/usr/lib/python3/dist-packages/tables/index.py is in python3-tables 3.3.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 | # -*- coding: utf-8 -*-
#######################################################################
#
# License: BSD
# Created: June 08, 2004
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################
"""Here is defined the Index class."""
from __future__ import print_function
from __future__ import absolute_import
import math
import operator
import os
import os.path
import sys
import tempfile
import warnings
from time import time, clock
import numpy
from .idxutils import (calc_chunksize, calcoptlevels,
get_reduction_level, nextafter, inftype)
from . import indexesextension
from .node import NotLoggedMixin
from .atom import UIntAtom, Atom
from .earray import EArray
from .carray import CArray
from .leaf import Filters
from .indexes import CacheArray, LastRowArray, IndexArray
from .group import Group
from .path import join_path
from .exceptions import PerformanceWarning
from .utils import is_idx, idx2long, lazyattr
from .utilsextension import (nan_aware_gt, nan_aware_ge,
nan_aware_lt, nan_aware_le,
bisect_left, bisect_right)
from .lrucacheextension import ObjectCache
from six.moves import range
# default version for INDEX objects
# obversion = "1.0" # Version of indexes in PyTables 1.x series
# obversion = "2.0" # Version of indexes in PyTables Pro 2.0 series
obversion = "2.1" # Version of indexes in PyTables Pro 2.1 and up series,
# including the join 2.3 Std + Pro version
debug = False
# debug = True # Uncomment this for printing sizes purposes
profile = False
# profile = True # Uncomment for profiling
if profile:
from .utils import show_stats
# The default method for sorting
# defsort = "quicksort"
# Changing to mergesort to fix #441
defsort = "mergesort"
# Default policy for automatically updating indexes after a table
# append operation, or automatically reindexing after an
# index-invalidating operation like removing or modifying table rows.
default_auto_index = True
# Keep in sync with ``Table.autoindex`` docstring.
# Default filters used to compress indexes. This is quite fast and
# compression is pretty good.
# Remember to keep these defaults in sync with the docstrings and UG.
default_index_filters = Filters(complevel=1, complib='zlib',
shuffle=True, fletcher32=False)
# Deprecated API
defaultAutoIndex = default_auto_index
defaultIndexFilters = default_index_filters
# The list of types for which an optimised search in cython and C has
# been implemented. Always add here the name of a new optimised type.
opt_search_types = ("int8", "int16", "int32", "int64",
"uint8", "uint16", "uint32", "uint64",
"float32", "float64")
# The upper limit for uint32 ints
max32 = 2**32
def _table_column_pathname_of_index(indexpathname):
names = indexpathname.split("/")
for i, name in enumerate(names):
if name.startswith('_i_'):
break
tablepathname = "/".join(names[:i]) + "/" + name[3:]
colpathname = "/".join(names[i + 1:])
return (tablepathname, colpathname)
class Index(NotLoggedMixin, Group, indexesextension.Index):
"""Represents the index of a column in a table.
This class is used to keep the indexing information for columns in a Table
dataset (see :ref:`TableClassDescr`). It is actually a descendant of the
Group class (see :ref:`GroupClassDescr`), with some added functionality. An
Index is always associated with one and only one column in the table.
.. note::
This class is mainly intended for internal use, but some of its
documented attributes and methods may be interesting for the
programmer.
Parameters
----------
parentnode
The parent :class:`Group` object.
.. versionchanged:: 3.0
Renamed from *parentNode* to *parentnode*.
name : str
The name of this node in its parent group.
atom : Atom
An Atom object representing the shape and type of the atomic objects to
be saved. Only scalar atoms are supported.
title
Sets a TITLE attribute of the Index entity.
kind
The desired kind for this index. The 'full' kind specifies a complete
track of the row position (64-bit), while the 'medium', 'light' or
'ultralight' kinds only specify in which chunk the row is (using
32-bit, 16-bit and 8-bit respectively).
optlevel
The desired optimization level for this index.
filters : Filters
An instance of the Filters class that provides information about the
desired I/O filters to be applied during the life of this object.
tmp_dir
The directory for the temporary files.
expectedrows
Represents an user estimate about the number of row slices that will be
added to the growable dimension in the IndexArray object.
byteorder
The byteorder of the index datasets *on-disk*.
blocksizes
The four main sizes of the compound blocks in index datasets (a low
level parameter).
"""
_c_classid = 'INDEX'
@property
def kind(self):
"The kind of this index."
return {1: 'ultralight', 2: 'light',
4: 'medium', 8: 'full'}[self.indsize]
@property
def filters(self):
"""Filter properties for this index - see Filters in
:ref:`FiltersClassDescr`."""
return self._v_filters
@property
def dirty(self):
"""Whether the index is dirty or not.
Dirty indexes are out of sync with column data, so they exist but they
are not usable.
"""
# If there is no ``DIRTY`` attribute, index should be clean.
return getattr(self._v_attrs, 'DIRTY', False)
@dirty.setter
def dirty(self, dirty):
wasdirty, isdirty = self.dirty, bool(dirty)
self._v_attrs.DIRTY = dirty
# If an *actual* change in dirtiness happens,
# notify the condition cache by setting or removing a nail.
conditioncache = self.table._condition_cache
if not wasdirty and isdirty:
conditioncache.nail()
if wasdirty and not isdirty:
conditioncache.unnail()
@property
def column(self):
"""The Column (see :ref:`ColumnClassDescr`) instance for the indexed
column."""
tablepath, columnpath = _table_column_pathname_of_index(
self._v_pathname)
table = self._v_file._get_node(tablepath)
column = table.cols._g_col(columnpath)
return column
@property
def table(self):
"""Accessor for the `Table` object of this index."""
tablepath, columnpath = _table_column_pathname_of_index(self._v_pathname)
table = self._v_file._get_node(tablepath)
return table
@property
def nblockssuperblock(self):
"The number of blocks in a superblock."
return self.superblocksize // self.blocksize
@property
def nslicesblock(self):
"The number of slices in a block."
return self.blocksize // self.slicesize
@property
def nchunkslice(self):
"The number of chunks in a slice."
return self.slicesize // self.chunksize
@property
def nsuperblocks(self):
"The total number of superblocks in index."
# Last row should not be considered as a superblock
nelements = self.nelements - self.nelementsILR
nblocks = nelements // self.superblocksize
if nelements % self.blocksize > 0:
nblocks += 1
return nblocks
@property
def nblocks(self):
"The total number of blocks in index."
# Last row should not be considered as a block
nelements = self.nelements - self.nelementsILR
nblocks = nelements // self.blocksize
if nelements % self.blocksize > 0:
nblocks += 1
return nblocks
@property
def nslices(self):
"The number of complete slices in index."
return self.nelements // self.slicesize
@property
def nchunks(self):
"The number of complete chunks in index."
return self.nelements // self.chunksize
@property
def shape(self):
"The shape of this index (in slices and elements)."
return (self.nrows, self.slicesize)
@property
def temp_required(self):
"Whether a temporary file for indexes is required or not."
return self.indsize > 1 and self.optlevel > 0 and self.table.nrows > self.slicesize
@property
def want_complete_sort(self):
"Whether we should try to build a completely sorted index or not."
return self.indsize == 8 and self.optlevel == 9
@property
def is_csi(self):
"""Whether the index is completely sorted or not.
.. versionchanged:: 3.0
The *is_CSI* property has been renamed into *is_csi*.
"""
if self.nelements == 0:
# An index with 0 indexed elements is not a CSI one (by definition)
return False
if self.indsize < 8:
# An index that is not full cannot be completely sorted
return False
# Try with the 'is_csi' attribute
if 'is_csi' in self._v_attrs:
return self._v_attrs.is_csi
# If not, then compute the overlaps manually
# (the attribute 'is_csi' will be set there)
self.compute_overlaps(self, None, False)
return self.noverlaps == 0
@lazyattr
def nrowsinchunk(self):
"""The number of rows that fits in a *table* chunk."""
return self.table.chunkshape[0]
@lazyattr
def lbucket(self):
"""Return the length of a bucket based index type."""
# Avoid to set a too large lbucket size (mainly useful for tests)
lbucket = min(self.nrowsinchunk, self.chunksize)
if self.indsize == 1:
# For ultra-light, we will never have to keep track of a
# bucket outside of a slice.
maxnb = 2**8
if self.slicesize > maxnb * lbucket:
lbucket = int(math.ceil(float(self.slicesize) / maxnb))
elif self.indsize == 2:
# For light, we will never have to keep track of a
# bucket outside of a block.
maxnb = 2**16
if self.blocksize > maxnb * lbucket:
lbucket = int(math.ceil(float(self.blocksize) / maxnb))
else:
# For medium and full indexes there should not be a need to
# increase lbucket
pass
return lbucket
def __init__(self, parentnode, name,
atom=None, title="",
kind=None,
optlevel=None,
filters=None,
tmp_dir=None,
expectedrows=0,
byteorder=None,
blocksizes=None,
new=True):
self._v_version = None
"""The object version of this index."""
self.optlevel = optlevel
"""The optimization level for this index."""
self.tmp_dir = tmp_dir
"""The directory for the temporary files."""
self.expectedrows = expectedrows
"""The expected number of items of index arrays."""
if byteorder in ["little", "big"]:
self.byteorder = byteorder
else:
self.byteorder = sys.byteorder
"""The byteorder of the index datasets."""
if atom is not None:
self.dtype = atom.dtype.base
self.type = atom.type
"""The datatypes to be stored by the sorted index array."""
############### Important note ###########################
# The datatypes saved as index values are NumPy native
# types, so we get rid of type metainfo like Time* or Enum*
# that belongs to HDF5 types (actually, this metainfo is
# not needed for sorting and looking-up purposes).
##########################################################
indsize = {
'ultralight': 1, 'light': 2, 'medium': 4, 'full': 8}[kind]
assert indsize in (1, 2, 4, 8), "indsize should be 1, 2, 4 or 8!"
self.indsize = indsize
"""The itemsize for the indices part of the index."""
self.nrows = None
"""The total number of slices in the index."""
self.nelements = None
"""The number of currently indexed rows for this column."""
self.blocksizes = blocksizes
"""The four main sizes of the compound blocks (if specified)."""
self.dirtycache = True
"""Dirty cache (for ranges, bounds & sorted) flag."""
self.superblocksize = None
"""Size of the superblock for this index."""
self.blocksize = None
"""Size of the block for this index."""
self.slicesize = None
"""Size of the slice for this index."""
self.chunksize = None
"""Size of the chunk for this index."""
self.tmpfilename = None
"""Filename for temporary bounds."""
self.opt_search_types = opt_search_types
"""The types for which and optimized search has been implemented."""
self.noverlaps = -1
"""The number of overlaps in an index. 0 means a completely
sorted index. -1 means that this number is not computed yet."""
self.tprof = 0
"""Time counter for benchmarking purposes."""
from .file import open_file
self._openFile = open_file
"""The `open_file()` function, to avoid a circular import."""
super(Index, self).__init__(parentnode, name, title, new, filters)
def _g_post_init_hook(self):
if self._v_new:
# The version for newly created indexes
self._v_version = obversion
super(Index, self)._g_post_init_hook()
# Index arrays must only be created for new indexes
if not self._v_new:
idxversion = self._v_version
# Set-up some variables from info on disk and return
attrs = self._v_attrs
# Coerce NumPy scalars to Python scalars in order
# to avoid undesired upcasting operations.
self.superblocksize = int(attrs.superblocksize)
self.blocksize = int(attrs.blocksize)
self.slicesize = int(attrs.slicesize)
self.chunksize = int(attrs.chunksize)
self.blocksizes = (self.superblocksize, self.blocksize,
self.slicesize, self.chunksize)
self.optlevel = int(attrs.optlevel)
sorted = self.sorted
indices = self.indices
self.dtype = sorted.atom.dtype
self.type = sorted.atom.type
self.indsize = indices.atom.itemsize
# Some sanity checks for slicesize, chunksize and indsize
assert self.slicesize == indices.shape[1], "Wrong slicesize"
assert self.chunksize == indices._v_chunkshape[
1], "Wrong chunksize"
assert self.indsize in (1, 2, 4, 8), "Wrong indices itemsize"
if idxversion > "2.0":
self.reduction = int(attrs.reduction)
nelementsSLR = int(self.sortedLR.attrs.nelements)
nelementsILR = int(self.indicesLR.attrs.nelements)
else:
self.reduction = 1
nelementsILR = self.indicesLR[-1]
nelementsSLR = nelementsILR
self.nrows = sorted.nrows
self.nelements = self.nrows * self.slicesize + nelementsILR
self.nelementsSLR = nelementsSLR
self.nelementsILR = nelementsILR
if nelementsILR > 0:
self.nrows += 1
# Get the bounds as a cache (this has to remain here!)
rchunksize = self.chunksize // self.reduction
nboundsLR = (nelementsSLR - 1) // rchunksize
if nboundsLR < 0:
nboundsLR = 0 # correction for -1 bounds
nboundsLR += 2 # bounds + begin + end
# All bounds values (+begin + end) are at the end of sortedLR
self.bebounds = self.sortedLR[
nelementsSLR:nelementsSLR + nboundsLR]
return
# The index is new. Initialize the values
self.nrows = 0
self.nelements = 0
self.nelementsSLR = 0
self.nelementsILR = 0
# The atom
atom = Atom.from_dtype(self.dtype)
# The filters
filters = self.filters
# Compute the superblocksize, blocksize, slicesize and chunksize values
# (in case these parameters haven't been passed to the constructor)
if self.blocksizes is None:
self.blocksizes = calc_chunksize(
self.expectedrows, self.optlevel, self.indsize)
(self.superblocksize, self.blocksize,
self.slicesize, self.chunksize) = self.blocksizes
if debug:
print("blocksizes:", self.blocksizes)
# Compute the reduction level
self.reduction = get_reduction_level(
self.indsize, self.optlevel, self.slicesize, self.chunksize)
rchunksize = self.chunksize // self.reduction
rslicesize = self.slicesize // self.reduction
# Save them on disk as attributes
self._v_attrs.superblocksize = numpy.uint64(self.superblocksize)
self._v_attrs.blocksize = numpy.uint64(self.blocksize)
self._v_attrs.slicesize = numpy.uint32(self.slicesize)
self._v_attrs.chunksize = numpy.uint32(self.chunksize)
# Save the optlevel as well
self._v_attrs.optlevel = self.optlevel
# Save the reduction level
self._v_attrs.reduction = self.reduction
# Create the IndexArray for sorted values
sorted = IndexArray(self, 'sorted', atom, "Sorted Values",
filters, self.byteorder)
# Create the IndexArray for index values
IndexArray(self, 'indices', UIntAtom(itemsize=self.indsize),
"Number of chunk in table", filters, self.byteorder)
# Create the cache for range values (1st order cache)
CacheArray(self, 'ranges', atom, (0, 2), "Range Values", filters,
self.expectedrows // self.slicesize,
byteorder=self.byteorder)
# median ranges
EArray(self, 'mranges', atom, (0,), "Median ranges", filters,
byteorder=self.byteorder, _log=False)
# Create the cache for boundary values (2nd order cache)
nbounds_inslice = (rslicesize - 1) // rchunksize
CacheArray(self, 'bounds', atom, (0, nbounds_inslice),
"Boundary Values", filters, self.nchunks,
(1, nbounds_inslice), byteorder=self.byteorder)
# begin, end & median bounds (only for numerical types)
EArray(self, 'abounds', atom, (0,), "Start bounds", filters,
byteorder=self.byteorder, _log=False)
EArray(self, 'zbounds', atom, (0,), "End bounds", filters,
byteorder=self.byteorder, _log=False)
EArray(self, 'mbounds', atom, (0,), "Median bounds", filters,
byteorder=self.byteorder, _log=False)
# Create the Array for last (sorted) row values + bounds
shape = (rslicesize + 2 + nbounds_inslice,)
sortedLR = LastRowArray(self, 'sortedLR', atom, shape,
"Last Row sorted values + bounds",
filters, (rchunksize,),
byteorder=self.byteorder)
# Create the Array for the number of chunk in last row
shape = (self.slicesize,) # enough for indexes and length
indicesLR = LastRowArray(self, 'indicesLR',
UIntAtom(itemsize=self.indsize),
shape, "Last Row indices",
filters, (self.chunksize,),
byteorder=self.byteorder)
# The number of elements in LR will be initialized here
sortedLR.attrs.nelements = 0
indicesLR.attrs.nelements = 0
# All bounds values (+begin + end) are uninitialized in creation time
self.bebounds = None
# The starts and lengths initialization
self.starts = numpy.empty(shape=self.nrows, dtype=numpy.int32)
"""Where the values fulfiling conditions starts for every slice."""
self.lengths = numpy.empty(shape=self.nrows, dtype=numpy.int32)
"""Lengths of the values fulfilling conditions for every slice."""
# Finally, create a temporary file for indexes if needed
if self.temp_required:
self.create_temp()
def initial_append(self, xarr, nrow, reduction):
"""Compute an initial indices arrays for data to be indexed."""
if profile:
tref = time()
if profile:
show_stats("Entering initial_append", tref)
arr = xarr.pop()
indsize = self.indsize
slicesize = self.slicesize
nelementsILR = self.nelementsILR
if profile:
show_stats("Before creating idx", tref)
if indsize == 8:
idx = numpy.arange(0, len(arr), dtype="uint64") + nrow * slicesize
elif indsize == 4:
# For medium (32-bit) all the rows in tables should be
# directly reachable. But as len(arr) < 2**31, we can
# choose uint32 for representing indices. In this way, we
# consume far less memory during the keysort process. The
# offset will be added in self.final_idx32() later on.
#
# This optimization also prevents the values in LR to
# participate in the ``swap_chunks`` process, and this is
# the main reason to not allow the medium indexes to create
# completely sorted indexes. However, I don't find this to
# be a big limitation, as probably fully indexes are much
# more suitable for producing completely sorted indexes
# because in this case the indices part is usable for
# getting the reverse indices of the index, and I forsee
# this to be a common requirement in many operations (for
# example, in table sorts).
#
# F. Alted 2008-09-15
idx = numpy.arange(0, len(arr), dtype="uint32")
else:
idx = numpy.empty(len(arr), "uint%d" % (indsize * 8))
lbucket = self.lbucket
# Fill the idx with the bucket indices
offset = lbucket - ((nrow * (slicesize % lbucket)) % lbucket)
idx[0:offset] = 0
for i in range(offset, slicesize, lbucket):
idx[i:i + lbucket] = (i + lbucket - 1) // lbucket
if indsize == 2:
# Add a second offset in this case
# First normalize the number of rows
offset2 = (nrow % self.nslicesblock) * slicesize // lbucket
idx += offset2
# Add the last row at the beginning of arr & idx (if needed)
if (indsize == 8 and nelementsILR > 0):
# It is possible that the values in LR are already sorted.
# Fetch them and override existing values in arr and idx.
assert len(arr) > nelementsILR
self.read_slice_lr(self.sortedLR, arr[:nelementsILR])
self.read_slice_lr(self.indicesLR, idx[:nelementsILR])
# In-place sorting
if profile:
show_stats("Before keysort", tref)
indexesextension.keysort(arr, idx)
larr = arr[-1]
if reduction > 1:
# It's important to do a copy() here in order to ensure that
# sorted._append() will receive a contiguous array.
if profile:
show_stats("Before reduction", tref)
reduc = arr[::reduction].copy()
if profile:
show_stats("After reduction", tref)
arr = reduc
if profile:
show_stats("After arr <-- reduc", tref)
# A completely sorted index is not longer possible after an
# append of an index with already one slice.
if nrow > 0:
self._v_attrs.is_csi = False
if profile:
show_stats("Exiting initial_append", tref)
return larr, arr, idx
def final_idx32(self, idx, offset):
"""Perform final operations in 32-bit indices."""
if profile:
tref = time()
if profile:
show_stats("Entering final_idx32", tref)
# Do an upcast first in order to add the offset.
idx = idx.astype('uint64')
idx += offset
# The next partition is valid up to table sizes of
# 2**30 * 2**18 = 2**48 bytes, that is, 256 Tera-elements,
# which should be a safe figure, at least for a while.
idx //= self.lbucket
# After the division, we can downsize the indexes to 'uint32'
idx = idx.astype('uint32')
if profile:
show_stats("Exiting final_idx32", tref)
return idx
def append(self, xarr, update=False):
"""Append the array to the index objects."""
if profile:
tref = time()
if profile:
show_stats("Entering append", tref)
if not update and self.temp_required:
where = self.tmp
# The reduction will take place *after* the optimization process
reduction = 1
else:
where = self
reduction = self.reduction
sorted = where.sorted
indices = where.indices
ranges = where.ranges
mranges = where.mranges
bounds = where.bounds
mbounds = where.mbounds
abounds = where.abounds
zbounds = where.zbounds
sortedLR = where.sortedLR
indicesLR = where.indicesLR
nrows = sorted.nrows # before sorted.append()
larr, arr, idx = self.initial_append(xarr, nrows, reduction)
# Save the sorted array
sorted.append(arr.reshape(1, arr.size))
cs = self.chunksize // reduction
ncs = self.nchunkslice
# Save ranges & bounds
ranges.append([[arr[0], larr]])
bounds.append([arr[cs::cs]])
abounds.append(arr[0::cs])
zbounds.append(arr[cs - 1::cs])
# Compute the medians
smedian = arr[cs // 2::cs]
mbounds.append(smedian)
mranges.append([smedian[ncs // 2]])
if profile:
show_stats("Before deleting arr & smedian", tref)
del arr, smedian # delete references
if profile:
show_stats("After deleting arr & smedian", tref)
# Now that arr is gone, we can upcast the indices and add the offset
if self.indsize == 4:
idx = self.final_idx32(idx, nrows * self.slicesize)
indices.append(idx.reshape(1, idx.size))
if profile:
show_stats("Before deleting idx", tref)
del idx
# Update counters after a successful append
self.nrows = nrows + 1
self.nelements = self.nrows * self.slicesize
self.nelementsSLR = 0 # reset the counter of the last row index to 0
self.nelementsILR = 0 # reset the counter of the last row index to 0
# The number of elements will be saved as an attribute.
# This is necessary in case the LR arrays can remember its values
# after a possible node preemtion/reload.
sortedLR.attrs.nelements = self.nelementsSLR
indicesLR.attrs.nelements = self.nelementsILR
self.dirtycache = True # the cache is dirty now
if profile:
show_stats("Exiting append", tref)
def append_last_row(self, xarr, update=False):
"""Append the array to the last row index objects."""
if profile:
tref = time()
if profile:
show_stats("Entering appendLR", tref)
# compute the elements in the last row sorted & bounds array
nrows = self.nslices
if not update and self.temp_required:
where = self.tmp
# The reduction will take place *after* the optimization process
reduction = 1
else:
where = self
reduction = self.reduction
indicesLR = where.indicesLR
sortedLR = where.sortedLR
larr, arr, idx = self.initial_append(xarr, nrows, reduction)
nelementsSLR = len(arr)
nelementsILR = len(idx)
# Build the cache of bounds
rchunksize = self.chunksize // reduction
self.bebounds = numpy.concatenate((arr[::rchunksize], [larr]))
# The number of elements will be saved as an attribute
sortedLR.attrs.nelements = nelementsSLR
indicesLR.attrs.nelements = nelementsILR
# Save the number of elements, bounds and sorted values
# at the end of the sorted array
offset2 = len(self.bebounds)
sortedLR[nelementsSLR:nelementsSLR + offset2] = self.bebounds
sortedLR[:nelementsSLR] = arr
del arr
# Now that arr is gone, we can upcast the indices and add the offset
if self.indsize == 4:
idx = self.final_idx32(idx, nrows * self.slicesize)
# Save the reverse index array
indicesLR[:len(idx)] = idx
del idx
# Update counters after a successful append
self.nrows = nrows + 1
self.nelements = nrows * self.slicesize + nelementsILR
self.nelementsILR = nelementsILR
self.nelementsSLR = nelementsSLR
self.dirtycache = True # the cache is dirty now
if profile:
show_stats("Exiting appendLR", tref)
def optimize(self, verbose=False):
"""Optimize an index so as to allow faster searches.
verbose
If True, messages about the progress of the
optimization process are printed out.
"""
if not self.temp_required:
return
if verbose:
self.verbose = True
else:
self.verbose = debug
# Initialize last_tover and last_nover
self.last_tover = 0
self.last_nover = 0
# Compute the correct optimizations for current optim level
opts = calcoptlevels(self.nblocks, self.optlevel, self.indsize)
optmedian, optstarts, optstops, optfull = opts
if debug:
print("optvalues:", opts)
self.create_temp2()
# Start the optimization process
while True:
if optfull:
for niter in range(optfull):
if self.swap('chunks', 'median'):
break
if self.nblocks > 1:
# Swap slices only in the case that we have
# several blocks
if self.swap('slices', 'median'):
break
if self.swap('chunks', 'median'):
break
if self.swap('chunks', 'start'):
break
if self.swap('chunks', 'stop'):
break
else:
if optmedian:
if self.swap('chunks', 'median'):
break
if optstarts:
if self.swap('chunks', 'start'):
break
if optstops:
if self.swap('chunks', 'stop'):
break
break # If we reach this, exit the loop
# Check if we require a complete sort. Important: this step
# should be carried out *after* the optimization process has
# been completed (this is to guarantee that the complete sort
# does not take too much memory).
if self.want_complete_sort:
if self.noverlaps > 0:
self.do_complete_sort()
# Check that we have effectively achieved the complete sort
if self.noverlaps > 0:
warnings.warn(
"OPSI was not able to achieve a completely sorted index."
" Please report this to the authors.", UserWarning)
# Close and delete the temporal optimization index file
self.cleanup_temp()
return
def do_complete_sort(self):
"""Bring an already optimized index into a complete sorted state."""
if self.verbose:
t1 = time()
c1 = clock()
ss = self.slicesize
tmp = self.tmp
ranges = tmp.ranges[:]
nslices = self.nslices
nelementsLR = self.nelementsILR
if nelementsLR > 0:
# Add the ranges corresponding to the last row
rangeslr = numpy.array([self.bebounds[0], self.bebounds[-1]])
ranges = numpy.concatenate((ranges, [rangeslr]))
nslices += 1
sorted = tmp.sorted
indices = tmp.indices
sortedLR = tmp.sortedLR
indicesLR = tmp.indicesLR
sremain = numpy.array([], dtype=self.dtype)
iremain = numpy.array([], dtype='u%d' % self.indsize)
starts = numpy.zeros(shape=nslices, dtype=numpy.int_)
for i in range(nslices):
# Find the overlapping elements for slice i
sover = numpy.array([], dtype=self.dtype)
iover = numpy.array([], dtype='u%d' % self.indsize)
prev_end = ranges[i, 1]
for j in range(i + 1, nslices):
stj = starts[j]
if ((j < self.nslices and stj == ss) or
(j == self.nslices and stj == nelementsLR)):
# This slice has been already dealt with
continue
if j < self.nslices:
assert stj < ss, \
"Two slices cannot overlap completely at this stage!"
next_beg = sorted[j, stj]
else:
assert stj < nelementsLR, \
"Two slices cannot overlap completely at this stage!"
next_beg = sortedLR[stj]
next_end = ranges[j, 1]
if prev_end > next_end:
# Complete overlapping case
if j < self.nslices:
sover = numpy.concatenate((sover, sorted[j, stj:]))
iover = numpy.concatenate((iover, indices[j, stj:]))
starts[j] = ss
else:
n = nelementsLR
sover = numpy.concatenate((sover, sortedLR[stj:n]))
iover = numpy.concatenate((iover, indicesLR[stj:n]))
starts[j] = nelementsLR
elif prev_end > next_beg:
idx = self.search_item_lt(tmp, prev_end, j, ranges[j], stj)
if j < self.nslices:
sover = numpy.concatenate((sover, sorted[j, stj:idx]))
iover = numpy.concatenate((iover, indices[j, stj:idx]))
else:
sover = numpy.concatenate((sover, sortedLR[stj:idx]))
iover = numpy.concatenate((iover, indicesLR[stj:idx]))
starts[j] = idx
# Build the extended slices to sort out
if i < self.nslices:
ssorted = numpy.concatenate(
(sremain, sorted[i, starts[i]:], sover))
sindices = numpy.concatenate(
(iremain, indices[i, starts[i]:], iover))
else:
ssorted = numpy.concatenate(
(sremain, sortedLR[starts[i]:nelementsLR], sover))
sindices = numpy.concatenate(
(iremain, indicesLR[starts[i]:nelementsLR], iover))
# Sort the extended slices
indexesextension.keysort(ssorted, sindices)
# Save the first elements of extended slices in the slice i
if i < self.nslices:
sorted[i] = ssorted[:ss]
indices[i] = sindices[:ss]
# Update caches for this slice
self.update_caches(i, ssorted[:ss])
# Save the remaining values in a separate array
send = len(sover) + len(sremain)
sremain = ssorted[ss:ss + send]
iremain = sindices[ss:ss + send]
else:
# Still some elements remain for the last row
n = len(ssorted)
assert n == nelementsLR
send = 0
sortedLR[:n] = ssorted
indicesLR[:n] = sindices
# Update the caches for last row
sortedlr = sortedLR[:nelementsLR]
bebounds = numpy.concatenate(
(sortedlr[::self.chunksize], [sortedlr[-1]]))
sortedLR[nelementsLR:nelementsLR + len(bebounds)] = bebounds
self.bebounds = bebounds
# Verify that we have dealt with all the remaining values
assert send == 0
# Compute the overlaps in order to verify that we have achieved
# a complete sort. This has to be executed always (and not only
# in verbose mode!).
self.compute_overlaps(self.tmp, "do_complete_sort()", self.verbose)
if self.verbose:
t = round(time() - t1, 4)
c = round(clock() - c1, 4)
print("time: %s. clock: %s" % (t, c))
def swap(self, what, mode=None):
"""Swap chunks or slices using a certain bounds reference."""
# Thresholds for avoiding continuing the optimization
# thnover = 4 * self.slicesize # minimum number of overlapping
# # elements
thnover = 40
thmult = 0.1 # minimum ratio of multiplicity (a 10%)
thtover = 0.01 # minimum overlaping index for slices (a 1%)
if self.verbose:
t1 = time()
c1 = clock()
if what == "chunks":
self.swap_chunks(mode)
elif what == "slices":
self.swap_slices(mode)
if mode:
message = "swap_%s(%s)" % (what, mode)
else:
message = "swap_%s" % (what,)
(nover, mult, tover) = self.compute_overlaps(
self.tmp, message, self.verbose)
rmult = len(mult.nonzero()[0]) / float(len(mult))
if self.verbose:
t = round(time() - t1, 4)
c = round(clock() - c1, 4)
print("time: %s. clock: %s" % (t, c))
# Check that entropy is actually decreasing
if what == "chunks" and self.last_tover > 0. and self.last_nover > 0:
tover_var = (self.last_tover - tover) / self.last_tover
nover_var = (self.last_nover - nover) / self.last_nover
if tover_var < 0.05 and nover_var < 0.05:
# Less than a 5% of improvement is too few
return True
self.last_tover = tover
self.last_nover = nover
# Check if some threshold has met
if nover < thnover:
return True
if rmult < thmult:
return True
# Additional check for the overlap ratio
if tover >= 0. and tover < thtover:
return True
return False
def create_temp(self):
"""Create some temporary objects for slice sorting purposes."""
# The index will be dirty during the index optimization process
self.dirty = True
# Build the name of the temporary file
fd, self.tmpfilename = tempfile.mkstemp(
".tmp", "pytables-", self.tmp_dir)
# Close the file descriptor so as to avoid leaks
os.close(fd)
# Create the proper PyTables file
self.tmpfile = self._openFile(self.tmpfilename, "w")
self.tmp = tmp = self.tmpfile.root
cs = self.chunksize
ss = self.slicesize
filters = self.filters
# temporary sorted & indices arrays
shape = (0, ss)
atom = Atom.from_dtype(self.dtype)
EArray(tmp, 'sorted', atom, shape,
"Temporary sorted", filters, chunkshape=(1, cs))
EArray(tmp, 'indices', UIntAtom(itemsize=self.indsize), shape,
"Temporary indices", filters, chunkshape=(1, cs))
# temporary bounds
nbounds_inslice = (ss - 1) // cs
shape = (0, nbounds_inslice)
EArray(tmp, 'bounds', atom, shape, "Temp chunk bounds",
filters, chunkshape=(cs, nbounds_inslice))
shape = (0,)
EArray(tmp, 'abounds', atom, shape, "Temp start bounds",
filters, chunkshape=(cs,))
EArray(tmp, 'zbounds', atom, shape, "Temp end bounds",
filters, chunkshape=(cs,))
EArray(tmp, 'mbounds', atom, shape, "Median bounds",
filters, chunkshape=(cs,))
# temporary ranges
EArray(tmp, 'ranges', atom, (0, 2),
"Temporary range values", filters, chunkshape=(cs, 2))
EArray(tmp, 'mranges', atom, (0,),
"Median ranges", filters, chunkshape=(cs,))
# temporary last row (sorted)
shape = (ss + 2 + nbounds_inslice,)
CArray(tmp, 'sortedLR', atom, shape,
"Temp Last Row sorted values + bounds",
filters, chunkshape=(cs,))
# temporary last row (indices)
shape = (ss,)
CArray(tmp, 'indicesLR',
UIntAtom(itemsize=self.indsize),
shape, "Temp Last Row indices",
filters, chunkshape=(cs,))
def create_temp2(self):
"""Create some temporary objects for slice sorting purposes."""
# The algorithms for doing the swap can be optimized so that
# one should be necessary to create temporaries for keeping just
# the contents of a single superblock.
# F. Alted 2007-01-03
cs = self.chunksize
ss = self.slicesize
filters = self.filters
# temporary sorted & indices arrays
shape = (self.nslices, ss)
atom = Atom.from_dtype(self.dtype)
tmp = self.tmp
CArray(tmp, 'sorted2', atom, shape,
"Temporary sorted 2", filters, chunkshape=(1, cs))
CArray(tmp, 'indices2', UIntAtom(itemsize=self.indsize), shape,
"Temporary indices 2", filters, chunkshape=(1, cs))
# temporary bounds
nbounds_inslice = (ss - 1) // cs
shape = (self.nslices, nbounds_inslice)
CArray(tmp, 'bounds2', atom, shape, "Temp chunk bounds 2",
filters, chunkshape=(cs, nbounds_inslice))
shape = (self.nchunks,)
CArray(tmp, 'abounds2', atom, shape, "Temp start bounds 2",
filters, chunkshape=(cs,))
CArray(tmp, 'zbounds2', atom, shape, "Temp end bounds 2",
filters, chunkshape=(cs,))
CArray(tmp, 'mbounds2', atom, shape, "Median bounds 2",
filters, chunkshape=(cs,))
# temporary ranges
CArray(tmp, 'ranges2', atom, (self.nslices, 2),
"Temporary range values 2", filters, chunkshape=(cs, 2))
CArray(tmp, 'mranges2', atom, (self.nslices,),
"Median ranges 2", filters, chunkshape=(cs,))
def cleanup_temp(self):
"""Copy the data and delete the temporaries for sorting purposes."""
if self.verbose:
print("Copying temporary data...")
# tmp -> index
reduction = self.reduction
cs = self.chunksize // reduction
ncs = self.nchunkslice
tmp = self.tmp
for i in range(self.nslices):
# Copy sorted & indices slices
sorted = tmp.sorted[i][::reduction].copy()
self.sorted.append(sorted.reshape(1, sorted.size))
# Compute ranges
self.ranges.append([[sorted[0], sorted[-1]]])
# Compute chunk bounds
self.bounds.append([sorted[cs::cs]])
# Compute start, stop & median bounds and ranges
self.abounds.append(sorted[0::cs])
self.zbounds.append(sorted[cs - 1::cs])
smedian = sorted[cs // 2::cs]
self.mbounds.append(smedian)
self.mranges.append([smedian[ncs // 2]])
del sorted, smedian # delete references
# Now that sorted is gone, we can copy the indices
indices = tmp.indices[i]
self.indices.append(indices.reshape(1, indices.size))
# Now it is the last row turn (if needed)
if self.nelementsSLR > 0:
# First, the sorted values
sortedLR = self.sortedLR
indicesLR = self.indicesLR
nelementsLR = self.nelementsILR
sortedlr = tmp.sortedLR[:nelementsLR][::reduction].copy()
nelementsSLR = len(sortedlr)
sortedLR[:nelementsSLR] = sortedlr
# Now, the bounds
self.bebounds = numpy.concatenate((sortedlr[::cs], [sortedlr[-1]]))
offset2 = len(self.bebounds)
sortedLR[nelementsSLR:nelementsSLR + offset2] = self.bebounds
# Finally, the indices
indicesLR[:] = tmp.indicesLR[:]
# Update the number of (reduced) sorted elements
self.nelementsSLR = nelementsSLR
# The number of elements will be saved as an attribute
self.sortedLR.attrs.nelements = self.nelementsSLR
self.indicesLR.attrs.nelements = self.nelementsILR
if self.verbose:
print("Deleting temporaries...")
self.tmp = None
self.tmpfile.close()
os.remove(self.tmpfilename)
self.tmpfilename = None
# The optimization process has finished, and the index is ok now
self.dirty = False
# ...but the memory data cache is dirty now
self.dirtycache = True
def get_neworder(self, neworder, src_disk, tmp_disk,
lastrow, nslices, offset, dtype):
"""Get sorted & indices values in new order."""
cs = self.chunksize
ncs = ncs2 = self.nchunkslice
self_nslices = self.nslices
tmp = numpy.empty(shape=self.slicesize, dtype=dtype)
for i in range(nslices):
ns = offset + i
if ns == self_nslices:
# The number of complete chunks in the last row
ncs2 = self.nelementsILR // cs
# Get slices in new order
for j in range(ncs2):
idx = neworder[i * ncs + j]
ins = idx // ncs
inc = (idx - ins * ncs) * cs
ins += offset
nc = j * cs
if ins == self_nslices:
tmp[nc:nc + cs] = lastrow[inc:inc + cs]
else:
tmp[nc:nc + cs] = src_disk[ins, inc:inc + cs]
if ns == self_nslices:
# The number of complete chunks in the last row
lastrow[:ncs2 * cs] = tmp[:ncs2 * cs]
# The elements in the last chunk of the last row will
# participate in the global reordering later on, during
# the phase of sorting of *two* slices at a time
# (including the last row slice, see
# self.reorder_slices()). The caches for last row will
# be updated in self.reorder_slices() too.
# F. Altet 2008-08-25
else:
tmp_disk[ns] = tmp
def swap_chunks(self, mode="median"):
"""Swap & reorder the different chunks in a block."""
boundsnames = {
'start': 'abounds', 'stop': 'zbounds', 'median': 'mbounds'}
tmp = self.tmp
sorted = tmp.sorted
indices = tmp.indices
tmp_sorted = tmp.sorted2
tmp_indices = tmp.indices2
sortedLR = tmp.sortedLR
indicesLR = tmp.indicesLR
cs = self.chunksize
ncs = self.nchunkslice
nsb = self.nslicesblock
ncb = ncs * nsb
ncb2 = ncb
boundsobj = tmp._f_get_child(boundsnames[mode])
can_cross_bbounds = (self.indsize == 8 and self.nelementsILR > 0)
for nblock in range(self.nblocks):
# Protection for last block having less chunks than ncb
remainingchunks = self.nchunks - nblock * ncb
if remainingchunks < ncb:
ncb2 = remainingchunks
if ncb2 <= 1:
# if only zero or one chunks remains we are done
break
nslices = ncb2 // ncs
bounds = boundsobj[nblock * ncb:nblock * ncb + ncb2]
# Do this only if lastrow elements can cross block boundaries
if (nblock == self.nblocks - 1 and # last block
can_cross_bbounds):
nslices += 1
ul = self.nelementsILR // cs
bounds = numpy.concatenate((bounds, self.bebounds[:ul]))
sbounds_idx = bounds.argsort(kind=defsort)
offset = nblock * nsb
# Swap sorted and indices following the new order
self.get_neworder(sbounds_idx, sorted, tmp_sorted, sortedLR,
nslices, offset, self.dtype)
self.get_neworder(sbounds_idx, indices, tmp_indices, indicesLR,
nslices, offset, 'u%d' % self.indsize)
# Reorder completely the index at slice level
self.reorder_slices(tmp=True)
def read_slice(self, where, nslice, buffer, start=0):
"""Read a slice from the `where` dataset and put it in `buffer`."""
# Create the buffers for specifying the coordinates
self.startl = numpy.array([nslice, start], numpy.uint64)
self.stopl = numpy.array([nslice + 1, start + buffer.size],
numpy.uint64)
self.stepl = numpy.ones(shape=2, dtype=numpy.uint64)
where._g_read_slice(self.startl, self.stopl, self.stepl, buffer)
def write_slice(self, where, nslice, buffer, start=0):
"""Write a `slice` to the `where` dataset with the `buffer` data."""
self.startl = numpy.array([nslice, start], numpy.uint64)
self.stopl = numpy.array([nslice + 1, start + buffer.size],
numpy.uint64)
self.stepl = numpy.ones(shape=2, dtype=numpy.uint64)
countl = self.stopl - self.startl # (1, self.slicesize)
where._g_write_slice(self.startl, self.stepl, countl, buffer)
# Read version for LastRow
def read_slice_lr(self, where, buffer, start=0):
"""Read a slice from the `where` dataset and put it in `buffer`."""
startl = numpy.array([start], dtype=numpy.uint64)
stopl = numpy.array([start + buffer.size], dtype=numpy.uint64)
stepl = numpy.array([1], dtype=numpy.uint64)
where._g_read_slice(startl, stopl, stepl, buffer)
# Write version for LastRow
def write_sliceLR(self, where, buffer, start=0):
"""Write a slice from the `where` dataset with the `buffer` data."""
startl = numpy.array([start], dtype=numpy.uint64)
countl = numpy.array([start + buffer.size], dtype=numpy.uint64)
stepl = numpy.array([1], dtype=numpy.uint64)
where._g_write_slice(startl, stepl, countl, buffer)
def reorder_slice(self, nslice, sorted, indices, ssorted, sindices,
tmp_sorted, tmp_indices):
"""Copy & reorder the slice in source to final destination."""
ss = self.slicesize
# Load the second part in buffers
self.read_slice(tmp_sorted, nslice, ssorted[ss:])
self.read_slice(tmp_indices, nslice, sindices[ss:])
indexesextension.keysort(ssorted, sindices)
# Write the first part of the buffers to the regular leaves
self.write_slice(sorted, nslice - 1, ssorted[:ss])
self.write_slice(indices, nslice - 1, sindices[:ss])
# Update caches
self.update_caches(nslice - 1, ssorted[:ss])
# Shift the slice in the end to the beginning
ssorted[:ss] = ssorted[ss:]
sindices[:ss] = sindices[ss:]
def update_caches(self, nslice, ssorted):
"""Update the caches for faster lookups."""
cs = self.chunksize
ncs = self.nchunkslice
tmp = self.tmp
# update first & second cache bounds (ranges & bounds)
tmp.ranges[nslice] = ssorted[[0, -1]]
tmp.bounds[nslice] = ssorted[cs::cs]
# update start & stop bounds
tmp.abounds[nslice * ncs:(nslice + 1) * ncs] = ssorted[0::cs]
tmp.zbounds[nslice * ncs:(nslice + 1) * ncs] = ssorted[cs - 1::cs]
# update median bounds
smedian = ssorted[cs // 2::cs]
tmp.mbounds[nslice * ncs:(nslice + 1) * ncs] = smedian
tmp.mranges[nslice] = smedian[ncs // 2]
def reorder_slices(self, tmp):
"""Reorder completely the index at slice level.
This method has to maintain the locality of elements in the
ambit of ``blocks``, i.e. an element of a ``block`` cannot be
sent to another ``block`` during this reordering. This is
*critical* for ``light`` indexes to be able to use this.
This version of reorder_slices is optimized in that *two*
complete slices are taken at a time (including the last row
slice) so as to sort them. Then, each new slice that is read is
put at the end of this two-slice buffer, while the previous one
is moved to the beginning of the buffer. This is in order to
better reduce the entropy of the regular part (i.e. all except
the last row) of the index.
A secondary effect of this is that it takes at least *twice* of
memory than a previous version of reorder_slices() that only
reorders on a slice-by-slice basis. However, as this is more
efficient than the old version, one can configure the slicesize
to be smaller, so the memory consumption is barely similar.
"""
tmp = self.tmp
sorted = tmp.sorted
indices = tmp.indices
if tmp:
tmp_sorted = tmp.sorted2
tmp_indices = tmp.indices2
else:
tmp_sorted = tmp.sorted
tmp_indices = tmp.indices
cs = self.chunksize
ss = self.slicesize
nsb = self.blocksize // self.slicesize
nslices = self.nslices
nblocks = self.nblocks
nelementsLR = self.nelementsILR
# Create the buffer for reordering 2 slices at a time
ssorted = numpy.empty(shape=ss * 2, dtype=self.dtype)
sindices = numpy.empty(shape=ss * 2,
dtype=numpy.dtype('u%d' % self.indsize))
if self.indsize == 8:
# Bootstrap the process for reordering
# Read the first slice in buffers
self.read_slice(tmp_sorted, 0, ssorted[:ss])
self.read_slice(tmp_indices, 0, sindices[:ss])
nslice = 0 # Just in case the loop behind executes nothing
# Loop over the remainding slices in block
for nslice in range(1, sorted.nrows):
self.reorder_slice(nslice, sorted, indices,
ssorted, sindices,
tmp_sorted, tmp_indices)
# End the process (enrolling the lastrow if necessary)
if nelementsLR > 0:
sortedLR = self.tmp.sortedLR
indicesLR = self.tmp.indicesLR
# Shrink the ssorted and sindices arrays to the minimum
ssorted2 = ssorted[:ss + nelementsLR]
sortedlr = ssorted2[ss:]
sindices2 = sindices[:ss + nelementsLR]
indiceslr = sindices2[ss:]
# Read the last row info in the second part of the buffer
self.read_slice_lr(sortedLR, sortedlr)
self.read_slice_lr(indicesLR, indiceslr)
indexesextension.keysort(ssorted2, sindices2)
# Write the second part of the buffers to the lastrow indices
self.write_sliceLR(sortedLR, sortedlr)
self.write_sliceLR(indicesLR, indiceslr)
# Update the caches for last row
bebounds = numpy.concatenate((sortedlr[::cs], [sortedlr[-1]]))
sortedLR[nelementsLR:nelementsLR + len(bebounds)] = bebounds
self.bebounds = bebounds
# Write the first part of the buffers to the regular leaves
self.write_slice(sorted, nslice, ssorted[:ss])
self.write_slice(indices, nslice, sindices[:ss])
# Update caches for this slice
self.update_caches(nslice, ssorted[:ss])
else:
# Iterate over each block. No data should cross block
# boundaries to avoid adressing problems with short indices.
for nb in range(nblocks):
# Bootstrap the process for reordering
# Read the first slice in buffers
nrow = nb * nsb
self.read_slice(tmp_sorted, nrow, ssorted[:ss])
self.read_slice(tmp_indices, nrow, sindices[:ss])
# Loop over the remainding slices in block
lrb = nrow + nsb
if lrb > nslices:
lrb = nslices
nslice = nrow # Just in case the loop behind executes nothing
for nslice in range(nrow + 1, lrb):
self.reorder_slice(nslice, sorted, indices,
ssorted, sindices,
tmp_sorted, tmp_indices)
# Write the first part of the buffers to the regular leaves
self.write_slice(sorted, nslice, ssorted[:ss])
self.write_slice(indices, nslice, sindices[:ss])
# Update caches for this slice
self.update_caches(nslice, ssorted[:ss])
def swap_slices(self, mode="median"):
"""Swap slices in a superblock."""
tmp = self.tmp
sorted = tmp.sorted
indices = tmp.indices
tmp_sorted = tmp.sorted2
tmp_indices = tmp.indices2
ncs = self.nchunkslice
nss = self.superblocksize // self.slicesize
nss2 = nss
for sblock in range(self.nsuperblocks):
# Protection for last superblock having less slices than nss
remainingslices = self.nslices - sblock * nss
if remainingslices < nss:
nss2 = remainingslices
if nss2 <= 1:
break
if mode == "start":
ranges = tmp.ranges[sblock * nss:sblock * nss + nss2, 0]
elif mode == "stop":
ranges = tmp.ranges[sblock * nss:sblock * nss + nss2, 1]
elif mode == "median":
ranges = tmp.mranges[sblock * nss:sblock * nss + nss2]
sranges_idx = ranges.argsort(kind=defsort)
# Don't swap the superblock at all if one doesn't need to
ndiff = (sranges_idx != numpy.arange(nss2)).sum() / 2
if ndiff * 50 < nss2:
# The number of slices to rearrange is less than 2.5%,
# so skip the reordering of this superblock
# (too expensive for such a little improvement)
if self.verbose:
print("skipping reordering of superblock ->", sblock)
continue
ns = sblock * nss2
# Swap sorted and indices slices following the new order
for i in range(nss2):
idx = sranges_idx[i]
# Swap sorted & indices slices
oi = ns + i
oidx = ns + idx
tmp_sorted[oi] = sorted[oidx]
tmp_indices[oi] = indices[oidx]
# Swap start, stop & median ranges
tmp.ranges2[oi] = tmp.ranges[oidx]
tmp.mranges2[oi] = tmp.mranges[oidx]
# Swap chunk bounds
tmp.bounds2[oi] = tmp.bounds[oidx]
# Swap start, stop & median bounds
j = oi * ncs
jn = (oi + 1) * ncs
xj = oidx * ncs
xjn = (oidx + 1) * ncs
tmp.abounds2[j:jn] = tmp.abounds[xj:xjn]
tmp.zbounds2[j:jn] = tmp.zbounds[xj:xjn]
tmp.mbounds2[j:jn] = tmp.mbounds[xj:xjn]
# tmp -> originals
for i in range(nss2):
# Copy sorted & indices slices
oi = ns + i
sorted[oi] = tmp_sorted[oi]
indices[oi] = tmp_indices[oi]
# Copy start, stop & median ranges
tmp.ranges[oi] = tmp.ranges2[oi]
tmp.mranges[oi] = tmp.mranges2[oi]
# Copy chunk bounds
tmp.bounds[oi] = tmp.bounds2[oi]
# Copy start, stop & median bounds
j = oi * ncs
jn = (oi + 1) * ncs
tmp.abounds[j:jn] = tmp.abounds2[j:jn]
tmp.zbounds[j:jn] = tmp.zbounds2[j:jn]
tmp.mbounds[j:jn] = tmp.mbounds2[j:jn]
def search_item_lt(self, where, item, nslice, limits, start=0):
"""Search a single item in a specific sorted slice."""
# This method will only works under the assumtion that item
# *is to be found* in the nslice.
assert nan_aware_lt(limits[0], item) and nan_aware_le(item, limits[1])
cs = self.chunksize
ss = self.slicesize
nelementsLR = self.nelementsILR
bstart = start // cs
# Find the chunk
if nslice < self.nslices:
nchunk = bisect_left(where.bounds[nslice], item, bstart)
else:
# We need to subtract 1 chunk here because bebounds
# has a leading value
nchunk = bisect_left(self.bebounds, item, bstart) - 1
assert nchunk >= 0
# Find the element in chunk
pos = nchunk * cs
if nslice < self.nslices:
pos += bisect_left(where.sorted[nslice, pos:pos + cs], item)
assert pos <= ss
else:
end = pos + cs
if end > nelementsLR:
end = nelementsLR
pos += bisect_left(self.sortedLR[pos:end], item)
assert pos <= nelementsLR
assert pos > 0
return pos
def compute_overlaps_finegrain(self, where, message, verbose):
"""Compute some statistics about overlaping of slices in index.
It returns the following info:
noverlaps : int
The total number of elements that overlaps in index.
multiplicity : array of int
The number of times that a concrete slice overlaps with any other.
toverlap : float
An ovelap index: the sum of the values in segment slices that
overlaps divided by the entire range of values. This index is only
computed for numerical types.
"""
ss = self.slicesize
ranges = where.ranges[:]
sorted = where.sorted
sortedLR = where.sortedLR
nslices = self.nslices
nelementsLR = self.nelementsILR
if nelementsLR > 0:
# Add the ranges corresponding to the last row
rangeslr = numpy.array([self.bebounds[0], self.bebounds[-1]])
ranges = numpy.concatenate((ranges, [rangeslr]))
nslices += 1
soverlap = 0.
toverlap = -1.
multiplicity = numpy.zeros(shape=nslices, dtype="int_")
overlaps = multiplicity.copy()
starts = multiplicity.copy()
for i in range(nslices):
prev_end = ranges[i, 1]
for j in range(i + 1, nslices):
stj = starts[j]
assert stj <= ss
if stj == ss:
# This slice has already been counted
continue
if j < self.nslices:
next_beg = sorted[j, stj]
else:
next_beg = sortedLR[stj]
next_end = ranges[j, 1]
if prev_end > next_end:
# Complete overlapping case
multiplicity[j - i] += 1
if j < self.nslices:
overlaps[i] += ss - stj
starts[j] = ss # a sentinel
else:
overlaps[i] += nelementsLR - stj
starts[j] = nelementsLR # a sentinel
elif prev_end > next_beg:
multiplicity[j - i] += 1
idx = self.search_item_lt(
where, prev_end, j, ranges[j], stj)
nelem = idx - stj
overlaps[i] += nelem
starts[j] = idx
if self.type != "string":
# Convert ranges into floats in order to allow
# doing operations with them without overflows
soverlap += float(ranges[i, 1]) - float(ranges[j, 0])
# Return the overlap as the ratio between overlaps and entire range
if self.type != "string":
erange = float(ranges[-1, 1]) - float(ranges[0, 0])
# Check that there is an effective range of values
# Beware, erange can be negative in situations where
# the values are suffering overflow. This can happen
# specially on big signed integer values (on overflows,
# the end value will become negative!).
# Also, there is no way to compute overlap ratios for
# non-numerical types. So, be careful and always check
# that toverlap has a positive value (it must have been
# initialized to -1. before) before using it.
# F. Alted 2007-01-19
if erange > 0:
toverlap = soverlap / erange
if verbose and message != "init":
print("toverlap (%s):" % message, toverlap)
print("multiplicity:\n", multiplicity, multiplicity.sum())
print("overlaps:\n", overlaps, overlaps.sum())
noverlaps = overlaps.sum()
# For full indexes, set the 'is_csi' flag
if self.indsize == 8 and self._v_file._iswritable():
self._v_attrs.is_csi = (noverlaps == 0)
# Save the number of overlaps for future references
self.noverlaps = noverlaps
return (noverlaps, multiplicity, toverlap)
def compute_overlaps(self, where, message, verbose):
"""Compute some statistics about overlaping of slices in index.
It returns the following info:
noverlaps : int
The total number of slices that overlaps in index.
multiplicity : array of int
The number of times that a concrete slice overlaps with any other.
toverlap : float
An ovelap index: the sum of the values in segment slices that
overlaps divided by the entire range of values. This index is only
computed for numerical types.
"""
ranges = where.ranges[:]
nslices = self.nslices
if self.nelementsILR > 0:
# Add the ranges corresponding to the last row
rangeslr = numpy.array([self.bebounds[0], self.bebounds[-1]])
ranges = numpy.concatenate((ranges, [rangeslr]))
nslices += 1
noverlaps = 0
soverlap = 0.
toverlap = -1.
multiplicity = numpy.zeros(shape=nslices, dtype="int_")
for i in range(nslices):
for j in range(i + 1, nslices):
if ranges[i, 1] > ranges[j, 0]:
noverlaps += 1
multiplicity[j - i] += 1
if self.type != "string":
# Convert ranges into floats in order to allow
# doing operations with them without overflows
soverlap += float(ranges[i, 1]) - float(ranges[j, 0])
# Return the overlap as the ratio between overlaps and entire range
if self.type != "string":
erange = float(ranges[-1, 1]) - float(ranges[0, 0])
# Check that there is an effective range of values
# Beware, erange can be negative in situations where
# the values are suffering overflow. This can happen
# specially on big signed integer values (on overflows,
# the end value will become negative!).
# Also, there is no way to compute overlap ratios for
# non-numerical types. So, be careful and always check
# that toverlap has a positive value (it must have been
# initialized to -1. before) before using it.
# F. Altet 2007-01-19
if erange > 0:
toverlap = soverlap / erange
if verbose:
print("overlaps (%s):" % message, noverlaps, toverlap)
print(multiplicity)
# For full indexes, set the 'is_csi' flag
if self.indsize == 8 and self._v_file._iswritable():
self._v_attrs.is_csi = (noverlaps == 0)
# Save the number of overlaps for future references
self.noverlaps = noverlaps
return (noverlaps, multiplicity, toverlap)
def read_sorted_indices(self, what, start, stop, step):
"""Return the sorted or indices values in the specified range."""
(start, stop, step) = self._process_range(start, stop, step)
if start >= stop:
return numpy.empty(0, self.dtype)
# Correction for negative values of step (reverse indices)
if step < 0:
tmp = start
start = self.nelements - stop
stop = self.nelements - tmp
if what == "sorted":
values = self.sorted
valuesLR = self.sortedLR
buffer_ = numpy.empty(stop - start, dtype=self.dtype)
else:
values = self.indices
valuesLR = self.indicesLR
buffer_ = numpy.empty(stop - start, dtype="u%d" % self.indsize)
ss = self.slicesize
nrow_start = start // ss
istart = start % ss
nrow_stop = stop // ss
tlen = stop - start
bstart = 0
ilen = 0
for nrow in range(nrow_start, nrow_stop + 1):
blen = ss - istart
if ilen + blen > tlen:
blen = tlen - ilen
if blen <= 0:
break
if nrow < self.nslices:
self.read_slice(
values, nrow, buffer_[bstart:bstart + blen], istart)
else:
self.read_slice_lr(
valuesLR, buffer_[bstart:bstart + blen], istart)
istart = 0
bstart += blen
ilen += blen
return buffer_[::step]
def read_sorted(self, start=None, stop=None, step=None):
"""Return the sorted values of index in the specified range.
The meaning of the start, stop and step arguments is the same as in
:meth:`Table.read_sorted`.
"""
return self.read_sorted_indices('sorted', start, stop, step)
def read_indices(self, start=None, stop=None, step=None):
"""Return the indices values of index in the specified range.
The meaning of the start, stop and step arguments is the same as in
:meth:`Table.read_sorted`.
"""
return self.read_sorted_indices('indices', start, stop, step)
def _process_range(self, start, stop, step):
"""Get a range specifc for the index usage."""
if start is not None and stop is None:
# Special case for the behaviour of PyTables iterators
stop = idx2long(start + 1)
if start is None:
start = 0
else:
start = idx2long(start)
if stop is None:
stop = idx2long(self.nelements)
else:
stop = idx2long(stop)
if step is None:
step = 1
else:
step = idx2long(step)
return (start, stop, step)
def __getitem__(self, key):
"""Return the indices values of index in the specified range.
If key argument is an integer, the corresponding index is returned. If
key is a slice, the range of indices determined by it is returned. A
negative value of step in slice is supported, meaning that the results
will be returned in reverse order.
This method is equivalent to :meth:`Index.read_indices`.
"""
if is_idx(key):
key = operator.index(key)
if key < 0:
# To support negative values
key += self.nelements
return self.read_indices(key, key + 1, 1)[0]
elif isinstance(key, slice):
return self.read_indices(key.start, key.stop, key.step)
def __len__(self):
return self.nelements
def restorecache(self):
"Clean the limits cache and resize starts and lengths arrays"
params = self._v_file.params
# The sorted IndexArray is absolutely required to be in memory
# at the same time than the Index instance, so create a strong
# reference to it. We are not introducing leaks because the
# strong reference will disappear when this Index instance is
# to be closed.
self._sorted = self.sorted
self._sorted.boundscache = ObjectCache(params['BOUNDS_MAX_SLOTS'],
params['BOUNDS_MAX_SIZE'],
'non-opt types bounds')
self.sorted.boundscache = ObjectCache(params['BOUNDS_MAX_SLOTS'],
params['BOUNDS_MAX_SIZE'],
'non-opt types bounds')
"""A cache for the bounds (2nd hash) data. Only used for
non-optimized types searches."""
self.limboundscache = ObjectCache(params['LIMBOUNDS_MAX_SLOTS'],
params['LIMBOUNDS_MAX_SIZE'],
'bounding limits')
"""A cache for bounding limits."""
self.sortedLRcache = ObjectCache(params['SORTEDLR_MAX_SLOTS'],
params['SORTEDLR_MAX_SIZE'],
'last row chunks')
"""A cache for the last row chunks. Only used for searches in
the last row, and mainly useful for small indexes."""
self.starts = numpy.empty(shape=self.nrows, dtype=numpy.int32)
self.lengths = numpy.empty(shape=self.nrows, dtype=numpy.int32)
self.sorted._init_sorted_slice(self)
self.dirtycache = False
def search(self, item):
"""Do a binary search in this index for an item."""
if profile:
tref = time()
if profile:
show_stats("Entering search", tref)
if self.dirtycache:
self.restorecache()
# An empty item or if left limit is larger than the right one
# means that the number of records is always going to be empty,
# so we avoid further computation (including looking up the
# limits cache).
if not item or item[0] > item[1]:
self.starts[:] = 0
self.lengths[:] = 0
return 0
tlen = 0
# Check whether the item tuple is in the limits cache or not
nslot = self.limboundscache.getslot(item)
if nslot >= 0:
startlengths = self.limboundscache.getitem(nslot)
# Reset the lengths array (not necessary for starts)
self.lengths[:] = 0
# Now, set the interesting rows
for nrow in range(len(startlengths)):
nrow2, start, length = startlengths[nrow]
self.starts[nrow2] = start
self.lengths[nrow2] = length
tlen = tlen + length
return tlen
# The item is not in cache. Do the real lookup.
sorted = self.sorted
if self.nslices > 0:
if self.type in self.opt_search_types:
# The next are optimizations. However, they hide the
# CPU functions consumptions from python profiles.
# You may want to de-activate them during profiling.
if self.type == "int32":
tlen = sorted._search_bin_na_i(*item)
elif self.type == "int64":
tlen = sorted._search_bin_na_ll(*item)
elif self.type == "float16":
tlen = sorted._search_bin_na_e(*item)
elif self.type == "float32":
tlen = sorted._search_bin_na_f(*item)
elif self.type == "float64":
tlen = sorted._search_bin_na_d(*item)
elif self.type == "float96":
tlen = sorted._search_bin_na_g(*item)
elif self.type == "float128":
tlen = sorted._search_bin_na_g(*item)
elif self.type == "uint32":
tlen = sorted._search_bin_na_ui(*item)
elif self.type == "uint64":
tlen = sorted._search_bin_na_ull(*item)
elif self.type == "int8":
tlen = sorted._search_bin_na_b(*item)
elif self.type == "int16":
tlen = sorted._search_bin_na_s(*item)
elif self.type == "uint8":
tlen = sorted._search_bin_na_ub(*item)
elif self.type == "uint16":
tlen = sorted._search_bin_na_us(*item)
else:
assert False, "This can't happen!"
else:
tlen = self.search_scalar(item, sorted)
# Get possible remaining values in last row
if self.nelementsSLR > 0:
# Look for more indexes in the last row
(start, stop) = self.search_last_row(item)
self.starts[-1] = start
self.lengths[-1] = stop - start
tlen += stop - start
if self.limboundscache.couldenablecache():
# Get a startlengths tuple and save it in cache.
# This is quite slow, but it is a good way to compress
# the bounds info. Moreover, the .couldenablecache()
# is doing a good work so as to avoid computing this
# when it is not necessary to do it.
startlengths = []
for nrow, length in enumerate(self.lengths):
if length > 0:
startlengths.append((nrow, self.starts[nrow], length))
# Compute the size of the recarray (aproximately)
# The +1 at the end is important to avoid 0 lengths
# (remember, the object headers take some space)
size = len(startlengths) * 8 * 2 + 1
# Put this startlengths list in cache
self.limboundscache.setitem(item, startlengths, size)
if profile:
show_stats("Exiting search", tref)
return tlen
# This is an scalar version of search. It works with strings as well.
def search_scalar(self, item, sorted):
"""Do a binary search in this index for an item."""
tlen = 0
# Do the lookup for values fullfilling the conditions
for i in range(self.nslices):
(start, stop) = sorted._search_bin(i, item)
self.starts[i] = start
self.lengths[i] = stop - start
tlen += stop - start
return tlen
def search_last_row(self, item):
# Variable initialization
item1, item2 = item
bebounds = self.bebounds
b0, b1 = bebounds[0], bebounds[-1]
bounds = bebounds[1:-1]
itemsize = self.dtype.itemsize
sortedLRcache = self.sortedLRcache
hi = self.nelementsSLR # maximum number of elements
rchunksize = self.chunksize // self.reduction
nchunk = -1
# Lookup for item1
if nan_aware_gt(item1, b0):
if nan_aware_le(item1, b1):
# Search the appropriate chunk in bounds cache
nchunk = bisect_left(bounds, item1)
# Lookup for this chunk in cache
nslot = sortedLRcache.getslot(nchunk)
if nslot >= 0:
chunk = sortedLRcache.getitem(nslot)
else:
begin = rchunksize * nchunk
end = rchunksize * (nchunk + 1)
if end > hi:
end = hi
# Read the chunk from disk
chunk = self.sortedLR._read_sorted_slice(
self.sorted, begin, end)
# Put it in cache. It's important to *copy*
# the buffer, as it is reused in future reads!
sortedLRcache.setitem(nchunk, chunk.copy(),
(end - begin) * itemsize)
start = bisect_left(chunk, item1)
start += rchunksize * nchunk
else:
start = hi
else:
start = 0
# Lookup for item2
if nan_aware_ge(item2, b0):
if nan_aware_lt(item2, b1):
# Search the appropriate chunk in bounds cache
nchunk2 = bisect_right(bounds, item2)
if nchunk2 != nchunk:
# Lookup for this chunk in cache
nslot = sortedLRcache.getslot(nchunk2)
if nslot >= 0:
chunk = sortedLRcache.getitem(nslot)
else:
begin = rchunksize * nchunk2
end = rchunksize * (nchunk2 + 1)
if end > hi:
end = hi
# Read the chunk from disk
chunk = self.sortedLR._read_sorted_slice(
self.sorted, begin, end)
# Put it in cache. It's important to *copy*
# the buffer, as it is reused in future reads!
# See bug #60 in xot.carabos.com
sortedLRcache.setitem(nchunk2, chunk.copy(),
(end - begin) * itemsize)
stop = bisect_right(chunk, item2)
stop += rchunksize * nchunk2
else:
stop = hi
else:
stop = 0
return (start, stop)
def get_chunkmap(self):
"""Compute a map with the interesting chunks in index."""
if profile:
tref = time()
if profile:
show_stats("Entering get_chunkmap", tref)
ss = self.slicesize
nsb = self.nslicesblock
nslices = self.nslices
lbucket = self.lbucket
indsize = self.indsize
bucketsinblock = float(self.blocksize) / lbucket
nchunks = int(math.ceil(float(self.nelements) / lbucket))
chunkmap = numpy.zeros(shape=nchunks, dtype="bool")
reduction = self.reduction
starts = (self.starts - 1) * reduction + 1
stops = (self.starts + self.lengths) * reduction
starts[starts < 0] = 0 # All negative values set to zero
indices = self.indices
for nslice in range(self.nrows):
start = starts[nslice]
stop = stops[nslice]
if stop > start:
idx = numpy.empty(shape=stop - start, dtype='u%d' % indsize)
if nslice < nslices:
indices._read_index_slice(nslice, start, stop, idx)
else:
self.indicesLR._read_index_slice(start, stop, idx)
if indsize == 8:
idx //= lbucket
elif indsize == 2:
# The chunkmap size cannot be never larger than 'int_'
idx = idx.astype("int_")
offset = int((nslice // nsb) * bucketsinblock)
idx += offset
elif indsize == 1:
# The chunkmap size cannot be never larger than 'int_'
idx = idx.astype("int_")
offset = (nslice * ss) // lbucket
idx += offset
chunkmap[idx] = True
# The case lbucket < nrowsinchunk should only happen in tests
nrowsinchunk = self.nrowsinchunk
if lbucket != nrowsinchunk:
# Map the 'coarse grain' chunkmap into the 'true' chunkmap
nelements = self.nelements
tnchunks = int(math.ceil(float(nelements) / nrowsinchunk))
tchunkmap = numpy.zeros(shape=tnchunks, dtype="bool")
ratio = float(lbucket) / nrowsinchunk
idx = chunkmap.nonzero()[0]
starts = (idx * ratio).astype('int_')
stops = numpy.ceil((idx + 1) * ratio).astype('int_')
for i in range(len(idx)):
tchunkmap[starts[i]:stops[i]] = True
chunkmap = tchunkmap
if profile:
show_stats("Exiting get_chunkmap", tref)
return chunkmap
def get_lookup_range(self, ops, limits):
assert len(ops) in [1, 2]
assert len(limits) in [1, 2]
assert len(ops) == len(limits)
column = self.column
coldtype = column.dtype.base
itemsize = coldtype.itemsize
if len(limits) == 1:
assert ops[0] in ['lt', 'le', 'eq', 'ge', 'gt']
limit = limits[0]
op = ops[0]
if op == 'lt':
range_ = (inftype(coldtype, itemsize, sign=-1),
nextafter(limit, -1, coldtype, itemsize))
elif op == 'le':
range_ = (inftype(coldtype, itemsize, sign=-1),
limit)
elif op == 'gt':
range_ = (nextafter(limit, +1, coldtype, itemsize),
inftype(coldtype, itemsize, sign=+1))
elif op == 'ge':
range_ = (limit,
inftype(coldtype, itemsize, sign=+1))
elif op == 'eq':
range_ = (limit, limit)
elif len(limits) == 2:
assert ops[0] in ('gt', 'ge') and ops[1] in ('lt', 'le')
lower, upper = limits
if lower > upper:
# ``a <[=] x <[=] b`` is always false if ``a > b``.
return ()
if ops == ('gt', 'lt'): # lower < col < upper
range_ = (nextafter(lower, +1, coldtype, itemsize),
nextafter(upper, -1, coldtype, itemsize))
elif ops == ('ge', 'lt'): # lower <= col < upper
range_ = (lower, nextafter(upper, -1, coldtype, itemsize))
elif ops == ('gt', 'le'): # lower < col <= upper
range_ = (nextafter(lower, +1, coldtype, itemsize), upper)
elif ops == ('ge', 'le'): # lower <= col <= upper
range_ = (lower, upper)
return range_
def _f_remove(self, recursive=False):
"""Remove this Index object."""
# Index removal is always recursive,
# no matter what `recursive` says.
super(Index, self)._f_remove(True)
def __str__(self):
"""This provides a more compact representation than __repr__"""
# The filters
filters = ""
if self.filters.complevel:
if self.filters.shuffle:
filters += ", shuffle"
if self.filters.bitshuffle:
filters += ", bitshuffle"
filters += ", %s(%s)" % (self.filters.complib,
self.filters.complevel)
return "Index(%s, %s%s).is_csi=%s" % \
(self.optlevel, self.kind, filters, self.is_csi)
def __repr__(self):
"""This provides more metainfo than standard __repr__"""
cpathname = self.table._v_pathname + ".cols." + self.column.pathname
retstr = """%s (Index for column %s)
optlevel := %s
kind := %s
filters := %s
is_csi := %s
nelements := %s
chunksize := %s
slicesize := %s
blocksize := %s
superblocksize := %s
dirty := %s
byteorder := %r""" % (self._v_pathname, cpathname,
self.optlevel, self.kind,
self.filters, self.is_csi,
self.nelements,
self.chunksize, self.slicesize,
self.blocksize, self.superblocksize,
self.dirty, self.byteorder)
retstr += "\n sorted := %s" % self.sorted
retstr += "\n indices := %s" % self.indices
retstr += "\n ranges := %s" % self.ranges
retstr += "\n bounds := %s" % self.bounds
retstr += "\n sortedLR := %s" % self.sortedLR
retstr += "\n indicesLR := %s" % self.indicesLR
return retstr
class IndexesDescG(NotLoggedMixin, Group):
_c_classid = 'DINDEX'
def _g_width_warning(self):
warnings.warn(
"the number of indexed columns on a single description group "
"is exceeding the recommended maximum (%d); "
"be ready to see PyTables asking for *lots* of memory "
"and possibly slow I/O" % self._v_max_group_width,
PerformanceWarning)
class IndexesTableG(NotLoggedMixin, Group):
_c_classid = 'TINDEX'
@property
def auto(self):
if 'AUTO_INDEX' not in self._v_attrs:
return default_auto_index
return self._v_attrs.AUTO_INDEX
@auto.setter
def auto(self, auto):
self._v_attrs.AUTO_INDEX = bool(auto)
@auto.deleter
def auto(self):
del self._v_attrs.AUTO_INDEX
def _g_width_warning(self):
warnings.warn(
"the number of indexed columns on a single table "
"is exceeding the recommended maximum (%d); "
"be ready to see PyTables asking for *lots* of memory "
"and possibly slow I/O" % self._v_max_group_width,
PerformanceWarning)
def _g_check_name(self, name):
if not name.startswith('_i_'):
raise ValueError(
"names of index groups must start with ``_i_``: %s" % name)
@property
def table(self):
"Accessor for the `Table` object of this `IndexesTableG` container."
names = self._v_pathname.split("/")
tablename = names.pop()[3:] # "_i_" is at the beginning
parentpathname = "/".join(names)
tablepathname = join_path(parentpathname, tablename)
table = self._v_file._get_node(tablepathname)
return table
class OldIndex(NotLoggedMixin, Group):
"""This is meant to hide indexes of PyTables 1.x files."""
_c_classid = 'CINDEX'
## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End:
|