/usr/lib/python2.7/dist-packages/sklearn/dummy.py is in python-sklearn 0.18-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | # Author: Mathieu Blondel <mathieu@mblondel.org>
# Arnaud Joly <a.joly@ulg.ac.be>
# Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
# License: BSD 3 clause
from __future__ import division
import warnings
import numpy as np
import scipy.sparse as sp
from .base import BaseEstimator, ClassifierMixin, RegressorMixin
from .utils import check_random_state
from .utils.validation import check_array
from .utils.validation import check_consistent_length
from .utils.validation import check_is_fitted
from .utils.random import random_choice_csc
from .utils.stats import _weighted_percentile
from .utils.multiclass import class_distribution
class DummyClassifier(BaseEstimator, ClassifierMixin):
"""
DummyClassifier is a classifier that makes predictions using simple rules.
This classifier is useful as a simple baseline to compare with other
(real) classifiers. Do not use it for real problems.
Read more in the :ref:`User Guide <dummy_estimators>`.
Parameters
----------
strategy : str, default="stratified"
Strategy to use to generate predictions.
* "stratified": generates predictions by respecting the training
set's class distribution.
* "most_frequent": always predicts the most frequent label in the
training set.
* "prior": always predicts the class that maximizes the class prior
(like "most_frequent") and ``predict_proba`` returns the class prior.
* "uniform": generates predictions uniformly at random.
* "constant": always predicts a constant label that is provided by
the user. This is useful for metrics that evaluate a non-majority
class
.. versionadded:: 0.17
Dummy Classifier now supports prior fitting strategy using
parameter *prior*.
random_state : int seed, RandomState instance, or None (default)
The seed of the pseudo random number generator to use.
constant : int or str or array of shape = [n_outputs]
The explicit constant as predicted by the "constant" strategy. This
parameter is useful only for the "constant" strategy.
Attributes
----------
classes_ : array or list of array of shape = [n_classes]
Class labels for each output.
n_classes_ : array or list of array of shape = [n_classes]
Number of label for each output.
class_prior_ : array or list of array of shape = [n_classes]
Probability of each class for each output.
n_outputs_ : int,
Number of outputs.
outputs_2d_ : bool,
True if the output at fit is 2d, else false.
sparse_output_ : bool,
True if the array returned from predict is to be in sparse CSC format.
Is automatically set to True if the input y is passed in sparse format.
"""
def __init__(self, strategy="stratified", random_state=None,
constant=None):
self.strategy = strategy
self.random_state = random_state
self.constant = constant
def fit(self, X, y, sample_weight=None):
"""Fit the random classifier.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples] or [n_samples, n_outputs]
Target values.
sample_weight : array-like of shape = [n_samples], optional
Sample weights.
Returns
-------
self : object
Returns self.
"""
if self.strategy not in ("most_frequent", "stratified", "uniform",
"constant", "prior"):
raise ValueError("Unknown strategy type.")
if self.strategy == "uniform" and sp.issparse(y):
y = y.toarray()
warnings.warn('A local copy of the target data has been converted '
'to a numpy array. Predicting on sparse target data '
'with the uniform strategy would not save memory '
'and would be slower.',
UserWarning)
self.sparse_output_ = sp.issparse(y)
if not self.sparse_output_:
y = np.atleast_1d(y)
self.output_2d_ = y.ndim == 2
if y.ndim == 1:
y = np.reshape(y, (-1, 1))
self.n_outputs_ = y.shape[1]
if self.strategy == "constant":
if self.constant is None:
raise ValueError("Constant target value has to be specified "
"when the constant strategy is used.")
else:
constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))
if constant.shape[0] != self.n_outputs_:
raise ValueError("Constant target value should have "
"shape (%d, 1)." % self.n_outputs_)
(self.classes_,
self.n_classes_,
self.class_prior_) = class_distribution(y, sample_weight)
if (self.strategy == "constant" and
any(constant[k] not in self.classes_[k]
for k in range(self.n_outputs_))):
# Checking in case of constant strategy if the constant
# provided by the user is in y.
raise ValueError("The constant target value must be "
"present in training data")
if self.n_outputs_ == 1 and not self.output_2d_:
self.n_classes_ = self.n_classes_[0]
self.classes_ = self.classes_[0]
self.class_prior_ = self.class_prior_[0]
return self
def predict(self, X):
"""Perform classification on test vectors X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Input vectors, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
y : array, shape = [n_samples] or [n_samples, n_outputs]
Predicted target values for X.
"""
check_is_fitted(self, 'classes_')
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
# numpy random_state expects Python int and not long as size argument
# under Windows
n_samples = int(X.shape[0])
rs = check_random_state(self.random_state)
n_classes_ = self.n_classes_
classes_ = self.classes_
class_prior_ = self.class_prior_
constant = self.constant
if self.n_outputs_ == 1:
# Get same type even for self.n_outputs_ == 1
n_classes_ = [n_classes_]
classes_ = [classes_]
class_prior_ = [class_prior_]
constant = [constant]
# Compute probability only once
if self.strategy == "stratified":
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
proba = [proba]
if self.sparse_output_:
class_prob = None
if self.strategy in ("most_frequent", "prior"):
classes_ = [np.array([cp.argmax()]) for cp in class_prior_]
elif self.strategy == "stratified":
class_prob = class_prior_
elif self.strategy == "uniform":
raise ValueError("Sparse target prediction is not "
"supported with the uniform strategy")
elif self.strategy == "constant":
classes_ = [np.array([c]) for c in constant]
y = random_choice_csc(n_samples, classes_, class_prob,
self.random_state)
else:
if self.strategy in ("most_frequent", "prior"):
y = np.tile([classes_[k][class_prior_[k].argmax()] for
k in range(self.n_outputs_)], [n_samples, 1])
elif self.strategy == "stratified":
y = np.vstack(classes_[k][proba[k].argmax(axis=1)] for
k in range(self.n_outputs_)).T
elif self.strategy == "uniform":
ret = [classes_[k][rs.randint(n_classes_[k], size=n_samples)]
for k in range(self.n_outputs_)]
y = np.vstack(ret).T
elif self.strategy == "constant":
y = np.tile(self.constant, (n_samples, 1))
if self.n_outputs_ == 1 and not self.output_2d_:
y = np.ravel(y)
return y
def predict_proba(self, X):
"""
Return probability estimates for the test vectors X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Input vectors, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
P : array-like or list of array-lke of shape = [n_samples, n_classes]
Returns the probability of the sample for each class in
the model, where classes are ordered arithmetically, for each
output.
"""
check_is_fitted(self, 'classes_')
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
# numpy random_state expects Python int and not long as size argument
# under Windows
n_samples = int(X.shape[0])
rs = check_random_state(self.random_state)
n_classes_ = self.n_classes_
classes_ = self.classes_
class_prior_ = self.class_prior_
constant = self.constant
if self.n_outputs_ == 1 and not self.output_2d_:
# Get same type even for self.n_outputs_ == 1
n_classes_ = [n_classes_]
classes_ = [classes_]
class_prior_ = [class_prior_]
constant = [constant]
P = []
for k in range(self.n_outputs_):
if self.strategy == "most_frequent":
ind = class_prior_[k].argmax()
out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
out[:, ind] = 1.0
elif self.strategy == "prior":
out = np.ones((n_samples, 1)) * class_prior_[k]
elif self.strategy == "stratified":
out = rs.multinomial(1, class_prior_[k], size=n_samples)
elif self.strategy == "uniform":
out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)
out /= n_classes_[k]
elif self.strategy == "constant":
ind = np.where(classes_[k] == constant[k])
out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
out[:, ind] = 1.0
P.append(out)
if self.n_outputs_ == 1 and not self.output_2d_:
P = P[0]
return P
def predict_log_proba(self, X):
"""
Return log probability estimates for the test vectors X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Input vectors, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
P : array-like or list of array-like of shape = [n_samples, n_classes]
Returns the log probability of the sample for each class in
the model, where classes are ordered arithmetically for each
output.
"""
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
return np.log(proba)
else:
return [np.log(p) for p in proba]
class DummyRegressor(BaseEstimator, RegressorMixin):
"""
DummyRegressor is a regressor that makes predictions using
simple rules.
This regressor is useful as a simple baseline to compare with other
(real) regressors. Do not use it for real problems.
Read more in the :ref:`User Guide <dummy_estimators>`.
Parameters
----------
strategy : str
Strategy to use to generate predictions.
* "mean": always predicts the mean of the training set
* "median": always predicts the median of the training set
* "quantile": always predicts a specified quantile of the training set,
provided with the quantile parameter.
* "constant": always predicts a constant value that is provided by
the user.
constant : int or float or array of shape = [n_outputs]
The explicit constant as predicted by the "constant" strategy. This
parameter is useful only for the "constant" strategy.
quantile : float in [0.0, 1.0]
The quantile to predict using the "quantile" strategy. A quantile of
0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the
maximum.
Attributes
----------
constant_ : float or array of shape [n_outputs]
Mean or median or quantile of the training targets or constant value
given by the user.
n_outputs_ : int,
Number of outputs.
outputs_2d_ : bool,
True if the output at fit is 2d, else false.
"""
def __init__(self, strategy="mean", constant=None, quantile=None):
self.strategy = strategy
self.constant = constant
self.quantile = quantile
def fit(self, X, y, sample_weight=None):
"""Fit the random regressor.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples] or [n_samples, n_outputs]
Target values.
sample_weight : array-like of shape = [n_samples], optional
Sample weights.
Returns
-------
self : object
Returns self.
"""
if self.strategy not in ("mean", "median", "quantile", "constant"):
raise ValueError("Unknown strategy type: %s, expected "
"'mean', 'median', 'quantile' or 'constant'"
% self.strategy)
y = check_array(y, ensure_2d=False)
if len(y) == 0:
raise ValueError("y must not be empty.")
self.output_2d_ = y.ndim == 2
if y.ndim == 1:
y = np.reshape(y, (-1, 1))
self.n_outputs_ = y.shape[1]
check_consistent_length(X, y, sample_weight)
if self.strategy == "mean":
self.constant_ = np.average(y, axis=0, weights=sample_weight)
elif self.strategy == "median":
if sample_weight is None:
self.constant_ = np.median(y, axis=0)
else:
self.constant_ = [_weighted_percentile(y[:, k], sample_weight,
percentile=50.)
for k in range(self.n_outputs_)]
elif self.strategy == "quantile":
if self.quantile is None or not np.isscalar(self.quantile):
raise ValueError("Quantile must be a scalar in the range "
"[0.0, 1.0], but got %s." % self.quantile)
percentile = self.quantile * 100.0
if sample_weight is None:
self.constant_ = np.percentile(y, axis=0, q=percentile)
else:
self.constant_ = [_weighted_percentile(y[:, k], sample_weight,
percentile=percentile)
for k in range(self.n_outputs_)]
elif self.strategy == "constant":
if self.constant is None:
raise TypeError("Constant target value has to be specified "
"when the constant strategy is used.")
self.constant = check_array(self.constant,
accept_sparse=['csr', 'csc', 'coo'],
ensure_2d=False, ensure_min_samples=0)
if self.output_2d_ and self.constant.shape[0] != y.shape[1]:
raise ValueError(
"Constant target value should have "
"shape (%d, 1)." % y.shape[1])
self.constant_ = self.constant
self.constant_ = np.reshape(self.constant_, (1, -1))
return self
def predict(self, X):
"""
Perform classification on test vectors X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Input vectors, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
y : array, shape = [n_samples] or [n_samples, n_outputs]
Predicted target values for X.
"""
check_is_fitted(self, "constant_")
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
n_samples = X.shape[0]
y = np.ones((n_samples, 1)) * self.constant_
if self.n_outputs_ == 1 and not self.output_2d_:
y = np.ravel(y)
return y
|