/usr/lib/python2.7/dist-packages/scikit_learn-0.18.egg-info is in python-sklearn 0.18-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | Metadata-Version: 1.1
Name: scikit-learn
Version: 0.18
Summary: A set of python modules for machine learning and data mining
Home-page: http://scikit-learn.org
Author: Andreas Mueller
Author-email: amueller@ais.uni-bonn.de
License: new BSD
Download-URL: http://sourceforge.net/projects/scikit-learn/files/
Description: .. -*- mode: rst -*-
|Travis|_ |AppVeyor|_ |Coveralls|_ |CircleCI|_ |Python27|_ |Python35|_ |PyPi|_ |DOI|_
.. |Travis| image:: https://api.travis-ci.org/scikit-learn/scikit-learn.svg?branch=master
.. _Travis: https://travis-ci.org/scikit-learn/scikit-learn
.. |AppVeyor| image:: https://ci.appveyor.com/api/projects/status/github/scikit-learn/scikit-learn?branch=master&svg=true
.. _AppVeyor: https://ci.appveyor.com/project/sklearn-ci/scikit-learn/history
.. |Coveralls| image:: https://coveralls.io/repos/scikit-learn/scikit-learn/badge.svg?branch=master&service=github
.. _Coveralls: https://coveralls.io/r/scikit-learn/scikit-learn
.. |CircleCI| image:: https://circleci.com/gh/scikit-learn/scikit-learn/tree/master.svg?style=shield&circle-token=:circle-token
.. _CircleCI: https://circleci.com/gh/scikit-learn/scikit-learn
.. |Python27| image:: https://img.shields.io/badge/python-2.7-blue.svg
.. _Python27: https://badge.fury.io/py/scikit-learn
.. |Python35| image:: https://img.shields.io/badge/python-3.5-blue.svg
.. _Python35: https://badge.fury.io/py/scikit-learn
.. |PyPi| image:: https://badge.fury.io/py/scikit-learn.svg
.. _PyPi: https://badge.fury.io/py/scikit-learn
.. |DOI| image:: https://zenodo.org/badge/21369/scikit-learn/scikit-learn.svg
.. _DOI: https://zenodo.org/badge/latestdoi/21369/scikit-learn/scikit-learn
scikit-learn
============
scikit-learn is a Python module for machine learning built on top of
SciPy and distributed under the 3-Clause BSD license.
The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the `AUTHORS.rst <AUTHORS.rst>`_ file for a complete list of contributors.
It is currently maintained by a team of volunteers.
Website: http://scikit-learn.org
Installation
------------
Dependencies
~~~~~~~~~~~~
Scikit-learn requires::
- Python (>= 2.6 or >= 3.3),
- NumPy (>= 1.6.1),
- SciPy (>= 0.9).
scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra
Subprograms library. scikit-learn comes with a reference implementation, but
the system CBLAS will be detected by the build system and used if present.
CBLAS exists in many implementations; see `Linear algebra libraries
<http://scikit-learn.org/stable/modules/computational_performance.html#linear-algebra-libraries>`_
for known issues.
User installation
~~~~~~~~~~~~~~~~~
If you already have a working installation of numpy and scipy,
the easiest way to install scikit-learn is using ``pip`` ::
pip install -U scikit-learn
or ``conda``::
conda install scikit-learn
The documentation includes more detailed `installation instructions <http://scikit-learn.org/stable/install.html>`_.
Development
-----------
We welcome new contributors of all experience levels. The scikit-learn
community goals are to be helpful, welcoming, and effective. The
`Contributor's Guide <http://scikit-learn.org/stable/developers/index.html>`_
has detailed information about contributing code, documentation, tests, and
more. We've included some basic information in this README.
Important links
~~~~~~~~~~~~~~~
- Official source code repo: https://github.com/scikit-learn/scikit-learn
- Download releases: http://sourceforge.net/projects/scikit-learn/files/
- Issue tracker: https://github.com/scikit-learn/scikit-learn/issues
Source code
~~~~~~~~~~~
You can check the latest sources with the command::
git clone https://github.com/scikit-learn/scikit-learn.git
Setting up a development environment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Quick tutorial on how to go about setting up your environment to
contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md
Testing
~~~~~~~
After installation, you can launch the test suite from outside the
source directory (you will need to have the ``nose`` package installed)::
$ nosetests -v sklearn
Under Windows, it is recommended to use the following command (adjust the path
to the ``python.exe`` program) as using the ``nosetests.exe`` program can badly
interact with tests that use ``multiprocessing``::
C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn
See the web page http://scikit-learn.org/stable/install.html#testing
for more information.
Random number generation can be controlled during testing by setting
the ``SKLEARN_SEED`` environment variable.
Submitting a Pull Request
~~~~~~~~~~~~~~~~~~~~~~~~~
Before opening a Pull Request, have a look at the
full Contributing page to make sure your code complies
with our guidelines: http://scikit-learn.org/stable/developers/index.html
Project history
---------------
The project was started in 2007 by David Cournapeau as a Google Summer
of Code project, and since then many volunteers have contributed. See
the AUTHORS.rst file for a complete list of contributors.
The project is currently maintained by a team of volunteers.
**Note** `scikit-learn` was previously referred to as `scikits.learn`.
Help and Support
----------------
Documentation
~~~~~~~~~~~~~
- HTML documentation (stable release): http://scikit-learn.org
- HTML documentation (development version): http://scikit-learn.org/dev/
- FAQ: http://scikit-learn.org/stable/faq.html
Communication
~~~~~~~~~~~~~
- Mailing list: https://mail.python.org/mailman/listinfo/scikit-learn
- IRC channel: ``#scikit-learn`` at ``irc.freenode.net``
- Stack Overflow: http://stackoverflow.com/questions/tagged/scikit-learn
- Website: http://scikit-learn.org
Platform: UNKNOWN
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved
Classifier: Programming Language :: C
Classifier: Programming Language :: Python
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
|