/usr/lib/python2.7/dist-packages/sklearn/isotonic.py is in python-sklearn 0.18-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | # Authors: Fabian Pedregosa <fabian@fseoane.net>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD 3 clause
import numpy as np
from scipy import interpolate
from scipy.stats import spearmanr
from .base import BaseEstimator, TransformerMixin, RegressorMixin
from .utils import as_float_array, check_array, check_consistent_length
from .utils import deprecated
from .utils.fixes import astype
from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique
import warnings
import math
__all__ = ['check_increasing', 'isotonic_regression',
'IsotonicRegression']
def check_increasing(x, y):
"""Determine whether y is monotonically correlated with x.
y is found increasing or decreasing with respect to x based on a Spearman
correlation test.
Parameters
----------
x : array-like, shape=(n_samples,)
Training data.
y : array-like, shape=(n_samples,)
Training target.
Returns
-------
`increasing_bool` : boolean
Whether the relationship is increasing or decreasing.
Notes
-----
The Spearman correlation coefficient is estimated from the data, and the
sign of the resulting estimate is used as the result.
In the event that the 95% confidence interval based on Fisher transform
spans zero, a warning is raised.
References
----------
Fisher transformation. Wikipedia.
https://en.wikipedia.org/wiki/Fisher_transformation
"""
# Calculate Spearman rho estimate and set return accordingly.
rho, _ = spearmanr(x, y)
increasing_bool = rho >= 0
# Run Fisher transform to get the rho CI, but handle rho=+/-1
if rho not in [-1.0, 1.0]:
F = 0.5 * math.log((1. + rho) / (1. - rho))
F_se = 1 / math.sqrt(len(x) - 3)
# Use a 95% CI, i.e., +/-1.96 S.E.
# https://en.wikipedia.org/wiki/Fisher_transformation
rho_0 = math.tanh(F - 1.96 * F_se)
rho_1 = math.tanh(F + 1.96 * F_se)
# Warn if the CI spans zero.
if np.sign(rho_0) != np.sign(rho_1):
warnings.warn("Confidence interval of the Spearman "
"correlation coefficient spans zero. "
"Determination of ``increasing`` may be "
"suspect.")
return increasing_bool
def isotonic_regression(y, sample_weight=None, y_min=None, y_max=None,
increasing=True):
"""Solve the isotonic regression model::
min sum w[i] (y[i] - y_[i]) ** 2
subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max
where:
- y[i] are inputs (real numbers)
- y_[i] are fitted
- w[i] are optional strictly positive weights (default to 1.0)
Read more in the :ref:`User Guide <isotonic>`.
Parameters
----------
y : iterable of floating-point values
The data.
sample_weight : iterable of floating-point values, optional, default: None
Weights on each point of the regression.
If None, weight is set to 1 (equal weights).
y_min : optional, default: None
If not None, set the lowest value of the fit to y_min.
y_max : optional, default: None
If not None, set the highest value of the fit to y_max.
increasing : boolean, optional, default: True
Whether to compute ``y_`` is increasing (if set to True) or decreasing
(if set to False)
Returns
-------
y_ : list of floating-point values
Isotonic fit of y.
References
----------
"Active set algorithms for isotonic regression; A unifying framework"
by Michael J. Best and Nilotpal Chakravarti, section 3.
"""
order = np.s_[:] if increasing else np.s_[::-1]
y = np.array(y[order], dtype=np.float64)
if sample_weight is None:
sample_weight = np.ones(len(y), dtype=np.float64)
else:
sample_weight = np.array(sample_weight[order], dtype=np.float64)
_inplace_contiguous_isotonic_regression(y, sample_weight)
if y_min is not None or y_max is not None:
# Older versions of np.clip don't accept None as a bound, so use np.inf
if y_min is None:
y_min = -np.inf
if y_max is None:
y_max = np.inf
np.clip(y, y_min, y_max, y)
return y[order]
class IsotonicRegression(BaseEstimator, TransformerMixin, RegressorMixin):
"""Isotonic regression model.
The isotonic regression optimization problem is defined by::
min sum w_i (y[i] - y_[i]) ** 2
subject to y_[i] <= y_[j] whenever X[i] <= X[j]
and min(y_) = y_min, max(y_) = y_max
where:
- ``y[i]`` are inputs (real numbers)
- ``y_[i]`` are fitted
- ``X`` specifies the order.
If ``X`` is non-decreasing then ``y_`` is non-decreasing.
- ``w[i]`` are optional strictly positive weights (default to 1.0)
Read more in the :ref:`User Guide <isotonic>`.
Parameters
----------
y_min : optional, default: None
If not None, set the lowest value of the fit to y_min.
y_max : optional, default: None
If not None, set the highest value of the fit to y_max.
increasing : boolean or string, optional, default: True
If boolean, whether or not to fit the isotonic regression with y
increasing or decreasing.
The string value "auto" determines whether y should
increase or decrease based on the Spearman correlation estimate's
sign.
out_of_bounds : string, optional, default: "nan"
The ``out_of_bounds`` parameter handles how x-values outside of the
training domain are handled. When set to "nan", predicted y-values
will be NaN. When set to "clip", predicted y-values will be
set to the value corresponding to the nearest train interval endpoint.
When set to "raise", allow ``interp1d`` to throw ValueError.
Attributes
----------
X_min_ : float
Minimum value of input array `X_` for left bound.
X_max_ : float
Maximum value of input array `X_` for right bound.
f_ : function
The stepwise interpolating function that covers the domain `X_`.
Notes
-----
Ties are broken using the secondary method from Leeuw, 1977.
References
----------
Isotonic Median Regression: A Linear Programming Approach
Nilotpal Chakravarti
Mathematics of Operations Research
Vol. 14, No. 2 (May, 1989), pp. 303-308
Isotone Optimization in R : Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods
Leeuw, Hornik, Mair
Journal of Statistical Software 2009
Correctness of Kruskal's algorithms for monotone regression with ties
Leeuw, Psychometrica, 1977
"""
def __init__(self, y_min=None, y_max=None, increasing=True,
out_of_bounds='nan'):
self.y_min = y_min
self.y_max = y_max
self.increasing = increasing
self.out_of_bounds = out_of_bounds
@property
@deprecated("Attribute ``X_`` is deprecated in version 0.18 and will be"
" removed in version 0.20.")
def X_(self):
return self._X_
@X_.setter
def X_(self, value):
self._X_ = value
@X_.deleter
def X_(self):
del self._X_
@property
@deprecated("Attribute ``y_`` is deprecated in version 0.18 and will"
" be removed in version 0.20.")
def y_(self):
return self._y_
@y_.setter
def y_(self, value):
self._y_ = value
@y_.deleter
def y_(self):
del self._y_
def _check_fit_data(self, X, y, sample_weight=None):
if len(X.shape) != 1:
raise ValueError("X should be a 1d array")
def _build_f(self, X, y):
"""Build the f_ interp1d function."""
# Handle the out_of_bounds argument by setting bounds_error
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError("The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}"
.format(self.out_of_bounds))
bounds_error = self.out_of_bounds == "raise"
if len(y) == 1:
# single y, constant prediction
self.f_ = lambda x: y.repeat(x.shape)
else:
self.f_ = interpolate.interp1d(X, y, kind='linear',
bounds_error=bounds_error)
def _build_y(self, X, y, sample_weight, trim_duplicates=True):
"""Build the y_ IsotonicRegression."""
check_consistent_length(X, y, sample_weight)
X, y = [check_array(x, ensure_2d=False) for x in [X, y]]
y = as_float_array(y)
self._check_fit_data(X, y, sample_weight)
# Determine increasing if auto-determination requested
if self.increasing == 'auto':
self.increasing_ = check_increasing(X, y)
else:
self.increasing_ = self.increasing
# If sample_weights is passed, removed zero-weight values and clean
# order
if sample_weight is not None:
sample_weight = check_array(sample_weight, ensure_2d=False)
mask = sample_weight > 0
X, y, sample_weight = X[mask], y[mask], sample_weight[mask]
else:
sample_weight = np.ones(len(y))
order = np.lexsort((y, X))
X, y, sample_weight = [astype(array[order], np.float64, copy=False)
for array in [X, y, sample_weight]]
unique_X, unique_y, unique_sample_weight = _make_unique(
X, y, sample_weight)
# Store _X_ and _y_ to maintain backward compat during the deprecation
# period of X_ and y_
self._X_ = X = unique_X
self._y_ = y = isotonic_regression(unique_y, unique_sample_weight,
self.y_min, self.y_max,
increasing=self.increasing_)
# Handle the left and right bounds on X
self.X_min_, self.X_max_ = np.min(X), np.max(X)
if trim_duplicates:
# Remove unnecessary points for faster prediction
keep_data = np.ones((len(y),), dtype=bool)
# Aside from the 1st and last point, remove points whose y values
# are equal to both the point before and the point after it.
keep_data[1:-1] = np.logical_or(
np.not_equal(y[1:-1], y[:-2]),
np.not_equal(y[1:-1], y[2:])
)
return X[keep_data], y[keep_data]
else:
# The ability to turn off trim_duplicates is only used to it make
# easier to unit test that removing duplicates in y does not have
# any impact the resulting interpolation function (besides
# prediction speed).
return X, y
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape=(n_samples,)
Training data.
y : array-like, shape=(n_samples,)
Training target.
sample_weight : array-like, shape=(n_samples,), optional, default: None
Weights. If set to None, all weights will be set to 1 (equal
weights).
Returns
-------
self : object
Returns an instance of self.
Notes
-----
X is stored for future use, as `transform` needs X to interpolate
new input data.
"""
# Transform y by running the isotonic regression algorithm and
# transform X accordingly.
X, y = self._build_y(X, y, sample_weight)
# It is necessary to store the non-redundant part of the training set
# on the model to make it possible to support model persistence via
# the pickle module as the object built by scipy.interp1d is not
# picklable directly.
self._necessary_X_, self._necessary_y_ = X, y
# Build the interpolation function
self._build_f(X, y)
return self
def transform(self, T):
"""Transform new data by linear interpolation
Parameters
----------
T : array-like, shape=(n_samples,)
Data to transform.
Returns
-------
T_ : array, shape=(n_samples,)
The transformed data
"""
T = as_float_array(T)
if len(T.shape) != 1:
raise ValueError("Isotonic regression input should be a 1d array")
# Handle the out_of_bounds argument by clipping if needed
if self.out_of_bounds not in ["raise", "nan", "clip"]:
raise ValueError("The argument ``out_of_bounds`` must be in "
"'nan', 'clip', 'raise'; got {0}"
.format(self.out_of_bounds))
if self.out_of_bounds == "clip":
T = np.clip(T, self.X_min_, self.X_max_)
return self.f_(T)
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like, shape=(n_samples,)
Data to transform.
Returns
-------
T_ : array, shape=(n_samples,)
Transformed data.
"""
return self.transform(T)
def __getstate__(self):
"""Pickle-protocol - return state of the estimator. """
state = super(IsotonicRegression, self).__getstate__()
# remove interpolation method
state.pop('f_', None)
return state
def __setstate__(self, state):
"""Pickle-protocol - set state of the estimator.
We need to rebuild the interpolation function.
"""
super(IsotonicRegression, self).__setstate__(state)
if hasattr(self, '_necessary_X_') and hasattr(self, '_necessary_y_'):
self._build_f(self._necessary_X_, self._necessary_y_)
|