This file is indexed.

/usr/share/doc/python-tables-doc/bench/evaluate.py is in python-tables-doc 3.3.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from __future__ import print_function
import sys
from time import time

import numpy as np
import tables as tb
from numexpr.necompiler import (
    getContext, getExprNames, getType, NumExpr)


shape = (1000, 160000)
#shape = (10,1600)
filters = tb.Filters(complevel=1, complib="blosc", shuffle=0)
ofilters = tb.Filters(complevel=1, complib="blosc", shuffle=0)
#filters = tb.Filters(complevel=1, complib="lzo", shuffle=0)
#ofilters = tb.Filters(complevel=1, complib="lzo", shuffle=0)

# TODO: Makes it sense to add a 's'tring typecode here?
typecode_to_dtype = {'b': 'bool', 'i': 'int32', 'l': 'int64', 'f': 'float32',
                     'd': 'float64', 'c': 'complex128'}


def _compute(result, function, arguments,
             start=None, stop=None, step=None):
    """Compute the `function` over the `arguments` and put the outcome in
    `result`"""
    arg0 = arguments[0]
    if hasattr(arg0, 'maindim'):
        maindim = arg0.maindim
        (start, stop, step) = arg0._process_range_read(start, stop, step)
        nrowsinbuf = arg0.nrowsinbuf
        print("nrowsinbuf-->", nrowsinbuf)
    else:
        maindim = 0
        (start, stop, step) = (0, len(arg0), 1)
        nrowsinbuf = len(arg0)
    shape = list(arg0.shape)
    shape[maindim] = len(range(start, stop, step))

    # The slices parameter for arg0.__getitem__
    slices = [slice(0, dim, 1) for dim in arg0.shape]

    # This is a hack to prevent doing unnecessary conversions
    # when copying buffers
    if hasattr(arg0, 'maindim'):
        for arg in arguments:
            arg._v_convert = False

    # Start the computation itself
    for start2 in range(start, stop, step * nrowsinbuf):
        # Save the records on disk
        stop2 = start2 + step * nrowsinbuf
        if stop2 > stop:
            stop2 = stop
        # Set the proper slice in the main dimension
        slices[maindim] = slice(start2, stop2, step)
        start3 = (start2 - start) / step
        stop3 = start3 + nrowsinbuf
        if stop3 > shape[maindim]:
            stop3 = shape[maindim]
        # Compute the slice to be filled in destination
        sl = []
        for i in range(maindim):
            sl.append(slice(None, None, None))
        sl.append(slice(start3, stop3, None))
        # Get the values for computing the buffer
        values = [arg.__getitem__(tuple(slices)) for arg in arguments]
        result[tuple(sl)] = function(*values)

    # Activate the conversion again (default)
    if hasattr(arg0, 'maindim'):
        for arg in arguments:
            arg._v_convert = True

    return result


def evaluate(ex, out=None, local_dict=None, global_dict=None, **kwargs):
    """Evaluate expression and return an array."""

    # First, get the signature for the arrays in expression
    context = getContext(kwargs)
    names, _ = getExprNames(ex, context)

    # Get the arguments based on the names.
    call_frame = sys._getframe(1)
    if local_dict is None:
        local_dict = call_frame.f_locals
    if global_dict is None:
        global_dict = call_frame.f_globals
    arguments = []
    types = []
    for name in names:
        try:
            a = local_dict[name]
        except KeyError:
            a = global_dict[name]
        arguments.append(a)
        if hasattr(a, 'atom'):
            types.append(a.atom)
        else:
            types.append(a)

    # Create a signature
    signature = [(name, getType(type_)) for (name, type_) in zip(names, types)]
    print("signature-->", signature)

    # Compile the expression
    compiled_ex = NumExpr(ex, signature, [], **kwargs)
    print("fullsig-->", compiled_ex.fullsig)

    _compute(out, compiled_ex, arguments)

    return


if __name__ == "__main__":
    iarrays = 0
    oarrays = 0
    doprofile = 1
    dokprofile = 0

    f = tb.open_file("/scratch2/faltet/evaluate.h5", "w")

    # Create some arrays
    if iarrays:
        a = np.ones(shape, dtype='float32')
        b = np.ones(shape, dtype='float32') * 2
        c = np.ones(shape, dtype='float32') * 3
    else:
        a = f.create_carray(f.root, 'a', tb.Float32Atom(dflt=1.),
                            shape=shape, filters=filters)
        a[:] = 1.
        b = f.create_carray(f.root, 'b', tb.Float32Atom(dflt=2.),
                            shape=shape, filters=filters)
        b[:] = 2.
        c = f.create_carray(f.root, 'c', tb.Float32Atom(dflt=3.),
                            shape=shape, filters=filters)
        c[:] = 3.
    if oarrays:
        out = np.empty(shape, dtype='float32')
    else:
        out = f.create_carray(f.root, 'out', tb.Float32Atom(),
                              shape=shape, filters=ofilters)

    t0 = time()
    if iarrays and oarrays:
        #out = ne.evaluate("a*b+c")
        out = a * b + c
    elif doprofile:
        import cProfile as prof
        import pstats
        prof.run('evaluate("a*b+c", out)', 'evaluate.prof')
        stats = pstats.Stats('evaluate.prof')
        stats.strip_dirs()
        stats.sort_stats('time', 'calls')
        stats.print_stats(20)
    elif dokprofile:
        from cProfile import Profile
        import lsprofcalltree
        prof = Profile()
        prof.run('evaluate("a*b+c", out)')
        kcg = lsprofcalltree.KCacheGrind(prof)
        ofile = open('evaluate.kcg', 'w')
        kcg.output(ofile)
        ofile.close()
    else:
        evaluate("a*b+c", out)
    print("Time for evaluate-->", round(time() - t0, 3))

    # print "out-->", `out`
    # print `out[:]`

    f.close()