This file is indexed.

/usr/lib/python2.7/dist-packages/sklearn/dummy.py is in python-sklearn 0.18-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Author: Mathieu Blondel <mathieu@mblondel.org>
#         Arnaud Joly <a.joly@ulg.ac.be>
#         Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
# License: BSD 3 clause
from __future__ import division

import warnings
import numpy as np
import scipy.sparse as sp

from .base import BaseEstimator, ClassifierMixin, RegressorMixin
from .utils import check_random_state
from .utils.validation import check_array
from .utils.validation import check_consistent_length
from .utils.validation import check_is_fitted
from .utils.random import random_choice_csc
from .utils.stats import _weighted_percentile
from .utils.multiclass import class_distribution


class DummyClassifier(BaseEstimator, ClassifierMixin):
    """
    DummyClassifier is a classifier that makes predictions using simple rules.

    This classifier is useful as a simple baseline to compare with other
    (real) classifiers. Do not use it for real problems.

    Read more in the :ref:`User Guide <dummy_estimators>`.

    Parameters
    ----------
    strategy : str, default="stratified"
        Strategy to use to generate predictions.

        * "stratified": generates predictions by respecting the training
          set's class distribution.
        * "most_frequent": always predicts the most frequent label in the
          training set.
        * "prior": always predicts the class that maximizes the class prior
          (like "most_frequent") and ``predict_proba`` returns the class prior.
        * "uniform": generates predictions uniformly at random.
        * "constant": always predicts a constant label that is provided by
          the user. This is useful for metrics that evaluate a non-majority
          class

          .. versionadded:: 0.17
             Dummy Classifier now supports prior fitting strategy using
             parameter *prior*.

    random_state : int seed, RandomState instance, or None (default)
        The seed of the pseudo random number generator to use.

    constant : int or str or array of shape = [n_outputs]
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.

    Attributes
    ----------
    classes_ : array or list of array of shape = [n_classes]
        Class labels for each output.

    n_classes_ : array or list of array of shape = [n_classes]
        Number of label for each output.

    class_prior_ : array or list of array of shape = [n_classes]
        Probability of each class for each output.

    n_outputs_ : int,
        Number of outputs.

    outputs_2d_ : bool,
        True if the output at fit is 2d, else false.

    sparse_output_ : bool,
        True if the array returned from predict is to be in sparse CSC format.
        Is automatically set to True if the input y is passed in sparse format.

    """

    def __init__(self, strategy="stratified", random_state=None,
                 constant=None):
        self.strategy = strategy
        self.random_state = random_state
        self.constant = constant

    def fit(self, X, y, sample_weight=None):
        """Fit the random classifier.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Target values.

        sample_weight : array-like of shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        self : object
            Returns self.
        """
        if self.strategy not in ("most_frequent", "stratified", "uniform",
                                 "constant", "prior"):
            raise ValueError("Unknown strategy type.")

        if self.strategy == "uniform" and sp.issparse(y):
            y = y.toarray()
            warnings.warn('A local copy of the target data has been converted '
                          'to a numpy array. Predicting on sparse target data '
                          'with the uniform strategy would not save memory '
                          'and would be slower.',
                          UserWarning)

        self.sparse_output_ = sp.issparse(y)

        if not self.sparse_output_:
            y = np.atleast_1d(y)

        self.output_2d_ = y.ndim == 2
        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        if self.strategy == "constant":
            if self.constant is None:
                raise ValueError("Constant target value has to be specified "
                                 "when the constant strategy is used.")
            else:
                constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))
                if constant.shape[0] != self.n_outputs_:
                    raise ValueError("Constant target value should have "
                                     "shape (%d, 1)." % self.n_outputs_)

        (self.classes_,
         self.n_classes_,
         self.class_prior_) = class_distribution(y, sample_weight)

        if (self.strategy == "constant" and
                any(constant[k] not in self.classes_[k]
                    for k in range(self.n_outputs_))):
            # Checking in case of constant strategy if the constant
            # provided by the user is in y.
            raise ValueError("The constant target value must be "
                             "present in training data")

        if self.n_outputs_ == 1 and not self.output_2d_:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]
            self.class_prior_ = self.class_prior_[0]

        return self

    def predict(self, X):
        """Perform classification on test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        y : array, shape = [n_samples] or [n_samples, n_outputs]
            Predicted target values for X.
        """
        check_is_fitted(self, 'classes_')

        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
        # numpy random_state expects Python int and not long as size argument
        # under Windows
        n_samples = int(X.shape[0])
        rs = check_random_state(self.random_state)

        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        constant = self.constant
        if self.n_outputs_ == 1:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]
            constant = [constant]
        # Compute probability only once
        if self.strategy == "stratified":
            proba = self.predict_proba(X)
            if self.n_outputs_ == 1:
                proba = [proba]

        if self.sparse_output_:
            class_prob = None
            if self.strategy in ("most_frequent", "prior"):
                classes_ = [np.array([cp.argmax()]) for cp in class_prior_]

            elif self.strategy == "stratified":
                class_prob = class_prior_

            elif self.strategy == "uniform":
                raise ValueError("Sparse target prediction is not "
                                 "supported with the uniform strategy")

            elif self.strategy == "constant":
                classes_ = [np.array([c]) for c in constant]

            y = random_choice_csc(n_samples, classes_, class_prob,
                                  self.random_state)
        else:
            if self.strategy in ("most_frequent", "prior"):
                y = np.tile([classes_[k][class_prior_[k].argmax()] for
                             k in range(self.n_outputs_)], [n_samples, 1])

            elif self.strategy == "stratified":
                y = np.vstack(classes_[k][proba[k].argmax(axis=1)] for
                              k in range(self.n_outputs_)).T

            elif self.strategy == "uniform":
                ret = [classes_[k][rs.randint(n_classes_[k], size=n_samples)]
                       for k in range(self.n_outputs_)]
                y = np.vstack(ret).T

            elif self.strategy == "constant":
                y = np.tile(self.constant, (n_samples, 1))

            if self.n_outputs_ == 1 and not self.output_2d_:
                y = np.ravel(y)

        return y

    def predict_proba(self, X):
        """
        Return probability estimates for the test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        P : array-like or list of array-lke of shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in
            the model, where classes are ordered arithmetically, for each
            output.
        """
        check_is_fitted(self, 'classes_')

        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
        # numpy random_state expects Python int and not long as size argument
        # under Windows
        n_samples = int(X.shape[0])
        rs = check_random_state(self.random_state)

        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        constant = self.constant
        if self.n_outputs_ == 1 and not self.output_2d_:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]
            constant = [constant]

        P = []
        for k in range(self.n_outputs_):
            if self.strategy == "most_frequent":
                ind = class_prior_[k].argmax()
                out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
                out[:, ind] = 1.0
            elif self.strategy == "prior":
                out = np.ones((n_samples, 1)) * class_prior_[k]

            elif self.strategy == "stratified":
                out = rs.multinomial(1, class_prior_[k], size=n_samples)

            elif self.strategy == "uniform":
                out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)
                out /= n_classes_[k]

            elif self.strategy == "constant":
                ind = np.where(classes_[k] == constant[k])
                out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
                out[:, ind] = 1.0

            P.append(out)

        if self.n_outputs_ == 1 and not self.output_2d_:
            P = P[0]

        return P

    def predict_log_proba(self, X):
        """
        Return log probability estimates for the test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        P : array-like or list of array-like of shape = [n_samples, n_classes]
            Returns the log probability of the sample for each class in
            the model, where classes are ordered arithmetically for each
            output.
        """
        proba = self.predict_proba(X)
        if self.n_outputs_ == 1:
            return np.log(proba)
        else:
            return [np.log(p) for p in proba]


class DummyRegressor(BaseEstimator, RegressorMixin):
    """
    DummyRegressor is a regressor that makes predictions using
    simple rules.

    This regressor is useful as a simple baseline to compare with other
    (real) regressors. Do not use it for real problems.

    Read more in the :ref:`User Guide <dummy_estimators>`.

    Parameters
    ----------
    strategy : str
        Strategy to use to generate predictions.

        * "mean": always predicts the mean of the training set
        * "median": always predicts the median of the training set
        * "quantile": always predicts a specified quantile of the training set,
          provided with the quantile parameter.
        * "constant": always predicts a constant value that is provided by
          the user.

    constant : int or float or array of shape = [n_outputs]
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.

    quantile : float in [0.0, 1.0]
        The quantile to predict using the "quantile" strategy. A quantile of
        0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the
        maximum.

    Attributes
    ----------
    constant_ : float or array of shape [n_outputs]
        Mean or median or quantile of the training targets or constant value
        given by the user.

    n_outputs_ : int,
        Number of outputs.

    outputs_2d_ : bool,
        True if the output at fit is 2d, else false.
    """

    def __init__(self, strategy="mean", constant=None, quantile=None):
        self.strategy = strategy
        self.constant = constant
        self.quantile = quantile

    def fit(self, X, y, sample_weight=None):
        """Fit the random regressor.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Target values.

        sample_weight : array-like of shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        self : object
            Returns self.
        """

        if self.strategy not in ("mean", "median", "quantile", "constant"):
            raise ValueError("Unknown strategy type: %s, expected "
                             "'mean', 'median', 'quantile' or 'constant'"
                             % self.strategy)

        y = check_array(y, ensure_2d=False)
        if len(y) == 0:
            raise ValueError("y must not be empty.")

        self.output_2d_ = y.ndim == 2
        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))
        self.n_outputs_ = y.shape[1]

        check_consistent_length(X, y, sample_weight)

        if self.strategy == "mean":
            self.constant_ = np.average(y, axis=0, weights=sample_weight)

        elif self.strategy == "median":
            if sample_weight is None:
                self.constant_ = np.median(y, axis=0)
            else:
                self.constant_ = [_weighted_percentile(y[:, k], sample_weight,
                                                       percentile=50.)
                                  for k in range(self.n_outputs_)]

        elif self.strategy == "quantile":
            if self.quantile is None or not np.isscalar(self.quantile):
                raise ValueError("Quantile must be a scalar in the range "
                                 "[0.0, 1.0], but got %s." % self.quantile)

            percentile = self.quantile * 100.0
            if sample_weight is None:
                self.constant_ = np.percentile(y, axis=0, q=percentile)
            else:
                self.constant_ = [_weighted_percentile(y[:, k], sample_weight,
                                                       percentile=percentile)
                                  for k in range(self.n_outputs_)]

        elif self.strategy == "constant":
            if self.constant is None:
                raise TypeError("Constant target value has to be specified "
                                "when the constant strategy is used.")

            self.constant = check_array(self.constant,
                                        accept_sparse=['csr', 'csc', 'coo'],
                                        ensure_2d=False, ensure_min_samples=0)

            if self.output_2d_ and self.constant.shape[0] != y.shape[1]:
                raise ValueError(
                    "Constant target value should have "
                    "shape (%d, 1)." % y.shape[1])

            self.constant_ = self.constant

        self.constant_ = np.reshape(self.constant_, (1, -1))
        return self

    def predict(self, X):
        """
        Perform classification on test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        y : array, shape = [n_samples]  or [n_samples, n_outputs]
            Predicted target values for X.
        """
        check_is_fitted(self, "constant_")
        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
        n_samples = X.shape[0]

        y = np.ones((n_samples, 1)) * self.constant_

        if self.n_outputs_ == 1 and not self.output_2d_:
            y = np.ravel(y)

        return y