/usr/share/slib/modular.scm is in slib 3b1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | ;;;; "modular.scm", modular fixnum arithmetic for Scheme
;;; Copyright (C) 1991, 1993, 1995, 2001, 2002, 2006 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@code{(require 'modular)}
;;@ftindex modular
;;@args n1 n2
;;Returns a list of 3 integers @code{(d x y)} such that d = gcd(@var{n1},
;;@var{n2}) = @var{n1} * x + @var{n2} * y.
(define (extended-euclid x y)
(define q 0)
(do ((r0 x r1) (r1 y (remainder r0 r1))
(u0 1 u1) (u1 0 (- u0 (* q u1)))
(v0 0 v1) (v1 1 (- v0 (* q v1))))
((zero? r1) (list r0 u0 v0))
(set! q (quotient r0 r1))))
(define modular:extended-euclid extended-euclid)
;;@body
;;For odd positive integer @1, returns an object suitable for passing
;;as the first argument to @code{modular:} procedures, directing them
;;to return a symmetric modular number, ie. an @var{n} such that
;;@example
;;(<= (quotient @var{m} -2) @var{n} (quotient @var{m} 2)
;;@end example
(define (symmetric:modulus m)
(cond ((or (not (number? m)) (not (positive? m)) (even? m))
(slib:error 'symmetric:modulus m))
(else (quotient (+ -1 m) -2))))
;;@args modulus
;;Returns the non-negative integer characteristic of the ring formed when
;;@var{modulus} is used with @code{modular:} procedures.
(define (modular:characteristic m)
(cond ((negative? m) (- 1 (+ m m)))
((zero? m) #f)
(else m)))
;;@args modulus n
;;Returns the integer @code{(modulo @var{n} (modular:characteristic
;;@var{modulus}))} in the representation specified by @var{modulus}.
(define modular:normalize
(if (provided? 'bignum)
(lambda (m k)
(cond ((positive? m) (modulo k m))
((zero? m) k)
((<= m k (- m)) k)
(else
(let* ((pm (+ 1 (* -2 m)))
(s (modulo k pm)))
(if (<= s (- m)) s (- s pm))))))
(lambda (m k)
(cond ((positive? m) (modulo k m))
((zero? m) k)
((<= m k (- m)) k)
((<= m (quotient (+ -1 most-positive-fixnum) 2))
(let* ((pm (+ 1 (* -2 m)))
(s (modulo k pm)))
(if (<= s (- m)) s (- s pm))))
((positive? k) (+ (+ (+ k -1) m) m))
(else (- (- (+ k 1) m) m))))))
;;;; NOTE: The rest of these functions assume normalized arguments!
;;@noindent
;;The rest of these functions assume normalized arguments; That is, the
;;arguments are constrained by the following table:
;;
;;@noindent
;;For all of these functions, if the first argument (@var{modulus}) is:
;;@table @code
;;@item positive?
;;Integers mod @var{modulus}. The result is between 0 and
;;@var{modulus}.
;;
;;@item zero?
;;The arguments are treated as integers. An integer is returned.
;;@end table
;;
;;@noindent
;;Otherwise, if @var{modulus} is a value returned by
;;@code{(symmetric:modulus @var{radix})}, then the arguments and
;;result are treated as members of the integers modulo @var{radix},
;;but with @dfn{symmetric} representation; i.e.
;;@example
;;(<= (quotient @var{radix} 2) @var{n} (quotient (- -1 @var{radix}) 2)
;;@end example
;;@noindent
;;If all the arguments are fixnums the computation will use only fixnums.
;;@args modulus k
;;Returns @code{#t} if there exists an integer n such that @var{k} * n
;;@equiv{} 1 mod @var{modulus}, and @code{#f} otherwise.
(define (modular:invertable? m a)
(eqv? 1 (gcd (or (modular:characteristic m) 0) a)))
;;@args modulus n2
;;Returns an integer n such that 1 = (n * @var{n2}) mod @var{modulus}. If
;;@var{n2} has no inverse mod @var{modulus} an error is signaled.
(define (modular:invert m a)
(define (barf) (slib:error 'modular:invert "can't invert" m a))
(cond ((eqv? 1 (abs a)) a) ; unit
(else
(let ((pm (modular:characteristic m)))
(cond
(pm
(let ((d (modular:extended-euclid (modular:normalize pm a) pm)))
(if (= 1 (car d))
(modular:normalize m (cadr d))
(barf))))
(else (barf)))))))
;;@args modulus n2
;;Returns (@minus{}@var{n2}) mod @var{modulus}.
(define (modular:negate m a)
(cond ((zero? a) 0)
((negative? m) (- a))
(else (- m a))))
;;; Being careful about overflow here
;;@args modulus n2 n3
;;Returns (@var{n2} + @var{n3}) mod @var{modulus}.
(define (modular:+ m a b)
(cond ((positive? m) (modulo (+ (- a m) b) m))
((zero? m) (+ a b))
;; m is negative
((negative? a)
(if (negative? b)
(let ((s (+ (- a m) b)))
(if (negative? s)
(- s (+ -1 m))
(+ s m)))
(+ a b)))
((negative? b) (+ a b))
(else (let ((s (+ (+ a m) b)))
(if (positive? s)
(+ s -1 m)
(- s m))))))
;;@args modulus n2 n3
;;Returns (@var{n2} @minus{} @var{n3}) mod @var{modulus}.
(define (modular:- m a b)
(modular:+ m a (modular:negate m b)))
;;; See: L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
;;; with Splitting Facilities." ACM Transactions on Mathematical
;;; Software, 17:98-111 (1991)
;;; modular:r = 2**((nb-2)/2) where nb = number of bits in a word.
(define modular:r
(do ((mpf most-positive-fixnum (quotient mpf 4))
(r 1 (* 2 r)))
((<= mpf 0) (quotient r 2))))
;;@args modulus n2 n3
;;Returns (@var{n2} * @var{n3}) mod @var{modulus}.
;;
;;The Scheme code for @code{modular:*} with negative @var{modulus} is
;;not completed for fixnum-only implementations.
(define modular:*
(if (provided? 'bignum)
(lambda (m a b)
(cond ((zero? m) (* a b))
((positive? m) (modulo (* a b) m))
(else (modular:normalize m (* a b)))))
(lambda (m a b)
(define a0 a)
(define p 0)
(cond
((zero? m) (* a b))
((negative? m)
;; Need algorighm to work with symmetric representation.
(modular:normalize m (* (modular:normalize m a)
(modular:normalize m b))))
(else
(set! a (modulo a m))
(set! b (modulo b m))
(set! a0 a)
(cond ((< a modular:r))
((< b modular:r) (set! a b) (set! b a0) (set! a0 a))
(else
(set! a0 (modulo a modular:r))
(let ((a1 (quotient a modular:r))
(qh (quotient m modular:r))
(rh (modulo m modular:r)))
(cond ((>= a1 modular:r)
(set! a1 (- a1 modular:r))
(set! p (modulo (- (* modular:r (modulo b qh))
(* (quotient b qh) rh)) m))))
(cond ((not (zero? a1))
(let ((q (quotient m a1)))
(set! p (- p (* (quotient b q) (modulo m a1))))
(set! p (modulo (+ (if (positive? p) (- p m) p)
(* a1 (modulo b q))) m)))))
(set! p (modulo (- (* modular:r (modulo p qh))
(* (quotient p qh) rh)) m)))))
(if (zero? a0)
p
(let ((q (quotient m a0)))
(set! p (- p (* (quotient b q) (modulo m a0))))
(modulo (+ (if (positive? p) (- p m) p)
(* a0 (modulo b q))) m))))))))
;;@args modulus n2 n3
;;Returns (@var{n2} ^ @var{n3}) mod @var{modulus}.
(define (modular:expt m base xpn)
(cond ((zero? m) (expt base xpn))
((= base 1) 1)
((if (negative? m) (= -1 base) (= (- m 1) base))
(if (odd? xpn) base 1))
((negative? xpn)
(modular:expt m (modular:invert m base) (- xpn)))
((zero? base) 0)
(else
(do ((x base (modular:* m x x))
(j xpn (quotient j 2))
(acc 1 (if (even? j) acc (modular:* m x acc))))
((<= j 1)
(case j
((0) acc)
((1) (modular:* m x acc))))))))
|