This file is indexed.

/usr/lib/python3/dist-packages/pyelliptic/ecc.py is in python3-pyelliptic 1.5.7-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright (c) 2014 Yann GUIBET <yannguibet@gmail.com>.
# All rights reserved.
#
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     1. Redistributions of source code must retain the above copyright
#     notice, this list of conditions and the following disclaimer.
#
#     2. Redistributions in binary form must reproduce the above copyright
#     notice, this list of conditions and the following disclaimer in
#     the documentation and/or other materials provided with the
#     distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS
# BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
# OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
# IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from hashlib import sha512
from binascii import hexlify, unhexlify
from .openssl import OpenSSL
from .cipher import Cipher
from .hash import hmac_sha256, equals
from struct import pack, unpack


class ECC:
    """
    Asymmetric encryption with Elliptic Curve Cryptography (ECC)
    ECDH, ECDSA and ECIES

        import pyelliptic

        alice = pyelliptic.ECC() # default curve: sect283r1
        bob = pyelliptic.ECC(curve='sect571r1')

        ciphertext = alice.encrypt("Hello Bob", bob.get_pubkey())
        print bob.decrypt(ciphertext)

        signature = bob.sign("Hello Alice")
        # alice's job :
        print pyelliptic.ECC(
            pubkey=bob.get_pubkey()).verify(signature, "Hello Alice")

        # ERROR !!!
        try:
            key = alice.get_ecdh_key(bob.get_pubkey())
        except: print("For ECDH key agreement,\
                      the keys must be defined on the same curve !")

        alice = pyelliptic.ECC(curve='sect571r1')
        print alice.get_ecdh_key(bob.get_pubkey()).encode('hex')
        print bob.get_ecdh_key(alice.get_pubkey()).encode('hex')

    """

    def __init__(self, pubkey=None, privkey=None, pubkey_x=None,
                 pubkey_y=None, raw_privkey=None, curve='sect283r1'):
        """
        For a normal and High level use, specifie pubkey,
        privkey (if you need) and the curve
        """
        if type(curve) == str:
            self.curve = OpenSSL.get_curve(curve)
        else:
            self.curve = curve

        if pubkey_x is not None and pubkey_y is not None:
            self._set_keys(pubkey_x, pubkey_y, raw_privkey)
        elif pubkey is not None:
            pubkey_x, pubkey_y = ECC._decode_pubkey(pubkey)
            if privkey is not None:
                raw_privkey = ECC._decode_privkey(privkey)
            self._set_keys(pubkey_x, pubkey_y, raw_privkey)
        else:
            self.privkey, self.pubkey_x, self.pubkey_y = self._generate()

    def _set_keys(self, pubkey_x, pubkey_y, privkey):
        if self.raw_check_key(privkey, pubkey_x, pubkey_y) < 0:
            self.pubkey_x = None
            self.pubkey_y = None
            self.privkey = None
            raise Exception("Bad ECC keys ...")
        else:
            self.pubkey_x = pubkey_x
            self.pubkey_y = pubkey_y
            self.privkey = privkey

    @staticmethod
    def get_curves():
        """
        static method, returns the list of all the curves available
        """
        return OpenSSL.curves.keys()

    def get_curve(self):
        return OpenSSL.get_curve_by_id(self.curve)

    def get_curve_id(self):
        return self.curve

    def get_pubkey(self, _format='binary'):
        """
        High level function which returns :
        pubkeyX + pubkeyY
        """
        binary = b''.join((
            self.pubkey_x,
            self.pubkey_y
        ))

        if _format is 'binary':
            pubkey = b'' + unhexlify('04') + binary
        elif _format is 'hex':
            pubkey = b'04' + binary.encode('hex')
        else:
            raise Exception("[ECC] Unsupported pubkey output format ...")

        return pubkey

    def get_privkey(self):
        """
        High level function which returns
        privkey
        """
        return self.privkey

    @staticmethod
    def _decode_pubkey(pubkey, format='binary'):
        if format is 'binary':
            binary_key = pubkey
        elif format is 'hex':
            binary_key = unhexlify(pubkey)
        else:
            raise Exception("[ECC] Unsupported pubkey input format")

        conv_form = binary_key[0:1]
        if hexlify(conv_form) != b'04':
            raise Exception("[ECC] Unsupported pubkey point conversion form")
        i = int(len(binary_key) / 2 + 1)
        pubkey_x = binary_key[1:i]
        pubkey_y = binary_key[i:]
        return pubkey_x, pubkey_y

    @staticmethod
    def _decode_privkey(privkey):
        return privkey

    def _old_get_pubkey(self):
        """
        Old get_pubkey, keeps for compatibility issues.
        """
        return b''.join((pack('!H', self.curve),
                         pack('!H', len(self.pubkey_x)),
                         self.pubkey_x,
                         pack('!H', len(self.pubkey_y)),
                         self.pubkey_y
                         ))

    def _old_get_privkey(self):
        """
        Old get_privkey, keeps for compatibility issues.
        """
        return b''.join((pack('!H', self.curve),
                         pack('!H', len(self.privkey)),
                         self.privkey
                         ))

    @staticmethod
    def _old_decode_pubkey(pubkey):
        """
        Converts old exported pubkey to new format
        """
        i = 0
        curve = unpack('!H', pubkey[i:i + 2])[0]
        i += 2
        tmplen = unpack('!H', pubkey[i:i + 2])[0]
        i += 2
        pubkey_x = pubkey[i:i + tmplen]
        i += tmplen
        tmplen = unpack('!H', pubkey[i:i + 2])[0]
        i += 2
        pubkey_y = pubkey[i:i + tmplen]
        i += tmplen
        return curve, pubkey_x, pubkey_y, i

    @staticmethod
    def _old_decode_privkey(privkey):
        """
        Converts old exported privkey to new format
        """
        i = 0
        curve = unpack('!H', privkey[i:i + 2])[0]
        i += 2
        tmplen = unpack('!H', privkey[i:i + 2])[0]
        i += 2
        privkey = privkey[i:i + tmplen]
        i += tmplen
        return curve, privkey, i

    def _generate(self):
        try:
            pub_key_x = OpenSSL.BN_new()
            pub_key_y = OpenSSL.BN_new()

            key = OpenSSL.EC_KEY_new_by_curve_name(self.curve)
            if key == 0:
                raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_generate_key(key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_generate_key FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_check_key(key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_check_key FAIL ... " + OpenSSL.get_error())
            priv_key = OpenSSL.EC_KEY_get0_private_key(key)

            group = OpenSSL.EC_KEY_get0_group(key)
            pub_key = OpenSSL.EC_KEY_get0_public_key(key)

            if (OpenSSL.EC_POINT_get_affine_coordinates_GFp(group, pub_key,
                                                            pub_key_x,
                                                            pub_key_y, 0
                                                            )) == 0:
                raise Exception(
                    "[OpenSSL] EC_POINT_get_affine_coordinates_GFp FAIL ... " + OpenSSL.get_error())

            field_size = OpenSSL.EC_GROUP_get_degree(OpenSSL.EC_KEY_get0_group(key))
            secret_len = int((field_size + 7) / 8)

            privkey = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(priv_key))
            pubkeyx = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(pub_key_x))
            pubkeyy = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(pub_key_y))
            OpenSSL.BN_bn2bin(priv_key, privkey)
            privkey = privkey.raw
            OpenSSL.BN_bn2bin(pub_key_x, pubkeyx)
            pubkeyx = pubkeyx.raw
            OpenSSL.BN_bn2bin(pub_key_y, pubkeyy)
            pubkeyy = pubkeyy.raw

            if len(pubkeyx) < secret_len:
                pubkeyx = pubkeyx.rjust(secret_len, b'\0')
            if len(pubkeyy) < secret_len:
                pubkeyy = pubkeyy.rjust(secret_len, b'\0')

            self.raw_check_key(privkey, pubkeyx, pubkeyy)

            return privkey, pubkeyx, pubkeyy

        finally:
            OpenSSL.EC_KEY_free(key)
            OpenSSL.BN_free(pub_key_x)
            OpenSSL.BN_free(pub_key_y)

    def get_ecdh_key(self, pubkey, format='binary'):
        """
        High level function. Compute public key with the local private key
        and returns a shared binary key
        """
        pubkey_x, pubkey_y = ECC._decode_pubkey(pubkey, format)
        return self.raw_get_ecdh_key(pubkey_x, pubkey_y)

    def raw_get_ecdh_key(self, pubkey_x, pubkey_y):
        try:
            ecdh_keybuffer = OpenSSL.malloc(0, 32)

            other_key = OpenSSL.EC_KEY_new_by_curve_name(self.curve)
            if other_key == 0:
                raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ... " + OpenSSL.get_error())

            other_pub_key_x = OpenSSL.BN_bin2bn(pubkey_x, len(pubkey_x), 0)
            other_pub_key_y = OpenSSL.BN_bin2bn(pubkey_y, len(pubkey_y), 0)

            other_group = OpenSSL.EC_KEY_get0_group(other_key)
            other_pub_key = OpenSSL.EC_POINT_new(other_group)
            if (other_pub_key == None):
                raise Exception("[OpenSSl] EC_POINT_new FAIL ... " + OpenSSL.get_error())

            if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(other_group,
                                                            other_pub_key,
                                                            other_pub_key_x,
                                                            other_pub_key_y,
                                                            0)) == 0:
                raise Exception(
                    "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ..." + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_set_public_key(other_key, other_pub_key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_check_key(other_key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_check_key FAIL ... " + OpenSSL.get_error())

            own_key = OpenSSL.EC_KEY_new_by_curve_name(self.curve)
            if own_key == 0:
                raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ... " + OpenSSL.get_error())
            own_priv_key = OpenSSL.BN_bin2bn(
                self.privkey, len(self.privkey), 0)

            if (OpenSSL.EC_KEY_set_private_key(own_key, own_priv_key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_set_private_key FAIL ... " + OpenSSL.get_error())

            OpenSSL.ECDH_set_method(own_key, OpenSSL.ECDH_OpenSSL())
            ecdh_keylen = OpenSSL.ECDH_compute_key(
                ecdh_keybuffer, 32, other_pub_key, own_key, 0)

            if ecdh_keylen != 32:
                raise Exception("[OpenSSL] ECDH keylen FAIL ... " + OpenSSL.get_error())

            return ecdh_keybuffer.raw

        finally:
            OpenSSL.EC_KEY_free(other_key)
            OpenSSL.BN_free(other_pub_key_x)
            OpenSSL.BN_free(other_pub_key_y)
            OpenSSL.EC_POINT_free(other_pub_key)
            OpenSSL.EC_KEY_free(own_key)
            OpenSSL.BN_free(own_priv_key)

    def check_key(self, privkey, pubkey):
        """
        Check the public key and the private key.
        The private key is optional (replace by None)
        """
        pubkey_x, pubkey_y = ECC._decode_pubkey(pubkey)
        if privkey is None:
            raw_privkey = None
        else:
            raw_privkey = ECC._decode_privkey(privkey)
        return self.raw_check_key(raw_privkey, pubkey_x, pubkey_y)

    def raw_check_key(self, privkey, pubkey_x, pubkey_y):
        curve = self.curve
        try:
            key = OpenSSL.EC_KEY_new_by_curve_name(curve)
            if key == 0:
                raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ... " + OpenSSL.get_error())
            if privkey is not None:
                priv_key = OpenSSL.BN_bin2bn(privkey, len(privkey), 0)
            pub_key_x = OpenSSL.BN_bin2bn(pubkey_x, len(pubkey_x), 0)
            pub_key_y = OpenSSL.BN_bin2bn(pubkey_y, len(pubkey_y), 0)

            if privkey is not None:
                if (OpenSSL.EC_KEY_set_private_key(key, priv_key)) == 0:
                    raise Exception(
                        "[OpenSSL] EC_KEY_set_private_key FAIL ... " + OpenSSL.get_error())

            group = OpenSSL.EC_KEY_get0_group(key)
            pub_key = OpenSSL.EC_POINT_new(group)

            if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(group, pub_key,
                                                            pub_key_x,
                                                            pub_key_y,
                                                            0)) == 0:
                raise Exception(
                    "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_set_public_key(key, pub_key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_check_key(key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_check_key FAIL ... " + OpenSSL.get_error())
            return 0

        finally:
            OpenSSL.EC_KEY_free(key)
            OpenSSL.BN_free(pub_key_x)
            OpenSSL.BN_free(pub_key_y)
            OpenSSL.EC_POINT_free(pub_key)
            if privkey is not None:
                OpenSSL.BN_free(priv_key)

    def sign(self, inputb):
        """
        Sign the input with ECDSA method and returns the signature
        """
        try:
            size = len(inputb)
            buff = OpenSSL.malloc(inputb, size)
            digest = OpenSSL.malloc(0, 64)
            md_ctx = OpenSSL.EVP_MD_CTX_create()
            dgst_len = OpenSSL.pointer(OpenSSL.c_int(0))
            siglen = OpenSSL.pointer(OpenSSL.c_int(0))
            sig = OpenSSL.malloc(0, 151)

            key = OpenSSL.EC_KEY_new_by_curve_name(self.curve)
            if key == 0:
                raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ... " + OpenSSL.get_error())

            priv_key = OpenSSL.BN_bin2bn(self.privkey, len(self.privkey), 0)
            pub_key_x = OpenSSL.BN_bin2bn(self.pubkey_x, len(self.pubkey_x), 0)
            pub_key_y = OpenSSL.BN_bin2bn(self.pubkey_y, len(self.pubkey_y), 0)

            if (OpenSSL.EC_KEY_set_private_key(key, priv_key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_set_private_key FAIL ... " + OpenSSL.get_error())

            group = OpenSSL.EC_KEY_get0_group(key)
            pub_key = OpenSSL.EC_POINT_new(group)

            if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(group, pub_key,
                                                            pub_key_x,
                                                            pub_key_y,
                                                            0)) == 0:
                raise Exception(
                    "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_set_public_key(key, pub_key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_check_key(key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_check_key FAIL ... " + OpenSSL.get_error())

            OpenSSL.EVP_MD_CTX_init(md_ctx)
            OpenSSL.EVP_DigestInit_ex(md_ctx, OpenSSL.EVP_sha256(), None)

            if (OpenSSL.EVP_DigestUpdate(md_ctx, buff, size)) == 0:
                raise Exception("[OpenSSL] EVP_DigestUpdate FAIL ... " + OpenSSL.get_error())
            OpenSSL.EVP_DigestFinal_ex(md_ctx, digest, dgst_len)
            OpenSSL.ECDSA_sign(0, digest, dgst_len.contents, sig, siglen, key)
            if (OpenSSL.ECDSA_verify(0, digest, dgst_len.contents, sig,
                                     siglen.contents, key)) != 1:
                raise Exception("[OpenSSL] ECDSA_verify FAIL ... " + OpenSSL.get_error())

            return sig.raw[0:siglen.contents.value]

        finally:
            OpenSSL.EC_KEY_free(key)
            OpenSSL.BN_free(pub_key_x)
            OpenSSL.BN_free(pub_key_y)
            OpenSSL.BN_free(priv_key)
            OpenSSL.EC_POINT_free(pub_key)
            OpenSSL.EVP_MD_CTX_destroy(md_ctx)

    def verify(self, sig, inputb):
        """
        Verify the signature with the input and the local public key.
        Returns a boolean
        """
        try:
            bsig = OpenSSL.malloc(sig, len(sig))
            binputb = OpenSSL.malloc(inputb, len(inputb))
            digest = OpenSSL.malloc(0, 64)
            dgst_len = OpenSSL.pointer(OpenSSL.c_int(0))
            md_ctx = OpenSSL.EVP_MD_CTX_create()

            key = OpenSSL.EC_KEY_new_by_curve_name(self.curve)

            if key == 0:
                raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ... " + OpenSSL.get_error())

            pub_key_x = OpenSSL.BN_bin2bn(self.pubkey_x, len(self.pubkey_x), 0)
            pub_key_y = OpenSSL.BN_bin2bn(self.pubkey_y, len(self.pubkey_y), 0)
            group = OpenSSL.EC_KEY_get0_group(key)
            pub_key = OpenSSL.EC_POINT_new(group)

            if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(group, pub_key,
                                                            pub_key_x,
                                                            pub_key_y,
                                                            0)) == 0:
                raise Exception(
                    "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_set_public_key(key, pub_key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ... " + OpenSSL.get_error())
            if (OpenSSL.EC_KEY_check_key(key)) == 0:
                raise Exception("[OpenSSL] EC_KEY_check_key FAIL ... " + OpenSSL.get_error())

            OpenSSL.EVP_MD_CTX_init(md_ctx)
            OpenSSL.EVP_DigestInit_ex(md_ctx, OpenSSL.EVP_sha256(), None)
            if (OpenSSL.EVP_DigestUpdate(md_ctx, binputb, len(inputb))) == 0:
                raise Exception("[OpenSSL] EVP_DigestUpdate FAIL ... " + OpenSSL.get_error())

            OpenSSL.EVP_DigestFinal_ex(md_ctx, digest, dgst_len)
            ret = OpenSSL.ECDSA_verify(
                0, digest, dgst_len.contents, bsig, len(sig), key)

            if ret == -1:
                return False  # Fail to Check
            else:
                if ret == 0:
                    return False  # Bad signature !
                else:
                    return True  # Good
            return False

        finally:
            OpenSSL.EC_KEY_free(key)
            OpenSSL.BN_free(pub_key_x)
            OpenSSL.BN_free(pub_key_y)
            OpenSSL.EC_POINT_free(pub_key)
            OpenSSL.EVP_MD_CTX_destroy(md_ctx)

    def encrypt(self, data, pubkey, ephemcurve=None, ciphername='aes-256-cbc'):
        """
        Encrypt data with ECIES method using the public key of the recipient.
        """
        curve = OpenSSL.get_curve_by_id(self.curve)
        pubkey_x, pubkey_y = ECC._decode_pubkey(pubkey)
        return ECC.raw_encrypt(data, pubkey_x, pubkey_y, curve=curve,
                               ephemcurve=ephemcurve, ciphername=ciphername)

    @staticmethod
    def raw_encrypt(data, pubkey_x, pubkey_y, curve='sect283r1',
                    ephemcurve=None, ciphername='aes-256-cbc'):
        if ephemcurve is None:
            ephemcurve = curve
        ephem = ECC(curve=ephemcurve)
        key = sha512(ephem.raw_get_ecdh_key(pubkey_x, pubkey_y)).digest()
        key_e, key_m = key[:32], key[32:]
        pubkey = ephem.get_pubkey()
        iv = Cipher.gen_IV(ciphername)
        ctx = Cipher(key_e, iv, 1, ciphername)
        ciphertext = iv + pubkey + ctx.ciphering(data)
        mac = hmac_sha256(key_m, ciphertext)
        return ciphertext + mac

    def decrypt(self, data, ciphername='aes-256-cbc'):
        """
        Decrypt data with ECIES method using the local private key
        """
        blocksize = OpenSSL.get_cipher(ciphername).get_blocksize()
        iv = data[:blocksize]
        i = blocksize
        coord_len = len(self.pubkey_x) * 2 + 1
        pubkey_x, pubkey_y = ECC._decode_pubkey(data[i:i + coord_len])
        i += coord_len
        ciphertext = data[i:len(data) - 32]
        i = len(data) - 32
        mac = data[i:]
        key = sha512(self.raw_get_ecdh_key(pubkey_x, pubkey_y)).digest()
        key_e, key_m = key[:32], key[32:]
        if not equals(hmac_sha256(key_m, data[:i]), mac):
            raise RuntimeError("Fail to verify data")
        ctx = Cipher(key_e, iv, 0, ciphername)
        return ctx.ciphering(ciphertext)