This file is indexed.

/usr/lib/python2.7/dist-packages/sklearn/base.py is in python-sklearn 0.18-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""Base classes for all estimators."""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause

import copy
import warnings

import numpy as np
from scipy import sparse
from .externals import six
from .utils.fixes import signature
from .utils.deprecation import deprecated
from .exceptions import ChangedBehaviorWarning as _ChangedBehaviorWarning
from . import __version__


@deprecated("ChangedBehaviorWarning has been moved into the sklearn.exceptions"
            " module. It will not be available here from version 0.19")
class ChangedBehaviorWarning(_ChangedBehaviorWarning):
    pass


##############################################################################
def _first_and_last_element(arr):
    """Returns first and last element of numpy array or sparse matrix."""
    if isinstance(arr, np.ndarray) or hasattr(arr, 'data'):
        # numpy array or sparse matrix with .data attribute
        data = arr.data if sparse.issparse(arr) else arr
        return data.flat[0], data.flat[-1]
    else:
        # Sparse matrices without .data attribute. Only dok_matrix at
        # the time of writing, in this case indexing is fast
        return arr[0, 0], arr[-1, -1]


def clone(estimator, safe=True):
    """Constructs a new estimator with the same parameters.

    Clone does a deep copy of the model in an estimator
    without actually copying attached data. It yields a new estimator
    with the same parameters that has not been fit on any data.

    Parameters
    ----------
    estimator: estimator object, or list, tuple or set of objects
        The estimator or group of estimators to be cloned

    safe: boolean, optional
        If safe is false, clone will fall back to a deepcopy on objects
        that are not estimators.

    """
    estimator_type = type(estimator)
    # XXX: not handling dictionaries
    if estimator_type in (list, tuple, set, frozenset):
        return estimator_type([clone(e, safe=safe) for e in estimator])
    elif not hasattr(estimator, 'get_params'):
        if not safe:
            return copy.deepcopy(estimator)
        else:
            raise TypeError("Cannot clone object '%s' (type %s): "
                            "it does not seem to be a scikit-learn estimator "
                            "as it does not implement a 'get_params' methods."
                            % (repr(estimator), type(estimator)))
    klass = estimator.__class__
    new_object_params = estimator.get_params(deep=False)
    for name, param in six.iteritems(new_object_params):
        new_object_params[name] = clone(param, safe=False)
    new_object = klass(**new_object_params)
    params_set = new_object.get_params(deep=False)

    # quick sanity check of the parameters of the clone
    for name in new_object_params:
        param1 = new_object_params[name]
        param2 = params_set[name]
        if param1 is param2:
            # this should always happen
            continue
        if isinstance(param1, np.ndarray):
            # For most ndarrays, we do not test for complete equality
            if not isinstance(param2, type(param1)):
                equality_test = False
            elif (param1.ndim > 0
                    and param1.shape[0] > 0
                    and isinstance(param2, np.ndarray)
                    and param2.ndim > 0
                    and param2.shape[0] > 0):
                equality_test = (
                    param1.shape == param2.shape
                    and param1.dtype == param2.dtype
                    and (_first_and_last_element(param1) ==
                         _first_and_last_element(param2))
                )
            else:
                equality_test = np.all(param1 == param2)
        elif sparse.issparse(param1):
            # For sparse matrices equality doesn't work
            if not sparse.issparse(param2):
                equality_test = False
            elif param1.size == 0 or param2.size == 0:
                equality_test = (
                    param1.__class__ == param2.__class__
                    and param1.size == 0
                    and param2.size == 0
                )
            else:
                equality_test = (
                    param1.__class__ == param2.__class__
                    and (_first_and_last_element(param1) ==
                         _first_and_last_element(param2))
                    and param1.nnz == param2.nnz
                    and param1.shape == param2.shape
                )
        else:
            # fall back on standard equality
            equality_test = param1 == param2
        if equality_test:
            warnings.warn("Estimator %s modifies parameters in __init__."
                          " This behavior is deprecated as of 0.18 and "
                          "support for this behavior will be removed in 0.20."
                          % type(estimator).__name__, DeprecationWarning)
        else:
            raise RuntimeError('Cannot clone object %s, as the constructor '
                               'does not seem to set parameter %s' %
                               (estimator, name))

    return new_object


###############################################################################
def _pprint(params, offset=0, printer=repr):
    """Pretty print the dictionary 'params'

    Parameters
    ----------
    params: dict
        The dictionary to pretty print

    offset: int
        The offset in characters to add at the begin of each line.

    printer:
        The function to convert entries to strings, typically
        the builtin str or repr

    """
    # Do a multi-line justified repr:
    options = np.get_printoptions()
    np.set_printoptions(precision=5, threshold=64, edgeitems=2)
    params_list = list()
    this_line_length = offset
    line_sep = ',\n' + (1 + offset // 2) * ' '
    for i, (k, v) in enumerate(sorted(six.iteritems(params))):
        if type(v) is float:
            # use str for representing floating point numbers
            # this way we get consistent representation across
            # architectures and versions.
            this_repr = '%s=%s' % (k, str(v))
        else:
            # use repr of the rest
            this_repr = '%s=%s' % (k, printer(v))
        if len(this_repr) > 500:
            this_repr = this_repr[:300] + '...' + this_repr[-100:]
        if i > 0:
            if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr):
                params_list.append(line_sep)
                this_line_length = len(line_sep)
            else:
                params_list.append(', ')
                this_line_length += 2
        params_list.append(this_repr)
        this_line_length += len(this_repr)

    np.set_printoptions(**options)
    lines = ''.join(params_list)
    # Strip trailing space to avoid nightmare in doctests
    lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n'))
    return lines


###############################################################################
class BaseEstimator(object):
    """Base class for all estimators in scikit-learn

    Notes
    -----
    All estimators should specify all the parameters that can be set
    at the class level in their ``__init__`` as explicit keyword
    arguments (no ``*args`` or ``**kwargs``).
    """

    @classmethod
    def _get_param_names(cls):
        """Get parameter names for the estimator"""
        # fetch the constructor or the original constructor before
        # deprecation wrapping if any
        init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
        if init is object.__init__:
            # No explicit constructor to introspect
            return []

        # introspect the constructor arguments to find the model parameters
        # to represent
        init_signature = signature(init)
        # Consider the constructor parameters excluding 'self'
        parameters = [p for p in init_signature.parameters.values()
                      if p.name != 'self' and p.kind != p.VAR_KEYWORD]
        for p in parameters:
            if p.kind == p.VAR_POSITIONAL:
                raise RuntimeError("scikit-learn estimators should always "
                                   "specify their parameters in the signature"
                                   " of their __init__ (no varargs)."
                                   " %s with constructor %s doesn't "
                                   " follow this convention."
                                   % (cls, init_signature))
        # Extract and sort argument names excluding 'self'
        return sorted([p.name for p in parameters])

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Parameters
        ----------
        deep: boolean, optional
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        out = dict()
        for key in self._get_param_names():
            # We need deprecation warnings to always be on in order to
            # catch deprecated param values.
            # This is set in utils/__init__.py but it gets overwritten
            # when running under python3 somehow.
            warnings.simplefilter("always", DeprecationWarning)
            try:
                with warnings.catch_warnings(record=True) as w:
                    value = getattr(self, key, None)
                if len(w) and w[0].category == DeprecationWarning:
                    # if the parameter is deprecated, don't show it
                    continue
            finally:
                warnings.filters.pop(0)

            # XXX: should we rather test if instance of estimator?
            if deep and hasattr(value, 'get_params'):
                deep_items = value.get_params().items()
                out.update((key + '__' + k, val) for k, val in deep_items)
            out[key] = value
        return out

    def set_params(self, **params):
        """Set the parameters of this estimator.

        The method works on simple estimators as well as on nested objects
        (such as pipelines). The latter have parameters of the form
        ``<component>__<parameter>`` so that it's possible to update each
        component of a nested object.

        Returns
        -------
        self
        """
        if not params:
            # Simple optimisation to gain speed (inspect is slow)
            return self
        valid_params = self.get_params(deep=True)
        for key, value in six.iteritems(params):
            split = key.split('__', 1)
            if len(split) > 1:
                # nested objects case
                name, sub_name = split
                if name not in valid_params:
                    raise ValueError('Invalid parameter %s for estimator %s. '
                                     'Check the list of available parameters '
                                     'with `estimator.get_params().keys()`.' %
                                     (name, self))
                sub_object = valid_params[name]
                sub_object.set_params(**{sub_name: value})
            else:
                # simple objects case
                if key not in valid_params:
                    raise ValueError('Invalid parameter %s for estimator %s. '
                                     'Check the list of available parameters '
                                     'with `estimator.get_params().keys()`.' %
                                     (key, self.__class__.__name__))
                setattr(self, key, value)
        return self

    def __repr__(self):
        class_name = self.__class__.__name__
        return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False),
                                               offset=len(class_name),),)

    def __getstate__(self):
        if type(self).__module__.startswith('sklearn.'):
            return dict(self.__dict__.items(), _sklearn_version=__version__)
        else:
            return dict(self.__dict__.items())

    def __setstate__(self, state):
        if type(self).__module__.startswith('sklearn.'):
            pickle_version = state.pop("_sklearn_version", "pre-0.18")
            if pickle_version != __version__:
                warnings.warn(
                    "Trying to unpickle estimator {0} from version {1} when "
                    "using version {2}. This might lead to breaking code or "
                    "invalid results. Use at your own risk.".format(
                        self.__class__.__name__, pickle_version, __version__),
                    UserWarning)
        self.__dict__.update(state)


###############################################################################
class ClassifierMixin(object):
    """Mixin class for all classifiers in scikit-learn."""
    _estimator_type = "classifier"

    def score(self, X, y, sample_weight=None):
        """Returns the mean accuracy on the given test data and labels.

        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Test samples.

        y : array-like, shape = (n_samples) or (n_samples, n_outputs)
            True labels for X.

        sample_weight : array-like, shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        score : float
            Mean accuracy of self.predict(X) wrt. y.

        """
        from .metrics import accuracy_score
        return accuracy_score(y, self.predict(X), sample_weight=sample_weight)


###############################################################################
class RegressorMixin(object):
    """Mixin class for all regression estimators in scikit-learn."""
    _estimator_type = "regressor"

    def score(self, X, y, sample_weight=None):
        """Returns the coefficient of determination R^2 of the prediction.

        The coefficient R^2 is defined as (1 - u/v), where u is the regression
        sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual
        sum of squares ((y_true - y_true.mean()) ** 2).sum().
        Best possible score is 1.0 and it can be negative (because the
        model can be arbitrarily worse). A constant model that always
        predicts the expected value of y, disregarding the input features,
        would get a R^2 score of 0.0.

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Test samples.

        y : array-like, shape = (n_samples) or (n_samples, n_outputs)
            True values for X.

        sample_weight : array-like, shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        score : float
            R^2 of self.predict(X) wrt. y.
        """

        from .metrics import r2_score
        return r2_score(y, self.predict(X), sample_weight=sample_weight,
                        multioutput='variance_weighted')


###############################################################################
class ClusterMixin(object):
    """Mixin class for all cluster estimators in scikit-learn."""
    _estimator_type = "clusterer"

    def fit_predict(self, X, y=None):
        """Performs clustering on X and returns cluster labels.

        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            Input data.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            cluster labels
        """
        # non-optimized default implementation; override when a better
        # method is possible for a given clustering algorithm
        self.fit(X)
        return self.labels_


class BiclusterMixin(object):
    """Mixin class for all bicluster estimators in scikit-learn"""

    @property
    def biclusters_(self):
        """Convenient way to get row and column indicators together.

        Returns the ``rows_`` and ``columns_`` members.
        """
        return self.rows_, self.columns_

    def get_indices(self, i):
        """Row and column indices of the i'th bicluster.

        Only works if ``rows_`` and ``columns_`` attributes exist.

        Returns
        -------
        row_ind : np.array, dtype=np.intp
            Indices of rows in the dataset that belong to the bicluster.
        col_ind : np.array, dtype=np.intp
            Indices of columns in the dataset that belong to the bicluster.

        """
        rows = self.rows_[i]
        columns = self.columns_[i]
        return np.nonzero(rows)[0], np.nonzero(columns)[0]

    def get_shape(self, i):
        """Shape of the i'th bicluster.

        Returns
        -------
        shape : (int, int)
            Number of rows and columns (resp.) in the bicluster.
        """
        indices = self.get_indices(i)
        return tuple(len(i) for i in indices)

    def get_submatrix(self, i, data):
        """Returns the submatrix corresponding to bicluster `i`.

        Works with sparse matrices. Only works if ``rows_`` and
        ``columns_`` attributes exist.

        """
        from .utils.validation import check_array
        data = check_array(data, accept_sparse='csr')
        row_ind, col_ind = self.get_indices(i)
        return data[row_ind[:, np.newaxis], col_ind]


###############################################################################
class TransformerMixin(object):
    """Mixin class for all transformers in scikit-learn."""

    def fit_transform(self, X, y=None, **fit_params):
        """Fit to data, then transform it.

        Fits transformer to X and y with optional parameters fit_params
        and returns a transformed version of X.

        Parameters
        ----------
        X : numpy array of shape [n_samples, n_features]
            Training set.

        y : numpy array of shape [n_samples]
            Target values.

        Returns
        -------
        X_new : numpy array of shape [n_samples, n_features_new]
            Transformed array.

        """
        # non-optimized default implementation; override when a better
        # method is possible for a given clustering algorithm
        if y is None:
            # fit method of arity 1 (unsupervised transformation)
            return self.fit(X, **fit_params).transform(X)
        else:
            # fit method of arity 2 (supervised transformation)
            return self.fit(X, y, **fit_params).transform(X)


class DensityMixin(object):
    """Mixin class for all density estimators in scikit-learn."""
    _estimator_type = "DensityEstimator"

    def score(self, X, y=None):
        """Returns the score of the model on the data X

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)

        Returns
        -------
        score: float
        """
        pass


###############################################################################
class MetaEstimatorMixin(object):
    """Mixin class for all meta estimators in scikit-learn."""
    # this is just a tag for the moment


###############################################################################

def is_classifier(estimator):
    """Returns True if the given estimator is (probably) a classifier."""
    return getattr(estimator, "_estimator_type", None) == "classifier"


def is_regressor(estimator):
    """Returns True if the given estimator is (probably) a regressor."""
    return getattr(estimator, "_estimator_type", None) == "regressor"