This file is indexed.

/usr/share/racket/pkgs/swindle/extra.rkt is in racket-common 6.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
#lang s-exp swindle/turbo

;;> This module defines some additional useful functionality which requires
;;> Swindle.

(require swindle/clos)

;;; ---------------------------------------------------------------------------
;;; A convenient `defstruct'

;; This makes it possible to create Racket structs using Swindle's `make' and
;; keyword arguments.

(define struct-to-slot-names (make-hash-table))

(hash-table-put! struct-to-slot-names <struct> '())

(add-method initialize (method ([s <struct>] initargs) ???))

(define (struct-type->class* stype maker slots)
  (let* ([this (struct-type->class stype)]
         [superslots (let ([s (class-direct-supers this)])
                       (and (pair? s) (null? (cdr s))
                            (hash-table-get
                             struct-to-slot-names (car s) (thunk #f))))])
    (when superslots
      (when (some (lambda (x) (memq x superslots)) slots)
        (error 'defstruct "cannot redefine slot names"))
      (let ([allslots (append superslots slots)])
        (hash-table-put! struct-to-slot-names this slots)
        (add-method allocate-instance
          (let ([???s (build-list (length allslots) (lambda _ ???))])
            (method ([class = this] initargs) (maker . ???s))))
        (add-method initialize
          (let ([none "-"]
                [keys (build-list
                       (length slots)
                       (lambda (n) (list (symbol-append ': (nth slots n)) n)))]
                [setter! (5th (call-with-values
                                  (thunk (struct-type-info stype))
                                  list))])
            (method ([obj this] initargs)
              (for-each (lambda (k)
                          (let ([v (getarg initargs (1st k) none)])
                            (unless (eq? none v)
                              (setter! obj (2nd k) v))))
                        keys)
              (call-next-method))))))
    this))

;;>> (defstruct <struct-name> ([super]) slot ...)
;;>   This is just a Swindle-style syntax for one of
;;>     (define-struct struct-name (slot ...) (make-inspector))
;;>     (define-struct (struct-name super) (slot ...) (make-inspector))
;;>   with an additional binding of <struct-name> to the Swindle class that
;;>   is computed by `struct-type->class'.  The `(make-inspector)' is needed
;;>   to make this a struct that we can access information on.  Note that in
;;>   method specifiers, the `struct:foo' which is defined by
;;>   `define-struct' can be used just like `<foo>'.  What all this means is
;;>   that you can use Racket structs if you just want Swindle's generic
;;>   functions, but use built in structs that are more efficient since they
;;>   are part of the implementation.  For example:
;;>
;;>     => (defstruct <foo> () x y)
;;>     => <foo>
;;>     #<primitive-class:foo>
;;>     => (defmethod (bar [x <foo>]) (foo-x x))
;;>     => (bar (make-foo 1 2))
;;>     1
;;>     => (defmethod (bar [x struct:foo]) (foo-x x))
;;>     => (bar (make-foo 3 4))
;;>     3
;;>     => (generic-methods bar)
;;>     (#<method:bar:foo>)
;;>     => (defstruct <foo2> (foo) z)
;;>     => (bar (make-foo2 10 11 12))
;;>     10
;;>
;;>   To make things even easier, the super-struct can be written using a
;;>   "<...>" syntax which will be stripped, and appropriate methods are
;;>   added to `allocate-instance' and `initialize' so structs can be built
;;>   using keywords:
;;>
;;>     => (defstruct <foo3> (<foo>) z)
;;>     => (foo-x (make <foo3> :z 3 :y 2 :x 1))
;;>     1
;;>     => (foo3-z (make <foo3> :z 3 :y 2 :x 2))
;;>     3
;;>
;;>   The `<struct-name>' identifier *must* be of this form -- enclosed in
;;>   "<>"s.  This restriction is due to the fact that defining a Racket
;;>   struct `foo', makes `foo' bound as a syntax object to something that
;;>   cannot be used in any other way.
(defsyntax* (defstruct stx)
  (define <>-re #rx"^<(.*)>$")
  (define (<>-id? id)
    (and (identifier? id)
         (regexp-match? <>-re (symbol->string (syntax-e id)))))
  (define (doit name super slots)
    (let* ([str (regexp-replace <>-re (symbol->string (syntax-e name)) "\\1")]
           [name-sans-<> (datum->syntax-object name (string->symbol str) name)]
           [struct:name (datum->syntax-object
                         name (string->symbol (concat "struct:" str)) name)]
           [make-struct (datum->syntax-object
                         name (string->symbol (concat "make-" str)) name)]
           [super (and super (datum->syntax-object
                              super (string->symbol
                                     (regexp-replace
                                      <>-re (symbol->string (syntax-e super))
                                      "\\1"))
                              super))])
      (quasisyntax/loc stx
        (begin
          (define-struct #,(if super #`(#,name-sans-<> #,super) name-sans-<>)
            #,slots (make-inspector))
          (define #,name
            (struct-type->class* #,struct:name #,make-struct '#,slots))))))
  (syntax-case stx ()
    [(_ name (s) slot ...) (<>-id? #'name) (doit #'name #'s #'(slot ...))]
    [(_ name ( ) slot ...) (<>-id? #'name) (doit #'name #f  #'(slot ...))]
    [(_ name more ...) (not (<>-id? #'name))
     (raise-syntax-error #f "requires a name that looks like \"<...>\""
                         stx #'name)]))

;;; ---------------------------------------------------------------------------
;;; Convenient macros

(defsyntax process-with-slots
  (syntax-rules ()
    [(_ obj () (bind ...) body ...)
     (letsubst (bind ...) body ...)]
    [(_ obj ((id slot) slots ...) (bind ...) body ...)
     (process-with-slots
      obj (slots ...) (bind ... (id (slot-ref obj slot))) body ...)]
    [(_ obj (id slots ...) (bind ...) body ...)
     (process-with-slots
      obj (slots ...) (bind ... (id (slot-ref obj 'id))) body ...)]))

;;>> (with-slots obj (slot ...) body ...)
;;>   Evaluate the body in an environment where each `slot' is defined as a
;;>   symbol-macro that accesses the corresponding slot value of `obj'.
;;>   Each `slot' is either an identifier `id' which makes it stand for
;;>   `(slot-ref obj 'id)', or `(id slot)' which makes `id' stand for
;;>   `(slot-ref obj slot)'.
(defsubst* (with-slots obj (slot ...) body0 body ...)
  (process-with-slots obj (slot ...) () body0 body ...))

(defsyntax process-with-accessors
  (syntax-rules ()
    [(_ obj () (bind ...) body ...)
     (letsubst (bind ...) body ...)]
    [(_ obj ((id acc) accs ...) (bind ...) body ...)
     (process-with-accessors
      obj (accs ...) (bind ... (id (acc obj))) body ...)]
    [(_ obj (id accs ...) (bind ...) body ...)
     (process-with-accessors
      obj (accs ...) (bind ... (id (id obj))) body ...)]))

;;>> (with-accessors obj (accessor ...) body ...)
;;>   Evaluate the body in an environment where each `accessor' is defined
;;>   as a symbol-macro that accesses `obj'.  Each `accessor' is either an
;;>   identifier `id' which makes it stand for `(id obj)', or
;;>   `(id accessor)' which makes `id' stand for `(accessor obj);.
(defsubst* (with-accessors obj (acc ...) body0 body ...)
  (process-with-accessors obj (acc ...) () body0 body ...))

;;; ---------------------------------------------------------------------------
;;; An "as" conversion operator.

;;>> (as class obj)
;;>   Converts `obj' to an instance of `class'.  This is a convenient
;;>   generic wrapper around Scheme conversion functions (functions that
;;>   look like `foo->bar'), but can be used for other classes too.
(defgeneric* as (class object))

(defmethod (as [c <class>] [x <top>])
  (if (instance-of? x c)
    x
    (error 'as "can't convert ~e -> ~e; given: ~e." (class-of x) c x)))

;;>> (add-as-method from-class to-class op ...)
;;>   Adds a method to `as' that will use the function `op' to convert
;;>   instances of `from-class' to instances of `to-class'.  More operators
;;>   can be used which will make this use their composition.  This is used
;;>   to initialize `as' with the standard Scheme conversion functions.
(define* (add-as-method from to . op)
  (let ([op (apply compose op)])
    (add-method as (method ([c = to] [x from]) (op x)))))

;; Add Scheme primitives.
(for-each
 (lambda (args)
   (apply (lambda (from to . ops)
            (add-as-method from to . ops)
            (let ([from* (cond [(eq? from <string>) <immutable-string>]
                               [(eq? from <bytes>) <immutable-bytes>]
                               [else #f])])
              (when from* (add-as-method from* to . ops))))
          args))
 `((,<immutable-string> ,<string> ,string-copy)
   (,<string> ,<immutable-string> ,string->immutable-string)
   (,<string> ,<symbol> ,string->symbol)
   (,<symbol> ,<string> ,symbol->string)
   (,<string> ,<keyword> ,string->keyword)
   (,<keyword> ,<string> ,keyword->string)
   (,<exact> ,<inexact> ,exact->inexact)
   (,<inexact> ,<exact> ,inexact->exact)
   (,<number> ,<string> ,number->string)
   (,<string> ,<number> ,string->number)
   (,<char> ,<string> ,string)
   (,<char> ,<integer> ,char->integer)
   (,<integer> ,<char> ,integer->char)
   (,<string> ,<list> ,string->list)
   (,<list> ,<string> ,list->string)
   (,<vector> ,<list> ,vector->list)
   (,<list> ,<vector> ,list->vector)
   (,<number> ,<integer> ,inexact->exact ,round)
   (,<rational> ,<integer> ,inexact->exact ,round)
   (,<struct> ,<vector> ,struct->vector)
   (,<string> ,<regexp> ,regexp)
   (,<regexp> ,<string> ,object-name)
   (,<immutable-bytes> ,<bytes> ,bytes-copy)
   (,<bytes> ,<immutable-bytes> ,bytes->immutable-bytes)
   (,<bytes> ,<list> ,bytes->list)
   (,<list> ,<bytes> ,list->bytes)
   (,<bytes> ,<byte-regexp> ,byte-regexp)
   (,<byte-regexp> ,<bytes> ,object-name)
   (,<string> ,<bytes> ,string->bytes/utf-8)
   (,<bytes> ,<string> ,bytes->string/utf-8)
   (,<string> ,<path> ,string->path)
   (,<path> ,<string> ,path->string)
   (,<bytes> ,<path> ,bytes->path)
   (,<path> ,<bytes> ,path->bytes)
   ;; Some weird combinations
   (,<symbol> ,<number> ,string->number ,symbol->string)
   (,<number> ,<symbol> ,string->symbol ,number->string)
   (,<struct> ,<list> ,vector->list ,struct->vector)
   (,<bytes> ,<number> ,string->number ,bytes->string/utf-8)
   (,<number> ,<bytes> ,string->bytes/utf-8 ,number->string)
   ))

;;; ---------------------------------------------------------------------------
;;; Recursive equality.

;;>> (equals? x y)
;;>   A generic that compares `x' and `y'.  It has an around method that
;;>   will stop and return `#t' if the two arguments are `equal?'.  It is
;;>   intended for user-defined comparison between any instances.
(defgeneric* equals? (x y))

(defaroundmethod (equals? [x <top>] [y <top>])
  ;; check this first in all cases
  (or (equal? x y) (call-next-method)))

(defmethod (equals? [x <top>] [y <top>])
  ;; the default is false - the around method returns #t if they're equal?
  #f)

;;>> (add-equals?-method class pred?)
;;>   Adds a method to `equals?' that will use the given `pred?' predicate
;;>   to compare instances of `class'.
(define* (add-equals?-method class pred?)
  (add-method equals? (method ([x class] [y class]) (pred? x y))))

;;>> (class+slots-equals? x y)
;;>   This is a predicate function (not a generic function) that will
;;>   succeed if `x' and `y' are instances of the same class, and all of
;;>   their corresponding slots are `equals?'.  This is useful as a quick
;;>   default for comparing simple classes (but be careful and avoid
;;>   circularity problems).
(define* (class+slots-equals? x y)
  (let ([xc (class-of x)] [yc (class-of y)])
    (and (eq? xc yc)
         (every (lambda (s)
                  (equals? (slot-ref x (car s)) (slot-ref y (car s))))
                (class-slots xc)))))

;;>> (make-equals?-compare-class+slots class)
;;>   Make `class' use `class+slots-equals?' for comparison with `equals?'.
(define* (make-equals?-compare-class+slots class)
  (add-equals?-method class class+slots-equals?))

;;; ---------------------------------------------------------------------------
;;; Generic addition for multiple types.

;;>> (add x ...)
;;>   A generic addition operation, initialized for some Scheme types
;;>   (numbers (+), lists (append), strings (string-append), symbols
;;>   (symbol-append), procedures (compose), and vectors).  It dispatches
;;>   only on the first argument.
(defgeneric* add (x . more))

;;>> (add-add-method class op)
;;>   Add a method to `add' that will use `op' to add objects of class
;;>   `class'.
(define* (add-add-method c op)
  ;; dispatch on first argument
  (add-method add (method ([x c] . more) (apply op x more))))

(add-add-method <number>    +)
(add-add-method <list>      append)
(add-add-method <string>    string-append)
(add-add-method <symbol>    symbol-append)
(add-add-method <procedure> compose)

(defmethod (add [v <vector>] . more)
  ;; long but better than vectors->lists->append->vectors
  (let* ([len (apply + (map vector-length (cons v more)))]
         [vec (make-vector len)])
    (let loop ([i 0] [v v] [vs more])
      (dotimes [j (vector-length v)]
        (set! (vector-ref vec (+ i j)) (vector-ref v j)))
      (unless (null? vs) (loop (+ i (vector-length v)) (car vs) (cdr vs))))
    vec))

;;; ---------------------------------------------------------------------------
;;; Generic len for multiple types.

;;>> (len x)
;;>   A generic length operation, initialized for some Scheme types (lists
;;>   (length), strings (string-length), vectors (vector-length)).
(defgeneric* len (x))

;;>> (add-len-method class op)
;;>   Add a method to `len' that will use `op' to measure objects length for
;;>   instances of `class'.
(define* (add-len-method c op)
  (add-method len (method ([x c]) (op x))))

(add-len-method <list>   length)
(add-len-method <string> string-length)
(add-len-method <vector> vector-length)

;;; ---------------------------------------------------------------------------
;;; Generic ref for multiple types.

;;>> (ref x indexes...)
;;>   A generic reference operation, initialized for some Scheme types and
;;>   instances.  Methods are predefined for lists, vectors, strings,
;;>   objects, hash-tables, boxes, promises, parameters, and namespaces.
(defgeneric* ref (x . indexes))

;;>> (add-ref-method class op)
;;>   Add a method to `ref' that will use `op' to reference objects of class
;;>   `class'.
(define* (add-ref-method c op)
  (add-method ref (method ([x c] . indexes) (op x . indexes))))

(add-ref-method <list>       list-ref)
(add-ref-method <vector>     vector-ref)
(add-ref-method <string>     string-ref)
(add-ref-method <object>     slot-ref)
(add-ref-method <hash-table> hash-table-get)
(add-ref-method <box>        unbox)
(add-ref-method <promise>    force)
(defmethod (ref [p <parameter>] . _) (p))
(defmethod (ref [n <namespace>] . args)
  (parameterize ([current-namespace n])
    (apply namespace-variable-value args)))

;;; ---------------------------------------------------------------------------
;;; Generic set-ref! for multiple types.

;;>> (put! x v indexes)
;;>   A generic setter operation, initialized for some Scheme types and
;;>   instances.  The new value comes first so it is possible to add methods
;;>   to specialize on it.  Methods are predefined for lists, vectors,
;;>   strings, objects, hash-tables, boxes, parameters, and namespaces.
(defgeneric* put! (x v . indexes))

;;>> (add-put!-method class op)
;;>   Add a method to `put!' that will use `op' to change objects of class
;;>   `class'.
(define* (add-put!-method c op)
  (add-method put! (method ([x c] v . indexes) (op x v . indexes))))

;;>> (set-ref! x indexes... v)
;;>   This syntax will just translate to `(put! x v indexes...)'.  It makes
;;>   it possible to make `(set! (ref ...) ...)' work with `put!'.
(defsyntax* (set-ref! stx)
  (syntax-case stx ()
    [(_ x i ...)
     (let* ([ris  (reverse (syntax->list #'(i ...)))]
            [idxs (reverse (cdr ris))]
            [val  (car ris)])
       (quasisyntax/loc stx
         (put! x #,val #,@(datum->syntax-object #'(i ...) idxs #'(i ...)))))]))

(define (put!-arg typename args)
  (if (or (null? args) (pair? (cdr args)))
   (if (null? args)
     (error 'put! "got no index for a ~a argument" typename)
     (error 'put! "got more than one index for a ~a argument ~e"
            typename args))
   (car args)))

#|
(defmethod (put! [l <list>] x . i_)
  (list-set! l (put!-arg '<list> i_) x))
|#
(defmethod (put! [v <vector>] x . i_)
  (vector-set! v (put!-arg '<vector> i_) x))
(defmethod (put! [s <string>] [c <char>] . i_)
  (string-set! s (put!-arg '<string> i_) c))
(defmethod (put! [o <object>] x . s_)
  (slot-set! o (put!-arg '<object> s_) x))
(defmethod (put! [h <hash-table>] x . k_)
  (if (null? k_)
    (error 'put! "got no index for a <hash-table> argument")
    (hash-table-put! h (car k_) x)))
(add-put!-method <box> set-unbox!)
(defmethod (put! [p <parameter>] x . _)
  (if (null? _)
    (p x)
    (error 'put! "got extraneous indexes for a <parameter> argument")))
(defmethod (put! [n <namespace>] x . v_)
  (if (null? v_)
    (error 'put! "got no index for a <namespace> argument")
    (parameterize ([current-namespace n])
      (apply namespace-set-variable-value! (car v_) x
             (if (null? (cdr v_)) '() (list (cadr v_)))))))

;;; ---------------------------------------------------------------------------
;;>>... Generic-based printing mechanism

;;>> *print-level*
;;>> *print-length*
;;>   These parameters control how many levels deep a nested data object
;;>   will print, and how many elements are printed at each level.  `#f'
;;>   means no limit.  The effect is similar to the corresponding globals in
;;>   Lisp.  Only affects printing of container objects (like lists, vectors
;;>   and structures).
(define* *print-level*  (make-parameter 6))
(define* *print-length* (make-parameter 20))

;; grab the builtin write/display handlers
(define-values (mz:write mz:display)
  (let ([p (open-output-bytes)])
    (values (port-write-handler p) (port-display-handler p))))

;;>> (print-object obj esc? port)
;;>   Prints `obj' on `port' using the above parameters -- the effect of
;;>   `esc?' being true is to use a `write'-like printout rather than a
;;>   `display'-like printout when it is false.  Primitive Scheme values are
;;>   printed normally, Swindle objects are printed using the un-`read'-able
;;>   "#<...>" sequence unless a method that handles them is defined.  For
;;>   this printout, objects with a `name' slot are printed using that name
;;>   (and their class's name).
;;>
;;>   Warning: this is the method used for user-interaction output, errors
;;>   etc.  Make sure you only define reliable methods for it.
(defgeneric* print-object (object esc? port))

(defmethod (print-object o esc? port)
  (mz:display "#" port)
  (mz:display (class-name (class-of o)) port))

(defmethod (print-object [o <builtin>] esc? port)
  ((if esc? mz:write mz:display) o port))

(define printer:too-deep "#?#")
(define printer:too-long "...")

;; use a single implementation for both pairs and mpairs, punctuation
;; shorthands for pairs only
(defmethod (print-object [o <pair>] esc? port)
  (let ([punct (and (pair? (cdr o)) (null? (cddr o))
                    (assq (car o)
                          '([quote "'"] [quasiquote "`"] [unquote ","]
                            [unquote-splicing ",@"]
                            [syntax "#'"] [quasisyntax "#`"] [unsyntax "#,"]
                            [unsyntax-splicing "#,@"])))])
    (if punct
      (begin (mz:display (cadr punct) port) (print-object (cadr o) esc? port))
      (print-pair o esc? port "(" ")" pair? car cdr))))
(defmethod (print-object [o <mutable-pair>] esc? port)
  (print-pair o esc? port "{" "}" mpair? mcar mcdr))
(define (print-pair p esc? port open close pair? car cdr)
  (define level (*print-level*))
  (if (eq? level 0)
    (mz:display printer:too-deep port)
    (begin
      (mz:display open port)
      (if (eq? (*print-length*) 0)
        (mz:display printer:too-long port)
        (parameterize ([*print-level* (and level (sub1 level))])
          (print-object (car p) esc? port)
          (do ([p (cdr p) (if (pair? p) (cdr p) '())]
               [n (sub1 (or (*print-length*) 0)) (sub1 n)])
              [(or (null? p)
                   (and (zero? n)
                        (begin (mz:display " " port)
                               (mz:display printer:too-long port)
                               #t)))]
            (if (pair? p)
              (begin (mz:display " " port) (print-object (car p) esc? port))
              (begin (mz:display " . " port) (print-object p esc? port))))))
      (mz:display close port))))

(defmethod (print-object [o <vector>] esc? port)
  (define level (*print-level*))
  (cond [(eq? level 0) (mz:display printer:too-deep port)]
        [(zero? (vector-length o)) (mz:display "#()" port)]
        [else (mz:display "#(" port)
              (if (eq? (*print-length*) 0)
                (mz:display printer:too-long port)
                (parameterize ([*print-level* (and level (sub1 level))])
                  (print-object (vector-ref o 0) esc? port)
                  (let ([len (if (*print-length*)
                               (min (vector-length o) (*print-length*))
                               (vector-length o))])
                    (do ([i 1 (add1 i)]) [(>= i len)]
                      (mz:display " " port)
                      (print-object (vector-ref o i) esc? port))
                    (when (< len (vector-length o))
                      (mz:display " " port)
                      (mz:display printer:too-long port)))))
              (mz:display ")" port)]))

;;>> (name-sans-<> name)
;;>   Given a string or symbol for name, return a string where the outermost
;;>   set of angle brackets have been stripped if they are present.  This is
;;>   handy if you are writing your own print-object methods.
(define <>-re #rx"^<(.*)>$")
(define* (name-sans-<> name)
  (cond [(string? name) (regexp-replace <>-re name "\\1")]
        [(symbol? name) (regexp-replace <>-re (symbol->string name) "\\1")]
        [(eq? ??? name) "???"]
        [else name]))

;; Take care of all <object>s with a `name' slot
(defmethod (print-object (o <object>) esc? port)
  (let* ([c  (class-of o)]
         [cc (class-of c)]
         [(name x) (name-sans-<> (slot-ref x 'name))])
    (if (and (assq 'name (class-slots c)) (assq 'name (class-slots cc)))
      (begin (mz:display "#<" port)
             (mz:display (name c) port)
             (mz:display ":" port)
             (mz:display (name o) port)
             (mz:display ">" port))
      (call-next-method))))

;;>> (print-object-with-slots obj esc? port)
;;>   This is a printer function that can be used for classes where the
;;>   desired output shows slot values.  Note that it is a simple function,
;;>   which should be embedded in a method that is to be added to
;;>   `print-object'.
(define* (print-object-with-slots o esc? port)
  (define level (*print-level*))
  (if (eq? level 0)
    (mz:display printer:too-deep port)
    (let ([class (class-of o)])
      (mz:display "#<" port)
      (mz:display (name-sans-<> (class-name class)) port)
      (mz:display ":" port)
      (parameterize ([*print-level* (and level (sub1 level))])
        (do ([s (class-slots class) (cdr s)]
             [n (or (*print-length*) -1) (sub1 n)])
            [(or (null? s)
                 (and (zero? n)
                      (begin (mz:display " " port)
                             (mz:display printer:too-long port))))]
          (let ([val (slot-ref o (caar s))])
            (if (eq? ??? val)
              (set! n (add1 n))
              (begin (mz:display " " port)
                     (mz:display (caar s) port)
                     (mz:display "=" port)
                     (print-object val esc? port))))))
      (mz:display ">" port))))

;; Add a hook to make <class> so it will initialize a printer if given
(defmethod :after (initialize [c <class>] initargs)
  (let ([printer (or (getarg initargs :printer)
                     (and (getarg initargs :auto) #t))])
    (when printer
      (when (eq? #t printer) (set! printer print-object-with-slots))
      (add-method print-object
                  (method ([x c] esc? port) (printer x esc? port))))))

;;>> (display-object obj [port])
;;>> (write-object obj [port])
;;>   Used to display and write an object using `print-object'.  Used as the
;;>   corresponding output handler functions.
(define* (display-object obj &optional [port (current-output-port)])
  (print-object obj #f port))
(define* (write-object obj &optional [port (current-output-port)])
  (print-object obj #t port))
;;>> (object->string obj [esc? = #t])
;;>   Convert the given `obj' to a string using its printed form.
(define* (object->string obj &optional [esc? #t])
  (with-output-to-string
    (thunk (print-object obj esc? (current-output-port)))))

;; Hack these to echo
(*echo-display-handler* display-object)
(*echo-write-handler* write-object)

;;>> (install-swindle-printer)
;;>   In Racket, output is configurable on a per-port basis.  Use this
;;>   function to install Swindle's `display-object' and `write-object' on
;;>   the current output and error ports whenever they are changed
;;>   (`swindle' does that on startup).  This makes it possible to see
;;>   Swindle values in errors, when using `printf' etc.
(define* (install-swindle-printer)
  (global-port-print-handler write-object)
  (port-display-handler (current-output-port) display-object)
  (port-display-handler (current-error-port)  display-object)
  (port-write-handler   (current-output-port) write-object)
  (port-write-handler   (current-error-port)  write-object))

;;; ---------------------------------------------------------------------------
;;>>... Simple matching

;;>> match-failure
;;>   The result for a matcher function application that failed.  You can
;;>   return this value from a matcher function in a <matcher> so the next
;;>   matching one will get invoked.
(define* match-failure "failure")

;;>> (matching? matcher value)
;;>   The `matcher' argument is a value of any type, which is matched
;;>   against the given `value'.  For most values matching means being equal
;;>   (using `equals?')  to, but there are some exceptions: class objects
;;>   are tested with `instance-of?', functions are used as predicates,
;;>   literals are used with equals?, pairs are compared recursively and
;;>   regexps are used with regexp-match.
(define* (matching? matcher value)
  (cond [(class? matcher)    (instance-of? value matcher)]
        [(function? matcher) (matcher value)]
        [(pair? matcher)     (and (pair? value)
                                  (matching? (car matcher) (car value))
                                  (matching? (cdr matcher) (cdr value)))]
        ;; handle regexps - the code below relies on returning this result
        [(regexp? matcher)   (and (string? value)
                                  (regexp-match matcher value))]
        [else (equals? matcher value)]))

;;>> (let/match pattern value body ...)
;;>   Match the `value' against the given `pattern', and evaluate the body
;;>   on a success.  It is an error for the match to fail.  Variables that
;;>   get bound in the matching process can be used in the body.
;;>
;;>   The pattern specification has a complex syntax as follows:
;;>   - simple values (not symbols) are compared with `matching?' above;
;;>   - :x                 keywords are also used as literal values;
;;>   - *                  is a wildcard that always succeeds;
;;>   - ???                matches the `???' value;
;;>   - (lambda ...)       use the resulting closure value (for predicates);
;;>   - (quote ...)        use the contents as a simple value;
;;>   - (quasiquote ...)   same;
;;>   - (V := P)           assign the variable V to the value matched by P;
;;>   - V                  for a variable name V that was not part of the
;;>                        pattern so far, this matches anything and binds V
;;>                        to the value -- the same as (V := *);
;;>   - (! E)              evaluate E, use the result as a literal value;
;;>   - (!! E)             evaluate E, continue matching only if it is true;
;;>   - (V when E)         same as (and V (!! E));
;;>   - (and P ...)        combine the matchers with and, can bind any
;;>                        variables in all parts;
;;>   - (or P ...)         combine the matchers with or, bound variables are
;;>                        only from the successful form;
;;>   - (if A B C)         same as (or (and A B) C);
;;>   - (F => P)           continue matching P with (F x) (where is x is the
;;>                        current matched object);
;;>   - (V :: P ...)       same as (and (! V) P...), useful for class forms
;;>                        like (<class> :: (foo => f) ...);
;;>   - (make <class> ...) if the value is an instance of <class>, then
;;>                        continue by the `...' part which is a list of
;;>                        slot names and patterns -- a slot name is either
;;>                        :foo or 'foo, and the pattern will be matched
;;>                        against the contents of that slot in the original
;;>                        <class> instance;
;;>   - ???                matches the unspecified value (`???' in tiny-clos)
;;>   - (regexp R)         convert R to a regexp and use that to match
;;>                        strings;
;;>   - (regexp R P ...)   like the above, but continue matching the result
;;>                        with `(P ...)' so it can bind variables to the
;;>                        result (something like `(regexp "a(x?)b" x y)'
;;>                        will bind `x' to the `regexp-match' result, and
;;>                        `y' to a match of the sub-regexp part);
;;>   - (...)              other lists - match the elements of a list
;;>                        recursively (can use a dot suffix for a "rest"
;;>                        arguments).
;;>
;;> Note that variable names match anything and bind the name to the result,
;;> except when the name was already seen -- where the previously bound
;;> value is used, allowing patterns where some parts should match the same
;;> value.  (A name was `seen' if it was previously used in the pattern
;;> except on different branches of an `or' pattern.)
(defsyntax (make-matcher-form stx)
  (define (re r)
    ;; Note: this inserts the _literal_ regexp in the code if it is a string.
    (cond [(regexp? (syntax-e r)) r]
          [(string? (syntax-e r)) (regexp (syntax-e r))]
          [else #`(regexp #,r)]))
  (define (loop x pattern vs body)
    ;; body always a delayed function that expects bindings
    (syntax-case pattern (* ??? := ! !! when and or if => ::
                            make regexp quote quasiquote lambda)
      [* ; wildcard
       (body vs)]
      [??? ; matches ???
       #`(if (matching? ??? #,x) #,(body vs) match-failure)]
      [(v := p) ; assign the variable V to the value matched by P
       #`(let ([v #,x]) #,(loop #'v #'p (cons #'v vs) body))]
      [v ; (V := *) if V is a symbol that was not already used
       (and (identifier? #'v) (not (syntax-keyword? #'v))
            (not (ormap (lambda (u) (bound-identifier=? #'v u)) vs)))
       (loop x #'(v := *) vs body)]
      [(! e) ; evaluate E and use it as a simple value
       #`(if (matching? e x) #,(body vs) match-failure)]
      [(!! e) ; evaluate E and succeed only if it is true
       #`(if e #,(body vs) match-failure)]
      [(p when e) ; => (and P (!! E))
       #`(_ x (and p (!! e)) #,(body vs))]
      ;; and/or
      [(and) (body vs)]
      [(or)  #'match-failure]
      [(and p) (loop x #'p vs body)]
      [(or  p) (loop x #'p vs body)]
      [(and p1 p2 ...) (loop x #'p1 vs
                             (lambda (vs) (loop x #'(and p2 ...) vs body)))]
      [(or  p1 p2 ...) #`(let ([tmp #,(loop x #'p1 vs body)])
                           (if (eq? tmp match-failure)
                             #,(loop x #'(or p2 ...) vs body)
                             tmp))]
      [(if a b c) ; => (or (and A B) C)
       (loop x #'(or (and a b) c) vs body)]
      [(f => p) ; continue matching P with (F x)
       #`(let ([v (f #,x)]) #,(loop #'v #'p vs body))]
      [(v :: . p) ; => (and (! V) P ...), eg (<foo> :: (foo => f) ...)
       (loop x #'(and (! v) . p) vs body)]
      [(make class initarg+vals ...)
       ;; (make <class> :slotname p ...) - match on slots of the given class
       #`(let ([obj #,x])
           (if (instance-of? obj class)
             #,(let loop1 ([av #'(initarg+vals ...)] [vs vs])
                 (syntax-case av (quote)
                   [(key p more ...) (syntax-keyword? #'key)
                    (let* ([s (symbol->string (syntax-e #'key))]
                           [s (datum->syntax-object
                               #'key
                               (string->symbol
                                (substring s 1 (string-length s)))
                               #'key)])
                      (loop #`(slot-ref obj '#,s) #'p vs
                            (lambda (vs) (loop1 #'(more ...) vs))))]
                   [('key p more ...)
                    (loop #'(slot-ref obj 'key) #'p vs
                          (lambda (vs) (loop1 #'(more ...) vs)))]
                   [() (body vs)]))
             match-failure))]
      [(regexp r) ; use R as a regexp (matching? handles it)
       #`(if (matching? #,(re #'r) #,x) #,(body vs) match-failure)]
      [(regexp r . p) ; => like the above, but match P... on result
       #`(let ([m (matching? #,(re #'r) #,x)])
           (if m #,(loop #'m #'p vs body) match-failure))]
      ;; literal lists
      ['v #`(if (matching? 'v #,x) #,(body vs) match-failure)]
      [`v #`(if (matching? `v #,x) #,(body vs) match-failure)]
      [(lambda as b ...)
       #`(if (matching? (lambda as b ...) #,x) #,(body vs) match-failure)]
      [(a . b) ; simple lists
       #`(if (pair? #,x)
           (let ([hd (car #,x)] [tl (cdr #,x)])
             #,(loop #'hd #'a vs (lambda (vs) (loop #'tl #'b vs body))))
           match-failure)]
      ;; other literals (null, keywords, non-symbols)
      [() #`(if (null? #,x) #,(body vs) match-failure)]
      [v  #`(if (matching? v #,x) #,(body vs) match-failure)]))
  (syntax-case stx ()
    [(_ x pattern body) (loop #'x #'pattern '() (lambda (vs) #'body))]))
(defsubst* (let/match pattern value body ...)
  (let* ([v value] [r (make-matcher-form v pattern (begin body ...))])
    (if (eq? r match-failure)
      (error 'let/match "value did not match pattern: ~e" v)
      r)))

;;>> (matcher pattern body ...)
;;>   This creates a matcher function, using the given `pattern' which will
;;>   be matched with the list of given arguments on usage.  If the given
;;>   arguments fail to match on an application, an error will be raised.
(defsubst* (matcher pattern body ...)
  (lambda args
    (let ([r (make-matcher-form args pattern (begin body ...))])
      (if (eq? r match-failure)
        (error 'matcher "application values did not match pattern: ~e" v)
        r))))

;; Matching similar to `cond'
;;>> (match x (pattern expr ...) ...)
;;>   This is similar to a `cond' statement but each clause starts with a
;;>   pattern, possibly binding variables for its body.  It also handles
;;>   `else' as a last clause.
(defsyntax match-internal
  (syntax-rules (else)
    [(_ x) (void)]
    [(_ x (else body0 body ...)) (begin body0 body ...)]
    [(_ x (pattern body0 body ...) clause ...)
     (let ([m (make-matcher-form x pattern (begin body0 body ...))])
       (if (eq? m match-failure) (match x clause ...) m))]))
(defsubst* (match x clause ...)
  (let ([v x]) (match-internal v clause ...)))

;;>> <matcher>
;;>   A class similar to a generic function, that holds matcher functions
;;>   such as the ones created by the `matcher' macro.  It has three slots:
;;>   `name', `default' (either a default value or a function that is
;;>   applied to the arguments to produce the default value), and `matchers'
;;>   (a list of matcher functions).
(defentityclass* <matcher> (<generic>)
  (name     :initarg :name     :initvalue '-anonymous-)
  (default  :initarg :default  :initvalue #f)
  (matchers :initarg :matchers :initvalue '()))

;; Set the entity's proc
(defmethod (initialize [matcher <matcher>] initargs)
  (call-next-method)
  (set-instance-proc!
   matcher
   (lambda args
     (let loop ([matchers (slot-ref matcher 'matchers)])
       (if (null? matchers)
         (let ([default (slot-ref matcher 'default)])
           (if (procedure? default)
             (default . args)
             (or default
                 (error (slot-ref matcher 'name) "no match found."))))
         (let ([r (apply (car matchers) args)])
           (if (eq? r match-failure)
             (loop (cdr matchers))
             r)))))))

;;; Add a matcher - normally at the end, with add-matcher0 at the beginning
(define (add-matcher matcher m)
  (slot-set! matcher 'matchers
             (append (slot-ref matcher 'matchers) (list m))))
(define (add-matcher0 matcher m)
  (slot-set! matcher 'matchers
             (cons m (slot-ref matcher 'matchers))))

(defsyntax (defmatcher-internal stx)
  (syntax-case stx ()
    [(_ adder name args body ...)
     (with-syntax ([matcher-make (syntax/loc stx (matcher args body ...))])
       (if (or
            ;; not enabled
            (not (syntax-e
                  ((syntax-local-value #'-defmethod-create-generics-))))
            ;; defined symbol or second module binding
            (identifier-binding #'name)
            ;; local definition -- don't know which is first => no define
            (eq? 'lexical (syntax-local-context)))
         (syntax/loc stx (adder name matcher-make))
         ;; top-level or first module binding
         (syntax/loc stx
           (define name ; trick: try using exising generic
             (let ([m (or (no-errors name) (make <matcher> :name 'name))])
               (adder m matcher-make)
               m)))))]))

;;>> (defmatcher (name pattern) body ...)
;;>> (defmatcher0 (name pattern) body ...)
;;>   These macros define a matcher (if not defined yet), create a matcher
;;>   function and add it to the matcher (either at the end (defmatcher) or
;;>   at the beginning (defmatcher0)).
(defsyntax* (defmatcher stx)
  (syntax-case stx ()
    [(_ (name . args) body0 body ...) (identifier? #'name)
     #'(defmatcher-internal add-matcher name args body0 body ...)]
    [(_ name args body0 body ...) (identifier? #'name)
     #'(defmatcher-internal add-matcher name args body0 body ...)]))
(defsyntax* (defmatcher0 stx)
  (syntax-case stx ()
    [(_ (name . args) body0 body ...) (identifier? #'name)
     #'(defmatcher-internal add-matcher0 name args body0 body ...)]
    [(_ name args body0 body ...) (identifier? #'name)
     #'(defmatcher-internal add-matcher0 name args body0 body ...)]))

;;; ---------------------------------------------------------------------------
;;>>... An amb macro
;;> This is added just because it is too much fun to miss.  To learn about
;;> `amb', look for it in the Help Desk, in the "Teach Yourself Scheme in
;;> Fixnum Days" on-line manual.

(define amb-fail (make-parameter #f))
(define (initialize-amb-fail)
  (amb-fail (thunk (error 'amb "tree exhausted"))))
(initialize-amb-fail)

;;>> (amb expr ...)
;;>   Execute forms in a nondeterministic way: each form is tried in
;;>   sequence, and if one fails then evaluation continues with the next.
;;>   `(amb)' fails immediately.
(defsubst* (amb expr ...)
  (let ([prev-amb-fail (amb-fail)])
    (let/ec sk
      (let/cc fk
        (amb-fail (thunk (amb-fail prev-amb-fail) (fk 'fail)))
        (sk expr)) ...
      (prev-amb-fail))))

;;>> (amb-assert cond)
;;>   Asserts that `cond' is true, fails otherwise.
(define* (amb-assert bool) (unless bool ((amb-fail))))

;;>> (amb-collect expr)
;;>   Evaluate expr, using amb-fail repeatedly until all options are
;;>   exhausted and returns the list of all results.
(defsubst* (amb-collect e)
  (let ([prev-amb-fail (amb-fail)]
        [results '()])
    (when (let/cc k
            (amb-fail (thunk (k #f)))
            (let ([v e]) (push! v results) (k #t)))
      ((amb-fail)))
    (amb-fail prev-amb-fail)
    (reverse results)))

;;; ---------------------------------------------------------------------------
;;>>... Very basic UI - works also in console mode
;;> The following defines some hacked UI functions that works using GRacket
;;> GUI if it is available, or the standard error and input ports otherwise.
;;> The check is done by looking for a GUI global binding.

;;>> *dialog-title*
;;>   This parameter defines the title used for the hacked UI interface.
(define* *dialog-title* (make-parameter "Swindle Message"))

;;>> (message fmt-string arg ...)
;;>   Like `printf' with a prefix title, or using a message dialog box.
(define* (message str . args)
  (let ([msg (format str . args)])
    (if (namespace-defined? 'message-box)
      ((namespace-variable-value 'message-box) (*dialog-title*) msg)
      (echo :>e :s- "<<<" (*dialog-title*) ": " msg ">>>")))
  (void))

(define (first-non-ws-char str idx)
  (and (< idx (string-length str))
       (let ([c (string-ref str idx)])
         (if (memq c '(#\space #\tab #\newline))
           (first-non-ws-char str (add1 idx))
           c))))

(define (ui-question str args prompt positive-result msg-style
                     positive-char negative-char)
  (let ([msg (apply format str args)])
    (if (namespace-defined? 'message-box)
      (eq? ((namespace-variable-value 'message-box)
            (*dialog-title*) msg #f msg-style)
           positive-result)
      (begin (echo :>e :n- :s- (*dialog-title*) ">>> " msg " " prompt " ")
             (let loop ()
               (let ([inp (first-non-ws-char (read-line) 0)])
                 (cond [(char-ci=? inp positive-char) #t]
                       [(char-ci=? inp negative-char) #f]
                       [else (loop)])))))))

;;>> (ok/cancel? fmt-string arg ...)
;;>> (yes/no? fmt-string arg ...)
;;>   These functions are similar to `message', but they are used to ask an
;;>   "ok/cancel" or a "yes/no" question.  They return a boolean.
(define* (ok/cancel? str . args)
  (ui-question str args "Ok/Cancel" 'ok '(ok-cancel) #\o #\c))
(define* (yes/no? str . args)
  (ui-question str args "Yes/No" 'yes '(yes-no) #\y #\n))