This file is indexed.

/usr/lib/python3/dist-packages/sqlalchemy/orm/relationships.py is in python3-sqlalchemy 1.0.15+ds1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
# orm/relationships.py
# Copyright (C) 2005-2016 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""Heuristics related to join conditions as used in
:func:`.relationship`.

Provides the :class:`.JoinCondition` object, which encapsulates
SQL annotation and aliasing behavior focused on the `primaryjoin`
and `secondaryjoin` aspects of :func:`.relationship`.

"""
from __future__ import absolute_import
from .. import sql, util, exc as sa_exc, schema, log

import weakref
from .util import CascadeOptions, _orm_annotate, _orm_deannotate
from . import dependency
from . import attributes
from ..sql.util import (
    ClauseAdapter,
    join_condition, _shallow_annotate, visit_binary_product,
    _deep_deannotate, selectables_overlap, adapt_criterion_to_null
)
from ..sql import operators, expression, visitors
from .interfaces import (MANYTOMANY, MANYTOONE, ONETOMANY,
                         StrategizedProperty, PropComparator)
from ..inspection import inspect
from . import mapper as mapperlib
import collections


def remote(expr):
    """Annotate a portion of a primaryjoin expression
    with a 'remote' annotation.

    See the section :ref:`relationship_custom_foreign` for a
    description of use.

    .. versionadded:: 0.8

    .. seealso::

        :ref:`relationship_custom_foreign`

        :func:`.foreign`

    """
    return _annotate_columns(expression._clause_element_as_expr(expr),
                             {"remote": True})


def foreign(expr):
    """Annotate a portion of a primaryjoin expression
    with a 'foreign' annotation.

    See the section :ref:`relationship_custom_foreign` for a
    description of use.

    .. versionadded:: 0.8

    .. seealso::

        :ref:`relationship_custom_foreign`

        :func:`.remote`

    """

    return _annotate_columns(expression._clause_element_as_expr(expr),
                             {"foreign": True})


@log.class_logger
@util.langhelpers.dependency_for("sqlalchemy.orm.properties")
class RelationshipProperty(StrategizedProperty):
    """Describes an object property that holds a single item or list
    of items that correspond to a related database table.

    Public constructor is the :func:`.orm.relationship` function.

    See also:

    :ref:`relationship_config_toplevel`

    """

    strategy_wildcard_key = 'relationship'

    _dependency_processor = None

    def __init__(self, argument,
                 secondary=None, primaryjoin=None,
                 secondaryjoin=None,
                 foreign_keys=None,
                 uselist=None,
                 order_by=False,
                 backref=None,
                 back_populates=None,
                 post_update=False,
                 cascade=False, extension=None,
                 viewonly=False, lazy=True,
                 collection_class=None, passive_deletes=False,
                 passive_updates=True, remote_side=None,
                 enable_typechecks=True, join_depth=None,
                 comparator_factory=None,
                 single_parent=False, innerjoin=False,
                 distinct_target_key=None,
                 doc=None,
                 active_history=False,
                 cascade_backrefs=True,
                 load_on_pending=False,
                 bake_queries=True,
                 strategy_class=None, _local_remote_pairs=None,
                 query_class=None,
                 info=None):
        """Provide a relationship between two mapped classes.

        This corresponds to a parent-child or associative table relationship.
        The constructed class is an instance of
        :class:`.RelationshipProperty`.

        A typical :func:`.relationship`, used in a classical mapping::

           mapper(Parent, properties={
             'children': relationship(Child)
           })

        Some arguments accepted by :func:`.relationship` optionally accept a
        callable function, which when called produces the desired value.
        The callable is invoked by the parent :class:`.Mapper` at "mapper
        initialization" time, which happens only when mappers are first used,
        and is assumed to be after all mappings have been constructed.  This
        can be used to resolve order-of-declaration and other dependency
        issues, such as if ``Child`` is declared below ``Parent`` in the same
        file::

            mapper(Parent, properties={
                "children":relationship(lambda: Child,
                                    order_by=lambda: Child.id)
            })

        When using the :ref:`declarative_toplevel` extension, the Declarative
        initializer allows string arguments to be passed to
        :func:`.relationship`.  These string arguments are converted into
        callables that evaluate the string as Python code, using the
        Declarative class-registry as a namespace.  This allows the lookup of
        related classes to be automatic via their string name, and removes the
        need to import related classes at all into the local module space::

            from sqlalchemy.ext.declarative import declarative_base

            Base = declarative_base()

            class Parent(Base):
                __tablename__ = 'parent'
                id = Column(Integer, primary_key=True)
                children = relationship("Child", order_by="Child.id")

        .. seealso::

          :ref:`relationship_config_toplevel` - Full introductory and
          reference documentation for :func:`.relationship`.

          :ref:`orm_tutorial_relationship` - ORM tutorial introduction.

        :param argument:
          a mapped class, or actual :class:`.Mapper` instance, representing
          the target of the relationship.

          :paramref:`~.relationship.argument` may also be passed as a callable
          function which is evaluated at mapper initialization time, and may
          be passed as a Python-evaluable string when using Declarative.

          .. seealso::

            :ref:`declarative_configuring_relationships` - further detail
            on relationship configuration when using Declarative.

        :param secondary:
          for a many-to-many relationship, specifies the intermediary
          table, and is typically an instance of :class:`.Table`.
          In less common circumstances, the argument may also be specified
          as an :class:`.Alias` construct, or even a :class:`.Join` construct.

          :paramref:`~.relationship.secondary` may
          also be passed as a callable function which is evaluated at
          mapper initialization time.  When using Declarative, it may also
          be a string argument noting the name of a :class:`.Table` that is
          present in the :class:`.MetaData` collection associated with the
          parent-mapped :class:`.Table`.

          The :paramref:`~.relationship.secondary` keyword argument is
          typically applied in the case where the intermediary :class:`.Table`
          is not otherwise expressed in any direct class mapping. If the
          "secondary" table is also explicitly mapped elsewhere (e.g. as in
          :ref:`association_pattern`), one should consider applying the
          :paramref:`~.relationship.viewonly` flag so that this
          :func:`.relationship` is not used for persistence operations which
          may conflict with those of the association object pattern.

          .. seealso::

              :ref:`relationships_many_to_many` - Reference example of "many
              to many".

              :ref:`orm_tutorial_many_to_many` - ORM tutorial introduction to
              many-to-many relationships.

              :ref:`self_referential_many_to_many` - Specifics on using
              many-to-many in a self-referential case.

              :ref:`declarative_many_to_many` - Additional options when using
              Declarative.

              :ref:`association_pattern` - an alternative to
              :paramref:`~.relationship.secondary` when composing association
              table relationships, allowing additional attributes to be
              specified on the association table.

              :ref:`composite_secondary_join` - a lesser-used pattern which
              in some cases can enable complex :func:`.relationship` SQL
              conditions to be used.

          .. versionadded:: 0.9.2 :paramref:`~.relationship.secondary` works
             more effectively when referring to a :class:`.Join` instance.

        :param active_history=False:
          When ``True``, indicates that the "previous" value for a
          many-to-one reference should be loaded when replaced, if
          not already loaded. Normally, history tracking logic for
          simple many-to-ones only needs to be aware of the "new"
          value in order to perform a flush. This flag is available
          for applications that make use of
          :func:`.attributes.get_history` which also need to know
          the "previous" value of the attribute.

        :param backref:
          indicates the string name of a property to be placed on the related
          mapper's class that will handle this relationship in the other
          direction. The other property will be created automatically
          when the mappers are configured.  Can also be passed as a
          :func:`.backref` object to control the configuration of the
          new relationship.

          .. seealso::

            :ref:`relationships_backref` - Introductory documentation and
            examples.

            :paramref:`~.relationship.back_populates` - alternative form
            of backref specification.

            :func:`.backref` - allows control over :func:`.relationship`
            configuration when using :paramref:`~.relationship.backref`.


        :param back_populates:
          Takes a string name and has the same meaning as
          :paramref:`~.relationship.backref`, except the complementing
          property is **not** created automatically, and instead must be
          configured explicitly on the other mapper.  The complementing
          property should also indicate
          :paramref:`~.relationship.back_populates` to this relationship to
          ensure proper functioning.

          .. seealso::

            :ref:`relationships_backref` - Introductory documentation and
            examples.

            :paramref:`~.relationship.backref` - alternative form
            of backref specification.

        :param bake_queries=True:
          Use the :class:`.BakedQuery` cache to cache the construction of SQL
          used in lazy loads, when the :func:`.bake_lazy_loaders` function has
          first been called.  Defaults to True and is intended to provide an
          "opt out" flag per-relationship when the baked query cache system is
          in use.

          .. warning::

              This flag **only** has an effect when the application-wide
              :func:`.bake_lazy_loaders` function has been called.   It
              defaults to True so is an "opt out" flag.

          Setting this flag to False when baked queries are otherwise in
          use might be to reduce
          ORM memory use for this :func:`.relationship`, or to work around
          unresolved stability issues observed within the baked query
          cache system.

          .. versionadded:: 1.0.0

          .. seealso::

            :ref:`baked_toplevel`

        :param cascade:
          a comma-separated list of cascade rules which determines how
          Session operations should be "cascaded" from parent to child.
          This defaults to ``False``, which means the default cascade
          should be used - this default cascade is ``"save-update, merge"``.

          The available cascades are ``save-update``, ``merge``,
          ``expunge``, ``delete``, ``delete-orphan``, and ``refresh-expire``.
          An additional option, ``all`` indicates shorthand for
          ``"save-update, merge, refresh-expire,
          expunge, delete"``, and is often used as in ``"all, delete-orphan"``
          to indicate that related objects should follow along with the
          parent object in all cases, and be deleted when de-associated.

          .. seealso::

            :ref:`unitofwork_cascades` - Full detail on each of the available
            cascade options.

            :ref:`tutorial_delete_cascade` - Tutorial example describing
            a delete cascade.

        :param cascade_backrefs=True:
          a boolean value indicating if the ``save-update`` cascade should
          operate along an assignment event intercepted by a backref.
          When set to ``False``, the attribute managed by this relationship
          will not cascade an incoming transient object into the session of a
          persistent parent, if the event is received via backref.

          .. seealso::

            :ref:`backref_cascade` - Full discussion and examples on how
            the :paramref:`~.relationship.cascade_backrefs` option is used.

        :param collection_class:
          a class or callable that returns a new list-holding object. will
          be used in place of a plain list for storing elements.

          .. seealso::

            :ref:`custom_collections` - Introductory documentation and
            examples.

        :param comparator_factory:
          a class which extends :class:`.RelationshipProperty.Comparator`
          which provides custom SQL clause generation for comparison
          operations.

          .. seealso::

            :class:`.PropComparator` - some detail on redefining comparators
            at this level.

            :ref:`custom_comparators` - Brief intro to this feature.


        :param distinct_target_key=None:
          Indicate if a "subquery" eager load should apply the DISTINCT
          keyword to the innermost SELECT statement.  When left as ``None``,
          the DISTINCT keyword will be applied in those cases when the target
          columns do not comprise the full primary key of the target table.
          When set to ``True``, the DISTINCT keyword is applied to the
          innermost SELECT unconditionally.

          It may be desirable to set this flag to False when the DISTINCT is
          reducing performance of the innermost subquery beyond that of what
          duplicate innermost rows may be causing.

          .. versionadded:: 0.8.3 -
             :paramref:`~.relationship.distinct_target_key` allows the
             subquery eager loader to apply a DISTINCT modifier to the
             innermost SELECT.

          .. versionchanged:: 0.9.0 -
             :paramref:`~.relationship.distinct_target_key` now defaults to
             ``None``, so that the feature enables itself automatically for
             those cases where the innermost query targets a non-unique
             key.

          .. seealso::

            :ref:`loading_toplevel` - includes an introduction to subquery
            eager loading.

        :param doc:
          docstring which will be applied to the resulting descriptor.

        :param extension:
          an :class:`.AttributeExtension` instance, or list of extensions,
          which will be prepended to the list of attribute listeners for
          the resulting descriptor placed on the class.

          .. deprecated:: 0.7 Please see :class:`.AttributeEvents`.

        :param foreign_keys:

          a list of columns which are to be used as "foreign key"
          columns, or columns which refer to the value in a remote
          column, within the context of this :func:`.relationship`
          object's :paramref:`~.relationship.primaryjoin` condition.
          That is, if the :paramref:`~.relationship.primaryjoin`
          condition of this :func:`.relationship` is ``a.id ==
          b.a_id``, and the values in ``b.a_id`` are required to be
          present in ``a.id``, then the "foreign key" column of this
          :func:`.relationship` is ``b.a_id``.

          In normal cases, the :paramref:`~.relationship.foreign_keys`
          parameter is **not required.** :func:`.relationship` will
          automatically determine which columns in the
          :paramref:`~.relationship.primaryjoin` conditition are to be
          considered "foreign key" columns based on those
          :class:`.Column` objects that specify :class:`.ForeignKey`,
          or are otherwise listed as referencing columns in a
          :class:`.ForeignKeyConstraint` construct.
          :paramref:`~.relationship.foreign_keys` is only needed when:

            1. There is more than one way to construct a join from the local
               table to the remote table, as there are multiple foreign key
               references present.  Setting ``foreign_keys`` will limit the
               :func:`.relationship` to consider just those columns specified
               here as "foreign".

               .. versionchanged:: 0.8
                    A multiple-foreign key join ambiguity can be resolved by
                    setting the :paramref:`~.relationship.foreign_keys`
                    parameter alone, without the need to explicitly set
                    :paramref:`~.relationship.primaryjoin` as well.

            2. The :class:`.Table` being mapped does not actually have
               :class:`.ForeignKey` or :class:`.ForeignKeyConstraint`
               constructs present, often because the table
               was reflected from a database that does not support foreign key
               reflection (MySQL MyISAM).

            3. The :paramref:`~.relationship.primaryjoin` argument is used to
               construct a non-standard join condition, which makes use of
               columns or expressions that do not normally refer to their
               "parent" column, such as a join condition expressed by a
               complex comparison using a SQL function.

          The :func:`.relationship` construct will raise informative
          error messages that suggest the use of the
          :paramref:`~.relationship.foreign_keys` parameter when
          presented with an ambiguous condition.   In typical cases,
          if :func:`.relationship` doesn't raise any exceptions, the
          :paramref:`~.relationship.foreign_keys` parameter is usually
          not needed.

          :paramref:`~.relationship.foreign_keys` may also be passed as a
          callable function which is evaluated at mapper initialization time,
          and may be passed as a Python-evaluable string when using
          Declarative.

          .. seealso::

            :ref:`relationship_foreign_keys`

            :ref:`relationship_custom_foreign`

            :func:`.foreign` - allows direct annotation of the "foreign"
            columns within a :paramref:`~.relationship.primaryjoin` condition.

          .. versionadded:: 0.8
              The :func:`.foreign` annotation can also be applied
              directly to the :paramref:`~.relationship.primaryjoin`
              expression, which is an alternate, more specific system of
              describing which columns in a particular
              :paramref:`~.relationship.primaryjoin` should be considered
              "foreign".

        :param info: Optional data dictionary which will be populated into the
            :attr:`.MapperProperty.info` attribute of this object.

            .. versionadded:: 0.8

        :param innerjoin=False:
          when ``True``, joined eager loads will use an inner join to join
          against related tables instead of an outer join.  The purpose
          of this option is generally one of performance, as inner joins
          generally perform better than outer joins.

          This flag can be set to ``True`` when the relationship references an
          object via many-to-one using local foreign keys that are not
          nullable, or when the reference is one-to-one or a collection that
          is guaranteed to have one or at least one entry.

          The option supports the same "nested" and "unnested" options as
          that of :paramref:`.joinedload.innerjoin`.  See that flag
          for details on nested / unnested behaviors.

          .. seealso::

            :paramref:`.joinedload.innerjoin` - the option as specified by
            loader option, including detail on nesting behavior.

            :ref:`what_kind_of_loading` - Discussion of some details of
            various loader options.


        :param join_depth:
          when non-``None``, an integer value indicating how many levels
          deep "eager" loaders should join on a self-referring or cyclical
          relationship.  The number counts how many times the same Mapper
          shall be present in the loading condition along a particular join
          branch.  When left at its default of ``None``, eager loaders
          will stop chaining when they encounter a the same target mapper
          which is already higher up in the chain.  This option applies
          both to joined- and subquery- eager loaders.

          .. seealso::

            :ref:`self_referential_eager_loading` - Introductory documentation
            and examples.

        :param lazy='select': specifies
          how the related items should be loaded.  Default value is
          ``select``.  Values include:

          * ``select`` - items should be loaded lazily when the property is
            first accessed, using a separate SELECT statement, or identity map
            fetch for simple many-to-one references.

          * ``immediate`` - items should be loaded as the parents are loaded,
            using a separate SELECT statement, or identity map fetch for
            simple many-to-one references.

          * ``joined`` - items should be loaded "eagerly" in the same query as
            that of the parent, using a JOIN or LEFT OUTER JOIN.  Whether
            the join is "outer" or not is determined by the
            :paramref:`~.relationship.innerjoin` parameter.

          * ``subquery`` - items should be loaded "eagerly" as the parents are
            loaded, using one additional SQL statement, which issues a JOIN to
            a subquery of the original statement, for each collection
            requested.

          * ``noload`` - no loading should occur at any time.  This is to
            support "write-only" attributes, or attributes which are
            populated in some manner specific to the application.

          * ``dynamic`` - the attribute will return a pre-configured
            :class:`.Query` object for all read
            operations, onto which further filtering operations can be
            applied before iterating the results.  See
            the section :ref:`dynamic_relationship` for more details.

          * True - a synonym for 'select'

          * False - a synonym for 'joined'

          * None - a synonym for 'noload'

          .. seealso::

            :doc:`/orm/loading_relationships` - Full documentation on relationship loader
            configuration.

            :ref:`dynamic_relationship` - detail on the ``dynamic`` option.

        :param load_on_pending=False:
          Indicates loading behavior for transient or pending parent objects.

          When set to ``True``, causes the lazy-loader to
          issue a query for a parent object that is not persistent, meaning it
          has never been flushed.  This may take effect for a pending object
          when autoflush is disabled, or for a transient object that has been
          "attached" to a :class:`.Session` but is not part of its pending
          collection.

          The :paramref:`~.relationship.load_on_pending` flag does not improve
          behavior when the ORM is used normally - object references should be
          constructed at the object level, not at the foreign key level, so
          that they are present in an ordinary way before a flush proceeds.
          This flag is not not intended for general use.

          .. seealso::

              :meth:`.Session.enable_relationship_loading` - this method
              establishes "load on pending" behavior for the whole object, and
              also allows loading on objects that remain transient or
              detached.

        :param order_by:
          indicates the ordering that should be applied when loading these
          items.  :paramref:`~.relationship.order_by` is expected to refer to
          one of the :class:`.Column` objects to which the target class is
          mapped, or the attribute itself bound to the target class which
          refers to the column.

          :paramref:`~.relationship.order_by` may also be passed as a callable
          function which is evaluated at mapper initialization time, and may
          be passed as a Python-evaluable string when using Declarative.

        :param passive_deletes=False:
           Indicates loading behavior during delete operations.

           A value of True indicates that unloaded child items should not
           be loaded during a delete operation on the parent.  Normally,
           when a parent item is deleted, all child items are loaded so
           that they can either be marked as deleted, or have their
           foreign key to the parent set to NULL.  Marking this flag as
           True usually implies an ON DELETE <CASCADE|SET NULL> rule is in
           place which will handle updating/deleting child rows on the
           database side.

           Additionally, setting the flag to the string value 'all' will
           disable the "nulling out" of the child foreign keys, when there
           is no delete or delete-orphan cascade enabled.  This is
           typically used when a triggering or error raise scenario is in
           place on the database side.  Note that the foreign key
           attributes on in-session child objects will not be changed
           after a flush occurs so this is a very special use-case
           setting.

           .. seealso::

                :ref:`passive_deletes` - Introductory documentation
                and examples.

        :param passive_updates=True:
          Indicates the persistence behavior to take when a referenced
          primary key value changes in place, indicating that the referencing
          foreign key columns will also need their value changed.

          When True, it is assumed that ``ON UPDATE CASCADE`` is configured on
          the foreign key in the database, and that the database will
          handle propagation of an UPDATE from a source column to
          dependent rows.  When False, the SQLAlchemy :func:`.relationship`
          construct will attempt to emit its own UPDATE statements to
          modify related targets.  However note that SQLAlchemy **cannot**
          emit an UPDATE for more than one level of cascade.  Also,
          setting this flag to False is not compatible in the case where
          the database is in fact enforcing referential integrity, unless
          those constraints are explicitly "deferred", if the target backend
          supports it.

          It is highly advised that an application which is employing
          mutable primary keys keeps ``passive_updates`` set to True,
          and instead uses the referential integrity features of the database
          itself in order to handle the change efficiently and fully.

          .. seealso::

              :ref:`passive_updates` - Introductory documentation and
              examples.

              :paramref:`.mapper.passive_updates` - a similar flag which
              takes effect for joined-table inheritance mappings.

        :param post_update:
          this indicates that the relationship should be handled by a
          second UPDATE statement after an INSERT or before a
          DELETE. Currently, it also will issue an UPDATE after the
          instance was UPDATEd as well, although this technically should
          be improved. This flag is used to handle saving bi-directional
          dependencies between two individual rows (i.e. each row
          references the other), where it would otherwise be impossible to
          INSERT or DELETE both rows fully since one row exists before the
          other. Use this flag when a particular mapping arrangement will
          incur two rows that are dependent on each other, such as a table
          that has a one-to-many relationship to a set of child rows, and
          also has a column that references a single child row within that
          list (i.e. both tables contain a foreign key to each other). If
          a flush operation returns an error that a "cyclical
          dependency" was detected, this is a cue that you might want to
          use :paramref:`~.relationship.post_update` to "break" the cycle.

          .. seealso::

              :ref:`post_update` - Introductory documentation and examples.

        :param primaryjoin:
          a SQL expression that will be used as the primary
          join of this child object against the parent object, or in a
          many-to-many relationship the join of the primary object to the
          association table. By default, this value is computed based on the
          foreign key relationships of the parent and child tables (or
          association table).

          :paramref:`~.relationship.primaryjoin` may also be passed as a
          callable function which is evaluated at mapper initialization time,
          and may be passed as a Python-evaluable string when using
          Declarative.

          .. seealso::

              :ref:`relationship_primaryjoin`

        :param remote_side:
          used for self-referential relationships, indicates the column or
          list of columns that form the "remote side" of the relationship.

          :paramref:`.relationship.remote_side` may also be passed as a
          callable function which is evaluated at mapper initialization time,
          and may be passed as a Python-evaluable string when using
          Declarative.

          .. versionchanged:: 0.8
              The :func:`.remote` annotation can also be applied
              directly to the ``primaryjoin`` expression, which is an
              alternate, more specific system of describing which columns in a
              particular ``primaryjoin`` should be considered "remote".

          .. seealso::

            :ref:`self_referential` - in-depth explanation of how
            :paramref:`~.relationship.remote_side`
            is used to configure self-referential relationships.

            :func:`.remote` - an annotation function that accomplishes the
            same purpose as :paramref:`~.relationship.remote_side`, typically
            when a custom :paramref:`~.relationship.primaryjoin` condition
            is used.

        :param query_class:
          a :class:`.Query` subclass that will be used as the base of the
          "appender query" returned by a "dynamic" relationship, that
          is, a relationship that specifies ``lazy="dynamic"`` or was
          otherwise constructed using the :func:`.orm.dynamic_loader`
          function.

          .. seealso::

            :ref:`dynamic_relationship` - Introduction to "dynamic"
            relationship loaders.

        :param secondaryjoin:
          a SQL expression that will be used as the join of
          an association table to the child object. By default, this value is
          computed based on the foreign key relationships of the association
          and child tables.

          :paramref:`~.relationship.secondaryjoin` may also be passed as a
          callable function which is evaluated at mapper initialization time,
          and may be passed as a Python-evaluable string when using
          Declarative.

          .. seealso::

              :ref:`relationship_primaryjoin`

        :param single_parent:
          when True, installs a validator which will prevent objects
          from being associated with more than one parent at a time.
          This is used for many-to-one or many-to-many relationships that
          should be treated either as one-to-one or one-to-many.  Its usage
          is optional, except for :func:`.relationship` constructs which
          are many-to-one or many-to-many and also
          specify the ``delete-orphan`` cascade option.  The
          :func:`.relationship` construct itself will raise an error
          instructing when this option is required.

          .. seealso::

            :ref:`unitofwork_cascades` - includes detail on when the
            :paramref:`~.relationship.single_parent` flag may be appropriate.

        :param uselist:
          a boolean that indicates if this property should be loaded as a
          list or a scalar. In most cases, this value is determined
          automatically by :func:`.relationship` at mapper configuration
          time, based on the type and direction
          of the relationship - one to many forms a list, many to one
          forms a scalar, many to many is a list. If a scalar is desired
          where normally a list would be present, such as a bi-directional
          one-to-one relationship, set :paramref:`~.relationship.uselist` to
          False.

          The :paramref:`~.relationship.uselist` flag is also available on an
          existing :func:`.relationship` construct as a read-only attribute,
          which can be used to determine if this :func:`.relationship` deals
          with collections or scalar attributes::

              >>> User.addresses.property.uselist
              True

          .. seealso::

              :ref:`relationships_one_to_one` - Introduction to the "one to
              one" relationship pattern, which is typically when the
              :paramref:`~.relationship.uselist` flag is needed.

        :param viewonly=False:
          when set to True, the relationship is used only for loading objects,
          and not for any persistence operation.  A :func:`.relationship`
          which specifies :paramref:`~.relationship.viewonly` can work
          with a wider range of SQL operations within the
          :paramref:`~.relationship.primaryjoin` condition, including
          operations that feature the use of a variety of comparison operators
          as well as SQL functions such as :func:`~.sql.expression.cast`.  The
          :paramref:`~.relationship.viewonly` flag is also of general use when
          defining any kind of :func:`~.relationship` that doesn't represent
          the full set of related objects, to prevent modifications of the
          collection from resulting in persistence operations.


        """
        super(RelationshipProperty, self).__init__()

        self.uselist = uselist
        self.argument = argument
        self.secondary = secondary
        self.primaryjoin = primaryjoin
        self.secondaryjoin = secondaryjoin
        self.post_update = post_update
        self.direction = None
        self.viewonly = viewonly
        self.lazy = lazy
        self.single_parent = single_parent
        self._user_defined_foreign_keys = foreign_keys
        self.collection_class = collection_class
        self.passive_deletes = passive_deletes
        self.cascade_backrefs = cascade_backrefs
        self.passive_updates = passive_updates
        self.remote_side = remote_side
        self.enable_typechecks = enable_typechecks
        self.query_class = query_class
        self.innerjoin = innerjoin
        self.distinct_target_key = distinct_target_key
        self.doc = doc
        self.active_history = active_history
        self.join_depth = join_depth
        self.local_remote_pairs = _local_remote_pairs
        self.extension = extension
        self.bake_queries = bake_queries
        self.load_on_pending = load_on_pending
        self.comparator_factory = comparator_factory or \
            RelationshipProperty.Comparator
        self.comparator = self.comparator_factory(self, None)
        util.set_creation_order(self)

        if info is not None:
            self.info = info

        if strategy_class:
            self.strategy_class = strategy_class
        else:
            self.strategy_class = self._strategy_lookup(("lazy", self.lazy))

        self._reverse_property = set()

        self.cascade = cascade if cascade is not False \
            else "save-update, merge"

        self.order_by = order_by

        self.back_populates = back_populates

        if self.back_populates:
            if backref:
                raise sa_exc.ArgumentError(
                    "backref and back_populates keyword arguments "
                    "are mutually exclusive")
            self.backref = None
        else:
            self.backref = backref

    def instrument_class(self, mapper):
        attributes.register_descriptor(
            mapper.class_,
            self.key,
            comparator=self.comparator_factory(self, mapper),
            parententity=mapper,
            doc=self.doc,
        )

    class Comparator(PropComparator):
        """Produce boolean, comparison, and other operators for
        :class:`.RelationshipProperty` attributes.

        See the documentation for :class:`.PropComparator` for a brief
        overview of ORM level operator definition.

        See also:

        :class:`.PropComparator`

        :class:`.ColumnProperty.Comparator`

        :class:`.ColumnOperators`

        :ref:`types_operators`

        :attr:`.TypeEngine.comparator_factory`

        """

        _of_type = None

        def __init__(
                self, prop, parentmapper, adapt_to_entity=None, of_type=None):
            """Construction of :class:`.RelationshipProperty.Comparator`
            is internal to the ORM's attribute mechanics.

            """
            self.prop = prop
            self._parententity = parentmapper
            self._adapt_to_entity = adapt_to_entity
            if of_type:
                self._of_type = of_type

        def adapt_to_entity(self, adapt_to_entity):
            return self.__class__(self.property, self._parententity,
                                  adapt_to_entity=adapt_to_entity,
                                  of_type=self._of_type)

        @util.memoized_property
        def mapper(self):
            """The target :class:`.Mapper` referred to by this
            :class:`.RelationshipProperty.Comparator`.

            This is the "target" or "remote" side of the
            :func:`.relationship`.

            """
            return self.property.mapper

        @util.memoized_property
        def _parententity(self):
            return self.property.parent

        def _source_selectable(self):
            if self._adapt_to_entity:
                return self._adapt_to_entity.selectable
            else:
                return self.property.parent._with_polymorphic_selectable

        def __clause_element__(self):
            adapt_from = self._source_selectable()
            if self._of_type:
                of_type = inspect(self._of_type).mapper
            else:
                of_type = None

            pj, sj, source, dest, \
                secondary, target_adapter = self.property._create_joins(
                    source_selectable=adapt_from,
                    source_polymorphic=True,
                    of_type=of_type)
            if sj is not None:
                return pj & sj
            else:
                return pj

        def of_type(self, cls):
            """Produce a construct that represents a particular 'subtype' of
            attribute for the parent class.

            Currently this is usable in conjunction with :meth:`.Query.join`
            and :meth:`.Query.outerjoin`.

            """
            return RelationshipProperty.Comparator(
                self.property,
                self._parententity,
                adapt_to_entity=self._adapt_to_entity,
                of_type=cls)

        def in_(self, other):
            """Produce an IN clause - this is not implemented
            for :func:`~.orm.relationship`-based attributes at this time.

            """
            raise NotImplementedError('in_() not yet supported for '
                                      'relationships.  For a simple '
                                      'many-to-one, use in_() against '
                                      'the set of foreign key values.')

        __hash__ = None

        def __eq__(self, other):
            """Implement the ``==`` operator.

            In a many-to-one context, such as::

              MyClass.some_prop == <some object>

            this will typically produce a
            clause such as::

              mytable.related_id == <some id>

            Where ``<some id>`` is the primary key of the given
            object.

            The ``==`` operator provides partial functionality for non-
            many-to-one comparisons:

            * Comparisons against collections are not supported.
              Use :meth:`~.RelationshipProperty.Comparator.contains`.
            * Compared to a scalar one-to-many, will produce a
              clause that compares the target columns in the parent to
              the given target.
            * Compared to a scalar many-to-many, an alias
              of the association table will be rendered as
              well, forming a natural join that is part of the
              main body of the query. This will not work for
              queries that go beyond simple AND conjunctions of
              comparisons, such as those which use OR. Use
              explicit joins, outerjoins, or
              :meth:`~.RelationshipProperty.Comparator.has` for
              more comprehensive non-many-to-one scalar
              membership tests.
            * Comparisons against ``None`` given in a one-to-many
              or many-to-many context produce a NOT EXISTS clause.

            """
            if isinstance(other, (util.NoneType, expression.Null)):
                if self.property.direction in [ONETOMANY, MANYTOMANY]:
                    return ~self._criterion_exists()
                else:
                    return _orm_annotate(self.property._optimized_compare(
                        None, adapt_source=self.adapter))
            elif self.property.uselist:
                raise sa_exc.InvalidRequestError(
                    "Can't compare a collection to an object or collection; "
                    "use contains() to test for membership.")
            else:
                return _orm_annotate(
                    self.property._optimized_compare(
                        other, adapt_source=self.adapter))

        def _criterion_exists(self, criterion=None, **kwargs):
            if getattr(self, '_of_type', None):
                info = inspect(self._of_type)
                target_mapper, to_selectable, is_aliased_class = \
                    info.mapper, info.selectable, info.is_aliased_class
                if self.property._is_self_referential and not \
                        is_aliased_class:
                    to_selectable = to_selectable.alias()

                single_crit = target_mapper._single_table_criterion
                if single_crit is not None:
                    if criterion is not None:
                        criterion = single_crit & criterion
                    else:
                        criterion = single_crit
            else:
                is_aliased_class = False
                to_selectable = None

            if self.adapter:
                source_selectable = self._source_selectable()
            else:
                source_selectable = None

            pj, sj, source, dest, secondary, target_adapter = \
                self.property._create_joins(
                    dest_polymorphic=True,
                    dest_selectable=to_selectable,
                    source_selectable=source_selectable)

            for k in kwargs:
                crit = getattr(self.property.mapper.class_, k) == kwargs[k]
                if criterion is None:
                    criterion = crit
                else:
                    criterion = criterion & crit

            # annotate the *local* side of the join condition, in the case
            # of pj + sj this is the full primaryjoin, in the case of just
            # pj its the local side of the primaryjoin.
            if sj is not None:
                j = _orm_annotate(pj) & sj
            else:
                j = _orm_annotate(pj, exclude=self.property.remote_side)

            if criterion is not None and target_adapter and not \
                    is_aliased_class:
                # limit this adapter to annotated only?
                criterion = target_adapter.traverse(criterion)

            # only have the "joined left side" of what we
            # return be subject to Query adaption.  The right
            # side of it is used for an exists() subquery and
            # should not correlate or otherwise reach out
            # to anything in the enclosing query.
            if criterion is not None:
                criterion = criterion._annotate(
                    {'no_replacement_traverse': True})

            crit = j & sql.True_._ifnone(criterion)

            ex = sql.exists([1], crit, from_obj=dest).correlate_except(dest)
            if secondary is not None:
                ex = ex.correlate_except(secondary)
            return ex

        def any(self, criterion=None, **kwargs):
            """Produce an expression that tests a collection against
            particular criterion, using EXISTS.

            An expression like::

                session.query(MyClass).filter(
                    MyClass.somereference.any(SomeRelated.x==2)
                )


            Will produce a query like::

                SELECT * FROM my_table WHERE
                EXISTS (SELECT 1 FROM related WHERE related.my_id=my_table.id
                AND related.x=2)

            Because :meth:`~.RelationshipProperty.Comparator.any` uses
            a correlated subquery, its performance is not nearly as
            good when compared against large target tables as that of
            using a join.

            :meth:`~.RelationshipProperty.Comparator.any` is particularly
            useful for testing for empty collections::

                session.query(MyClass).filter(
                    ~MyClass.somereference.any()
                )

            will produce::

                SELECT * FROM my_table WHERE
                NOT EXISTS (SELECT 1 FROM related WHERE
                related.my_id=my_table.id)

            :meth:`~.RelationshipProperty.Comparator.any` is only
            valid for collections, i.e. a :func:`.relationship`
            that has ``uselist=True``.  For scalar references,
            use :meth:`~.RelationshipProperty.Comparator.has`.

            """
            if not self.property.uselist:
                raise sa_exc.InvalidRequestError(
                    "'any()' not implemented for scalar "
                    "attributes. Use has()."
                )

            return self._criterion_exists(criterion, **kwargs)

        def has(self, criterion=None, **kwargs):
            """Produce an expression that tests a scalar reference against
            particular criterion, using EXISTS.

            An expression like::

                session.query(MyClass).filter(
                    MyClass.somereference.has(SomeRelated.x==2)
                )


            Will produce a query like::

                SELECT * FROM my_table WHERE
                EXISTS (SELECT 1 FROM related WHERE
                related.id==my_table.related_id AND related.x=2)

            Because :meth:`~.RelationshipProperty.Comparator.has` uses
            a correlated subquery, its performance is not nearly as
            good when compared against large target tables as that of
            using a join.

            :meth:`~.RelationshipProperty.Comparator.has` is only
            valid for scalar references, i.e. a :func:`.relationship`
            that has ``uselist=False``.  For collection references,
            use :meth:`~.RelationshipProperty.Comparator.any`.

            """
            if self.property.uselist:
                raise sa_exc.InvalidRequestError(
                    "'has()' not implemented for collections.  "
                    "Use any().")
            return self._criterion_exists(criterion, **kwargs)

        def contains(self, other, **kwargs):
            """Return a simple expression that tests a collection for
            containment of a particular item.

            :meth:`~.RelationshipProperty.Comparator.contains` is
            only valid for a collection, i.e. a
            :func:`~.orm.relationship` that implements
            one-to-many or many-to-many with ``uselist=True``.

            When used in a simple one-to-many context, an
            expression like::

                MyClass.contains(other)

            Produces a clause like::

                mytable.id == <some id>

            Where ``<some id>`` is the value of the foreign key
            attribute on ``other`` which refers to the primary
            key of its parent object. From this it follows that
            :meth:`~.RelationshipProperty.Comparator.contains` is
            very useful when used with simple one-to-many
            operations.

            For many-to-many operations, the behavior of
            :meth:`~.RelationshipProperty.Comparator.contains`
            has more caveats. The association table will be
            rendered in the statement, producing an "implicit"
            join, that is, includes multiple tables in the FROM
            clause which are equated in the WHERE clause::

                query(MyClass).filter(MyClass.contains(other))

            Produces a query like::

                SELECT * FROM my_table, my_association_table AS
                my_association_table_1 WHERE
                my_table.id = my_association_table_1.parent_id
                AND my_association_table_1.child_id = <some id>

            Where ``<some id>`` would be the primary key of
            ``other``. From the above, it is clear that
            :meth:`~.RelationshipProperty.Comparator.contains`
            will **not** work with many-to-many collections when
            used in queries that move beyond simple AND
            conjunctions, such as multiple
            :meth:`~.RelationshipProperty.Comparator.contains`
            expressions joined by OR. In such cases subqueries or
            explicit "outer joins" will need to be used instead.
            See :meth:`~.RelationshipProperty.Comparator.any` for
            a less-performant alternative using EXISTS, or refer
            to :meth:`.Query.outerjoin` as well as :ref:`ormtutorial_joins`
            for more details on constructing outer joins.

            """
            if not self.property.uselist:
                raise sa_exc.InvalidRequestError(
                    "'contains' not implemented for scalar "
                    "attributes.  Use ==")
            clause = self.property._optimized_compare(
                other, adapt_source=self.adapter)

            if self.property.secondaryjoin is not None:
                clause.negation_clause = \
                    self.__negated_contains_or_equals(other)

            return clause

        def __negated_contains_or_equals(self, other):
            if self.property.direction == MANYTOONE:
                state = attributes.instance_state(other)

                def state_bindparam(x, state, col):
                    dict_ = state.dict
                    return sql.bindparam(
                        x, unique=True,
                        callable_=self.property._get_attr_w_warn_on_none(
                            col,
                            self.property.mapper._get_state_attr_by_column,
                            state, dict_, col, passive=attributes.PASSIVE_OFF
                        )
                    )

                def adapt(col):
                    if self.adapter:
                        return self.adapter(col)
                    else:
                        return col

                if self.property._use_get:
                    return sql.and_(*[
                        sql.or_(
                            adapt(x) != state_bindparam(adapt(x), state, y),
                            adapt(x) == None)
                        for (x, y) in self.property.local_remote_pairs])

            criterion = sql.and_(*[
                x == y for (x, y) in
                zip(
                    self.property.mapper.primary_key,
                    self.property.mapper.primary_key_from_instance(other)
                )
            ])

            return ~self._criterion_exists(criterion)

        def __ne__(self, other):
            """Implement the ``!=`` operator.

            In a many-to-one context, such as::

              MyClass.some_prop != <some object>

            This will typically produce a clause such as::

              mytable.related_id != <some id>

            Where ``<some id>`` is the primary key of the
            given object.

            The ``!=`` operator provides partial functionality for non-
            many-to-one comparisons:

            * Comparisons against collections are not supported.
              Use
              :meth:`~.RelationshipProperty.Comparator.contains`
              in conjunction with :func:`~.expression.not_`.
            * Compared to a scalar one-to-many, will produce a
              clause that compares the target columns in the parent to
              the given target.
            * Compared to a scalar many-to-many, an alias
              of the association table will be rendered as
              well, forming a natural join that is part of the
              main body of the query. This will not work for
              queries that go beyond simple AND conjunctions of
              comparisons, such as those which use OR. Use
              explicit joins, outerjoins, or
              :meth:`~.RelationshipProperty.Comparator.has` in
              conjunction with :func:`~.expression.not_` for
              more comprehensive non-many-to-one scalar
              membership tests.
            * Comparisons against ``None`` given in a one-to-many
              or many-to-many context produce an EXISTS clause.

            """
            if isinstance(other, (util.NoneType, expression.Null)):
                if self.property.direction == MANYTOONE:
                    return _orm_annotate(~self.property._optimized_compare(
                        None, adapt_source=self.adapter))

                else:
                    return self._criterion_exists()
            elif self.property.uselist:
                raise sa_exc.InvalidRequestError(
                    "Can't compare a collection"
                    " to an object or collection; use "
                    "contains() to test for membership.")
            else:
                return _orm_annotate(self.__negated_contains_or_equals(other))

        @util.memoized_property
        def property(self):
            if mapperlib.Mapper._new_mappers:
                mapperlib.Mapper._configure_all()
            return self.prop

    def _with_parent(self, instance, alias_secondary=True):
        assert instance is not None
        return self._optimized_compare(
            instance, value_is_parent=True, alias_secondary=alias_secondary)

    def _optimized_compare(self, state, value_is_parent=False,
                           adapt_source=None,
                           alias_secondary=True):
        if state is not None:
            state = attributes.instance_state(state)

        reverse_direction = not value_is_parent

        if state is None:
            return self._lazy_none_clause(
                reverse_direction,
                adapt_source=adapt_source)

        if not reverse_direction:
            criterion, bind_to_col = \
                self._lazy_strategy._lazywhere, \
                self._lazy_strategy._bind_to_col
        else:
            criterion, bind_to_col = \
                self._lazy_strategy._rev_lazywhere, \
                self._lazy_strategy._rev_bind_to_col

        if reverse_direction:
            mapper = self.mapper
        else:
            mapper = self.parent

        dict_ = attributes.instance_dict(state.obj())

        def visit_bindparam(bindparam):
            if bindparam._identifying_key in bind_to_col:
                bindparam.callable = self._get_attr_w_warn_on_none(
                    bind_to_col[bindparam._identifying_key],
                    mapper._get_state_attr_by_column,
                    state, dict_,
                    bind_to_col[bindparam._identifying_key],
                    passive=attributes.PASSIVE_OFF)

        if self.secondary is not None and alias_secondary:
            criterion = ClauseAdapter(
                self.secondary.alias()).\
                traverse(criterion)

        criterion = visitors.cloned_traverse(
            criterion, {}, {'bindparam': visit_bindparam})

        if adapt_source:
            criterion = adapt_source(criterion)
        return criterion

    def _get_attr_w_warn_on_none(self, column, fn, *arg, **kw):
        def _go():
            value = fn(*arg, **kw)
            if value is None:
                util.warn(
                    "Got None for value of column %s; this is unsupported "
                    "for a relationship comparison and will not "
                    "currently produce an IS comparison "
                    "(but may in a future release)" % column)
            return value
        return _go

    def _lazy_none_clause(self, reverse_direction=False, adapt_source=None):
        if not reverse_direction:
            criterion, bind_to_col = \
                self._lazy_strategy._lazywhere, \
                self._lazy_strategy._bind_to_col
        else:
            criterion, bind_to_col = \
                self._lazy_strategy._rev_lazywhere, \
                self._lazy_strategy._rev_bind_to_col

        criterion = adapt_criterion_to_null(criterion, bind_to_col)

        if adapt_source:
            criterion = adapt_source(criterion)
        return criterion

    def __str__(self):
        return str(self.parent.class_.__name__) + "." + self.key

    def merge(self,
              session,
              source_state,
              source_dict,
              dest_state,
              dest_dict,
              load, _recursive):

        if load:
            for r in self._reverse_property:
                if (source_state, r) in _recursive:
                    return

        if "merge" not in self._cascade:
            return

        if self.key not in source_dict:
            return

        if self.uselist:
            instances = source_state.get_impl(self.key).\
                get(source_state, source_dict)
            if hasattr(instances, '_sa_adapter'):
                # convert collections to adapters to get a true iterator
                instances = instances._sa_adapter

            if load:
                # for a full merge, pre-load the destination collection,
                # so that individual _merge of each item pulls from identity
                # map for those already present.
                # also assumes CollectionAttrbiuteImpl behavior of loading
                # "old" list in any case
                dest_state.get_impl(self.key).get(dest_state, dest_dict)

            dest_list = []
            for current in instances:
                current_state = attributes.instance_state(current)
                current_dict = attributes.instance_dict(current)
                _recursive[(current_state, self)] = True
                obj = session._merge(current_state, current_dict,
                                     load=load, _recursive=_recursive)
                if obj is not None:
                    dest_list.append(obj)

            if not load:
                coll = attributes.init_state_collection(dest_state,
                                                        dest_dict, self.key)
                for c in dest_list:
                    coll.append_without_event(c)
            else:
                dest_state.get_impl(self.key)._set_iterable(
                    dest_state, dest_dict, dest_list)
        else:
            current = source_dict[self.key]
            if current is not None:
                current_state = attributes.instance_state(current)
                current_dict = attributes.instance_dict(current)
                _recursive[(current_state, self)] = True
                obj = session._merge(current_state, current_dict,
                                     load=load, _recursive=_recursive)
            else:
                obj = None

            if not load:
                dest_dict[self.key] = obj
            else:
                dest_state.get_impl(self.key).set(dest_state,
                                                  dest_dict, obj, None)

    def _value_as_iterable(self, state, dict_, key,
                           passive=attributes.PASSIVE_OFF):
        """Return a list of tuples (state, obj) for the given
        key.

        returns an empty list if the value is None/empty/PASSIVE_NO_RESULT
        """

        impl = state.manager[key].impl
        x = impl.get(state, dict_, passive=passive)
        if x is attributes.PASSIVE_NO_RESULT or x is None:
            return []
        elif hasattr(impl, 'get_collection'):
            return [
                (attributes.instance_state(o), o) for o in
                impl.get_collection(state, dict_, x, passive=passive)
            ]
        else:
            return [(attributes.instance_state(x), x)]

    def cascade_iterator(self, type_, state, dict_,
                         visited_states, halt_on=None):
        # assert type_ in self._cascade

        # only actively lazy load on the 'delete' cascade
        if type_ != 'delete' or self.passive_deletes:
            passive = attributes.PASSIVE_NO_INITIALIZE
        else:
            passive = attributes.PASSIVE_OFF

        if type_ == 'save-update':
            tuples = state.manager[self.key].impl.\
                get_all_pending(state, dict_)

        else:
            tuples = self._value_as_iterable(state, dict_, self.key,
                                             passive=passive)

        skip_pending = type_ == 'refresh-expire' and 'delete-orphan' \
            not in self._cascade

        for instance_state, c in tuples:
            if instance_state in visited_states:
                continue

            if c is None:
                # would like to emit a warning here, but
                # would not be consistent with collection.append(None)
                # current behavior of silently skipping.
                # see [ticket:2229]
                continue

            instance_dict = attributes.instance_dict(c)

            if halt_on and halt_on(instance_state):
                continue

            if skip_pending and not instance_state.key:
                continue

            instance_mapper = instance_state.manager.mapper

            if not instance_mapper.isa(self.mapper.class_manager.mapper):
                raise AssertionError("Attribute '%s' on class '%s' "
                                     "doesn't handle objects "
                                     "of type '%s'" % (
                                         self.key,
                                         self.parent.class_,
                                         c.__class__
                                     ))

            visited_states.add(instance_state)

            yield c, instance_mapper, instance_state, instance_dict

    def _add_reverse_property(self, key):
        other = self.mapper.get_property(key, _configure_mappers=False)
        self._reverse_property.add(other)
        other._reverse_property.add(self)

        if not other.mapper.common_parent(self.parent):
            raise sa_exc.ArgumentError(
                'reverse_property %r on '
                'relationship %s references relationship %s, which '
                'does not reference mapper %s' %
                (key, self, other, self.parent))

        if self.direction in (ONETOMANY, MANYTOONE) and self.direction \
                == other.direction:
            raise sa_exc.ArgumentError(
                '%s and back-reference %s are '
                'both of the same direction %r.  Did you mean to '
                'set remote_side on the many-to-one side ?' %
                (other, self, self.direction))

    @util.memoized_property
    def mapper(self):
        """Return the targeted :class:`.Mapper` for this
        :class:`.RelationshipProperty`.

        This is a lazy-initializing static attribute.

        """
        if util.callable(self.argument) and \
                not isinstance(self.argument, (type, mapperlib.Mapper)):
            argument = self.argument()
        else:
            argument = self.argument

        if isinstance(argument, type):
            mapper_ = mapperlib.class_mapper(argument,
                                             configure=False)
        elif isinstance(self.argument, mapperlib.Mapper):
            mapper_ = argument
        else:
            raise sa_exc.ArgumentError(
                "relationship '%s' expects "
                "a class or a mapper argument (received: %s)"
                % (self.key, type(argument)))
        return mapper_

    @util.memoized_property
    @util.deprecated("0.7", "Use .target")
    def table(self):
        """Return the selectable linked to this
        :class:`.RelationshipProperty` object's target
        :class:`.Mapper`.
        """
        return self.target

    def do_init(self):
        self._check_conflicts()
        self._process_dependent_arguments()
        self._setup_join_conditions()
        self._check_cascade_settings(self._cascade)
        self._post_init()
        self._generate_backref()
        self._join_condition._warn_for_conflicting_sync_targets()
        super(RelationshipProperty, self).do_init()
        self._lazy_strategy = self._get_strategy((("lazy", "select"),))

    def _process_dependent_arguments(self):
        """Convert incoming configuration arguments to their
        proper form.

        Callables are resolved, ORM annotations removed.

        """
        # accept callables for other attributes which may require
        # deferred initialization.  This technique is used
        # by declarative "string configs" and some recipes.
        for attr in (
            'order_by', 'primaryjoin', 'secondaryjoin',
            'secondary', '_user_defined_foreign_keys', 'remote_side',
        ):
            attr_value = getattr(self, attr)
            if util.callable(attr_value):
                setattr(self, attr, attr_value())

        # remove "annotations" which are present if mapped class
        # descriptors are used to create the join expression.
        for attr in 'primaryjoin', 'secondaryjoin':
            val = getattr(self, attr)
            if val is not None:
                setattr(self, attr, _orm_deannotate(
                    expression._only_column_elements(val, attr))
                )

        # ensure expressions in self.order_by, foreign_keys,
        # remote_side are all columns, not strings.
        if self.order_by is not False and self.order_by is not None:
            self.order_by = [
                expression._only_column_elements(x, "order_by")
                for x in
                util.to_list(self.order_by)]

        self._user_defined_foreign_keys = \
            util.column_set(
                expression._only_column_elements(x, "foreign_keys")
                for x in util.to_column_set(
                    self._user_defined_foreign_keys
                ))

        self.remote_side = \
            util.column_set(
                expression._only_column_elements(x, "remote_side")
                for x in
                util.to_column_set(self.remote_side))

        self.target = self.mapper.mapped_table

    def _setup_join_conditions(self):
        self._join_condition = jc = JoinCondition(
            parent_selectable=self.parent.mapped_table,
            child_selectable=self.mapper.mapped_table,
            parent_local_selectable=self.parent.local_table,
            child_local_selectable=self.mapper.local_table,
            primaryjoin=self.primaryjoin,
            secondary=self.secondary,
            secondaryjoin=self.secondaryjoin,
            parent_equivalents=self.parent._equivalent_columns,
            child_equivalents=self.mapper._equivalent_columns,
            consider_as_foreign_keys=self._user_defined_foreign_keys,
            local_remote_pairs=self.local_remote_pairs,
            remote_side=self.remote_side,
            self_referential=self._is_self_referential,
            prop=self,
            support_sync=not self.viewonly,
            can_be_synced_fn=self._columns_are_mapped
        )
        self.primaryjoin = jc.deannotated_primaryjoin
        self.secondaryjoin = jc.deannotated_secondaryjoin
        self.direction = jc.direction
        self.local_remote_pairs = jc.local_remote_pairs
        self.remote_side = jc.remote_columns
        self.local_columns = jc.local_columns
        self.synchronize_pairs = jc.synchronize_pairs
        self._calculated_foreign_keys = jc.foreign_key_columns
        self.secondary_synchronize_pairs = jc.secondary_synchronize_pairs

    def _check_conflicts(self):
        """Test that this relationship is legal, warn about
        inheritance conflicts."""

        if self.parent.non_primary and not mapperlib.class_mapper(
                self.parent.class_,
                configure=False).has_property(self.key):
            raise sa_exc.ArgumentError(
                "Attempting to assign a new "
                "relationship '%s' to a non-primary mapper on "
                "class '%s'.  New relationships can only be added "
                "to the primary mapper, i.e. the very first mapper "
                "created for class '%s' " %
                (self.key, self.parent.class_.__name__,
                 self.parent.class_.__name__))

        # check for conflicting relationship() on superclass
        if not self.parent.concrete:
            for inheriting in self.parent.iterate_to_root():
                if inheriting is not self.parent \
                        and inheriting.has_property(self.key):
                    util.warn("Warning: relationship '%s' on mapper "
                              "'%s' supersedes the same relationship "
                              "on inherited mapper '%s'; this can "
                              "cause dependency issues during flush"
                              % (self.key, self.parent, inheriting))

    def _get_cascade(self):
        """Return the current cascade setting for this
        :class:`.RelationshipProperty`.
        """
        return self._cascade

    def _set_cascade(self, cascade):
        cascade = CascadeOptions(cascade)
        if 'mapper' in self.__dict__:
            self._check_cascade_settings(cascade)
        self._cascade = cascade

        if self._dependency_processor:
            self._dependency_processor.cascade = cascade

    cascade = property(_get_cascade, _set_cascade)

    def _check_cascade_settings(self, cascade):
        if cascade.delete_orphan and not self.single_parent \
            and (self.direction is MANYTOMANY or self.direction
                 is MANYTOONE):
            raise sa_exc.ArgumentError(
                'On %s, delete-orphan cascade is not supported '
                'on a many-to-many or many-to-one relationship '
                'when single_parent is not set.   Set '
                'single_parent=True on the relationship().'
                % self)
        if self.direction is MANYTOONE and self.passive_deletes:
            util.warn("On %s, 'passive_deletes' is normally configured "
                      "on one-to-many, one-to-one, many-to-many "
                      "relationships only."
                      % self)

        if self.passive_deletes == 'all' and \
            ("delete" in cascade or
             "delete-orphan" in cascade):
            raise sa_exc.ArgumentError(
                "On %s, can't set passive_deletes='all' in conjunction "
                "with 'delete' or 'delete-orphan' cascade" % self)

        if cascade.delete_orphan:
            self.mapper.primary_mapper()._delete_orphans.append(
                (self.key, self.parent.class_)
            )

    def _columns_are_mapped(self, *cols):
        """Return True if all columns in the given collection are
        mapped by the tables referenced by this :class:`.Relationship`.

        """
        for c in cols:
            if self.secondary is not None \
                    and self.secondary.c.contains_column(c):
                continue
            if not self.parent.mapped_table.c.contains_column(c) and \
                    not self.target.c.contains_column(c):
                return False
        return True

    def _generate_backref(self):
        """Interpret the 'backref' instruction to create a
        :func:`.relationship` complementary to this one."""

        if self.parent.non_primary:
            return
        if self.backref is not None and not self.back_populates:
            if isinstance(self.backref, util.string_types):
                backref_key, kwargs = self.backref, {}
            else:
                backref_key, kwargs = self.backref
            mapper = self.mapper.primary_mapper()

            check = set(mapper.iterate_to_root()).\
                union(mapper.self_and_descendants)
            for m in check:
                if m.has_property(backref_key):
                    raise sa_exc.ArgumentError(
                        "Error creating backref "
                        "'%s' on relationship '%s': property of that "
                        "name exists on mapper '%s'" %
                        (backref_key, self, m))

            # determine primaryjoin/secondaryjoin for the
            # backref.  Use the one we had, so that
            # a custom join doesn't have to be specified in
            # both directions.
            if self.secondary is not None:
                # for many to many, just switch primaryjoin/
                # secondaryjoin.   use the annotated
                # pj/sj on the _join_condition.
                pj = kwargs.pop(
                    'primaryjoin',
                    self._join_condition.secondaryjoin_minus_local)
                sj = kwargs.pop(
                    'secondaryjoin',
                    self._join_condition.primaryjoin_minus_local)
            else:
                pj = kwargs.pop(
                    'primaryjoin',
                    self._join_condition.primaryjoin_reverse_remote)
                sj = kwargs.pop('secondaryjoin', None)
                if sj:
                    raise sa_exc.InvalidRequestError(
                        "Can't assign 'secondaryjoin' on a backref "
                        "against a non-secondary relationship."
                    )

            foreign_keys = kwargs.pop('foreign_keys',
                                      self._user_defined_foreign_keys)
            parent = self.parent.primary_mapper()
            kwargs.setdefault('viewonly', self.viewonly)
            kwargs.setdefault('post_update', self.post_update)
            kwargs.setdefault('passive_updates', self.passive_updates)
            self.back_populates = backref_key
            relationship = RelationshipProperty(
                parent, self.secondary,
                pj, sj,
                foreign_keys=foreign_keys,
                back_populates=self.key,
                **kwargs)
            mapper._configure_property(backref_key, relationship)

        if self.back_populates:
            self._add_reverse_property(self.back_populates)

    def _post_init(self):
        if self.uselist is None:
            self.uselist = self.direction is not MANYTOONE
        if not self.viewonly:
            self._dependency_processor = \
                dependency.DependencyProcessor.from_relationship(self)

    @util.memoized_property
    def _use_get(self):
        """memoize the 'use_get' attribute of this RelationshipLoader's
        lazyloader."""

        strategy = self._lazy_strategy
        return strategy.use_get

    @util.memoized_property
    def _is_self_referential(self):
        return self.mapper.common_parent(self.parent)

    def _create_joins(self, source_polymorphic=False,
                      source_selectable=None, dest_polymorphic=False,
                      dest_selectable=None, of_type=None):
        if source_selectable is None:
            if source_polymorphic and self.parent.with_polymorphic:
                source_selectable = self.parent._with_polymorphic_selectable

        aliased = False
        if dest_selectable is None:
            if dest_polymorphic and self.mapper.with_polymorphic:
                dest_selectable = self.mapper._with_polymorphic_selectable
                aliased = True
            else:
                dest_selectable = self.mapper.mapped_table

            if self._is_self_referential and source_selectable is None:
                dest_selectable = dest_selectable.alias()
                aliased = True
        else:
            aliased = True

        dest_mapper = of_type or self.mapper

        single_crit = dest_mapper._single_table_criterion
        aliased = aliased or (source_selectable is not None)

        primaryjoin, secondaryjoin, secondary, target_adapter, dest_selectable = \
            self._join_condition.join_targets(
                source_selectable, dest_selectable, aliased, single_crit
            )
        if source_selectable is None:
            source_selectable = self.parent.local_table
        if dest_selectable is None:
            dest_selectable = self.mapper.local_table
        return (primaryjoin, secondaryjoin, source_selectable,
                dest_selectable, secondary, target_adapter)


def _annotate_columns(element, annotations):
    def clone(elem):
        if isinstance(elem, expression.ColumnClause):
            elem = elem._annotate(annotations.copy())
        elem._copy_internals(clone=clone)
        return elem

    if element is not None:
        element = clone(element)
    return element


class JoinCondition(object):
    def __init__(self,
                 parent_selectable,
                 child_selectable,
                 parent_local_selectable,
                 child_local_selectable,
                 primaryjoin=None,
                 secondary=None,
                 secondaryjoin=None,
                 parent_equivalents=None,
                 child_equivalents=None,
                 consider_as_foreign_keys=None,
                 local_remote_pairs=None,
                 remote_side=None,
                 self_referential=False,
                 prop=None,
                 support_sync=True,
                 can_be_synced_fn=lambda *c: True
                 ):
        self.parent_selectable = parent_selectable
        self.parent_local_selectable = parent_local_selectable
        self.child_selectable = child_selectable
        self.child_local_selectable = child_local_selectable
        self.parent_equivalents = parent_equivalents
        self.child_equivalents = child_equivalents
        self.primaryjoin = primaryjoin
        self.secondaryjoin = secondaryjoin
        self.secondary = secondary
        self.consider_as_foreign_keys = consider_as_foreign_keys
        self._local_remote_pairs = local_remote_pairs
        self._remote_side = remote_side
        self.prop = prop
        self.self_referential = self_referential
        self.support_sync = support_sync
        self.can_be_synced_fn = can_be_synced_fn
        self._determine_joins()
        self._annotate_fks()
        self._annotate_remote()
        self._annotate_local()
        self._setup_pairs()
        self._check_foreign_cols(self.primaryjoin, True)
        if self.secondaryjoin is not None:
            self._check_foreign_cols(self.secondaryjoin, False)
        self._determine_direction()
        self._check_remote_side()
        self._log_joins()

    def _log_joins(self):
        if self.prop is None:
            return
        log = self.prop.logger
        log.info('%s setup primary join %s', self.prop,
                 self.primaryjoin)
        log.info('%s setup secondary join %s', self.prop,
                 self.secondaryjoin)
        log.info('%s synchronize pairs [%s]', self.prop,
                 ','.join('(%s => %s)' % (l, r) for (l, r) in
                          self.synchronize_pairs))
        log.info('%s secondary synchronize pairs [%s]', self.prop,
                 ','.join('(%s => %s)' % (l, r) for (l, r) in
                          self.secondary_synchronize_pairs or []))
        log.info('%s local/remote pairs [%s]', self.prop,
                 ','.join('(%s / %s)' % (l, r) for (l, r) in
                          self.local_remote_pairs))
        log.info('%s remote columns [%s]', self.prop,
                 ','.join('%s' % col for col in self.remote_columns)
                 )
        log.info('%s local columns [%s]', self.prop,
                 ','.join('%s' % col for col in self.local_columns)
                 )
        log.info('%s relationship direction %s', self.prop,
                 self.direction)

    def _determine_joins(self):
        """Determine the 'primaryjoin' and 'secondaryjoin' attributes,
        if not passed to the constructor already.

        This is based on analysis of the foreign key relationships
        between the parent and target mapped selectables.

        """
        if self.secondaryjoin is not None and self.secondary is None:
            raise sa_exc.ArgumentError(
                "Property %s specified with secondary "
                "join condition but "
                "no secondary argument" % self.prop)

        # find a join between the given mapper's mapped table and
        # the given table. will try the mapper's local table first
        # for more specificity, then if not found will try the more
        # general mapped table, which in the case of inheritance is
        # a join.
        try:
            consider_as_foreign_keys = self.consider_as_foreign_keys or None
            if self.secondary is not None:
                if self.secondaryjoin is None:
                    self.secondaryjoin = \
                        join_condition(
                            self.child_selectable,
                            self.secondary,
                            a_subset=self.child_local_selectable,
                            consider_as_foreign_keys=consider_as_foreign_keys
                        )
                if self.primaryjoin is None:
                    self.primaryjoin = \
                        join_condition(
                            self.parent_selectable,
                            self.secondary,
                            a_subset=self.parent_local_selectable,
                            consider_as_foreign_keys=consider_as_foreign_keys
                        )
            else:
                if self.primaryjoin is None:
                    self.primaryjoin = \
                        join_condition(
                            self.parent_selectable,
                            self.child_selectable,
                            a_subset=self.parent_local_selectable,
                            consider_as_foreign_keys=consider_as_foreign_keys
                        )
        except sa_exc.NoForeignKeysError:
            if self.secondary is not None:
                raise sa_exc.NoForeignKeysError(
                    "Could not determine join "
                    "condition between parent/child tables on "
                    "relationship %s - there are no foreign keys "
                    "linking these tables via secondary table '%s'.  "
                    "Ensure that referencing columns are associated "
                    "with a ForeignKey or ForeignKeyConstraint, or "
                    "specify 'primaryjoin' and 'secondaryjoin' "
                    "expressions." % (self.prop, self.secondary))
            else:
                raise sa_exc.NoForeignKeysError(
                    "Could not determine join "
                    "condition between parent/child tables on "
                    "relationship %s - there are no foreign keys "
                    "linking these tables.  "
                    "Ensure that referencing columns are associated "
                    "with a ForeignKey or ForeignKeyConstraint, or "
                    "specify a 'primaryjoin' expression." % self.prop)
        except sa_exc.AmbiguousForeignKeysError:
            if self.secondary is not None:
                raise sa_exc.AmbiguousForeignKeysError(
                    "Could not determine join "
                    "condition between parent/child tables on "
                    "relationship %s - there are multiple foreign key "
                    "paths linking the tables via secondary table '%s'.  "
                    "Specify the 'foreign_keys' "
                    "argument, providing a list of those columns which "
                    "should be counted as containing a foreign key "
                    "reference from the secondary table to each of the "
                    "parent and child tables."
                    % (self.prop, self.secondary))
            else:
                raise sa_exc.AmbiguousForeignKeysError(
                    "Could not determine join "
                    "condition between parent/child tables on "
                    "relationship %s - there are multiple foreign key "
                    "paths linking the tables.  Specify the "
                    "'foreign_keys' argument, providing a list of those "
                    "columns which should be counted as containing a "
                    "foreign key reference to the parent table."
                    % self.prop)

    @property
    def primaryjoin_minus_local(self):
        return _deep_deannotate(self.primaryjoin, values=("local", "remote"))

    @property
    def secondaryjoin_minus_local(self):
        return _deep_deannotate(self.secondaryjoin,
                                values=("local", "remote"))

    @util.memoized_property
    def primaryjoin_reverse_remote(self):
        """Return the primaryjoin condition suitable for the
        "reverse" direction.

        If the primaryjoin was delivered here with pre-existing
        "remote" annotations, the local/remote annotations
        are reversed.  Otherwise, the local/remote annotations
        are removed.

        """
        if self._has_remote_annotations:
            def replace(element):
                if "remote" in element._annotations:
                    v = element._annotations.copy()
                    del v['remote']
                    v['local'] = True
                    return element._with_annotations(v)
                elif "local" in element._annotations:
                    v = element._annotations.copy()
                    del v['local']
                    v['remote'] = True
                    return element._with_annotations(v)
            return visitors.replacement_traverse(
                self.primaryjoin, {}, replace)
        else:
            if self._has_foreign_annotations:
                # TODO: coverage
                return _deep_deannotate(self.primaryjoin,
                                        values=("local", "remote"))
            else:
                return _deep_deannotate(self.primaryjoin)

    def _has_annotation(self, clause, annotation):
        for col in visitors.iterate(clause, {}):
            if annotation in col._annotations:
                return True
        else:
            return False

    @util.memoized_property
    def _has_foreign_annotations(self):
        return self._has_annotation(self.primaryjoin, "foreign")

    @util.memoized_property
    def _has_remote_annotations(self):
        return self._has_annotation(self.primaryjoin, "remote")

    def _annotate_fks(self):
        """Annotate the primaryjoin and secondaryjoin
        structures with 'foreign' annotations marking columns
        considered as foreign.

        """
        if self._has_foreign_annotations:
            return

        if self.consider_as_foreign_keys:
            self._annotate_from_fk_list()
        else:
            self._annotate_present_fks()

    def _annotate_from_fk_list(self):
        def check_fk(col):
            if col in self.consider_as_foreign_keys:
                return col._annotate({"foreign": True})
        self.primaryjoin = visitors.replacement_traverse(
            self.primaryjoin,
            {},
            check_fk
        )
        if self.secondaryjoin is not None:
            self.secondaryjoin = visitors.replacement_traverse(
                self.secondaryjoin,
                {},
                check_fk
            )

    def _annotate_present_fks(self):
        if self.secondary is not None:
            secondarycols = util.column_set(self.secondary.c)
        else:
            secondarycols = set()

        def is_foreign(a, b):
            if isinstance(a, schema.Column) and \
                    isinstance(b, schema.Column):
                if a.references(b):
                    return a
                elif b.references(a):
                    return b

            if secondarycols:
                if a in secondarycols and b not in secondarycols:
                    return a
                elif b in secondarycols and a not in secondarycols:
                    return b

        def visit_binary(binary):
            if not isinstance(binary.left, sql.ColumnElement) or \
                    not isinstance(binary.right, sql.ColumnElement):
                return

            if "foreign" not in binary.left._annotations and \
                    "foreign" not in binary.right._annotations:
                col = is_foreign(binary.left, binary.right)
                if col is not None:
                    if col.compare(binary.left):
                        binary.left = binary.left._annotate(
                            {"foreign": True})
                    elif col.compare(binary.right):
                        binary.right = binary.right._annotate(
                            {"foreign": True})

        self.primaryjoin = visitors.cloned_traverse(
            self.primaryjoin,
            {},
            {"binary": visit_binary}
        )
        if self.secondaryjoin is not None:
            self.secondaryjoin = visitors.cloned_traverse(
                self.secondaryjoin,
                {},
                {"binary": visit_binary}
            )

    def _refers_to_parent_table(self):
        """Return True if the join condition contains column
        comparisons where both columns are in both tables.

        """
        pt = self.parent_selectable
        mt = self.child_selectable
        result = [False]

        def visit_binary(binary):
            c, f = binary.left, binary.right
            if (
                isinstance(c, expression.ColumnClause) and
                isinstance(f, expression.ColumnClause) and
                pt.is_derived_from(c.table) and
                pt.is_derived_from(f.table) and
                mt.is_derived_from(c.table) and
                mt.is_derived_from(f.table)
            ):
                result[0] = True
        visitors.traverse(
            self.primaryjoin,
            {},
            {"binary": visit_binary}
        )
        return result[0]

    def _tables_overlap(self):
        """Return True if parent/child tables have some overlap."""

        return selectables_overlap(
            self.parent_selectable, self.child_selectable)

    def _annotate_remote(self):
        """Annotate the primaryjoin and secondaryjoin
        structures with 'remote' annotations marking columns
        considered as part of the 'remote' side.

        """
        if self._has_remote_annotations:
            return

        if self.secondary is not None:
            self._annotate_remote_secondary()
        elif self._local_remote_pairs or self._remote_side:
            self._annotate_remote_from_args()
        elif self._refers_to_parent_table():
            self._annotate_selfref(lambda col: "foreign" in col._annotations, False)
        elif self._tables_overlap():
            self._annotate_remote_with_overlap()
        else:
            self._annotate_remote_distinct_selectables()

    def _annotate_remote_secondary(self):
        """annotate 'remote' in primaryjoin, secondaryjoin
        when 'secondary' is present.

        """
        def repl(element):
            if self.secondary.c.contains_column(element):
                return element._annotate({"remote": True})
        self.primaryjoin = visitors.replacement_traverse(
            self.primaryjoin, {}, repl)
        self.secondaryjoin = visitors.replacement_traverse(
            self.secondaryjoin, {}, repl)

    def _annotate_selfref(self, fn, remote_side_given):
        """annotate 'remote' in primaryjoin, secondaryjoin
        when the relationship is detected as self-referential.

        """
        def visit_binary(binary):
            equated = binary.left.compare(binary.right)
            if isinstance(binary.left, expression.ColumnClause) and \
                    isinstance(binary.right, expression.ColumnClause):
                # assume one to many - FKs are "remote"
                if fn(binary.left):
                    binary.left = binary.left._annotate({"remote": True})
                if fn(binary.right) and not equated:
                    binary.right = binary.right._annotate(
                        {"remote": True})
            elif not remote_side_given:
                self._warn_non_column_elements()

        self.primaryjoin = visitors.cloned_traverse(
            self.primaryjoin, {},
            {"binary": visit_binary})

    def _annotate_remote_from_args(self):
        """annotate 'remote' in primaryjoin, secondaryjoin
        when the 'remote_side' or '_local_remote_pairs'
        arguments are used.

        """
        if self._local_remote_pairs:
            if self._remote_side:
                raise sa_exc.ArgumentError(
                    "remote_side argument is redundant "
                    "against more detailed _local_remote_side "
                    "argument.")

            remote_side = [r for (l, r) in self._local_remote_pairs]
        else:
            remote_side = self._remote_side

        if self._refers_to_parent_table():
            self._annotate_selfref(lambda col: col in remote_side, True)
        else:
            def repl(element):
                if element in remote_side:
                    return element._annotate({"remote": True})
            self.primaryjoin = visitors.replacement_traverse(
                self.primaryjoin, {}, repl)

    def _annotate_remote_with_overlap(self):
        """annotate 'remote' in primaryjoin, secondaryjoin
        when the parent/child tables have some set of
        tables in common, though is not a fully self-referential
        relationship.

        """
        def visit_binary(binary):
            binary.left, binary.right = proc_left_right(binary.left,
                                                        binary.right)
            binary.right, binary.left = proc_left_right(binary.right,
                                                        binary.left)

        check_entities = self.prop is not None and \
            self.prop.mapper is not self.prop.parent

        def proc_left_right(left, right):
            if isinstance(left, expression.ColumnClause) and \
                    isinstance(right, expression.ColumnClause):
                if self.child_selectable.c.contains_column(right) and \
                        self.parent_selectable.c.contains_column(left):
                    right = right._annotate({"remote": True})
            elif check_entities and \
                    right._annotations.get('parentmapper') is self.prop.mapper:
                right = right._annotate({"remote": True})
            elif check_entities and \
                    left._annotations.get('parentmapper') is self.prop.mapper:
                left = left._annotate({"remote": True})
            else:
                self._warn_non_column_elements()

            return left, right

        self.primaryjoin = visitors.cloned_traverse(
            self.primaryjoin, {},
            {"binary": visit_binary})

    def _annotate_remote_distinct_selectables(self):
        """annotate 'remote' in primaryjoin, secondaryjoin
        when the parent/child tables are entirely
        separate.

        """
        def repl(element):
            if self.child_selectable.c.contains_column(element) and \
                    (not self.parent_local_selectable.c.
                        contains_column(element) or
                        self.child_local_selectable.c.
                        contains_column(element)):
                return element._annotate({"remote": True})
        self.primaryjoin = visitors.replacement_traverse(
            self.primaryjoin, {}, repl)

    def _warn_non_column_elements(self):
        util.warn(
            "Non-simple column elements in primary "
            "join condition for property %s - consider using "
            "remote() annotations to mark the remote side."
            % self.prop
        )

    def _annotate_local(self):
        """Annotate the primaryjoin and secondaryjoin
        structures with 'local' annotations.

        This annotates all column elements found
        simultaneously in the parent table
        and the join condition that don't have a
        'remote' annotation set up from
        _annotate_remote() or user-defined.

        """
        if self._has_annotation(self.primaryjoin, "local"):
            return

        if self._local_remote_pairs:
            local_side = util.column_set([l for (l, r)
                                          in self._local_remote_pairs])
        else:
            local_side = util.column_set(self.parent_selectable.c)

        def locals_(elem):
            if "remote" not in elem._annotations and \
                    elem in local_side:
                return elem._annotate({"local": True})
        self.primaryjoin = visitors.replacement_traverse(
            self.primaryjoin, {}, locals_
        )

    def _check_remote_side(self):
        if not self.local_remote_pairs:
            raise sa_exc.ArgumentError(
                'Relationship %s could '
                'not determine any unambiguous local/remote column '
                'pairs based on join condition and remote_side '
                'arguments.  '
                'Consider using the remote() annotation to '
                'accurately mark those elements of the join '
                'condition that are on the remote side of '
                'the relationship.' % (self.prop, ))

    def _check_foreign_cols(self, join_condition, primary):
        """Check the foreign key columns collected and emit error
        messages."""

        can_sync = False

        foreign_cols = self._gather_columns_with_annotation(
            join_condition, "foreign")

        has_foreign = bool(foreign_cols)

        if primary:
            can_sync = bool(self.synchronize_pairs)
        else:
            can_sync = bool(self.secondary_synchronize_pairs)

        if self.support_sync and can_sync or \
                (not self.support_sync and has_foreign):
            return

        # from here below is just determining the best error message
        # to report.  Check for a join condition using any operator
        # (not just ==), perhaps they need to turn on "viewonly=True".
        if self.support_sync and has_foreign and not can_sync:
            err = "Could not locate any simple equality expressions "\
                "involving locally mapped foreign key columns for "\
                "%s join condition "\
                "'%s' on relationship %s." % (
                    primary and 'primary' or 'secondary',
                    join_condition,
                    self.prop
                )
            err += \
                "  Ensure that referencing columns are associated "\
                "with a ForeignKey or ForeignKeyConstraint, or are "\
                "annotated in the join condition with the foreign() "\
                "annotation. To allow comparison operators other than "\
                "'==', the relationship can be marked as viewonly=True."

            raise sa_exc.ArgumentError(err)
        else:
            err = "Could not locate any relevant foreign key columns "\
                "for %s join condition '%s' on relationship %s." % (
                    primary and 'primary' or 'secondary',
                    join_condition,
                    self.prop
                )
            err += \
                '  Ensure that referencing columns are associated '\
                'with a ForeignKey or ForeignKeyConstraint, or are '\
                'annotated in the join condition with the foreign() '\
                'annotation.'
            raise sa_exc.ArgumentError(err)

    def _determine_direction(self):
        """Determine if this relationship is one to many, many to one,
        many to many.

        """
        if self.secondaryjoin is not None:
            self.direction = MANYTOMANY
        else:
            parentcols = util.column_set(self.parent_selectable.c)
            targetcols = util.column_set(self.child_selectable.c)

            # fk collection which suggests ONETOMANY.
            onetomany_fk = targetcols.intersection(
                self.foreign_key_columns)

            # fk collection which suggests MANYTOONE.

            manytoone_fk = parentcols.intersection(
                self.foreign_key_columns)

            if onetomany_fk and manytoone_fk:
                # fks on both sides.  test for overlap of local/remote
                # with foreign key.
                # we will gather columns directly from their annotations
                # without deannotating, so that we can distinguish on a column
                # that refers to itself.

                # 1. columns that are both remote and FK suggest
                # onetomany.
                onetomany_local = self._gather_columns_with_annotation(
                    self.primaryjoin, "remote", "foreign")

                # 2. columns that are FK but are not remote (e.g. local)
                # suggest manytoone.
                manytoone_local = set([c for c in
                                       self._gather_columns_with_annotation(
                                           self.primaryjoin,
                                           "foreign")
                                       if "remote" not in c._annotations])

                # 3. if both collections are present, remove columns that
                # refer to themselves.  This is for the case of
                # and_(Me.id == Me.remote_id, Me.version == Me.version)
                if onetomany_local and manytoone_local:
                    self_equated = self.remote_columns.intersection(
                        self.local_columns
                    )
                    onetomany_local = onetomany_local.difference(self_equated)
                    manytoone_local = manytoone_local.difference(self_equated)

                # at this point, if only one or the other collection is
                # present, we know the direction, otherwise it's still
                # ambiguous.

                if onetomany_local and not manytoone_local:
                    self.direction = ONETOMANY
                elif manytoone_local and not onetomany_local:
                    self.direction = MANYTOONE
                else:
                    raise sa_exc.ArgumentError(
                        "Can't determine relationship"
                        " direction for relationship '%s' - foreign "
                        "key columns within the join condition are present "
                        "in both the parent and the child's mapped tables.  "
                        "Ensure that only those columns referring "
                        "to a parent column are marked as foreign, "
                        "either via the foreign() annotation or "
                        "via the foreign_keys argument." % self.prop)
            elif onetomany_fk:
                self.direction = ONETOMANY
            elif manytoone_fk:
                self.direction = MANYTOONE
            else:
                raise sa_exc.ArgumentError(
                    "Can't determine relationship "
                    "direction for relationship '%s' - foreign "
                    "key columns are present in neither the parent "
                    "nor the child's mapped tables" % self.prop)

    def _deannotate_pairs(self, collection):
        """provide deannotation for the various lists of
        pairs, so that using them in hashes doesn't incur
        high-overhead __eq__() comparisons against
        original columns mapped.

        """
        return [(x._deannotate(), y._deannotate())
                for x, y in collection]

    def _setup_pairs(self):
        sync_pairs = []
        lrp = util.OrderedSet([])
        secondary_sync_pairs = []

        def go(joincond, collection):
            def visit_binary(binary, left, right):
                if "remote" in right._annotations and \
                    "remote" not in left._annotations and \
                        self.can_be_synced_fn(left):
                    lrp.add((left, right))
                elif "remote" in left._annotations and \
                    "remote" not in right._annotations and \
                        self.can_be_synced_fn(right):
                    lrp.add((right, left))
                if binary.operator is operators.eq and \
                        self.can_be_synced_fn(left, right):
                    if "foreign" in right._annotations:
                        collection.append((left, right))
                    elif "foreign" in left._annotations:
                        collection.append((right, left))
            visit_binary_product(visit_binary, joincond)

        for joincond, collection in [
            (self.primaryjoin, sync_pairs),
            (self.secondaryjoin, secondary_sync_pairs)
        ]:
            if joincond is None:
                continue
            go(joincond, collection)

        self.local_remote_pairs = self._deannotate_pairs(lrp)
        self.synchronize_pairs = self._deannotate_pairs(sync_pairs)
        self.secondary_synchronize_pairs = \
            self._deannotate_pairs(secondary_sync_pairs)

    _track_overlapping_sync_targets = weakref.WeakKeyDictionary()

    def _warn_for_conflicting_sync_targets(self):
        if not self.support_sync:
            return

        # we would like to detect if we are synchronizing any column
        # pairs in conflict with another relationship that wishes to sync
        # an entirely different column to the same target.   This is a
        # very rare edge case so we will try to minimize the memory/overhead
        # impact of this check
        for from_, to_ in [
            (from_, to_) for (from_, to_) in self.synchronize_pairs
        ] + [
            (from_, to_) for (from_, to_) in self.secondary_synchronize_pairs
        ]:
            # save ourselves a ton of memory and overhead by only
            # considering columns that are subject to a overlapping
            # FK constraints at the core level.   This condition can arise
            # if multiple relationships overlap foreign() directly, but
            # we're going to assume it's typically a ForeignKeyConstraint-
            # level configuration that benefits from this warning.
            if len(to_.foreign_keys) < 2:
                continue

            if to_ not in self._track_overlapping_sync_targets:
                self._track_overlapping_sync_targets[to_] = \
                    weakref.WeakKeyDictionary({self.prop: from_})
            else:
                other_props = []
                prop_to_from = self._track_overlapping_sync_targets[to_]
                for pr, fr_ in prop_to_from.items():
                    if pr.mapper in mapperlib._mapper_registry and \
                        fr_ is not from_ and \
                            pr not in self.prop._reverse_property:
                        other_props.append((pr, fr_))

                if other_props:
                    util.warn(
                        "relationship '%s' will copy column %s to column %s, "
                        "which conflicts with relationship(s): %s. "
                        "Consider applying "
                        "viewonly=True to read-only relationships, or provide "
                        "a primaryjoin condition marking writable columns "
                        "with the foreign() annotation." % (
                            self.prop,
                            from_, to_,
                            ", ".join(
                                "'%s' (copies %s to %s)" % (pr, fr_, to_)
                                for (pr, fr_) in other_props)
                        )
                    )
                self._track_overlapping_sync_targets[to_][self.prop] = from_

    @util.memoized_property
    def remote_columns(self):
        return self._gather_join_annotations("remote")

    @util.memoized_property
    def local_columns(self):
        return self._gather_join_annotations("local")

    @util.memoized_property
    def foreign_key_columns(self):
        return self._gather_join_annotations("foreign")

    @util.memoized_property
    def deannotated_primaryjoin(self):
        return _deep_deannotate(self.primaryjoin)

    @util.memoized_property
    def deannotated_secondaryjoin(self):
        if self.secondaryjoin is not None:
            return _deep_deannotate(self.secondaryjoin)
        else:
            return None

    def _gather_join_annotations(self, annotation):
        s = set(
            self._gather_columns_with_annotation(
                self.primaryjoin, annotation)
        )
        if self.secondaryjoin is not None:
            s.update(
                self._gather_columns_with_annotation(
                    self.secondaryjoin, annotation)
            )
        return set([x._deannotate() for x in s])

    def _gather_columns_with_annotation(self, clause, *annotation):
        annotation = set(annotation)
        return set([
            col for col in visitors.iterate(clause, {})
            if annotation.issubset(col._annotations)
        ])

    def join_targets(self, source_selectable,
                     dest_selectable,
                     aliased,
                     single_crit=None):
        """Given a source and destination selectable, create a
        join between them.

        This takes into account aliasing the join clause
        to reference the appropriate corresponding columns
        in the target objects, as well as the extra child
        criterion, equivalent column sets, etc.

        """

        # place a barrier on the destination such that
        # replacement traversals won't ever dig into it.
        # its internal structure remains fixed
        # regardless of context.
        dest_selectable = _shallow_annotate(
            dest_selectable,
            {'no_replacement_traverse': True})

        primaryjoin, secondaryjoin, secondary = self.primaryjoin, \
            self.secondaryjoin, self.secondary

        # adjust the join condition for single table inheritance,
        # in the case that the join is to a subclass
        # this is analogous to the
        # "_adjust_for_single_table_inheritance()" method in Query.

        if single_crit is not None:
            if secondaryjoin is not None:
                secondaryjoin = secondaryjoin & single_crit
            else:
                primaryjoin = primaryjoin & single_crit

        if aliased:
            if secondary is not None:
                secondary = secondary.alias(flat=True)
                primary_aliasizer = ClauseAdapter(secondary)
                secondary_aliasizer = \
                    ClauseAdapter(dest_selectable,
                                  equivalents=self.child_equivalents).\
                    chain(primary_aliasizer)
                if source_selectable is not None:
                    primary_aliasizer = \
                        ClauseAdapter(secondary).\
                        chain(ClauseAdapter(
                            source_selectable,
                            equivalents=self.parent_equivalents))
                secondaryjoin = \
                    secondary_aliasizer.traverse(secondaryjoin)
            else:
                primary_aliasizer = ClauseAdapter(
                    dest_selectable,
                    exclude_fn=_ColInAnnotations("local"),
                    equivalents=self.child_equivalents)
                if source_selectable is not None:
                    primary_aliasizer.chain(
                        ClauseAdapter(source_selectable,
                                      exclude_fn=_ColInAnnotations("remote"),
                                      equivalents=self.parent_equivalents))
                secondary_aliasizer = None

            primaryjoin = primary_aliasizer.traverse(primaryjoin)
            target_adapter = secondary_aliasizer or primary_aliasizer
            target_adapter.exclude_fn = None
        else:
            target_adapter = None
        return primaryjoin, secondaryjoin, secondary, \
            target_adapter, dest_selectable

    def create_lazy_clause(self, reverse_direction=False):
        binds = util.column_dict()
        equated_columns = util.column_dict()

        has_secondary = self.secondaryjoin is not None

        if has_secondary:
            lookup = collections.defaultdict(list)
            for l, r in self.local_remote_pairs:
                lookup[l].append((l, r))
                equated_columns[r] = l
        elif not reverse_direction:
            for l, r in self.local_remote_pairs:
                equated_columns[r] = l
        else:
            for l, r in self.local_remote_pairs:
                equated_columns[l] = r

        def col_to_bind(col):

            if (
                (not reverse_direction and 'local' in col._annotations) or
                reverse_direction and (
                    (has_secondary and col in lookup) or
                    (not has_secondary and 'remote' in col._annotations)
                )
            ):
                if col not in binds:
                    binds[col] = sql.bindparam(
                        None, None, type_=col.type, unique=True)
                return binds[col]
            return None

        lazywhere = self.primaryjoin
        if self.secondaryjoin is None or not reverse_direction:
            lazywhere = visitors.replacement_traverse(
                lazywhere, {}, col_to_bind)

        if self.secondaryjoin is not None:
            secondaryjoin = self.secondaryjoin
            if reverse_direction:
                secondaryjoin = visitors.replacement_traverse(
                    secondaryjoin, {}, col_to_bind)
            lazywhere = sql.and_(lazywhere, secondaryjoin)

        bind_to_col = dict((binds[col].key, col) for col in binds)

        # this is probably not necessary
        lazywhere = _deep_deannotate(lazywhere)

        return lazywhere, bind_to_col, equated_columns


class _ColInAnnotations(object):
    """Seralizable equivalent to:

        lambda c: "name" in c._annotations
    """

    def __init__(self, name):
        self.name = name

    def __call__(self, c):
        return self.name in c._annotations