_delay_list)) {
t = list_entry(tq->tq_delay_list.next, taskq_ent_t, tqent_list);
lowest_id = MIN(lowest_id, t->tqent_id);
}
if (!list_empty(&tq->tq_active_list)) {
tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
tqt_active_list);
ASSERT(tqt->tqt_id != 0);
lowest_id = MIN(lowest_id, tqt->tqt_id);
}
return (lowest_id);
}
/*
* Insert a task into a list keeping the list sorted by increasing taskqid.
*/
static void
taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
{
taskq_thread_t *w;
struct list_head *l;
ASSERT(tq);
ASSERT(tqt);
ASSERT(spin_is_locked(&tq->tq_lock));
list_for_each_prev(l, &tq->tq_active_list) {
w = list_entry(l, taskq_thread_t, tqt_active_list);
if (w->tqt_id < tqt->tqt_id) {
list_add(&tqt->tqt_active_list, l);
break;
}
}
if (l == &tq->tq_active_list)
list_add(&tqt->tqt_active_list, &tq->tq_active_list);
}
/*
* Find and return a task from the given list if it exists. The list
* must be in lowest to highest task id order.
*/
static taskq_ent_t *
taskq_find_list(taskq_t *tq, struct list_head *lh, taskqid_t id)
{
struct list_head *l;
taskq_ent_t *t;
ASSERT(spin_is_locked(&tq->tq_lock));
list_for_each(l, lh) {
t = list_entry(l, taskq_ent_t, tqent_list);
if (t->tqent_id == id)
return (t);
if (t->tqent_id > id)
break;
}
return (NULL);
}
/*
* Find an already dispatched task given the task id regardless of what
* state it is in. If a task is still pending or executing it will be
* returned and 'active' set appropriately. If the task has already
* been run then NULL is returned.
*/
static taskq_ent_t *
taskq_find(taskq_t *tq, taskqid_t id, int *active)
{
taskq_thread_t *tqt;
struct list_head *l;
taskq_ent_t *t;
ASSERT(spin_is_locked(&tq->tq_lock));
*active = 0;
t = taskq_find_list(tq, &tq->tq_delay_list, id);
if (t)
return (t);
t = taskq_find_list(tq, &tq->tq_prio_list, id);
if (t)
return (t);
t = taskq_find_list(tq, &tq->tq_pend_list, id);
if (t)
return (t);
list_for_each(l, &tq->tq_active_list) {
tqt = list_entry(l, taskq_thread_t, tqt_active_list);
if (tqt->tqt_id == id) {
t = tqt->tqt_task;
*active = 1;
return (t);
}
}
return (NULL);
}
/*
* Theory for the taskq_wait_id(), taskq_wait_outstanding(), and
* taskq_wait() functions below.
*
* Taskq waiting is accomplished by tracking the lowest outstanding task
* id and the next available task id. As tasks are dispatched they are
* added to the tail of the pending, priority, or delay lists. As worker
* threads become available the tasks are removed from the heads of these
* lists and linked to the worker threads. This ensures the lists are
* kept sorted by lowest to highest task id.
*
* Therefore the lowest outstanding task id can be quickly determined by
* checking the head item from all of these lists. This value is stored
* with the taskq as the lowest id. It only needs to be recalculated when
* either the task with the current lowest id completes or is canceled.
*
* By blocking until the lowest task id exceeds the passed task id the
* taskq_wait_outstanding() function can be easily implemented. Similarly,
* by blocking until the lowest task id matches the next task id taskq_wait()
* can be implemented.
*
* Callers should be aware that when there are multiple worked threads it
* is possible for larger task ids to complete before smaller ones. Also
* when the taskq contains delay tasks with small task ids callers may
* block for a considerable length of time waiting for them to expire and
* execute.
*/
static int
taskq_wait_id_check(taskq_t *tq, taskqid_t id)
{
int active = 0;
int rc;
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
rc = (taskq_find(tq, id, &active) == NULL);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return (rc);
}
/*
* The taskq_wait_id() function blocks until the passed task id completes.
* This does not guarantee that all lower task ids have completed.
*/
void
taskq_wait_id(taskq_t *tq, taskqid_t id)
{
wait_event(tq->tq_wait_waitq, taskq_wait_id_check(tq, id));
}
EXPORT_SYMBOL(taskq_wait_id);
static int
taskq_wait_outstanding_check(taskq_t *tq, taskqid_t id)
{
int rc;
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
rc = (id < tq->tq_lowest_id);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return (rc);
}
/*
* The taskq_wait_outstanding() function will block until all tasks with a
* lower taskqid than the passed 'id' have been completed. Note that all
* task id's are assigned monotonically at dispatch time. Zero may be
* passed for the id to indicate all tasks dispatch up to this point,
* but not after, should be waited for.
*/
void
taskq_wait_outstanding(taskq_t *tq, taskqid_t id)
{
id = id ? id : tq->tq_next_id - 1;
wait_event(tq->tq_wait_waitq, taskq_wait_outstanding_check(tq, id));
}
EXPORT_SYMBOL(taskq_wait_outstanding);
static int
taskq_wait_check(taskq_t *tq)
{
int rc;
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
rc = (tq->tq_lowest_id == tq->tq_next_id);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return (rc);
}
/*
* The taskq_wait() function will block until the taskq is empty.
* This means that if a taskq re-dispatches work to itself taskq_wait()
* callers will block indefinitely.
*/
void
taskq_wait(taskq_t *tq)
{
wait_event(tq->tq_wait_waitq, taskq_wait_check(tq));
}
EXPORT_SYMBOL(taskq_wait);
static int
taskq_member_impl(taskq_t *tq, void *t)
{
struct list_head *l;
taskq_thread_t *tqt;
int found = 0;
ASSERT(tq);
ASSERT(t);
ASSERT(spin_is_locked(&tq->tq_lock));
list_for_each(l, &tq->tq_thread_list) {
tqt = list_entry(l, taskq_thread_t, tqt_thread_list);
if (tqt->tqt_thread == (struct task_struct *)t) {
found = 1;
break;
}
}
return (found);
}
int
taskq_member(taskq_t *tq, void *t)
{
int found;
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
found = taskq_member_impl(tq, t);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return (found);
}
EXPORT_SYMBOL(taskq_member);
/*
* Cancel an already dispatched task given the task id. Still pending tasks
* will be immediately canceled, and if the task is active the function will
* block until it completes. Preallocated tasks which are canceled must be
* freed by the caller.
*/
int
taskq_cancel_id(taskq_t *tq, taskqid_t id)
{
taskq_ent_t *t;
int active = 0;
int rc = ENOENT;
ASSERT(tq);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
t = taskq_find(tq, id, &active);
if (t && !active) {
list_del_init(&t->tqent_list);
t->tqent_flags |= TQENT_FLAG_CANCEL;
/*
* When canceling the lowest outstanding task id we
* must recalculate the new lowest outstanding id.
*/
if (tq->tq_lowest_id == t->tqent_id) {
tq->tq_lowest_id = taskq_lowest_id(tq);
ASSERT3S(tq->tq_lowest_id, >, t->tqent_id);
}
/*
* The task_expire() function takes the tq->tq_lock so drop
* drop the lock before synchronously cancelling the timer.
*/
if (timer_pending(&t->tqent_timer)) {
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
del_timer_sync(&t->tqent_timer);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
}
if (!(t->tqent_flags & TQENT_FLAG_PREALLOC))
task_done(tq, t);
rc = 0;
}
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
if (active) {
taskq_wait_id(tq, id);
rc = EBUSY;
}
return (rc);
}
EXPORT_SYMBOL(taskq_cancel_id);
static int taskq_thread_spawn(taskq_t *tq);
taskqid_t
taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
taskq_ent_t *t;
taskqid_t rc = 0;
ASSERT(tq);
ASSERT(func);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
/* Taskq being destroyed and all tasks drained */
if (!(tq->tq_flags & TASKQ_ACTIVE))
goto out;
/* Do not queue the task unless there is idle thread for it */
ASSERT(tq->tq_nactive <= tq->tq_nthreads);
if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
goto out;
if ((t = task_alloc(tq, flags)) == NULL)
goto out;
spin_lock(&t->tqent_lock);
/* Queue to the priority list instead of the pending list */
if (flags & TQ_FRONT)
list_add_tail(&t->tqent_list, &tq->tq_prio_list);
else
list_add_tail(&t->tqent_list, &tq->tq_pend_list);
t->tqent_id = rc = tq->tq_next_id;
tq->tq_next_id++;
t->tqent_func = func;
t->tqent_arg = arg;
t->tqent_taskq = tq;
t->tqent_timer.data = 0;
t->tqent_timer.function = NULL;
t->tqent_timer.expires = 0;
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
spin_unlock(&t->tqent_lock);
wake_up(&tq->tq_work_waitq);
out:
/* Spawn additional taskq threads if required. */
if (tq->tq_nactive == tq->tq_nthreads)
(void) taskq_thread_spawn(tq);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return (rc);
}
EXPORT_SYMBOL(taskq_dispatch);
taskqid_t
taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
uint_t flags, clock_t expire_time)
{
taskqid_t rc = 0;
taskq_ent_t *t;
ASSERT(tq);
ASSERT(func);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
/* Taskq being destroyed and all tasks drained */
if (!(tq->tq_flags & TASKQ_ACTIVE))
goto out;
if ((t = task_alloc(tq, flags)) == NULL)
goto out;
spin_lock(&t->tqent_lock);
/* Queue to the delay list for subsequent execution */
list_add_tail(&t->tqent_list, &tq->tq_delay_list);
t->tqent_id = rc = tq->tq_next_id;
tq->tq_next_id++;
t->tqent_func = func;
t->tqent_arg = arg;
t->tqent_taskq = tq;
t->tqent_timer.data = (unsigned long)t;
t->tqent_timer.function = task_expire;
t->tqent_timer.expires = (unsigned long)expire_time;
add_timer(&t->tqent_timer);
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
spin_unlock(&t->tqent_lock);
out:
/* Spawn additional taskq threads if required. */
if (tq->tq_nactive == tq->tq_nthreads)
(void) taskq_thread_spawn(tq);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return (rc);
}
EXPORT_SYMBOL(taskq_dispatch_delay);
void
taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
taskq_ent_t *t)
{
ASSERT(tq);
ASSERT(func);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
/* Taskq being destroyed and all tasks drained */
if (!(tq->tq_flags & TASKQ_ACTIVE)) {
t->tqent_id = 0;
goto out;
}
spin_lock(&t->tqent_lock);
/*
* Mark it as a prealloc'd task. This is important
* to ensure that we don't free it later.
*/
t->tqent_flags |= TQENT_FLAG_PREALLOC;
/* Queue to the priority list instead of the pending list */
if (flags & TQ_FRONT)
list_add_tail(&t->tqent_list, &tq->tq_prio_list);
else
list_add_tail(&t->tqent_list, &tq->tq_pend_list);
t->tqent_id = tq->tq_next_id;
tq->tq_next_id++;
t->tqent_func = func;
t->tqent_arg = arg;
t->tqent_taskq = tq;
spin_unlock(&t->tqent_lock);
wake_up(&tq->tq_work_waitq);
out:
/* Spawn additional taskq threads if required. */
if (tq->tq_nactive == tq->tq_nthreads)
(void) taskq_thread_spawn(tq);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
}
EXPORT_SYMBOL(taskq_dispatch_ent);
int
taskq_empty_ent(taskq_ent_t *t)
{
return list_empty(&t->tqent_list);
}
EXPORT_SYMBOL(taskq_empty_ent);
void
taskq_init_ent(taskq_ent_t *t)
{
spin_lock_init(&t->tqent_lock);
init_waitqueue_head(&t->tqent_waitq);
init_timer(&t->tqent_timer);
INIT_LIST_HEAD(&t->tqent_list);
t->tqent_id = 0;
t->tqent_func = NULL;
t->tqent_arg = NULL;
t->tqent_flags = 0;
t->tqent_taskq = NULL;
}
EXPORT_SYMBOL(taskq_init_ent);
/*
* Return the next pending task, preference is given to tasks on the
* priority list which were dispatched with TQ_FRONT.
*/
static taskq_ent_t *
taskq_next_ent(taskq_t *tq)
{
struct list_head *list;
ASSERT(spin_is_locked(&tq->tq_lock));
if (!list_empty(&tq->tq_prio_list))
list = &tq->tq_prio_list;
else if (!list_empty(&tq->tq_pend_list))
list = &tq->tq_pend_list;
else
return (NULL);
return (list_entry(list->next, taskq_ent_t, tqent_list));
}
/*
* Spawns a new thread for the specified taskq.
*/
static void
taskq_thread_spawn_task(void *arg)
{
taskq_t *tq = (taskq_t *)arg;
if (taskq_thread_create(tq) == NULL) {
/* restore spawning count if failed */
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
tq->tq_nspawn--;
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
}
}
/*
* Spawn addition threads for dynamic taskqs (TASKQ_DYNMAIC) the current
* number of threads is insufficient to handle the pending tasks. These
* new threads must be created by the dedicated dynamic_taskq to avoid
* deadlocks between thread creation and memory reclaim. The system_taskq
* which is also a dynamic taskq cannot be safely used for this.
*/
static int
taskq_thread_spawn(taskq_t *tq)
{
int spawning = 0;
if (!(tq->tq_flags & TASKQ_DYNAMIC))
return (0);
if ((tq->tq_nthreads + tq->tq_nspawn < tq->tq_maxthreads) &&
(tq->tq_flags & TASKQ_ACTIVE)) {
spawning = (++tq->tq_nspawn);
taskq_dispatch(dynamic_taskq, taskq_thread_spawn_task,
tq, TQ_NOSLEEP);
}
return (spawning);
}
/*
* Threads in a dynamic taskq should only exit once it has been completely
* drained and no other threads are actively servicing tasks. This prevents
* threads from being created and destroyed more than is required.
*
* The first thread is the thread list is treated as the primary thread.
* There is nothing special about the primary thread but in order to avoid
* all the taskq pids from changing we opt to make it long running.
*/
static int
taskq_thread_should_stop(taskq_t *tq, taskq_thread_t *tqt)
{
ASSERT(spin_is_locked(&tq->tq_lock));
if (!(tq->tq_flags & TASKQ_DYNAMIC))
return (0);
if (list_first_entry(&(tq->tq_thread_list), taskq_thread_t,
tqt_thread_list) == tqt)
return (0);
return
((tq->tq_nspawn == 0) && /* No threads are being spawned */
(tq->tq_nactive == 0) && /* No threads are handling tasks */
(tq->tq_nthreads > 1) && /* More than 1 thread is running */
(!taskq_next_ent(tq)) && /* There are no pending tasks */
(spl_taskq_thread_dynamic));/* Dynamic taskqs are allowed */
}
static int
taskq_thread(void *args)
{
DECLARE_WAITQUEUE(wait, current);
sigset_t blocked;
taskq_thread_t *tqt = args;
taskq_t *tq;
taskq_ent_t *t;
int seq_tasks = 0;
ASSERT(tqt);
tq = tqt->tqt_tq;
current->flags |= PF_NOFREEZE;
(void) spl_fstrans_mark();
sigfillset(&blocked);
sigprocmask(SIG_BLOCK, &blocked, NULL);
flush_signals(current);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
/*
* If we are dynamically spawned, decrease spawning count. Note that
* we could be created during taskq_create, in which case we shouldn't
* do the decrement. But it's fine because taskq_create will reset
* tq_nspawn later.
*/
if (tq->tq_flags & TASKQ_DYNAMIC)
tq->tq_nspawn--;
/* Immediately exit if more threads than allowed were created. */
if (tq->tq_nthreads >= tq->tq_maxthreads)
goto error;
tq->tq_nthreads++;
list_add_tail(&tqt->tqt_thread_list, &tq->tq_thread_list);
wake_up(&tq->tq_wait_waitq);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
if (list_empty(&tq->tq_pend_list) &&
list_empty(&tq->tq_prio_list)) {
if (taskq_thread_should_stop(tq, tqt)) {
wake_up_all(&tq->tq_wait_waitq);
break;
}
add_wait_queue_exclusive(&tq->tq_work_waitq, &wait);
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
schedule();
seq_tasks = 0;
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
remove_wait_queue(&tq->tq_work_waitq, &wait);
} else {
__set_current_state(TASK_RUNNING);
}
if ((t = taskq_next_ent(tq)) != NULL) {
list_del_init(&t->tqent_list);
/* In order to support recursively dispatching a
* preallocated taskq_ent_t, tqent_id must be
* stored prior to executing tqent_func. */
tqt->tqt_id = t->tqent_id;
tqt->tqt_task = t;
/* We must store a copy of the flags prior to
* servicing the task (servicing a prealloc'd task
* returns the ownership of the tqent back to
* the caller of taskq_dispatch). Thus,
* tqent_flags _may_ change within the call. */
tqt->tqt_flags = t->tqent_flags;
taskq_insert_in_order(tq, tqt);
tq->tq_nactive++;
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
/* Perform the requested task */
t->tqent_func(t->tqent_arg);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
tq->tq_nactive--;
list_del_init(&tqt->tqt_active_list);
tqt->tqt_task = NULL;
/* For prealloc'd tasks, we don't free anything. */
if (!(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
task_done(tq, t);
/* When the current lowest outstanding taskqid is
* done calculate the new lowest outstanding id */
if (tq->tq_lowest_id == tqt->tqt_id) {
tq->tq_lowest_id = taskq_lowest_id(tq);
ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
}
/* Spawn additional taskq threads if required. */
if ((++seq_tasks) > spl_taskq_thread_sequential &&
taskq_thread_spawn(tq))
seq_tasks = 0;
tqt->tqt_id = 0;
tqt->tqt_flags = 0;
wake_up_all(&tq->tq_wait_waitq);
} else {
if (taskq_thread_should_stop(tq, tqt))
break;
}
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
tq->tq_nthreads--;
list_del_init(&tqt->tqt_thread_list);
error:
kmem_free(tqt, sizeof (taskq_thread_t));
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
return (0);
}
static taskq_thread_t *
taskq_thread_create(taskq_t *tq)
{
static int last_used_cpu = 0;
taskq_thread_t *tqt;
tqt = kmem_alloc(sizeof (*tqt), KM_PUSHPAGE);
INIT_LIST_HEAD(&tqt->tqt_thread_list);
INIT_LIST_HEAD(&tqt->tqt_active_list);
tqt->tqt_tq = tq;
tqt->tqt_id = 0;
tqt->tqt_thread = spl_kthread_create(taskq_thread, tqt,
"%s", tq->tq_name);
if (tqt->tqt_thread == NULL) {
kmem_free(tqt, sizeof (taskq_thread_t));
return (NULL);
}
if (spl_taskq_thread_bind) {
last_used_cpu = (last_used_cpu + 1) % num_online_cpus();
kthread_bind(tqt->tqt_thread, last_used_cpu);
}
if (spl_taskq_thread_priority)
set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(tq->tq_pri));
wake_up_process(tqt->tqt_thread);
return (tqt);
}
taskq_t *
taskq_create(const char *name, int nthreads, pri_t pri,
int minalloc, int maxalloc, uint_t flags)
{
taskq_t *tq;
taskq_thread_t *tqt;
int count = 0, rc = 0, i;
ASSERT(name != NULL);
ASSERT(minalloc >= 0);
ASSERT(maxalloc <= INT_MAX);
ASSERT(!(flags & (TASKQ_CPR_SAFE))); /* Unsupported */
/* Scale the number of threads using nthreads as a percentage */
if (flags & TASKQ_THREADS_CPU_PCT) {
ASSERT(nthreads <= 100);
ASSERT(nthreads >= 0);
nthreads = MIN(nthreads, 100);
nthreads = MAX(nthreads, 0);
nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
}
tq = kmem_alloc(sizeof (*tq), KM_PUSHPAGE);
if (tq == NULL)
return (NULL);
spin_lock_init(&tq->tq_lock);
INIT_LIST_HEAD(&tq->tq_thread_list);
INIT_LIST_HEAD(&tq->tq_active_list);
tq->tq_name = strdup(name);
tq->tq_nactive = 0;
tq->tq_nthreads = 0;
tq->tq_nspawn = 0;
tq->tq_maxthreads = nthreads;
tq->tq_pri = pri;
tq->tq_minalloc = minalloc;
tq->tq_maxalloc = maxalloc;
tq->tq_nalloc = 0;
tq->tq_flags = (flags | TASKQ_ACTIVE);
tq->tq_next_id = 1;
tq->tq_lowest_id = 1;
INIT_LIST_HEAD(&tq->tq_free_list);
INIT_LIST_HEAD(&tq->tq_pend_list);
INIT_LIST_HEAD(&tq->tq_prio_list);
INIT_LIST_HEAD(&tq->tq_delay_list);
init_waitqueue_head(&tq->tq_work_waitq);
init_waitqueue_head(&tq->tq_wait_waitq);
if (flags & TASKQ_PREPOPULATE) {
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
for (i = 0; i < minalloc; i++)
task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW));
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
}
if ((flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic)
nthreads = 1;
for (i = 0; i < nthreads; i++) {
tqt = taskq_thread_create(tq);
if (tqt == NULL)
rc = 1;
else
count++;
}
/* Wait for all threads to be started before potential destroy */
wait_event(tq->tq_wait_waitq, tq->tq_nthreads == count);
/*
* taskq_thread might have touched nspawn, but we don't want them to
* because they're not dynamically spawned. So we reset it to 0
*/
tq->tq_nspawn = 0;
if (rc) {
taskq_destroy(tq);
tq = NULL;
}
return (tq);
}
EXPORT_SYMBOL(taskq_create);
void
taskq_destroy(taskq_t *tq)
{
struct task_struct *thread;
taskq_thread_t *tqt;
taskq_ent_t *t;
ASSERT(tq);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
tq->tq_flags &= ~TASKQ_ACTIVE;
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
/*
* When TASKQ_ACTIVE is clear new tasks may not be added nor may
* new worker threads be spawned for dynamic taskq.
*/
if (dynamic_taskq != NULL)
taskq_wait_outstanding(dynamic_taskq, 0);
taskq_wait(tq);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
/* wait for spawning threads to insert themselves to the list */
while (tq->tq_nspawn) {
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
schedule_timeout_interruptible(1);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
}
/*
* Signal each thread to exit and block until it does. Each thread
* is responsible for removing itself from the list and freeing its
* taskq_thread_t. This allows for idle threads to opt to remove
* themselves from the taskq. They can be recreated as needed.
*/
while (!list_empty(&tq->tq_thread_list)) {
tqt = list_entry(tq->tq_thread_list.next,
taskq_thread_t, tqt_thread_list);
thread = tqt->tqt_thread;
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
kthread_stop(thread);
spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
}
while (!list_empty(&tq->tq_free_list)) {
t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
list_del_init(&t->tqent_list);
task_free(tq, t);
}
ASSERT0(tq->tq_nthreads);
ASSERT0(tq->tq_nalloc);
ASSERT0(tq->tq_nspawn);
ASSERT(list_empty(&tq->tq_thread_list));
ASSERT(list_empty(&tq->tq_active_list));
ASSERT(list_empty(&tq->tq_free_list));
ASSERT(list_empty(&tq->tq_pend_list));
ASSERT(list_empty(&tq->tq_prio_list));
ASSERT(list_empty(&tq->tq_delay_list));
spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
strfree(tq->tq_name);
kmem_free(tq, sizeof (taskq_t));
}
EXPORT_SYMBOL(taskq_destroy);
int
spl_taskq_init(void)
{
system_taskq = taskq_create("spl_system_taskq", MAX(boot_ncpus, 64),
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
if (system_taskq == NULL)
return (1);
dynamic_taskq = taskq_create("spl_dynamic_taskq", 1,
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
if (dynamic_taskq == NULL) {
taskq_destroy(system_taskq);
return (1);
}
return (0);
}
void
spl_taskq_fini(void)
{
taskq_destroy(dynamic_taskq);
dynamic_taskq = NULL;
taskq_destroy(system_taskq);
system_taskq = NULL;
}
|