/usr/lib/python3/dist-packages/dtcwt/registration.py is in python3-dtcwt 0.11.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | """
.. note::
This module is experimental. It's API may change between versions.
This module implements function for DTCWT-based image registration as outlined in
`[1] <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5936113>`_.
These functions are 2D-only for the moment.
"""
from __future__ import division, absolute_import
import itertools
from six.moves import xrange
import dtcwt
import dtcwt.numpy
import dtcwt.sampling
import dtcwt.utils
import numpy as np
__all__ = [
'estimatereg',
'velocityfield',
'warp',
'warptransform',
]
# Horizontal and vertical expected phase shifts for each subband
EXPECTED_SHIFTS = np.array(((-1,-3),(-3,-3),(-3,-1),(-3,1),(-3,3),(-1,3))) * np.pi / 2.15
def phasegradient(sb1, sb2, w=None):
"""
Compute the dx, dy and dt phase gradients for subbands *sb1* and *sb2*.
Each subband should be an NxM matrix of complex values and should be the
same size.
*w* should be a pair giving the expected phase shift for horizontal and vertical
directions. This expected phase shift is used to 'de-rotate' the phase gradients
before computing the angle and is added afterwards. If not specified, 0 is
used. This is likely to give poor results.
Returns 3 NxM matrices giving the d/dy, d/dx and d/dt phase values
respectively at position (x,y).
"""
if w is None:
w = (0,0)
if sb1.size != sb2.size:
raise ValueError('Subbands should have identical size')
# Measure horizontal phase gradients by taking the angle of
# summed conjugate products across horizontal pairs.
S = (sb1[:,1:] * np.conj(sb1[:,:-1]) + sb2[:,1:] * np.conj(sb2[:,:-1])) * np.exp(-1j * w[0])
#dx = np.angle(dtcwt.sampling.sample(S, xs-0.5, ys, method='bilinear')) + w[0]
dx = np.hstack((
np.angle(S[:,:1]),
np.angle(0.5 * (S[:,:-1] + S[:,1:])),
np.angle(S[:,-1:])
)) + w[0]
# Measure vertical phase gradients by taking the angle of
# summed conjugate products across vertical pairs.
S = (sb1[1:,:] * np.conj(sb1[:-1,:]) + sb2[1:,:] * np.conj(sb2[:-1,:])) * np.exp(-1j * w[1])
dy = np.vstack((
np.angle(S[:1,:]),
np.angle(0.5 * (S[:-1,:] + S[1:,:])),
np.angle(S[-1:,:])
)) + w[1]
# Measure temporal phase differences between refh and prevh
A = sb2 * np.conj(sb1)
dt = np.angle(A)
return dy, dx, dt
def _pow2(a):
return a * a
def _pow3(a):
return a * a * a
def confidence(sb1, sb2, epsilon=1e-6):
"""
Compute the confidence measure of subbands *sb1* and *sb2* which should be
2d arrays of identical shape. The confidence measure gives highest weight
to pixels we expect to give good results.
epsilon is a small constant intended to regularise the situation in which
the case when the wavelet coefficients are very small (and so dominated
by noise). It should be set to be comparable to the cube of the amplitude
of the measurement noise.
"""
if sb1.size != sb2.size:
raise ValueError('Subbands should have identical size')
numerator, denominator = 0.0, epsilon
# Pad subbands
us = np.concatenate((
np.concatenate((sb1[ :1,:1], sb1[ :1,:], sb1[ :1,-1:]), axis=1),
np.concatenate((sb1[ : ,:1], sb1 , sb1[ : ,-1:]), axis=1),
np.concatenate((sb1[-1: ,:1], sb1[-1: ,:], sb1[-1: ,-1:]), axis=1),
), axis=0)
vs = np.concatenate((
np.concatenate((sb2[ :1,:1], sb2[ :1,:], sb2[ :1,-1:]), axis=1),
np.concatenate((sb2[ : ,:1], sb2 , sb2[ : ,-1:]), axis=1),
np.concatenate((sb2[-1: ,:1], sb2[-1: ,:], sb2[-1: ,-1:]), axis=1),
), axis=0)
us3_abs, vs3_abs = _pow3(np.abs(us)), _pow3(np.abs(vs))
prod_coeffs = np.conj(us) * vs
# pixels at -1, -1
region = (slice(0,-2), slice(0,-2))
numerator += prod_coeffs[region]
denominator += us3_abs[region] + vs3_abs[region]
# pixels at +1, -1
region = (slice(0,-2), slice(2,None))
numerator += prod_coeffs[region]
denominator += us3_abs[region] + vs3_abs[region]
# pixels at -1, +1
region = (slice(2,None), slice(0,-2))
numerator += prod_coeffs[region]
denominator += us3_abs[region] + vs3_abs[region]
# pixels at +1, +1
region = (slice(2,None), slice(2,None))
numerator += prod_coeffs[region]
denominator += us3_abs[region] + vs3_abs[region]
return _pow2(np.abs(numerator)) / denominator
Q_TRIU_INDICES = list(zip(*np.triu_indices(6)))
Q_TRIU_FLAT_INDICES = np.ravel_multi_index(np.triu_indices(6), (6,6))
def qtildematrices(t_ref, t_target, levels):
r"""
Compute :math:`\tilde{Q}` matrices for given levels.
:param t_ref: the transformed reference image
:param t_target: the transformed target image
:param levels: a sequence of indices specifying which levels to examine
:returns: a tuple of :math:`\tilde{Q}` matrices for each index in *levels*
Both *t_ref* and *t_target* should be
:py:class:`dtcwt.Pyramid`-compatible objects.
Indices in *levels* are 0-based.
The returned matrices are NxMx27 where NxM is the shape of the
corresponding level's highpass subbands.
"""
# Extract highpasses
Yh1 = t_ref.highpasses
Yh2 = t_target.highpasses
# A list of arrays of \tilde{Q} matrices for each level
Qt_mats = []
for level in levels:
highpasses1, highpasses2 = Yh1[level], Yh2[level]
xs, ys = np.meshgrid(np.arange(0,1,1/highpasses1.shape[1]),
np.arange(0,1,1/highpasses1.shape[0]))
Qt_mat_sum = None
for subband in xrange(highpasses1.shape[2]):
C_d = confidence(highpasses1[:,:,subband], highpasses2[:,:,subband])
dy, dx, dt = phasegradient(highpasses1[:,:,subband], highpasses2[:,:,subband],
EXPECTED_SHIFTS[subband,:])
dx *= highpasses1.shape[1]
dy *= highpasses1.shape[0]
# This is the equivalent of the following for each member of the array
# Kt_mat = np.array(((1, 0, s*x, 0, s*y, 0, 0), (0, 1, 0, s*x, 0, s*y, 0), (0,0,0,0,0,0,1)))
# c_vec = np.array((dx, dy, -dt))
# tmp = (Kt_mat.T).dot(c_vec)
tmp = (
dx, dy, xs*dx, xs*dy, ys*dx, ys*dy, -dt
)
# Calculate Qmatrix elements
Qt = np.zeros(dx.shape[:2] + (27,))
elem_idx = 0
# Q sub-matrix
for r, c in Q_TRIU_INDICES:
Qt[:,:,elem_idx] = tmp[r] * tmp[c]
elem_idx += 1
# q sub-vector
for r in xrange(6):
Qt[:,:,elem_idx] = tmp[r] * tmp[6]
elem_idx += 1
# Include the confidence parameter
Qt *= C_d.reshape(Qt.shape[:-1] + (1,))**2
# Update Qt mats
if Qt_mat_sum is None:
Qt_mat_sum = Qt
else:
Qt_mat_sum += Qt
Qt_mats.append(Qt_mat_sum)
return Qt_mats
def solvetransform(Qtilde_vec):
r"""
Solve for affine transform parameter vector :math:`a` from :math:`\mathbf{\tilde{Q}}`
matrix. decomposes :math:`\mathbf{\tilde{Q}}` as
.. math::
\tilde{Q} = \begin{bmatrix}
\mathbf{Q} & \mathbf{q} \\
\mathbf{q}^T & q_0
\end{bmatrix}
Returns :math:`\mathbf{a} = -\mathbf{Q}^{-1} \mathbf{q}`.
"""
# Convert from 27-element vector into Q matrix and vector
Q = np.zeros(Qtilde_vec.shape[:-1] + (6*6,))
Q[..., Q_TRIU_FLAT_INDICES] = Qtilde_vec[...,:21]
q = Qtilde_vec[...,-6:]
Q = np.reshape(Q, Qtilde_vec.shape[:-1] + (6,6))
# Want to find a = -Q^{-1} q => Qa = -q
# The naive way would be: return -np.linalg.inv(Q).dot(q)
# A less naive way would be: return np.linalg.solve(Q, -q)
# NumPy >1.8 directly supports using the last two dimensions as a matrix. IF
# we get a LinAlgError, we assume that we need to fall-back to a NumPy 1.7
# approach which is *significantly* slower.
try:
rv = np.linalg.solve(Q, -q)
except np.linalg.LinAlgError:
# Try the slower fallback
rv = np.zeros(Qtilde_vec.shape[:-1] + (6,))
for idx in itertools.product(*list(xrange(s) for s in Qtilde_vec.shape[:-1])):
rv[idx] = np.linalg.solve(Q[idx], -q[idx])
return rv
def normsamplehighpass(Yh, xs, ys, method=None):
"""
Given a NxMx6 array of subband responses, sample from co-ordinates *xs* and
*ys*.
.. note::
The sample co-ordinates are in *normalised* co-ordinates such that the
image width and height are both unity.
"""
return dtcwt.sampling.sample_highpass(Yh, xs*Yh.shape[1], ys*Yh.shape[0], method=method)
def normsample(Yh, xs, ys, method=None):
"""
Given a NxM image sample from co-ordinates *xs* and *ys*.
.. note::
The sample co-ordinates are in *normalised* co-ordinates such that the
image width and height are both unity.
"""
return dtcwt.sampling.sample(Yh, xs*Yh.shape[1], ys*Yh.shape[0], method=method)
def warptransform(t, avecs, levels, method=None):
"""
Return a warped version of a transformed image acting only on specified levels.
:param t: a transformed image
:param avecs: an array of affine distortion parameters
:param levels: a sequence of 0-based indices specifying which levels to act on
*t* should be a
:py:class:`dtcwt.Pyramid`-compatible instance.
The *method* parameter is interpreted as in :py:func:`dtcwt.sampling.rescale` and
is the sampling method used to resize *avecs* to *shape*.
.. note::
This function will clone the transform *t* but it is a shallow clone
where possible. Only the levels specified in *levels* will be
deep-copied and warped.
"""
warped_highpasses = list(t.highpasses)
# Warp specified levels
for l in levels:
warped_highpasses[l] = warphighpass(warped_highpasses[l], avecs, method=method)
# Clone the transform
return dtcwt.numpy.Pyramid(t.lowpass, tuple(warped_highpasses), t.scales)
def estimatereg(source, reference, regshape=None, levels=None):
"""
Estimate registration from which will map *source* to *reference*.
:param source: transformed source image
:param reference: transformed reference image
The *reference* and *source* parameters should support the same API as
:py:class:`dtcwt.Pyramid`.
The local affine distortion is estimated at at 8x8 pixel scales.
Return a NxMx6 array where the 6-element vector at (N,M) corresponds to the
affine distortion parameters for the 8x8 block with index (N,M).
Use the :py:func:`velocityfield` function to convert the return value from
this function into a velocity field.
If not-`None`, *levels* is a sequence of sequences of 0-based level indices
to use when calculating the registration. If `None` then a default set of
levels are used.
"""
# Extract number of levels and shape of level 4 (i.e. index 3) subband
nlevels = len(source.highpasses)
if regshape is None:
avecs_shape = source.highpasses[3].shape[:2] + (6,)
else:
avecs_shape = tuple(regshape[:2]) + (6,)
# Initialise matrix of 'a' vectors
avecs = np.zeros(avecs_shape)
if levels is None:
levels = []
levels.append(list(x for x in xrange(nlevels-1, nlevels-3, -1) if x>=0))
for s in np.arange(nlevels-1, 0, -0.5):
refine_levels = list(int(np.floor(s))-x for x in range(2) if s-x >= 2)
if len(refine_levels) < 2:
continue
levels.append(refine_levels)
# Compute initial global transform
Qt_mats = list(
np.sum(np.sum(x, axis=0), axis=0)
for x in qtildematrices(source, reference, levels[0])
)
Qt = np.sum(Qt_mats, axis=0)
a = solvetransform(Qt)
for idx in xrange(a.shape[0]):
avecs[:,:,idx] = a[idx]
# Refine estimate
for est_levels in levels[1:]:
# Warp the levels we'll be looking at with the current best-guess transform
warped = warptransform(source, avecs, est_levels, method='bilinear')
# Rescale and sample all the Qtilde matrix results
all_qts = qtildematrices(warped, reference, est_levels)
if all_qts is None or len(all_qts) < 1:
continue
qts = np.zeros(avecs.shape[:2] + all_qts[0].shape[2:])
for x in all_qts:
qts += dtcwt.sampling.rescale(_boxfilter(x, 3), avecs.shape[:2], method='bilinear')
avecs += solvetransform(qts)
return avecs
def velocityfield(avecs, shape, method=None):
"""
Given the affine distortion parameters returned from :py:func:`estimatereg`, return
a tuple of 2D arrays giving the x- and y- components of the velocity field. The
shape of the velocity component field is *shape*. The velocities are measured in
terms of normalised units where the image has width and height of unity.
The *method* parameter is interpreted as in :py:func:`dtcwt.sampling.rescale` and
is the sampling method used to resize *avecs* to *shape*.
"""
h, w = avecs.shape[:2]
pxs, pys = np.meshgrid(np.arange(0, w, dtype=np.float32) / w,
np.arange(0, h, dtype=np.float32) / h)
vxs = avecs[:,:,0] + avecs[:,:,2] * pxs + avecs[:,:,4] * pys
vys = avecs[:,:,1] + avecs[:,:,3] * pxs + avecs[:,:,5] * pys
vxs = dtcwt.sampling.rescale(vxs, shape, method=method)
vys = dtcwt.sampling.rescale(vys, shape, method=method)
return vxs, vys
def warphighpass(Yh, avecs, method=None):
"""
A convenience function to warp a highpass subband image according to the
velocity field implied by *avecs*.
This function correctly 'de-rotates' the highpass image before sampling and
're-rotates' afterwards.
"""
X, Y = np.meshgrid(np.arange(Yh.shape[1], dtype=np.float32)/Yh.shape[1],
np.arange(Yh.shape[0], dtype=np.float32)/Yh.shape[0])
vxs, vys = velocityfield(avecs, Yh.shape, method=method)
return normsamplehighpass(Yh, X+vxs, Y+vys, method=method)
def warp(I, avecs, method=None):
"""
A convenience function to warp an image according to the velocity field
implied by *avecs*.
"""
X, Y = np.meshgrid(np.arange(I.shape[1], dtype=np.float32)/I.shape[1],
np.arange(I.shape[0], dtype=np.float32)/I.shape[0])
vxs, vys = velocityfield(avecs, I.shape, method=method)
return normsample(I, X+vxs, Y+vys, method=method)
def _boxfilter(X, kernel_size):
"""
INTERNAL
A simple box filter implementation.
"""
if kernel_size % 2 == 0:
raise ValueError('Kernel size must be odd')
for axis_idx in xrange(2):
slices = [slice(None),] * len(X.shape)
out = X
for delta in xrange(1, 1+(kernel_size-1)//2):
slices[axis_idx] = dtcwt.utils.reflect(
np.arange(X.shape[axis_idx]) + delta, -0.5, X.shape[axis_idx]-0.5)
out = out + X[slices]
slices[axis_idx] = dtcwt.utils.reflect(
np.arange(X.shape[axis_idx]) - delta, -0.5, X.shape[axis_idx]-0.5)
out = out + X[slices]
X = out / kernel_size
return X
|