This file is indexed.

/usr/lib/python3/dist-packages/scikit_learn-0.18.egg-info is in python3-sklearn 0.18-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
Metadata-Version: 1.1
Name: scikit-learn
Version: 0.18
Summary: A set of python modules for machine learning and data mining
Home-page: http://scikit-learn.org
Author: Andreas Mueller
Author-email: amueller@ais.uni-bonn.de
License: new BSD
Download-URL: http://sourceforge.net/projects/scikit-learn/files/
Description: .. -*- mode: rst -*-
        |Travis|_ |AppVeyor|_ |Coveralls|_ |CircleCI|_ |Python27|_ |Python35|_ |PyPi|_ |DOI|_
        
        .. |Travis| image:: https://api.travis-ci.org/scikit-learn/scikit-learn.svg?branch=master
        .. _Travis: https://travis-ci.org/scikit-learn/scikit-learn
        
        .. |AppVeyor| image:: https://ci.appveyor.com/api/projects/status/github/scikit-learn/scikit-learn?branch=master&svg=true
        .. _AppVeyor: https://ci.appveyor.com/project/sklearn-ci/scikit-learn/history
        
        .. |Coveralls| image:: https://coveralls.io/repos/scikit-learn/scikit-learn/badge.svg?branch=master&service=github
        .. _Coveralls: https://coveralls.io/r/scikit-learn/scikit-learn
        
        .. |CircleCI| image:: https://circleci.com/gh/scikit-learn/scikit-learn/tree/master.svg?style=shield&circle-token=:circle-token
        .. _CircleCI: https://circleci.com/gh/scikit-learn/scikit-learn
        
        .. |Python27| image:: https://img.shields.io/badge/python-2.7-blue.svg
        .. _Python27: https://badge.fury.io/py/scikit-learn
        
        .. |Python35| image:: https://img.shields.io/badge/python-3.5-blue.svg
        .. _Python35: https://badge.fury.io/py/scikit-learn
        
        .. |PyPi| image:: https://badge.fury.io/py/scikit-learn.svg
        .. _PyPi: https://badge.fury.io/py/scikit-learn
        
        .. |DOI| image:: https://zenodo.org/badge/21369/scikit-learn/scikit-learn.svg
        .. _DOI: https://zenodo.org/badge/latestdoi/21369/scikit-learn/scikit-learn
        
        scikit-learn
        ============
        
        scikit-learn is a Python module for machine learning built on top of
        SciPy and distributed under the 3-Clause BSD license.
        
        The project was started in 2007 by David Cournapeau as a Google Summer
        of Code project, and since then many volunteers have contributed. See
        the `AUTHORS.rst <AUTHORS.rst>`_ file for a complete list of contributors.
        
        It is currently maintained by a team of volunteers.
        
        Website: http://scikit-learn.org
        
        Installation
        ------------
        
        Dependencies
        ~~~~~~~~~~~~
        
        Scikit-learn requires::
        
        - Python (>= 2.6 or >= 3.3),
        - NumPy (>= 1.6.1),
        - SciPy (>= 0.9).
        
        scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra
        Subprograms library. scikit-learn comes with a reference implementation, but
        the system CBLAS will be detected by the build system and used if present.
        CBLAS exists in many implementations; see `Linear algebra libraries
        <http://scikit-learn.org/stable/modules/computational_performance.html#linear-algebra-libraries>`_
        for known issues.
        
        User installation
        ~~~~~~~~~~~~~~~~~
        
        If you already have a working installation of numpy and scipy,
        the easiest way to install scikit-learn is using ``pip`` ::
        
            pip install -U scikit-learn
        
        or ``conda``::
        
            conda install scikit-learn
        
        The documentation includes more detailed `installation instructions <http://scikit-learn.org/stable/install.html>`_.
        
        
        Development
        -----------
        
        We welcome new contributors of all experience levels. The scikit-learn
        community goals are to be helpful, welcoming, and effective. The
        `Contributor's Guide <http://scikit-learn.org/stable/developers/index.html>`_ 
        has detailed information about contributing code, documentation, tests, and
        more. We've included some basic information in this README.
        
        Important links
        ~~~~~~~~~~~~~~~
        
        - Official source code repo: https://github.com/scikit-learn/scikit-learn
        - Download releases: http://sourceforge.net/projects/scikit-learn/files/
        - Issue tracker: https://github.com/scikit-learn/scikit-learn/issues
        
        Source code
        ~~~~~~~~~~~
        
        You can check the latest sources with the command::
        
            git clone https://github.com/scikit-learn/scikit-learn.git
        
        Setting up a development environment
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        
        Quick tutorial on how to go about setting up your environment to
        contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md
        
        Testing
        ~~~~~~~
        
        After installation, you can launch the test suite from outside the
        source directory (you will need to have the ``nose`` package installed)::
        
           $ nosetests -v sklearn
        
        Under Windows, it is recommended to use the following command (adjust the path
        to the ``python.exe`` program) as using the ``nosetests.exe`` program can badly
        interact with tests that use ``multiprocessing``::
        
           C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn
        
        See the web page http://scikit-learn.org/stable/install.html#testing
        for more information.
        
            Random number generation can be controlled during testing by setting
            the ``SKLEARN_SEED`` environment variable.
        
        Submitting a Pull Request
        ~~~~~~~~~~~~~~~~~~~~~~~~~
        
        Before opening a Pull Request, have a look at the
        full Contributing page to make sure your code complies
        with our guidelines: http://scikit-learn.org/stable/developers/index.html
        
        
        Project history
        ---------------
        
        The project was started in 2007 by David Cournapeau as a Google Summer
        of Code project, and since then many volunteers have contributed. See
        the AUTHORS.rst file for a complete list of contributors.
        
        The project is currently maintained by a team of volunteers.
        
        **Note** `scikit-learn` was previously referred to as `scikits.learn`.
        
        
        Help and Support
        ----------------
        
        Documentation
        ~~~~~~~~~~~~~
        
        - HTML documentation (stable release): http://scikit-learn.org
        - HTML documentation (development version): http://scikit-learn.org/dev/
        - FAQ: http://scikit-learn.org/stable/faq.html
        
        Communication
        ~~~~~~~~~~~~~
        
        - Mailing list: https://mail.python.org/mailman/listinfo/scikit-learn
        - IRC channel: ``#scikit-learn`` at ``irc.freenode.net``
        - Stack Overflow: http://stackoverflow.com/questions/tagged/scikit-learn
        - Website: http://scikit-learn.org
Platform: UNKNOWN
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved
Classifier: Programming Language :: C
Classifier: Programming Language :: Python
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5