This file is indexed.

/usr/lib/python3/dist-packages/sqlalchemy/ext/automap.py is in python3-sqlalchemy 1.0.15+ds1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
# ext/automap.py
# Copyright (C) 2005-2016 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""Define an extension to the :mod:`sqlalchemy.ext.declarative` system
which automatically generates mapped classes and relationships from a database
schema, typically though not necessarily one which is reflected.

.. versionadded:: 0.9.1 Added :mod:`sqlalchemy.ext.automap`.

It is hoped that the :class:`.AutomapBase` system provides a quick
and modernized solution to the problem that the very famous
`SQLSoup <https://sqlsoup.readthedocs.io/en/latest/>`_
also tries to solve, that of generating a quick and rudimentary object
model from an existing database on the fly.  By addressing the issue strictly
at the mapper configuration level, and integrating fully with existing
Declarative class techniques, :class:`.AutomapBase` seeks to provide
a well-integrated approach to the issue of expediently auto-generating ad-hoc
mappings.


Basic Use
=========

The simplest usage is to reflect an existing database into a new model.
We create a new :class:`.AutomapBase` class in a similar manner as to how
we create a declarative base class, using :func:`.automap_base`.
We then call :meth:`.AutomapBase.prepare` on the resulting base class,
asking it to reflect the schema and produce mappings::

    from sqlalchemy.ext.automap import automap_base
    from sqlalchemy.orm import Session
    from sqlalchemy import create_engine

    Base = automap_base()

    # engine, suppose it has two tables 'user' and 'address' set up
    engine = create_engine("sqlite:///mydatabase.db")

    # reflect the tables
    Base.prepare(engine, reflect=True)

    # mapped classes are now created with names by default
    # matching that of the table name.
    User = Base.classes.user
    Address = Base.classes.address

    session = Session(engine)

    # rudimentary relationships are produced
    session.add(Address(email_address="foo@bar.com", user=User(name="foo")))
    session.commit()

    # collection-based relationships are by default named
    # "<classname>_collection"
    print (u1.address_collection)

Above, calling :meth:`.AutomapBase.prepare` while passing along the
:paramref:`.AutomapBase.prepare.reflect` parameter indicates that the
:meth:`.MetaData.reflect` method will be called on this declarative base
classes' :class:`.MetaData` collection; then, each **viable**
:class:`.Table` within the :class:`.MetaData` will get a new mapped class
generated automatically.  The :class:`.ForeignKeyConstraint` objects which
link the various tables together will be used to produce new, bidirectional
:func:`.relationship` objects between classes.   The classes and relationships
follow along a default naming scheme that we can customize.  At this point,
our basic mapping consisting of related ``User`` and ``Address`` classes is
ready to use in the traditional way.

.. note:: By **viable**, we mean that for a table to be mapped, it must
   specify a primary key.  Additionally, if the table is detected as being
   a pure association table between two other tables, it will not be directly
   mapped and will instead be configured as a many-to-many table between
   the mappings for the two referring tables.

Generating Mappings from an Existing MetaData
=============================================

We can pass a pre-declared :class:`.MetaData` object to :func:`.automap_base`.
This object can be constructed in any way, including programmatically, from
a serialized file, or from itself being reflected using
:meth:`.MetaData.reflect`.  Below we illustrate a combination of reflection and
explicit table declaration::

    from sqlalchemy import create_engine, MetaData, Table, Column, ForeignKey
    engine = create_engine("sqlite:///mydatabase.db")

    # produce our own MetaData object
    metadata = MetaData()

    # we can reflect it ourselves from a database, using options
    # such as 'only' to limit what tables we look at...
    metadata.reflect(engine, only=['user', 'address'])

    # ... or just define our own Table objects with it (or combine both)
    Table('user_order', metadata,
                    Column('id', Integer, primary_key=True),
                    Column('user_id', ForeignKey('user.id'))
                )

    # we can then produce a set of mappings from this MetaData.
    Base = automap_base(metadata=metadata)

    # calling prepare() just sets up mapped classes and relationships.
    Base.prepare()

    # mapped classes are ready
    User, Address, Order = Base.classes.user, Base.classes.address,\
        Base.classes.user_order

Specifying Classes Explicitly
=============================

The :mod:`.sqlalchemy.ext.automap` extension allows classes to be defined
explicitly, in a way similar to that of the :class:`.DeferredReflection` class.
Classes that extend from :class:`.AutomapBase` act like regular declarative
classes, but are not immediately mapped after their construction, and are
instead mapped when we call :meth:`.AutomapBase.prepare`.  The
:meth:`.AutomapBase.prepare` method will make use of the classes we've
established based on the table name we use.  If our schema contains tables
``user`` and ``address``, we can define one or both of the classes to be used::

    from sqlalchemy.ext.automap import automap_base
    from sqlalchemy import create_engine

    # automap base
    Base = automap_base()

    # pre-declare User for the 'user' table
    class User(Base):
        __tablename__ = 'user'

        # override schema elements like Columns
        user_name = Column('name', String)

        # override relationships too, if desired.
        # we must use the same name that automap would use for the
        # relationship, and also must refer to the class name that automap will
        # generate for "address"
        address_collection = relationship("address", collection_class=set)

    # reflect
    engine = create_engine("sqlite:///mydatabase.db")
    Base.prepare(engine, reflect=True)

    # we still have Address generated from the tablename "address",
    # but User is the same as Base.classes.User now

    Address = Base.classes.address

    u1 = session.query(User).first()
    print (u1.address_collection)

    # the backref is still there:
    a1 = session.query(Address).first()
    print (a1.user)

Above, one of the more intricate details is that we illustrated overriding
one of the :func:`.relationship` objects that automap would have created.
To do this, we needed to make sure the names match up with what automap
would normally generate, in that the relationship name would be
``User.address_collection`` and the name of the class referred to, from
automap's perspective, is called ``address``, even though we are referring to
it as ``Address`` within our usage of this class.

Overriding Naming Schemes
=========================

:mod:`.sqlalchemy.ext.automap` is tasked with producing mapped classes and
relationship names based on a schema, which means it has decision points in how
these names are determined.  These three decision points are provided using
functions which can be passed to the :meth:`.AutomapBase.prepare` method, and
are known as :func:`.classname_for_table`,
:func:`.name_for_scalar_relationship`,
and :func:`.name_for_collection_relationship`.  Any or all of these
functions are provided as in the example below, where we use a "camel case"
scheme for class names and a "pluralizer" for collection names using the
`Inflect <https://pypi.python.org/pypi/inflect>`_ package::

    import re
    import inflect

    def camelize_classname(base, tablename, table):
        "Produce a 'camelized' class name, e.g. "
        "'words_and_underscores' -> 'WordsAndUnderscores'"

        return str(tablename[0].upper() + \\
                re.sub(r'_([a-z])', lambda m: m.group(1).upper(), tablename[1:]))

    _pluralizer = inflect.engine()
    def pluralize_collection(base, local_cls, referred_cls, constraint):
        "Produce an 'uncamelized', 'pluralized' class name, e.g. "
        "'SomeTerm' -> 'some_terms'"

        referred_name = referred_cls.__name__
        uncamelized = re.sub(r'[A-Z]',
                             lambda m: "_%s" % m.group(0).lower(),
                             referred_name)[1:]
        pluralized = _pluralizer.plural(uncamelized)
        return pluralized

    from sqlalchemy.ext.automap import automap_base

    Base = automap_base()

    engine = create_engine("sqlite:///mydatabase.db")

    Base.prepare(engine, reflect=True,
                classname_for_table=camelize_classname,
                name_for_collection_relationship=pluralize_collection
        )

From the above mapping, we would now have classes ``User`` and ``Address``,
where the collection from ``User`` to ``Address`` is called
``User.addresses``::

    User, Address = Base.classes.User, Base.classes.Address

    u1 = User(addresses=[Address(email="foo@bar.com")])

Relationship Detection
======================

The vast majority of what automap accomplishes is the generation of
:func:`.relationship` structures based on foreign keys.  The mechanism
by which this works for many-to-one and one-to-many relationships is as
follows:

1. A given :class:`.Table`, known to be mapped to a particular class,
   is examined for :class:`.ForeignKeyConstraint` objects.

2. From each :class:`.ForeignKeyConstraint`, the remote :class:`.Table`
   object present is matched up to the class to which it is to be mapped,
   if any, else it is skipped.

3. As the :class:`.ForeignKeyConstraint` we are examining corresponds to a
   reference from the immediate mapped class,  the relationship will be set up
   as a many-to-one referring to the referred class; a corresponding
   one-to-many backref will be created on the referred class referring
   to this class.

4. If any of the columns that are part of the :class:`.ForeignKeyConstraint`
   are not nullable (e.g. ``nullable=False``), a
   :paramref:`~.relationship.cascade` keyword argument
   of ``all, delete-orphan`` will be added to the keyword arguments to
   be passed to the relationship or backref.  If the
   :class:`.ForeignKeyConstraint` reports that
   :paramref:`.ForeignKeyConstraint.ondelete`
   is set to ``CASCADE`` for a not null or ``SET NULL`` for a nullable
   set of columns, the option :paramref:`~.relationship.passive_deletes`
   flag is set to ``True`` in the set of relationship keyword arguments.
   Note that not all backends support reflection of ON DELETE.

   .. versionadded:: 1.0.0 - automap will detect non-nullable foreign key
      constraints when producing a one-to-many relationship and establish
      a default cascade of ``all, delete-orphan`` if so; additionally,
      if the constraint specifies :paramref:`.ForeignKeyConstraint.ondelete`
      of ``CASCADE`` for non-nullable or ``SET NULL`` for nullable columns,
      the ``passive_deletes=True`` option is also added.

5. The names of the relationships are determined using the
   :paramref:`.AutomapBase.prepare.name_for_scalar_relationship` and
   :paramref:`.AutomapBase.prepare.name_for_collection_relationship`
   callable functions.  It is important to note that the default relationship
   naming derives the name from the **the actual class name**.  If you've
   given a particular class an explicit name by declaring it, or specified an
   alternate class naming scheme, that's the name from which the relationship
   name will be derived.

6. The classes are inspected for an existing mapped property matching these
   names.  If one is detected on one side, but none on the other side,
   :class:`.AutomapBase` attempts to create a relationship on the missing side,
   then uses the :paramref:`.relationship.back_populates` parameter in order to
   point the new relationship to the other side.

7. In the usual case where no relationship is on either side,
   :meth:`.AutomapBase.prepare` produces a :func:`.relationship` on the
   "many-to-one" side and matches it to the other using the
   :paramref:`.relationship.backref` parameter.

8. Production of the :func:`.relationship` and optionally the :func:`.backref`
   is handed off to the :paramref:`.AutomapBase.prepare.generate_relationship`
   function, which can be supplied by the end-user in order to augment
   the arguments passed to :func:`.relationship` or :func:`.backref` or to
   make use of custom implementations of these functions.

Custom Relationship Arguments
-----------------------------

The :paramref:`.AutomapBase.prepare.generate_relationship` hook can be used
to add parameters to relationships.  For most cases, we can make use of the
existing :func:`.automap.generate_relationship` function to return
the object, after augmenting the given keyword dictionary with our own
arguments.

Below is an illustration of how to send
:paramref:`.relationship.cascade` and
:paramref:`.relationship.passive_deletes`
options along to all one-to-many relationships::

    from sqlalchemy.ext.automap import generate_relationship

    def _gen_relationship(base, direction, return_fn,
                                    attrname, local_cls, referred_cls, **kw):
        if direction is interfaces.ONETOMANY:
            kw['cascade'] = 'all, delete-orphan'
            kw['passive_deletes'] = True
        # make use of the built-in function to actually return
        # the result.
        return generate_relationship(base, direction, return_fn,
                                     attrname, local_cls, referred_cls, **kw)

    from sqlalchemy.ext.automap import automap_base
    from sqlalchemy import create_engine

    # automap base
    Base = automap_base()

    engine = create_engine("sqlite:///mydatabase.db")
    Base.prepare(engine, reflect=True,
                generate_relationship=_gen_relationship)

Many-to-Many relationships
--------------------------

:mod:`.sqlalchemy.ext.automap` will generate many-to-many relationships, e.g.
those which contain a ``secondary`` argument.  The process for producing these
is as follows:

1. A given :class:`.Table` is examined for :class:`.ForeignKeyConstraint`
   objects, before any mapped class has been assigned to it.

2. If the table contains two and exactly two :class:`.ForeignKeyConstraint`
   objects, and all columns within this table are members of these two
   :class:`.ForeignKeyConstraint` objects, the table is assumed to be a
   "secondary" table, and will **not be mapped directly**.

3. The two (or one, for self-referential) external tables to which the
   :class:`.Table` refers to are matched to the classes to which they will be
   mapped, if any.

4. If mapped classes for both sides are located, a many-to-many bi-directional
   :func:`.relationship` / :func:`.backref` pair is created between the two
   classes.

5. The override logic for many-to-many works the same as that of one-to-many/
   many-to-one; the :func:`.generate_relationship` function is called upon
   to generate the strucures and existing attributes will be maintained.

Relationships with Inheritance
------------------------------

:mod:`.sqlalchemy.ext.automap` will not generate any relationships between
two classes that are in an inheritance relationship.   That is, with two
classes given as follows::

    class Employee(Base):
        __tablename__ = 'employee'
        id = Column(Integer, primary_key=True)
        type = Column(String(50))
        __mapper_args__ = {
             'polymorphic_identity':'employee', 'polymorphic_on': type
        }

    class Engineer(Employee):
        __tablename__ = 'engineer'
        id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
        __mapper_args__ = {
            'polymorphic_identity':'engineer',
        }

The foreign key from ``Engineer`` to ``Employee`` is used not for a
relationship, but to establish joined inheritance between the two classes.

Note that this means automap will not generate *any* relationships
for foreign keys that link from a subclass to a superclass.  If a mapping
has actual relationships from subclass to superclass as well, those
need to be explicit.  Below, as we have two separate foreign keys
from ``Engineer`` to ``Employee``, we need to set up both the relationship
we want as well as the ``inherit_condition``, as these are not things
SQLAlchemy can guess::

    class Employee(Base):
        __tablename__ = 'employee'
        id = Column(Integer, primary_key=True)
        type = Column(String(50))

        __mapper_args__ = {
            'polymorphic_identity':'employee', 'polymorphic_on':type
        }

    class Engineer(Employee):
        __tablename__ = 'engineer'
        id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
        favorite_employee_id = Column(Integer, ForeignKey('employee.id'))

        favorite_employee = relationship(Employee,
                                         foreign_keys=favorite_employee_id)

        __mapper_args__ = {
            'polymorphic_identity':'engineer',
            'inherit_condition': id == Employee.id
        }

Handling Simple Naming Conflicts
--------------------------------

In the case of naming conflicts during mapping, override any of
:func:`.classname_for_table`, :func:`.name_for_scalar_relationship`,
and :func:`.name_for_collection_relationship` as needed.  For example, if
automap is attempting to name a many-to-one relationship the same as an
existing column, an alternate convention can be conditionally selected.  Given
a schema:

.. sourcecode:: sql

    CREATE TABLE table_a (
        id INTEGER PRIMARY KEY
    );

    CREATE TABLE table_b (
        id INTEGER PRIMARY KEY,
        table_a INTEGER,
        FOREIGN KEY(table_a) REFERENCES table_a(id)
    );

The above schema will first automap the ``table_a`` table as a class named
``table_a``; it will then automap a relationship onto the class for ``table_b``
with the same name as this related class, e.g. ``table_a``.  This
relationship name conflicts with the mapping column ``table_b.table_a``,
and will emit an error on mapping.

We can resolve this conflict by using an underscore as follows::

    def name_for_scalar_relationship(base, local_cls, referred_cls, constraint):
        name = referred_cls.__name__.lower()
        local_table = local_cls.__table__
        if name in local_table.columns:
            newname = name + "_"
            warnings.warn(
                "Already detected name %s present.  using %s" %
                (name, newname))
            return newname
        return name


    Base.prepare(engine, reflect=True,
        name_for_scalar_relationship=name_for_scalar_relationship)

Alternatively, we can change the name on the column side.   The columns
that are mapped can be modified using the technique described at
:ref:`mapper_column_distinct_names`, by assigning the column explicitly
to a new name::

    Base = automap_base()

    class TableB(Base):
        __tablename__ = 'table_b'
        _table_a = Column('table_a', ForeignKey('table_a.id'))

    Base.prepare(engine, reflect=True)


Using Automap with Explicit Declarations
========================================

As noted previously, automap has no dependency on reflection, and can make
use of any collection of :class:`.Table` objects within a :class:`.MetaData`
collection.  From this, it follows that automap can also be used
generate missing relationships given an otherwise complete model that fully
defines table metadata::

    from sqlalchemy.ext.automap import automap_base
    from sqlalchemy import Column, Integer, String, ForeignKey

    Base = automap_base()

    class User(Base):
        __tablename__ = 'user'

        id = Column(Integer, primary_key=True)
        name = Column(String)

    class Address(Base):
        __tablename__ = 'address'

        id = Column(Integer, primary_key=True)
        email = Column(String)
        user_id = Column(ForeignKey('user.id'))

    # produce relationships
    Base.prepare()

    # mapping is complete, with "address_collection" and
    # "user" relationships
    a1 = Address(email='u1')
    a2 = Address(email='u2')
    u1 = User(address_collection=[a1, a2])
    assert a1.user is u1

Above, given mostly complete ``User`` and ``Address`` mappings, the
:class:`.ForeignKey` which we defined on ``Address.user_id`` allowed a
bidirectional relationship pair ``Address.user`` and
``User.address_collection`` to be generated on the mapped classes.

Note that when subclassing :class:`.AutomapBase`,
the :meth:`.AutomapBase.prepare` method is required; if not called, the classes
we've declared are in an un-mapped state.


"""
from .declarative import declarative_base as _declarative_base
from .declarative.base import _DeferredMapperConfig
from ..sql import and_
from ..schema import ForeignKeyConstraint
from ..orm import relationship, backref, interfaces
from .. import util


def classname_for_table(base, tablename, table):
    """Return the class name that should be used, given the name
    of a table.

    The default implementation is::

        return str(tablename)

    Alternate implementations can be specified using the
    :paramref:`.AutomapBase.prepare.classname_for_table`
    parameter.

    :param base: the :class:`.AutomapBase` class doing the prepare.

    :param tablename: string name of the :class:`.Table`.

    :param table: the :class:`.Table` object itself.

    :return: a string class name.

     .. note::

        In Python 2, the string used for the class name **must** be a
        non-Unicode object, e.g. a ``str()`` object.  The ``.name`` attribute
        of :class:`.Table` is typically a Python unicode subclass, so the
        ``str()`` function should be applied to this name, after accounting for
        any non-ASCII characters.

    """
    return str(tablename)


def name_for_scalar_relationship(base, local_cls, referred_cls, constraint):
    """Return the attribute name that should be used to refer from one
    class to another, for a scalar object reference.

    The default implementation is::

        return referred_cls.__name__.lower()

    Alternate implementations can be specified using the
    :paramref:`.AutomapBase.prepare.name_for_scalar_relationship`
    parameter.

    :param base: the :class:`.AutomapBase` class doing the prepare.

    :param local_cls: the class to be mapped on the local side.

    :param referred_cls: the class to be mapped on the referring side.

    :param constraint: the :class:`.ForeignKeyConstraint` that is being
     inspected to produce this relationship.

    """
    return referred_cls.__name__.lower()


def name_for_collection_relationship(
        base, local_cls, referred_cls, constraint):
    """Return the attribute name that should be used to refer from one
    class to another, for a collection reference.

    The default implementation is::

        return referred_cls.__name__.lower() + "_collection"

    Alternate implementations
    can be specified using the
    :paramref:`.AutomapBase.prepare.name_for_collection_relationship`
    parameter.

    :param base: the :class:`.AutomapBase` class doing the prepare.

    :param local_cls: the class to be mapped on the local side.

    :param referred_cls: the class to be mapped on the referring side.

    :param constraint: the :class:`.ForeignKeyConstraint` that is being
     inspected to produce this relationship.

    """
    return referred_cls.__name__.lower() + "_collection"


def generate_relationship(
        base, direction, return_fn, attrname, local_cls, referred_cls, **kw):
    """Generate a :func:`.relationship` or :func:`.backref` on behalf of two
    mapped classes.

    An alternate implementation of this function can be specified using the
    :paramref:`.AutomapBase.prepare.generate_relationship` parameter.

    The default implementation of this function is as follows::

        if return_fn is backref:
            return return_fn(attrname, **kw)
        elif return_fn is relationship:
            return return_fn(referred_cls, **kw)
        else:
            raise TypeError("Unknown relationship function: %s" % return_fn)

    :param base: the :class:`.AutomapBase` class doing the prepare.

    :param direction: indicate the "direction" of the relationship; this will
     be one of :data:`.ONETOMANY`, :data:`.MANYTOONE`, :data:`.MANYTOMANY`.

    :param return_fn: the function that is used by default to create the
     relationship.  This will be either :func:`.relationship` or
     :func:`.backref`.  The :func:`.backref` function's result will be used to
     produce a new :func:`.relationship` in a second step, so it is critical
     that user-defined implementations correctly differentiate between the two
     functions, if a custom relationship function is being used.

    :attrname: the attribute name to which this relationship is being assigned.
     If the value of :paramref:`.generate_relationship.return_fn` is the
     :func:`.backref` function, then this name is the name that is being
     assigned to the backref.

    :param local_cls: the "local" class to which this relationship or backref
     will be locally present.

    :param referred_cls: the "referred" class to which the relationship or
     backref refers to.

    :param \**kw: all additional keyword arguments are passed along to the
     function.

    :return: a :func:`.relationship` or :func:`.backref` construct, as dictated
     by the :paramref:`.generate_relationship.return_fn` parameter.

    """
    if return_fn is backref:
        return return_fn(attrname, **kw)
    elif return_fn is relationship:
        return return_fn(referred_cls, **kw)
    else:
        raise TypeError("Unknown relationship function: %s" % return_fn)


class AutomapBase(object):
    """Base class for an "automap" schema.

    The :class:`.AutomapBase` class can be compared to the "declarative base"
    class that is produced by the :func:`.declarative.declarative_base`
    function.  In practice, the :class:`.AutomapBase` class is always used
    as a mixin along with an actual declarative base.

    A new subclassable :class:`.AutomapBase` is typically instantated
    using the :func:`.automap_base` function.

    .. seealso::

        :ref:`automap_toplevel`

    """
    __abstract__ = True

    classes = None
    """An instance of :class:`.util.Properties` containing classes.

    This object behaves much like the ``.c`` collection on a table.  Classes
    are present under the name they were given, e.g.::

        Base = automap_base()
        Base.prepare(engine=some_engine, reflect=True)

        User, Address = Base.classes.User, Base.classes.Address

    """

    @classmethod
    def prepare(
            cls,
            engine=None,
            reflect=False,
            classname_for_table=classname_for_table,
            collection_class=list,
            name_for_scalar_relationship=name_for_scalar_relationship,
            name_for_collection_relationship=name_for_collection_relationship,
            generate_relationship=generate_relationship):
        """Extract mapped classes and relationships from the :class:`.MetaData` and
        perform mappings.

        :param engine: an :class:`.Engine` or :class:`.Connection` with which
         to perform schema reflection, if specified.
         If the :paramref:`.AutomapBase.prepare.reflect` argument is False,
         this object is not used.

        :param reflect: if True, the :meth:`.MetaData.reflect` method is called
         on the :class:`.MetaData` associated with this :class:`.AutomapBase`.
         The :class:`.Engine` passed via
         :paramref:`.AutomapBase.prepare.engine` will be used to perform the
         reflection if present; else, the :class:`.MetaData` should already be
         bound to some engine else the operation will fail.

        :param classname_for_table: callable function which will be used to
         produce new class names, given a table name.  Defaults to
         :func:`.classname_for_table`.

        :param name_for_scalar_relationship: callable function which will be
         used to produce relationship names for scalar relationships.  Defaults
         to :func:`.name_for_scalar_relationship`.

        :param name_for_collection_relationship: callable function which will
         be used to produce relationship names for collection-oriented
         relationships.  Defaults to :func:`.name_for_collection_relationship`.

        :param generate_relationship: callable function which will be used to
         actually generate :func:`.relationship` and :func:`.backref`
         constructs.  Defaults to :func:`.generate_relationship`.

        :param collection_class: the Python collection class that will be used
         when a new :func:`.relationship` object is created that represents a
         collection.  Defaults to ``list``.

        """
        if reflect:
            cls.metadata.reflect(
                engine,
                extend_existing=True,
                autoload_replace=False
            )

        table_to_map_config = dict(
            (m.local_table, m)
            for m in _DeferredMapperConfig.
            classes_for_base(cls, sort=False)
        )

        many_to_many = []

        for table in cls.metadata.tables.values():
            lcl_m2m, rem_m2m, m2m_const = _is_many_to_many(cls, table)
            if lcl_m2m is not None:
                many_to_many.append((lcl_m2m, rem_m2m, m2m_const, table))
            elif not table.primary_key:
                continue
            elif table not in table_to_map_config:
                mapped_cls = type(
                    classname_for_table(cls, table.name, table),
                    (cls, ),
                    {"__table__": table}
                )
                map_config = _DeferredMapperConfig.config_for_cls(mapped_cls)
                cls.classes[map_config.cls.__name__] = mapped_cls
                table_to_map_config[table] = map_config

        for map_config in table_to_map_config.values():
            _relationships_for_fks(cls,
                                   map_config,
                                   table_to_map_config,
                                   collection_class,
                                   name_for_scalar_relationship,
                                   name_for_collection_relationship,
                                   generate_relationship)

        for lcl_m2m, rem_m2m, m2m_const, table in many_to_many:
            _m2m_relationship(cls, lcl_m2m, rem_m2m, m2m_const, table,
                              table_to_map_config,
                              collection_class,
                              name_for_scalar_relationship,
                              name_for_collection_relationship,
                              generate_relationship)

        for map_config in _DeferredMapperConfig.classes_for_base(cls):
            map_config.map()

    _sa_decl_prepare = True
    """Indicate that the mapping of classes should be deferred.

    The presence of this attribute name indicates to declarative
    that the call to mapper() should not occur immediately; instead,
    information about the table and attributes to be mapped are gathered
    into an internal structure called _DeferredMapperConfig.  These
    objects can be collected later using classes_for_base(), additional
    mapping decisions can be made, and then the map() method will actually
    apply the mapping.

    The only real reason this deferral of the whole
    thing is needed is to support primary key columns that aren't reflected
    yet when the class is declared; everything else can theoretically be
    added to the mapper later.  However, the _DeferredMapperConfig is a
    nice interface in any case which exists at that not usually exposed point
    at which declarative has the class and the Table but hasn't called
    mapper() yet.

    """


def automap_base(declarative_base=None, **kw):
    """Produce a declarative automap base.

    This function produces a new base class that is a product of the
    :class:`.AutomapBase` class as well a declarative base produced by
    :func:`.declarative.declarative_base`.

    All parameters other than ``declarative_base`` are keyword arguments
    that are passed directly to the :func:`.declarative.declarative_base`
    function.

    :param declarative_base: an existing class produced by
     :func:`.declarative.declarative_base`.  When this is passed, the function
     no longer invokes :func:`.declarative.declarative_base` itself, and all
     other keyword arguments are ignored.

    :param \**kw: keyword arguments are passed along to
     :func:`.declarative.declarative_base`.

    """
    if declarative_base is None:
        Base = _declarative_base(**kw)
    else:
        Base = declarative_base

    return type(
        Base.__name__,
        (AutomapBase, Base,),
        {"__abstract__": True, "classes": util.Properties({})}
    )


def _is_many_to_many(automap_base, table):
    fk_constraints = [const for const in table.constraints
                      if isinstance(const, ForeignKeyConstraint)]
    if len(fk_constraints) != 2:
        return None, None, None

    cols = sum(
        [[fk.parent for fk in fk_constraint.elements]
         for fk_constraint in fk_constraints], [])

    if set(cols) != set(table.c):
        return None, None, None

    return (
        fk_constraints[0].elements[0].column.table,
        fk_constraints[1].elements[0].column.table,
        fk_constraints
    )


def _relationships_for_fks(automap_base, map_config, table_to_map_config,
                           collection_class,
                           name_for_scalar_relationship,
                           name_for_collection_relationship,
                           generate_relationship):
    local_table = map_config.local_table
    local_cls = map_config.cls

    if local_table is None:
        return
    for constraint in local_table.constraints:
        if isinstance(constraint, ForeignKeyConstraint):
            fks = constraint.elements
            referred_table = fks[0].column.table
            referred_cfg = table_to_map_config.get(referred_table, None)
            if referred_cfg is None:
                continue
            referred_cls = referred_cfg.cls

            if local_cls is not referred_cls and issubclass(
                    local_cls, referred_cls):
                continue

            relationship_name = name_for_scalar_relationship(
                automap_base,
                local_cls,
                referred_cls, constraint)
            backref_name = name_for_collection_relationship(
                automap_base,
                referred_cls,
                local_cls,
                constraint
            )

            o2m_kws = {}
            nullable = False not in set([fk.parent.nullable for fk in fks])
            if not nullable:
                o2m_kws['cascade'] = "all, delete-orphan"

                if constraint.ondelete and \
                        constraint.ondelete.lower() == "cascade":
                    o2m_kws['passive_deletes'] = True
            else:
                if constraint.ondelete and \
                        constraint.ondelete.lower() == "set null":
                    o2m_kws['passive_deletes'] = True

            create_backref = backref_name not in referred_cfg.properties

            if relationship_name not in map_config.properties:
                if create_backref:
                    backref_obj = generate_relationship(
                        automap_base,
                        interfaces.ONETOMANY, backref,
                        backref_name, referred_cls, local_cls,
                        collection_class=collection_class,
                        **o2m_kws)
                else:
                    backref_obj = None
                rel = generate_relationship(automap_base,
                                            interfaces.MANYTOONE,
                                            relationship,
                                            relationship_name,
                                            local_cls, referred_cls,
                                            foreign_keys=[
                                                fk.parent
                                                for fk in constraint.elements],
                                            backref=backref_obj,
                                            remote_side=[
                                                fk.column
                                                for fk in constraint.elements]
                                            )
                if rel is not None:
                    map_config.properties[relationship_name] = rel
                    if not create_backref:
                        referred_cfg.properties[
                            backref_name].back_populates = relationship_name
            elif create_backref:
                rel = generate_relationship(automap_base,
                                            interfaces.ONETOMANY,
                                            relationship,
                                            backref_name,
                                            referred_cls, local_cls,
                                            foreign_keys=[
                                                fk.parent
                                                for fk in constraint.elements],
                                            back_populates=relationship_name,
                                            collection_class=collection_class,
                                            **o2m_kws)
                if rel is not None:
                    referred_cfg.properties[backref_name] = rel
                    map_config.properties[
                        relationship_name].back_populates = backref_name


def _m2m_relationship(automap_base, lcl_m2m, rem_m2m, m2m_const, table,
                      table_to_map_config,
                      collection_class,
                      name_for_scalar_relationship,
                      name_for_collection_relationship,
                      generate_relationship):

    map_config = table_to_map_config.get(lcl_m2m, None)
    referred_cfg = table_to_map_config.get(rem_m2m, None)
    if map_config is None or referred_cfg is None:
        return

    local_cls = map_config.cls
    referred_cls = referred_cfg.cls

    relationship_name = name_for_collection_relationship(
        automap_base,
        local_cls,
        referred_cls, m2m_const[0])
    backref_name = name_for_collection_relationship(
        automap_base,
        referred_cls,
        local_cls,
        m2m_const[1]
    )

    create_backref = backref_name not in referred_cfg.properties

    if relationship_name not in map_config.properties:
        if create_backref:
            backref_obj = generate_relationship(
                automap_base,
                interfaces.MANYTOMANY,
                backref,
                backref_name,
                referred_cls, local_cls,
                collection_class=collection_class
            )
        else:
            backref_obj = None
        rel = generate_relationship(automap_base,
                                    interfaces.MANYTOMANY,
                                    relationship,
                                    relationship_name,
                                    local_cls, referred_cls,
                                    secondary=table,
                                    primaryjoin=and_(
                                        fk.column == fk.parent
                                        for fk in m2m_const[0].elements),
                                    secondaryjoin=and_(
                                        fk.column == fk.parent
                                        for fk in m2m_const[1].elements),
                                    backref=backref_obj,
                                    collection_class=collection_class
                                    )
        if rel is not None:
            map_config.properties[relationship_name] = rel

            if not create_backref:
                referred_cfg.properties[
                    backref_name].back_populates = relationship_name
    elif create_backref:
        rel = generate_relationship(automap_base,
                                    interfaces.MANYTOMANY,
                                    relationship,
                                    backref_name,
                                    referred_cls, local_cls,
                                    secondary=table,
                                    primaryjoin=and_(
                                        fk.column == fk.parent
                                        for fk in m2m_const[1].elements),
                                    secondaryjoin=and_(
                                        fk.column == fk.parent
                                        for fk in m2m_const[0].elements),
                                    back_populates=relationship_name,
                                    collection_class=collection_class)
        if rel is not None:
            referred_cfg.properties[backref_name] = rel
            map_config.properties[
                relationship_name].back_populates = backref_name