/usr/lib/python3/dist-packages/ccdproc/combiner.py is in python3-ccdproc 1.2.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | # Licensed under a 3-clause BSD style license - see LICENSE.rst
# This module implements the combiner class.
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from numpy import ma
from .ccddata import CCDData
from .core import sigma_func
from astropy.nddata import StdDevUncertainty
from astropy import log
import math
__all__ = ['Combiner', 'combine']
class Combiner(object):
"""
A class for combining CCDData objects.
The Combiner class is used to combine together `~ccdproc.CCDData` objects
including the method for combining the data, rejecting outlying data,
and weighting used for combining frames.
Parameters
-----------
ccd_list : list
A list of CCDData objects that will be combined together.
dtype : str or `numpy.dtype` or None, optional
Allows user to set dtype. See `numpy.array` ``dtype`` parameter
description. If ``None`` it uses ``np.float64``.
Default is ``None``.
Raises
------
TypeError
If the ``ccd_list`` are not `~ccdproc.CCDData` objects, have different
units, or are different shapes.
Examples
--------
The following is an example of combining together different
`~ccdproc.CCDData` objects::
>>> import numpy as np
>>> import astropy.units as u
>>> from ccdproc import Combiner, CCDData
>>> ccddata1 = CCDData(np.ones((4, 4)), unit=u.adu)
>>> ccddata2 = CCDData(np.zeros((4, 4)), unit=u.adu)
>>> ccddata3 = CCDData(np.ones((4, 4)), unit=u.adu)
>>> c = Combiner([ccddata1, ccddata2, ccddata3])
>>> ccdall = c.average_combine()
>>> ccdall
CCDData([[ 0.66666667, 0.66666667, 0.66666667, 0.66666667],
[ 0.66666667, 0.66666667, 0.66666667, 0.66666667],
[ 0.66666667, 0.66666667, 0.66666667, 0.66666667],
[ 0.66666667, 0.66666667, 0.66666667, 0.66666667]])
"""
def __init__(self, ccd_list, dtype=None):
if ccd_list is None:
raise TypeError("ccd_list should be a list of CCDData objects.")
if dtype is None:
dtype = np.float64
default_shape = None
default_unit = None
for ccd in ccd_list:
# raise an error if the objects aren't CCDData objects
if not isinstance(ccd, CCDData):
raise TypeError(
"ccd_list should only contain CCDData objects.")
# raise an error if the shape is different
if default_shape is None:
default_shape = ccd.shape
else:
if not (default_shape == ccd.shape):
raise TypeError("CCDData objects are not the same size.")
# raise an error if the units are different
if default_unit is None:
default_unit = ccd.unit
else:
if not (default_unit == ccd.unit):
raise TypeError("CCDData objects don't the same unit.")
self.ccd_list = ccd_list
self.unit = default_unit
self.weights = None
self._dtype = dtype
# set up the data array
new_shape = (len(ccd_list),) + default_shape
self.data_arr = ma.masked_all(new_shape, dtype=dtype)
# populate self.data_arr
for i, ccd in enumerate(ccd_list):
self.data_arr[i] = ccd.data
if ccd.mask is not None:
self.data_arr.mask[i] = ccd.mask
else:
self.data_arr.mask[i] = ma.zeros(default_shape)
# Must be after self.data_arr is defined because it checks the
# length of the data array.
self.scaling = None
@property
def dtype(self):
return self._dtype
@property
def weights(self):
"""
Weights used when combining the `~ccdproc.CCDData` objects.
Parameters
----------
weight_values : `numpy.ndarray` or None
An array with the weight values. The dimensions should match the
the dimensions of the data arrays being combined.
"""
return self._weights
@weights.setter
def weights(self, value):
if value is not None:
if isinstance(value, np.ndarray):
if value.shape == self.data_arr.data.shape:
self._weights = value
else:
raise ValueError(
"dimensions of weights do not match data.")
else:
raise TypeError("weights must be a numpy.ndarray.")
else:
self._weights = None
@property
def scaling(self):
"""
Scaling factor used in combining images.
Parameters
----------
scale : function or `numpy.ndarray`-like or None, optional
Images are multiplied by scaling prior to combining
them. Scaling may be either a function, which will be applied to
each image to determine the scaling factor, or a list or array
whose length is the number of images in the `~ccdproc.Combiner`.
"""
return self._scaling
@scaling.setter
def scaling(self, value):
if value is None:
self._scaling = value
else:
n_images = self.data_arr.data.shape[0]
if callable(value):
self._scaling = [value(self.data_arr[i]) for
i in range(n_images)]
self._scaling = np.array(self._scaling)
else:
try:
len(value) == n_images
self._scaling = np.array(value)
except TypeError:
raise TypeError("scaling must be a function or an array "
"the same length as the number of images.")
# reshape so that broadcasting occurs properly
for i in range(len(self.data_arr.data.shape)-1):
self._scaling = self.scaling[:, np.newaxis]
# set up IRAF-like minmax clipping
def clip_extrema(self, nlow=0, nhigh=0):
"""Mask pixels using an IRAF-like minmax clipping algorithm. The
algorithm will mask the lowest nlow values and the highest nhigh values
before combining the values to make up a single pixel in the resulting
image. For example, the image will be a combination of
Nimages-nlow-nhigh pixel values instead of the combination of Nimages.
Parameters
-----------
nlow : int or None, optional
If not None, the number of low values to reject from the
combination.
Default is 0.
nhigh : int or None, optional
If not None, the number of high values to reject from the
combination.
Default is 0.
Notes
-----
Note that this differs slightly from the nominal IRAF imcombine
behavior when other masks are in use. For example, if ``nhigh>=1`` and
any pixel is already masked for some other reason, then this algorithm
will count the masking of that pixel toward the count of nhigh masked
pixels.
Here is a copy of the relevant IRAF help text [0]_:
nlow = 1, nhigh = (minmax)
The number of low and high pixels to be rejected by the "minmax"
algorithm. These numbers are converted to fractions of the total
number of input images so that if no rejections have taken place
the specified number of pixels are rejected while if pixels have
been rejected by masking, thresholding, or nonoverlap, then the
fraction of the remaining pixels, truncated to an integer, is used.
References
----------
.. [0] image.imcombine help text.
http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?imcombine
"""
if nlow is None:
nlow = 0
if nhigh is None:
nhigh = 0
argsorted = np.argsort(self.data_arr.data, axis=0)
mg = np.mgrid[[slice(ndim)
for i, ndim in enumerate(self.data_arr.shape) if i > 0]]
for i in range(-1*nhigh, nlow):
# create a tuple with the indices
where = tuple([argsorted[i, :, :].ravel()] +
[i.ravel() for i in mg])
self.data_arr.mask[where] = True
# set up min/max clipping algorithms
def minmax_clipping(self, min_clip=None, max_clip=None):
"""Mask all pixels that are below min_clip or above max_clip.
Parameters
-----------
min_clip : float or None, optional
If not None, all pixels with values below min_clip will be masked.
Default is ``None``.
max_clip : float or None, optional
If not None, all pixels with values above min_clip will be masked.
Default is ``None``.
"""
if min_clip is not None:
mask = (self.data_arr < min_clip)
self.data_arr.mask[mask] = True
if max_clip is not None:
mask = (self.data_arr > max_clip)
self.data_arr.mask[mask] = True
# set up sigma clipping algorithms
def sigma_clipping(self, low_thresh=3, high_thresh=3,
func=ma.mean, dev_func=ma.std):
"""
Pixels will be rejected if they have deviations greater than those
set by the threshold values. The algorithm will first calculated
a baseline value using the function specified in func and deviation
based on dev_func and the input data array. Any pixel with a
deviation from the baseline value greater than that set by
high_thresh or lower than that set by low_thresh will be rejected.
Parameters
-----------
low_thresh : positive float or None, optional
Threshold for rejecting pixels that deviate below the baseline
value. If negative value, then will be convert to a positive
value. If None, no rejection will be done based on low_thresh.
Default is 3.
high_thresh : positive float or None, optional
Threshold for rejecting pixels that deviate above the baseline
value. If None, no rejection will be done based on high_thresh.
Default is 3.
func : function, optional
Function for calculating the baseline values (i.e. `numpy.ma.mean`
or `numpy.ma.median`). This should be a function that can handle
`numpy.ma.MaskedArray` objects.
Default is `numpy.ma.mean`.
dev_func : function, optional
Function for calculating the deviation from the baseline value
(i.e. `numpy.ma.std`). This should be a function that can handle
`numpy.ma.MaskedArray` objects.
Default is `numpy.ma.std`.
"""
# setup baseline values
baseline = func(self.data_arr, axis=0)
dev = dev_func(self.data_arr, axis=0)
# reject values
if low_thresh is not None:
# check for negative numbers in low_thresh
if low_thresh < 0:
low_thresh = abs(low_thresh)
mask = (self.data_arr - baseline < -low_thresh * dev)
self.data_arr.mask[mask] = True
if high_thresh is not None:
mask = (self.data_arr - baseline > high_thresh * dev)
self.data_arr.mask[mask] = True
# set up the combining algorithms
def median_combine(self, median_func=ma.median, scale_to=None,
uncertainty_func=sigma_func):
"""
Median combine a set of arrays.
A `~ccdproc.CCDData` object is returned with the data property set to
the median of the arrays. If the data was masked or any data have been
rejected, those pixels will not be included in the median. A mask will
be returned, and if a pixel has been rejected in all images, it will be
masked. The uncertainty of the combined image is set by 1.4826 times
the median absolute deviation of all input images.
Parameters
----------
median_func : function, optional
Function that calculates median of a `numpy.ma.MaskedArray`.
Default is `numpy.ma.median`.
scale_to : float or None, optional
Scaling factor used in the average combined image. If given,
it overrides `scaling`.
Defaults to None.
uncertainty_func : function, optional
Function to calculate uncertainty.
Defaults is `~ccdproc.sigma_func`.
Returns
-------
combined_image: `~ccdproc.CCDData`
CCDData object based on the combined input of CCDData objects.
Warnings
--------
The uncertainty currently calculated using the median absolute
deviation does not account for rejected pixels.
"""
if scale_to is not None:
scalings = scale_to
elif self.scaling is not None:
scalings = self.scaling
else:
scalings = 1.0
# set the data
data = median_func(scalings * self.data_arr, axis=0)
# set the mask
masked_values = self.data_arr.mask.sum(axis=0)
mask = (masked_values == len(self.data_arr))
# set the uncertainty
uncertainty = uncertainty_func(self.data_arr.data, axis=0)
# Divide uncertainty by the number of pixel (#309)
# TODO: This should be np.sqrt(len(self.data_arr) - masked_values) but
# median_absolute_deviation ignores the mask... so it
# would yield inconsistent results.
uncertainty /= math.sqrt(len(self.data_arr))
# Convert uncertainty to plain numpy array (#351)
# There is no need to care about potential masks because the
# uncertainty was calculated based on the data so potential masked
# elements are also masked in the data. No need to keep two identical
# masks.
uncertainty = np.asarray(uncertainty)
# create the combined image with a dtype matching the combiner
combined_image = CCDData(np.asarray(data.data, dtype=self.dtype),
mask=mask, unit=self.unit,
uncertainty=StdDevUncertainty(uncertainty))
# update the meta data
combined_image.meta['NCOMBINE'] = len(self.data_arr)
# return the combined image
return combined_image
def average_combine(self, scale_func=ma.average, scale_to=None,
uncertainty_func=ma.std):
"""
Average combine together a set of arrays.
A `~ccdproc.CCDData` object is returned with the data property
set to the average of the arrays. If the data was masked or any
data have been rejected, those pixels will not be included in the
average. A mask will be returned, and if a pixel has been
rejected in all images, it will be masked. The uncertainty of
the combined image is set by the standard deviation of the input
images.
Parameters
----------
scale_func : function, optional
Function to calculate the average. Defaults to
`numpy.ma.average`.
scale_to : float or None, optional
Scaling factor used in the average combined image. If given,
it overrides `scaling`. Defaults to ``None``.
uncertainty_func : function, optional
Function to calculate uncertainty. Defaults to `numpy.ma.std`.
Returns
-------
combined_image: `~ccdproc.CCDData`
CCDData object based on the combined input of CCDData objects.
"""
if scale_to is not None:
scalings = scale_to
elif self.scaling is not None:
scalings = self.scaling
else:
scalings = 1.0
# set up the data
data, wei = scale_func(scalings * self.data_arr,
axis=0, weights=self.weights,
returned=True)
# set up the mask
masked_values = self.data_arr.mask.sum(axis=0)
mask = (masked_values == len(self.data_arr))
# set up the deviation
uncertainty = uncertainty_func(self.data_arr, axis=0)
# Divide uncertainty by the number of pixel (#309)
uncertainty /= np.sqrt(len(self.data_arr) - masked_values)
# Convert uncertainty to plain numpy array (#351)
uncertainty = np.asarray(uncertainty)
# create the combined image with a dtype that matches the combiner
combined_image = CCDData(np.asarray(data.data, dtype=self.dtype),
mask=mask, unit=self.unit,
uncertainty=StdDevUncertainty(uncertainty))
# update the meta data
combined_image.meta['NCOMBINE'] = len(self.data_arr)
# return the combined image
return combined_image
def combine(img_list, output_file=None,
method='average', weights=None, scale=None, mem_limit=16e9,
clip_extrema=False, nlow=1, nhigh=1,
minmax_clip=False, minmax_clip_min=None, minmax_clip_max=None,
sigma_clip=False,
sigma_clip_low_thresh=3, sigma_clip_high_thresh=3,
sigma_clip_func=ma.mean, sigma_clip_dev_func=ma.std,
dtype=None, combine_uncertainty_function=None, **ccdkwargs):
"""
Convenience function for combining multiple images.
Parameters
-----------
img_list : list or str
A list of fits filenames or `~ccdproc.CCDData` objects that will be
combined together. Or a string of fits filenames separated by comma
",".
output_file : str or None, optional
Optional output fits file-name to which the final output can be
directly written.
Default is ``None``.
method : str, optional
Method to combine images:
- ``'average'`` : To combine by calculating the average.
- ``'median'`` : To combine by calculating the median.
Default is ``'average'``.
weights : `numpy.ndarray` or None, optional
Weights to be used when combining images.
An array with the weight values. The dimensions should match the
the dimensions of the data arrays being combined.
Default is ``None``.
scale : function or `numpy.ndarray`-like or None, optional
Scaling factor to be used when combining images.
Images are multiplied by scaling prior to combining them. Scaling
may be either a function, which will be applied to each image
to determine the scaling factor, or a list or array whose length
is the number of images in the `Combiner`. Default is ``None``.
mem_limit : float, optional
Maximum memory which should be used while combining (in bytes).
Default is ``16e9``.
clip_extrema : bool, optional
Set to True if you want to mask pixels using an IRAF-like minmax
clipping algorithm. The algorithm will mask the lowest nlow values and
the highest nhigh values before combining the values to make up a
single pixel in the resulting image. For example, the image will be a
combination of Nimages-low-nhigh pixel values instead of the
combination of Nimages.
Parameters below are valid only when clip_extrema is set to True,
see :meth:`Combiner.clip_extrema` for the parameter description:
- ``nlow`` : int or None, optional
- ``nhigh`` : int or None, optional
minmax_clip : bool, optional
Set to True if you want to mask all pixels that are below
minmax_clip_min or above minmax_clip_max before combining.
Default is ``False``.
Parameters below are valid only when minmax_clip is set to True, see
:meth:`Combiner.minmax_clipping` for the parameter description:
- ``minmax_clip_min`` : float or None, optional
- ``minmax_clip_max`` : float or None, optional
sigma_clip : bool, optional
Set to True if you want to reject pixels which have deviations greater
than those
set by the threshold values. The algorithm will first calculated
a baseline value using the function specified in func and deviation
based on sigma_clip_dev_func and the input data array. Any pixel with
a deviation from the baseline value greater than that set by
sigma_clip_high_thresh or lower than that set by sigma_clip_low_thresh
will be rejected.
Default is ``False``.
Parameters below are valid only when sigma_clip is set to True. See
:meth:`Combiner.sigma_clipping` for the parameter description.
- ``sigma_clip_low_thresh`` : positive float or None, optional
- ``sigma_clip_high_thresh`` : positive float or None, optional
- ``sigma_clip_func`` : function, optional
- ``sigma_clip_dev_func`` : function, optional
dtype : str or `numpy.dtype` or None, optional
The intermediate and resulting ``dtype`` for the combined CCDs. See
`ccdproc.Combiner`. If ``None`` this is set to ``float64``.
Default is ``None``.
combine_uncertainty_function : callable, None, optional
If ``None`` use the default uncertainty func when using average or
median combine, otherwise use the function provided.
Default is ``None``.
ccdkwargs : Other keyword arguments for `ccdproc.fits_ccddata_reader`.
Returns
-------
combined_image : `~ccdproc.CCDData`
CCDData object based on the combined input of CCDData objects.
"""
if not isinstance(img_list, list):
# If not a list, check whether it is a string of filenames separated
# by comma
if isinstance(img_list, str) and (',' in img_list):
img_list = img_list.split(',')
else:
raise ValueError(
"unrecognised input for list of images to combine.")
# Select Combine function to call in Combiner
if method == 'average':
combine_function = 'average_combine'
elif method == 'median':
combine_function = 'median_combine'
else:
raise ValueError("unrecognised combine method : {0}.".format(method))
# First we create a CCDObject from first image for storing output
if isinstance(img_list[0], CCDData):
ccd = img_list[0].copy()
else:
# User has provided fits filenames to read from
ccd = CCDData.read(img_list[0], **ccdkwargs)
# If uncertainty_func is given for combine this will create an uncertainty
# even if the originals did not have one. In that case we need to create
# an empty placeholder.
if ccd.uncertainty is None and combine_uncertainty_function is not None:
ccd.uncertainty = StdDevUncertainty(np.zeros(ccd.data.shape))
if dtype is None:
dtype = np.float64
# Convert the master image to the appropriate dtype so when overwriting it
# later the data is not downcast and the memory consumption calculation
# uses the internally used dtype instead of the original dtype. #391
if ccd.data.dtype != dtype:
ccd.data = ccd.data.astype(dtype)
size_of_an_img = ccd.data.nbytes
try:
size_of_an_img += ccd.uncertainty.array.nbytes
# In case uncertainty is None it has no "array" and in case the "array" is
# not a numpy array:
except AttributeError:
pass
# Mask is enforced to be a numpy.array across astropy versions
if ccd.mask is not None:
size_of_an_img += ccd.mask.nbytes
# flags is not necessarily a numpy array so do not fail with an
# AttributeError in case something was set!
# TODO: Flags are not taken into account in Combiner. This number is added
# nevertheless for future compatibility.
try:
size_of_an_img += ccd.flags.nbytes
except AttributeError:
pass
no_of_img = len(img_list)
# determine the number of chunks to split the images into
no_chunks = int((size_of_an_img * no_of_img) / mem_limit) + 1
if no_chunks > 1:
log.info('splitting each image into {0} chunks to limit memory usage '
'to {1} bytes.'.format(no_chunks, mem_limit))
xs, ys = ccd.data.shape
# First we try to split only along fast x axis
xstep = max(1, int(xs/no_chunks))
# If more chunks need to be created we split in Y axis for remaining number
# of chunks
ystep = max(1, int(ys / (1 + no_chunks - int(xs / xstep))))
# Dictionary of Combiner properties to set and methods to call before
# combining
to_set_in_combiner = {}
to_call_in_combiner = {}
# Define all the Combiner properties one wants to apply before combining
# images
if weights is not None:
to_set_in_combiner['weights'] = weights
if scale is not None:
# If the scale is a function, then scaling function need to be applied
# on full image to obtain scaling factor and create an array instead.
if callable(scale):
scalevalues = []
for image in img_list:
if isinstance(image, CCDData):
imgccd = image
else:
imgccd = CCDData.read(image, **ccdkwargs)
scalevalues.append(scale(imgccd.data))
to_set_in_combiner['scaling'] = np.array(scalevalues)
else:
to_set_in_combiner['scaling'] = scale
if clip_extrema:
to_call_in_combiner['clip_extrema'] = {'nlow': nlow,
'nhigh': nhigh}
if minmax_clip:
to_call_in_combiner['minmax_clipping'] = {'min_clip': minmax_clip_min,
'max_clip': minmax_clip_max}
if sigma_clip:
to_call_in_combiner['sigma_clipping'] = {
'low_thresh': sigma_clip_low_thresh,
'high_thresh': sigma_clip_high_thresh,
'func': sigma_clip_func,
'dev_func': sigma_clip_dev_func}
# Finally Run the input method on all the subsections of the image
# and write final stitched image to ccd
for x in range(0, xs, xstep):
for y in range(0, ys, ystep):
xend, yend = min(xs, x + xstep), min(ys, y + ystep)
ccd_list = []
for image in img_list:
if isinstance(image, CCDData):
imgccd = image
else:
imgccd = CCDData.read(image, **ccdkwargs)
# Trim image
ccd_list.append(imgccd[x:xend, y:yend])
# Create Combiner for tile
tile_combiner = Combiner(ccd_list, dtype=dtype)
# Set all properties and call all methods
for to_set in to_set_in_combiner:
setattr(tile_combiner, to_set, to_set_in_combiner[to_set])
for to_call in to_call_in_combiner:
getattr(tile_combiner, to_call)(**to_call_in_combiner[to_call])
# Finally call the combine algorithm
combine_kwds = {}
if combine_uncertainty_function is not None:
combine_kwds['uncertainty_func'] = combine_uncertainty_function
comb_tile = getattr(tile_combiner, combine_function)(**combine_kwds)
# add it back into the master image
ccd.data[x:xend, y:yend] = comb_tile.data
if ccd.mask is not None:
ccd.mask[x:xend, y:yend] = comb_tile.mask
if ccd.uncertainty is not None:
ccd.uncertainty.array[x:xend, y:yend] = comb_tile.uncertainty.array
# Write fits file if filename was provided
if output_file is not None:
ccd.write(output_file)
return ccd
|