This file is indexed.

/usr/lib/python2.7/dist-packages/pyorbital/geoloc.py is in python-pyorbital 1.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright (c) 2011, 2012, 2013, 2014, 2015.

# Author(s):

#   Martin Raspaud <martin.raspaud@smhi.se>

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""Module to compute geolocalization of a satellite scene.
"""

# TODO:
# - Attitude correction
# - project on an ellipsoid instead of a sphere
# - optimize !!!
# - test !!!

from __future__ import print_function

import numpy as np
from numpy import cos, sin, sqrt
from datetime import timedelta
from pyorbital.orbital import Orbital

a = 6378.137  # km
b = 6356.75231414  # km, GRS80
# b = 6356.752314245 # km, WGS84


def geodetic_lat(point, a=a, b=b):

    x, y, z = point
    r = np.sqrt(x * x + y * y)
    geoc_lat = np.arctan2(z, r)

    geod_lat = geoc_lat
    e2 = (a * a - b * b) / (a * a)
    while True:
        phi = geod_lat
        C = 1 / sqrt(1 - e2 * sin(phi)**2)
        geod_lat = np.arctan2(z + a * C * e2 * sin(phi), r)
        if np.allclose(geod_lat, phi):
            return geod_lat


def subpoint(query_point, a=a, b=b):
    """Get the point on the ellipsoid under the *query_point*.
    """
    x, y, z = query_point
    r = sqrt(x * x + y * y)

    lat = geodetic_lat(query_point)
    lon = np.arctan2(y, x)
    e2_ = (a * a - b * b) / (a * a)
    n__ = a / sqrt(1 - e2_ * sin(lat)**2)
    nx_ = n__ * cos(lat) * cos(lon)
    ny_ = n__ * cos(lat) * sin(lon)
    nz_ = (1 - e2_) * n__ * sin(lat)

    return np.vstack([nx_, ny_, nz_])


class ScanGeometry(object):

    """Description of the geometry of an instrument.

    *fovs* is the x and y viewing angles of the instrument. y is zero if the we
    talk about scanlines of course. *times* is the time of viewing of each
    angle relative to the start of the scanning, so it should have the same
    size as the *fovs*. *attitude* is the attitude correction to apply.
    """

    def __init__(self,
                 fovs,
                 times,
                 attitude=(0, 0, 0)):
        self.fovs = np.array(fovs)
        self._times = np.array(times)
        self.attitude = attitude

    def vectors(self, pos, vel, roll=0.0, pitch=0.0, yaw=0.0):
        """Get unit vectors pointing to the different pixels.

        *pos* and *vel* are column vectors, or matrices of column
        vectors. Returns vectors as stacked rows.
        """
        # TODO: yaw steering mode !

        # Fake nadir: This is the intersection point between the satellite
        # looking down at the centre of the ellipsoid and the surface of the
        # ellipsoid. Nadir on the other hand is the point which vertical goes
        # through the satellite...
        #nadir = -pos / vnorm(pos)

        nadir = subpoint(-pos)
        nadir /= vnorm(nadir)

        # x is along track (roll)
        x = vel / vnorm(vel)

        # y is cross track (pitch)
        y = np.cross(nadir, vel, 0, 0, 0)
        y /= vnorm(y)

        # rotate first around x
        x_rotated = qrotate(nadir, x, self.fovs[:, 0] + roll)
        # then around y
        xy_rotated = qrotate(x_rotated, y, self.fovs[:, 1] + pitch)
        # then around z
        return qrotate(xy_rotated, nadir, yaw)

    def times(self, start_of_scan):
        tds = [timedelta(seconds=i) for i in self._times]
        return np.array(tds) + start_of_scan


class Quaternion(object):

    def __init__(self, scalar, vector):
        self.__x, self.__y, self.__z = vector
        self.__w = scalar

    def rotation_matrix(self):
        x, y, z, w = self.__x, self.__y, self.__z, self.__w
        zero = np.zeros_like(x)
        return np.array(
            ((w**2 + x**2 - y**2 - z**2,
              2 * x * y + 2 * z * w,
              2 * x * z - 2 * y * w,
              zero),
             (2 * x * y - 2 * z * w,
              w**2 - x**2 + y**2 - z**2,
              2 * y * z + 2 * x * w,
              zero),
             (2 * x * z + 2 * y * w,
              2 * y * z - 2 * x * w,
              w**2 - x**2 - y**2 + z**2,
              zero),
             (zero, zero, zero, w**2 + x**2 + y**2 + z**2)))


def qrotate(vector, axis, angle):
    """Rotate *vector* around *axis* by *angle* (in radians).

    *vector* is a matrix of column vectors, as is *axis*.
    This function uses quaternion rotation.
    """
    n_axis = axis / vnorm(axis)
    sin_angle = np.expand_dims(sin(angle / 2), 0)
    if np.rank(n_axis) == 1:
        n_axis = np.expand_dims(n_axis, 1)
        p__ = np.dot(n_axis, sin_angle)[:, np.newaxis]
    else:
        p__ = n_axis * sin_angle

    q__ = Quaternion(cos(angle / 2), p__)
    return np.einsum("kj, ikj->ij",
                     vector,
                     q__.rotation_matrix()[:3, :3])


# DIRTY STUFF. Needed the get_lonlatalt function to work on pos directly if
# we want to print out lonlats in the end.
from pyorbital import astronomy
from pyorbital.orbital import *


def get_lonlatalt(pos, utc_time):
    """Calculate sublon, sublat and altitude of satellite, considering the
    earth an ellipsoid.

    http://celestrak.com/columns/v02n03/
    """
    (pos_x, pos_y, pos_z) = pos / XKMPER
    lon = ((np.arctan2(pos_y * XKMPER, pos_x * XKMPER) - astronomy.gmst(utc_time))
           % (2 * np.pi))

    lon = np.where(lon > np.pi, lon - np.pi * 2, lon)
    lon = np.where(lon <= -np.pi, lon + np.pi * 2, lon)

    r = np.sqrt(pos_x ** 2 + pos_y ** 2)
    lat = np.arctan2(pos_z, r)
    e2 = F * (2 - F)

    while True:
        lat2 = lat
        c = 1 / (np.sqrt(1 - e2 * (np.sin(lat2) ** 2)))
        lat = np.arctan2(pos_z + c * e2 * np.sin(lat2), r)
        if np.all(abs(lat - lat2) < 1e-10):
            break
    alt = r / np.cos(lat) - c
    alt *= A
    return np.rad2deg(lon), np.rad2deg(lat), alt

# END OF DIRTY STUFF


def compute_pixels(tle, sgeom, times, rpy=(0.0, 0.0, 0.0)):
    """Compute cartesian coordinates of the pixels in instrument scan.
    """
    (tle1, tle2) = tle
    orb = Orbital("mysatellite", line1=tle1, line2=tle2)

    # get position and velocity for each time of each pixel
    pos, vel = orb.get_position(times, normalize=False)

    # now, get the vectors pointing to each pixel
    vectors = sgeom.vectors(pos, vel, *rpy)

    # compute intersection of lines (directed by vectors and passing through
    # (0, 0, 0)) and ellipsoid. Derived from:
    # http://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection

    # do the computation between line and ellipsoid (WGS 84)
    # NB: AAPP uses GRS 80...
    centre = -pos
    a__ = 6378.137  # km
    # b__ = 6356.75231414 # km, GRS80
    b__ = 6356.752314245  # km, WGS84
    radius = np.array([[1 / a__, 1 / a__, 1 / b__]]).T
    xr_ = vectors * radius
    cr_ = centre * radius
    ldotc = np.einsum("ij,ij->j", xr_, cr_)
    lsq = np.einsum("ij,ij->j", xr_, xr_)
    csq = np.einsum("ij,ij->j", cr_, cr_)

    d1_ = (ldotc - np.sqrt(ldotc ** 2 - csq * lsq + lsq)) / lsq

    # return the actual pixel positions
    return vectors * d1_ - centre


def norm(v):
    return np.sqrt(np.dot(v, v.conj()))


def mnorm(m, axis=None):
    """norm of a matrix of vectors stacked along the *axis* dimension.
    """
    if axis is None:
        axis = np.rank(m) - 1
    return np.sqrt((m**2).sum(axis))


def vnorm(m):
    """norms of a matrix of column vectors.
    """
    return np.sqrt((m**2).sum(0))


def hnorm(m):
    """norms of a matrix of row vectors.
    """
    return np.sqrt((m**2).sum(1))

if __name__ == '__main__':
    # NOAA 18 (from the 2011-10-12, 16:55 utc)
    # 1 28654U 05018A   11284.35271227  .00000478  00000-0  28778-3 0  9246
    # 2 28654  99.0096 235.8581 0014859 135.4286 224.8087 14.11526826329313

    noaa18_tle1 = "1 28654U 05018A   11284.35271227  .00000478  00000-0  28778-3 0  9246"
    noaa18_tle2 = "2 28654  99.0096 235.8581 0014859 135.4286 224.8087 14.11526826329313"

    from datetime import datetime
    t = datetime(2011, 10, 12, 13, 45)

    # edge and centre of an avhrr scanline
    # sgeom = ScanGeometry([(-0.9664123687741623, 0),
    #                      (0, 0)],
    #                     [0, 0.0, ])
    # print compute_pixels((noaa18_tle1, noaa18_tle2), sgeom, t)

    # avhrr swath
    scanline_nb = 1

    # building the avhrr angles, 2048 pixels from +55.37 to -55.37 degrees
    avhrr = np.vstack(((np.arange(2048) - 1023.5) / 1024 * np.deg2rad(-55.37),
                       np.zeros((2048,)))).transpose()
    avhrr = np.tile(avhrr, [scanline_nb, 1])
    # building the corresponding times array
    offset = np.arange(scanline_nb) * 0.1667
    times = (np.tile(np.arange(2048) * 0.000025 + 0.0025415, [scanline_nb, 1])
             + np.expand_dims(offset, 1))
    # build the scan geometry object
    sgeom = ScanGeometry(avhrr, times.ravel())

    # print the lonlats for the pixel positions
    s_times = sgeom.times(t)
    pixels_pos = compute_pixels((noaa18_tle1, noaa18_tle2), sgeom, s_times)
    print(get_lonlatalt(pixels_pos, s_times))