/usr/lib/python2.7/dist-packages/sklearn/exceptions.py is in python-sklearn 0.18-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | """
The :mod:`sklearn.exceptions` module includes all custom warnings and error
classes used across scikit-learn.
"""
__all__ = ['NotFittedError',
'ChangedBehaviorWarning',
'ConvergenceWarning',
'DataConversionWarning',
'DataDimensionalityWarning',
'EfficiencyWarning',
'FitFailedWarning',
'NonBLASDotWarning',
'UndefinedMetricWarning']
class NotFittedError(ValueError, AttributeError):
"""Exception class to raise if estimator is used before fitting.
This class inherits from both ValueError and AttributeError to help with
exception handling and backward compatibility.
Examples
--------
>>> from sklearn.svm import LinearSVC
>>> from sklearn.exceptions import NotFittedError
>>> try:
... LinearSVC().predict([[1, 2], [2, 3], [3, 4]])
... except NotFittedError as e:
... print(repr(e))
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
NotFittedError('This LinearSVC instance is not fitted yet',)
.. versionchanged:: 0.18
Moved from sklearn.utils.validation.
"""
class ChangedBehaviorWarning(UserWarning):
"""Warning class used to notify the user of any change in the behavior.
.. versionchanged:: 0.18
Moved from sklearn.base.
"""
class ConvergenceWarning(UserWarning):
"""Custom warning to capture convergence problems
.. versionchanged:: 0.18
Moved from sklearn.utils.
"""
class DataConversionWarning(UserWarning):
"""Warning used to notify implicit data conversions happening in the code.
This warning occurs when some input data needs to be converted or
interpreted in a way that may not match the user's expectations.
For example, this warning may occur when the user
- passes an integer array to a function which expects float input and
will convert the input
- requests a non-copying operation, but a copy is required to meet the
implementation's data-type expectations;
- passes an input whose shape can be interpreted ambiguously.
.. versionchanged:: 0.18
Moved from sklearn.utils.validation.
"""
class DataDimensionalityWarning(UserWarning):
"""Custom warning to notify potential issues with data dimensionality.
For example, in random projection, this warning is raised when the
number of components, which quantifies the dimensionality of the target
projection space, is higher than the number of features, which quantifies
the dimensionality of the original source space, to imply that the
dimensionality of the problem will not be reduced.
.. versionchanged:: 0.18
Moved from sklearn.utils.
"""
class EfficiencyWarning(UserWarning):
"""Warning used to notify the user of inefficient computation.
This warning notifies the user that the efficiency may not be optimal due
to some reason which may be included as a part of the warning message.
This may be subclassed into a more specific Warning class.
.. versionadded:: 0.18
"""
class FitFailedWarning(RuntimeWarning):
"""Warning class used if there is an error while fitting the estimator.
This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV
and the cross-validation helper function cross_val_score to warn when there
is an error while fitting the estimator.
Examples
--------
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> from sklearn.exceptions import FitFailedWarning
>>> import warnings
>>> warnings.simplefilter('always', FitFailedWarning)
>>> gs = GridSearchCV(LinearSVC(), {'C': [-1, -2]}, error_score=0)
>>> X, y = [[1, 2], [3, 4], [5, 6], [7, 8], [8, 9]], [0, 0, 0, 1, 1]
>>> with warnings.catch_warnings(record=True) as w:
... try:
... gs.fit(X, y) # This will raise a ValueError since C is < 0
... except ValueError:
... pass
... print(repr(w[-1].message))
... # doctest: +NORMALIZE_WHITESPACE
FitFailedWarning("Classifier fit failed. The score on this train-test
partition for these parameters will be set to 0.000000. Details:
\\nValueError('Penalty term must be positive; got (C=-2)',)",)
.. versionchanged:: 0.18
Moved from sklearn.cross_validation.
"""
class NonBLASDotWarning(EfficiencyWarning):
"""Warning used when the dot operation does not use BLAS.
This warning is used to notify the user that BLAS was not used for dot
operation and hence the efficiency may be affected.
.. versionchanged:: 0.18
Moved from sklearn.utils.validation, extends EfficiencyWarning.
"""
class UndefinedMetricWarning(UserWarning):
"""Warning used when the metric is invalid
.. versionchanged:: 0.18
Moved from sklearn.base.
"""
|