/usr/share/doc/python-tables-doc/bench/search-bench.py is in python-tables-doc 3.3.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | #!/usr/bin/env python
from __future__ import print_function
import sys
import math
import time
import random
import warnings
import os
import numpy
from tables import *
# Initialize the random generator always with the same integer
# in order to have reproductible results
random.seed(19)
numpy.random.seed(19)
randomvalues = 0
worst = 0
Small = {
"var1": StringCol(itemsize=4, dflt="Hi!", pos=2),
"var2": Int32Col(pos=1),
"var3": Float64Col(pos=0),
#"var4" : BoolCol(),
}
def createNewBenchFile(bfile, verbose):
class Create(IsDescription):
nrows = Int32Col(pos=0)
irows = Int32Col(pos=1)
tfill = Float64Col(pos=2)
tidx = Float64Col(pos=3)
tcfill = Float64Col(pos=4)
tcidx = Float64Col(pos=5)
rowsecf = Float64Col(pos=6)
rowseci = Float64Col(pos=7)
fsize = Float64Col(pos=8)
isize = Float64Col(pos=9)
psyco = BoolCol(pos=10)
class Search(IsDescription):
nrows = Int32Col(pos=0)
rowsel = Int32Col(pos=1)
time1 = Float64Col(pos=2)
time2 = Float64Col(pos=3)
tcpu1 = Float64Col(pos=4)
tcpu2 = Float64Col(pos=5)
rowsec1 = Float64Col(pos=6)
rowsec2 = Float64Col(pos=7)
psyco = BoolCol(pos=8)
if verbose:
print("Creating a new benchfile:", bfile)
# Open the benchmarking file
bf = open_file(bfile, "w")
# Create groups
for recsize in ["small"]:
group = bf.create_group("/", recsize, recsize + " Group")
# Attach the row size of table as attribute
if recsize == "small":
group._v_attrs.rowsize = 16
# Create a Table for writing bench
bf.create_table(group, "create_best", Create, "best case")
bf.create_table(group, "create_worst", Create, "worst case")
for case in ["best", "worst"]:
# create a group for searching bench (best case)
groupS = bf.create_group(group, "search_" + case, "Search Group")
# Create Tables for searching
for mode in ["indexed", "inkernel", "standard"]:
groupM = bf.create_group(groupS, mode, mode + " Group")
# for searching bench
# for atom in ["string", "int", "float", "bool"]:
for atom in ["string", "int", "float"]:
bf.create_table(groupM, atom, Search, atom + " bench")
bf.close()
def createFile(filename, nrows, filters, index, heavy, noise, verbose):
# Open a file in "w"rite mode
fileh = open_file(filename, mode="w", title="Searchsorted Benchmark",
filters=filters)
rowswritten = 0
# Create the test table
table = fileh.create_table(fileh.root, 'table', Small, "test table",
None, nrows)
t1 = time.time()
cpu1 = time.clock()
nrowsbuf = table.nrowsinbuf
minimum = 0
maximum = nrows
for i in range(0, nrows, nrowsbuf):
if i + nrowsbuf > nrows:
j = nrows
else:
j = i + nrowsbuf
if randomvalues:
var3 = numpy.random.uniform(minimum, maximum, size=j - i)
else:
var3 = numpy.arange(i, j, dtype=numpy.float64)
if noise > 0:
var3 += numpy.random.uniform(-noise, noise, size=j - i)
var2 = numpy.array(var3, dtype=numpy.int32)
var1 = numpy.empty(shape=[j - i], dtype="S4")
if not heavy:
var1[:] = var2
table.append([var3, var2, var1])
table.flush()
rowswritten += nrows
time1 = time.time() - t1
tcpu1 = time.clock() - cpu1
print("Time for filling:", round(time1, 3),
"Krows/s:", round(nrows / 1000. / time1, 3), end=' ')
fileh.close()
size1 = os.stat(filename)[6]
print(", File size:", round(size1 / (1024. * 1024.), 3), "MB")
fileh = open_file(filename, mode="a", title="Searchsorted Benchmark",
filters=filters)
table = fileh.root.table
rowsize = table.rowsize
if index:
t1 = time.time()
cpu1 = time.clock()
# Index all entries
if not heavy:
indexrows = table.cols.var1.create_index(filters=filters)
for colname in ['var2', 'var3']:
table.colinstances[colname].create_index(filters=filters)
time2 = time.time() - t1
tcpu2 = time.clock() - cpu1
print("Time for indexing:", round(time2, 3),
"iKrows/s:", round(indexrows / 1000. / time2, 3), end=' ')
else:
indexrows = 0
time2 = 0.0000000001 # an ugly hack
tcpu2 = 0.
if verbose:
if index:
idx = table.cols.var1.index
print("Index parameters:", repr(idx))
else:
print("NOT indexing rows")
# Close the file
fileh.close()
size2 = os.stat(filename)[6] - size1
if index:
print(", Index size:", round(size2 / (1024. * 1024.), 3), "MB")
return (rowswritten, indexrows, rowsize, time1, time2,
tcpu1, tcpu2, size1, size2)
def benchCreate(file, nrows, filters, index, bfile, heavy,
psyco, noise, verbose):
# Open the benchfile in append mode
bf = open_file(bfile, "a")
recsize = "small"
if worst:
table = bf.get_node("/" + recsize + "/create_worst")
else:
table = bf.get_node("/" + recsize + "/create_best")
(rowsw, irows, rowsz, time1, time2, tcpu1, tcpu2, size1, size2) = \
createFile(file, nrows, filters, index, heavy, noise, verbose)
# Collect data
table.row["nrows"] = rowsw
table.row["irows"] = irows
table.row["tfill"] = time1
table.row["tidx"] = time2
table.row["tcfill"] = tcpu1
table.row["tcidx"] = tcpu2
table.row["fsize"] = size1
table.row["isize"] = size2
table.row["psyco"] = psyco
tapprows = round(time1, 3)
cpuapprows = round(tcpu1, 3)
tpercent = int(round(cpuapprows / tapprows, 2) * 100)
print("Rows written:", rowsw, " Row size:", rowsz)
print("Time writing rows: %s s (real) %s s (cpu) %s%%" %
(tapprows, cpuapprows, tpercent))
rowsecf = rowsw / tapprows
table.row["rowsecf"] = rowsecf
# print "Write rows/sec: ", rowsecf
print("Total file size:",
round((size1 + size2) / (1024. * 1024.), 3), "MB", end=' ')
print(", Write KB/s (pure data):", int(rowsw * rowsz / (tapprows * 1024)))
# print "Write KB/s :", int((size1+size2) / ((time1+time2) * 1024))
tidxrows = time2
cpuidxrows = round(tcpu2, 3)
tpercent = int(round(cpuidxrows / tidxrows, 2) * 100)
print("Rows indexed:", irows, " (IMRows):", irows / float(10 ** 6))
print("Time indexing rows: %s s (real) %s s (cpu) %s%%" %
(round(tidxrows, 3), cpuidxrows, tpercent))
rowseci = irows / tidxrows
table.row["rowseci"] = rowseci
table.row.append()
bf.close()
def readFile(filename, atom, riter, indexmode, dselect, verbose):
# Open the HDF5 file in read-only mode
fileh = open_file(filename, mode="r")
table = fileh.root.table
var1 = table.cols.var1
var2 = table.cols.var2
var3 = table.cols.var3
if indexmode == "indexed":
if var2.index.nelements > 0:
where = table._whereIndexed
else:
warnings.warn(
"Not indexed table or empty index. Defaulting to in-kernel "
"selection")
indexmode = "inkernel"
where = table._whereInRange
elif indexmode == "inkernel":
where = table.where
if verbose:
print("Max rows in buf:", table.nrowsinbuf)
print("Rows in", table._v_pathname, ":", table.nrows)
print("Buffersize:", table.rowsize * table.nrowsinbuf)
print("MaxTuples:", table.nrowsinbuf)
if indexmode == "indexed":
print("Chunk size:", var2.index.sorted.chunksize)
print("Number of elements per slice:", var2.index.nelemslice)
print("Slice number in", table._v_pathname, ":", var2.index.nrows)
#table.nrowsinbuf = 10
# print "nrowsinbuf-->", table.nrowsinbuf
rowselected = 0
time2 = 0.
tcpu2 = 0.
results = []
print("Select mode:", indexmode, ". Selecting for type:", atom)
# Initialize the random generator always with the same integer
# in order to have reproductible results on each read iteration
random.seed(19)
numpy.random.seed(19)
for i in range(riter):
# The interval for look values at. This is aproximately equivalent to
# the number of elements to select
rnd = numpy.random.randint(table.nrows)
cpu1 = time.clock()
t1 = time.time()
if atom == "string":
val = str(rnd)[-4:]
if indexmode in ["indexed", "inkernel"]:
results = [p.nrow
for p in where('var1 == val')]
else:
results = [p.nrow for p in table
if p["var1"] == val]
elif atom == "int":
val = rnd + dselect
if indexmode in ["indexed", "inkernel"]:
results = [p.nrow
for p in where('(rnd <= var3) & (var3 < val)')]
else:
results = [p.nrow for p in table
if rnd <= p["var2"] < val]
elif atom == "float":
val = rnd + dselect
if indexmode in ["indexed", "inkernel"]:
t1 = time.time()
results = [p.nrow
for p in where('(rnd <= var3) & (var3 < val)')]
else:
results = [p.nrow for p in table
if float(rnd) <= p["var3"] < float(val)]
else:
raise ValueError("Value for atom '%s' not supported." % atom)
rowselected += len(results)
# print "selected values-->", results
if i == 0:
# First iteration
time1 = time.time() - t1
tcpu1 = time.clock() - cpu1
else:
if indexmode == "indexed":
# if indexed, wait until the 5th iteration (in order to
# insure that the index is effectively cached) to take times
if i >= 5:
time2 += time.time() - t1
tcpu2 += time.clock() - cpu1
else:
time2 += time.time() - t1
tcpu2 += time.clock() - cpu1
if riter > 1:
if indexmode == "indexed" and riter >= 5:
correction = 5
else:
correction = 1
time2 = time2 / (riter - correction)
tcpu2 = tcpu2 / (riter - correction)
if verbose and 1:
print("Values that fullfill the conditions:")
print(results)
#rowsread = table.nrows * riter
rowsread = table.nrows
rowsize = table.rowsize
# Close the file
fileh.close()
return (rowsread, rowselected, rowsize, time1, time2, tcpu1, tcpu2)
def benchSearch(file, riter, indexmode, bfile, heavy, psyco, dselect, verbose):
# Open the benchfile in append mode
bf = open_file(bfile, "a")
recsize = "small"
if worst:
tableparent = "/" + recsize + "/search_worst/" + indexmode + "/"
else:
tableparent = "/" + recsize + "/search_best/" + indexmode + "/"
# Do the benchmarks
if not heavy:
#atomlist = ["string", "int", "float", "bool"]
atomlist = ["string", "int", "float"]
else:
#atomlist = ["int", "float", "bool"]
atomlist = ["int", "float"]
for atom in atomlist:
tablepath = tableparent + atom
table = bf.get_node(tablepath)
(rowsr, rowsel, rowssz, time1, time2, tcpu1, tcpu2) = \
readFile(file, atom, riter, indexmode, dselect, verbose)
row = table.row
row["nrows"] = rowsr
row["rowsel"] = rowsel
treadrows = round(time1, 6)
row["time1"] = time1
treadrows2 = round(time2, 6)
row["time2"] = time2
cpureadrows = round(tcpu1, 6)
row["tcpu1"] = tcpu1
cpureadrows2 = round(tcpu2, 6)
row["tcpu2"] = tcpu2
row["psyco"] = psyco
tpercent = int(round(cpureadrows / treadrows, 2) * 100)
if riter > 1:
tpercent2 = int(round(cpureadrows2 / treadrows2, 2) * 100)
else:
tpercent2 = 0.
tMrows = rowsr / (1000 * 1000.)
sKrows = rowsel / 1000.
if atom == "string": # just to print once
print("Rows read:", rowsr, "Mread:", round(tMrows, 6), "Mrows")
print("Rows selected:", rowsel, "Ksel:", round(sKrows, 6), "Krows")
print("Time selecting (1st time): %s s (real) %s s (cpu) %s%%" %
(treadrows, cpureadrows, tpercent))
if riter > 1:
print("Time selecting (cached): %s s (real) %s s (cpu) %s%%" %
(treadrows2, cpureadrows2, tpercent2))
#rowsec1 = round(rowsr / float(treadrows), 6)/10**6
rowsec1 = rowsr / treadrows
row["rowsec1"] = rowsec1
print("Read Mrows/sec: ", end=' ')
print(round(rowsec1 / 10. ** 6, 6), "(first time)", end=' ')
if riter > 1:
rowsec2 = rowsr / treadrows2
row["rowsec2"] = rowsec2
print(round(rowsec2 / 10. ** 6, 6), "(cache time)")
else:
print()
# Append the info to the table
row.append()
table.flush()
# Close the benchmark file
bf.close()
if __name__ == "__main__":
import getopt
try:
import psyco
psyco_imported = 1
except:
psyco_imported = 0
usage = """usage: %s [-v] [-p] [-R] [-r] [-w] [-c level] [-l complib] [-S] [-F] [-n nrows] [-x] [-b file] [-t] [-h] [-k riter] [-m indexmode] [-N range] [-d range] datafile
-v verbose
-p use "psyco" if available
-R use Random values for filling
-r only read test
-w only write test
-c sets a compression level (do not set it or 0 for no compression)
-l sets the compression library ("zlib", "lzo", "ucl", "bzip2" or "none")
-S activate shuffling filter
-F activate fletcher32 filter
-n set the number of rows in tables (in krows)
-x don't make indexes
-b bench filename
-t worsT searching case
-h heavy benchmark (operations without strings)
-m index mode for reading ("indexed" | "inkernel" | "standard")
-N introduce (uniform) noise within range into the values
-d the interval for look values (int, float) at. Default is 3.
-k number of iterations for reading\n""" % sys.argv[0]
try:
opts, pargs = getopt.getopt(
sys.argv[1:], 'vpSFRrowxthk:b:c:l:n:m:N:d:')
except:
sys.stderr.write(usage)
sys.exit(0)
# if we pass too much parameters, abort
if len(pargs) != 1:
sys.stderr.write(usage)
sys.exit(0)
# default options
dselect = 3.
noise = 0.
verbose = 0
fieldName = None
testread = 1
testwrite = 1
usepsyco = 0
complevel = 0
shuffle = 0
fletcher32 = 0
complib = "zlib"
nrows = 1000
index = 1
heavy = 0
bfile = "bench.h5"
supported_imodes = ["indexed", "inkernel", "standard"]
indexmode = "inkernel"
riter = 1
# Get the options
for option in opts:
if option[0] == '-v':
verbose = 1
if option[0] == '-p':
usepsyco = 1
if option[0] == '-R':
randomvalues = 1
if option[0] == '-S':
shuffle = 1
if option[0] == '-F':
fletcher32 = 1
elif option[0] == '-r':
testwrite = 0
elif option[0] == '-w':
testread = 0
elif option[0] == '-x':
index = 0
elif option[0] == '-h':
heavy = 1
elif option[0] == '-t':
worst = 1
elif option[0] == '-b':
bfile = option[1]
elif option[0] == '-c':
complevel = int(option[1])
elif option[0] == '-l':
complib = option[1]
elif option[0] == '-m':
indexmode = option[1]
if indexmode not in supported_imodes:
raise ValueError(
"Indexmode should be any of '%s' and you passed '%s'" %
(supported_imodes, indexmode))
elif option[0] == '-n':
nrows = int(float(option[1]) * 1000)
elif option[0] == '-N':
noise = float(option[1])
elif option[0] == '-d':
dselect = float(option[1])
elif option[0] == '-k':
riter = int(option[1])
if worst:
nrows -= 1 # the worst case
if complib == "none":
# This means no compression at all
complib = "zlib" # just to make PyTables not complaining
complevel = 0
# Catch the hdf5 file passed as the last argument
file = pargs[0]
# Build the Filters instance
filters = Filters(complevel=complevel, complib=complib,
shuffle=shuffle, fletcher32=fletcher32)
# Create the benchfile (if needed)
if not os.path.exists(bfile):
createNewBenchFile(bfile, verbose)
if testwrite:
if verbose:
print("Compression level:", complevel)
if complevel > 0:
print("Compression library:", complib)
if shuffle:
print("Suffling...")
if psyco_imported and usepsyco:
psyco.bind(createFile)
benchCreate(file, nrows, filters, index, bfile, heavy,
usepsyco, noise, verbose)
if testread:
if psyco_imported and usepsyco:
psyco.bind(readFile)
benchSearch(file, riter, indexmode, bfile, heavy, usepsyco,
dselect, verbose)
|