This file is indexed.

/usr/lib/python2.7/dist-packages/pyglet/image/codecs/pypng.py is in python-pyglet 1.1.4.dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
# ----------------------------------------------------------------------------
# pyglet
# Copyright (c) 2006-2008 Alex Holkner
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#  * Neither the name of pyglet nor the names of its
#    contributors may be used to endorse or promote products
#    derived from this software without specific prior written
#    permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ----------------------------------------------------------------------------
# png.py - PNG encoder in pure Python
# Copyright (C) 2006 Johann C. Rocholl <johann@browsershots.org>
# <ah> Modifications for pyglet by Alex Holkner <alex.holkner@gmail.com>
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Contributors (alphabetical):
# Nicko van Someren <nicko@nicko.org>
#
# Changelog (recent first):
# 2006-06-17 Nicko: Reworked into a class, faster interlacing.
# 2006-06-17 Johann: Very simple prototype PNG decoder.
# 2006-06-17 Nicko: Test suite with various image generators.
# 2006-06-17 Nicko: Alpha-channel, grey-scale, 16-bit/plane support.
# 2006-06-15 Johann: Scanline iterator interface for large input files.
# 2006-06-09 Johann: Very simple prototype PNG encoder.


"""
Pure Python PNG Reader/Writer

This is an implementation of a subset of the PNG specification at
http://www.w3.org/TR/2003/REC-PNG-20031110 in pure Python. It reads
and writes PNG files with 8/16/24/32/48/64 bits per pixel (greyscale,
RGB, RGBA, with 8 or 16 bits per layer), with a number of options. For
help, type "import png; help(png)" in your python interpreter.

This file can also be used as a command-line utility to convert PNM
files to PNG. The interface is similar to that of the pnmtopng program
from the netpbm package. Type "python png.py --help" at the shell
prompt for usage and a list of options.
"""


__revision__ = '$Rev$'
__date__ = '$Date$'
__author__ = '$Author$'


import sys
import zlib
import struct
import math
from array import array


_adam7 = ((0, 0, 8, 8),
          (4, 0, 8, 8),
          (0, 4, 4, 8),
          (2, 0, 4, 4),
          (0, 2, 2, 4),
          (1, 0, 2, 2),
          (0, 1, 1, 2))


def interleave_planes(ipixels, apixels, ipsize, apsize):
    """
    Interleave color planes, e.g. RGB + A = RGBA.

    Return an array of pixels consisting of the ipsize bytes of data
    from each pixel in ipixels followed by the apsize bytes of data
    from each pixel in apixels, for an image of size width x height.
    """
    itotal = len(ipixels)
    atotal = len(apixels)
    newtotal = itotal + atotal
    newpsize = ipsize + apsize
    # Set up the output buffer
    out = array('B')
    # It's annoying that there is no cheap way to set the array size :-(
    out.extend(ipixels)
    out.extend(apixels)
    # Interleave in the pixel data
    for i in range(ipsize):
        out[i:newtotal:newpsize] = ipixels[i:itotal:ipsize]
    for i in range(apsize):
        out[i+ipsize:newtotal:newpsize] = apixels[i:atotal:apsize]
    return out

class Error(Exception):
    pass

class Writer:
    """
    PNG encoder in pure Python.
    """

    def __init__(self, width, height,
                 transparent=None,
                 background=None,
                 gamma=None,
                 greyscale=False,
                 has_alpha=False,
                 bytes_per_sample=1,
                 compression=None,
                 interlaced=False,
                 chunk_limit=2**20):
        """
        Create a PNG encoder object.

        Arguments:
        width, height - size of the image in pixels
        transparent - create a tRNS chunk
        background - create a bKGD chunk
        gamma - create a gAMA chunk
        greyscale - input data is greyscale, not RGB
        has_alpha - input data has alpha channel (RGBA)
        bytes_per_sample - 8-bit or 16-bit input data
        compression - zlib compression level (1-9)
        chunk_limit - write multiple IDAT chunks to save memory

        If specified, the transparent and background parameters must
        be a tuple with three integer values for red, green, blue, or
        a simple integer (or singleton tuple) for a greyscale image.

        If specified, the gamma parameter must be a float value.

        """
        if width <= 0 or height <= 0:
            raise ValueError("width and height must be greater than zero")

        if has_alpha and transparent is not None:
            raise ValueError(
                "transparent color not allowed with alpha channel")

        if bytes_per_sample < 1 or bytes_per_sample > 2:
            raise ValueError("bytes per sample must be 1 or 2")

        if transparent is not None:
            if greyscale:
                if type(transparent) is not int:
                    raise ValueError(
                        "transparent color for greyscale must be integer")
            else:
                if not (len(transparent) == 3 and
                        type(transparent[0]) is int and
                        type(transparent[1]) is int and
                        type(transparent[2]) is int):
                    raise ValueError(
                        "transparent color must be a triple of integers")

        if background is not None:
            if greyscale:
                if type(background) is not int:
                    raise ValueError(
                        "background color for greyscale must be integer")
            else:
                if not (len(background) == 3 and
                        type(background[0]) is int and
                        type(background[1]) is int and
                        type(background[2]) is int):
                    raise ValueError(
                        "background color must be a triple of integers")

        self.width = width
        self.height = height
        self.transparent = transparent
        self.background = background
        self.gamma = gamma
        self.greyscale = greyscale
        self.has_alpha = has_alpha
        self.bytes_per_sample = bytes_per_sample
        self.compression = compression
        self.chunk_limit = chunk_limit
        self.interlaced = interlaced

        if self.greyscale:
            self.color_depth = 1
            if self.has_alpha:
                self.color_type = 4
                self.psize = self.bytes_per_sample * 2
            else:
                self.color_type = 0
                self.psize = self.bytes_per_sample
        else:
            self.color_depth = 3
            if self.has_alpha:
                self.color_type = 6
                self.psize = self.bytes_per_sample * 4
            else:
                self.color_type = 2
                self.psize = self.bytes_per_sample * 3

    def write_chunk(self, outfile, tag, data):
        """
        Write a PNG chunk to the output file, including length and checksum.
        """
        # http://www.w3.org/TR/PNG/#5Chunk-layout
        outfile.write(struct.pack("!I", len(data)))
        outfile.write(tag)
        outfile.write(data)
        checksum = zlib.crc32(tag)
        checksum = zlib.crc32(data, checksum)
        # <ah> Avoid DeprecationWarning: struct integer overflow masking
        #      with Python2.5/Windows.
        checksum = checksum & 0xffffffff
        outfile.write(struct.pack("!I", checksum))

    def write(self, outfile, scanlines):
        """
        Write a PNG image to the output file.
        """
        # http://www.w3.org/TR/PNG/#5PNG-file-signature
        outfile.write(struct.pack("8B", 137, 80, 78, 71, 13, 10, 26, 10))

        # http://www.w3.org/TR/PNG/#11IHDR
        if self.interlaced:
            interlaced = 1
        else:
            interlaced = 0
        self.write_chunk(outfile, 'IHDR',
                         struct.pack("!2I5B", self.width, self.height,
                                     self.bytes_per_sample * 8,
                                     self.color_type, 0, 0, interlaced))

        # http://www.w3.org/TR/PNG/#11tRNS
        if self.transparent is not None:
            if self.greyscale:
                self.write_chunk(outfile, 'tRNS',
                                 struct.pack("!1H", *self.transparent))
            else:
                self.write_chunk(outfile, 'tRNS',
                                 struct.pack("!3H", *self.transparent))

        # http://www.w3.org/TR/PNG/#11bKGD
        if self.background is not None:
            if self.greyscale:
                self.write_chunk(outfile, 'bKGD',
                                 struct.pack("!1H", *self.background))
            else:
                self.write_chunk(outfile, 'bKGD',
                                 struct.pack("!3H", *self.background))

        # http://www.w3.org/TR/PNG/#11gAMA
        if self.gamma is not None:
            self.write_chunk(outfile, 'gAMA',
                             struct.pack("!L", int(self.gamma * 100000)))

        # http://www.w3.org/TR/PNG/#11IDAT
        if self.compression is not None:
            compressor = zlib.compressobj(self.compression)
        else:
            compressor = zlib.compressobj()

        data = array('B')
        for scanline in scanlines:
            data.append(0)
            data.extend(scanline)
            if len(data) > self.chunk_limit:
                compressed = compressor.compress(data.tostring())
                if len(compressed):
                    # print >> sys.stderr, len(data), len(compressed)
                    self.write_chunk(outfile, 'IDAT', compressed)
                data = array('B')
        if len(data):
            compressed = compressor.compress(data.tostring())
        else:
            compressed = ''
        flushed = compressor.flush()
        if len(compressed) or len(flushed):
            # print >> sys.stderr, len(data), len(compressed), len(flushed)
            self.write_chunk(outfile, 'IDAT', compressed + flushed)

        # http://www.w3.org/TR/PNG/#11IEND
        self.write_chunk(outfile, 'IEND', '')

    def write_array(self, outfile, pixels):
        """
        Encode a pixel array to PNG and write output file.
        """
        if self.interlaced:
            self.write(outfile, self.array_scanlines_interlace(pixels))
        else:
            self.write(outfile, self.array_scanlines(pixels))

    def convert_ppm(self, ppmfile, outfile):
        """
        Convert a PPM file containing raw pixel data into a PNG file
        with the parameters set in the writer object.
        """
        if self.interlaced:
            pixels = array('B')
            pixels.fromfile(ppmfile,
                            self.bytes_per_sample * self.color_depth *
                            self.width * self.height)
            self.write(outfile, self.array_scanlines_interlace(pixels))
        else:
            self.write(outfile, self.file_scanlines(ppmfile))

    def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile):
        """
        Convert a PPM and PGM file containing raw pixel data into a
        PNG outfile with the parameters set in the writer object.
        """
        pixels = array('B')
        pixels.fromfile(ppmfile,
                        self.bytes_per_sample * self.color_depth *
                        self.width * self.height)
        apixels = array('B')
        apixels.fromfile(pgmfile,
                         self.bytes_per_sample *
                         self.width * self.height)
        pixels = interleave_planes(pixels, apixels,
                                   self.bytes_per_sample * self.color_depth,
                                   self.bytes_per_sample)
        if self.interlaced:
            self.write(outfile, self.array_scanlines_interlace(pixels))
        else:
            self.write(outfile, self.array_scanlines(pixels))

    def file_scanlines(self, infile):
        """
        Generator for scanlines from an input file.
        """
        row_bytes = self.psize * self.width
        for y in range(self.height):
            scanline = array('B')
            scanline.fromfile(infile, row_bytes)
            yield scanline

    def array_scanlines(self, pixels):
        """
        Generator for scanlines from an array.
        """
        row_bytes = self.width * self.psize
        stop = 0
        for y in range(self.height):
            start = stop
            stop = start + row_bytes
            yield pixels[start:stop]

    def old_array_scanlines_interlace(self, pixels):
        """
        Generator for interlaced scanlines from an array.
        http://www.w3.org/TR/PNG/#8InterlaceMethods
        """
        row_bytes = self.psize * self.width
        for xstart, ystart, xstep, ystep in _adam7:
            for y in range(ystart, self.height, ystep):
                if xstart < self.width:
                    if xstep == 1:
                        offset = y*row_bytes
                        yield pixels[offset:offset+row_bytes]
                    else:
                        row = array('B')
                        offset = y*row_bytes + xstart* self.psize
                        skip = self.psize * xstep
                        for x in range(xstart, self.width, xstep):
                            row.extend(pixels[offset:offset + self.psize])
                            offset += skip
                        yield row

    def array_scanlines_interlace(self, pixels):
        """
        Generator for interlaced scanlines from an array.
        http://www.w3.org/TR/PNG/#8InterlaceMethods
        """
        row_bytes = self.psize * self.width
        for xstart, ystart, xstep, ystep in _adam7:
            for y in range(ystart, self.height, ystep):
                if xstart >= self.width:
                    continue
                if xstep == 1:
                    offset = y * row_bytes
                    yield pixels[offset:offset+row_bytes]
                else:
                    row = array('B')
                    # Note we want the ceiling of (self.width - xstart) / xtep
                    row_len = self.psize * (
                        (self.width - xstart + xstep - 1) / xstep)
                    # There's no easier way to set the length of an array
                    row.extend(pixels[0:row_len])
                    offset = y * row_bytes + xstart * self.psize
                    end_offset = (y+1) * row_bytes
                    skip = self.psize * xstep
                    for i in range(self.psize):
                        row[i:row_len:self.psize] = \
                            pixels[offset+i:end_offset:skip]
                    yield row

class _readable:
    """
    A simple file-like interface for strings and arrays.
    """

    def __init__(self, buf):
        self.buf = buf
        self.offset = 0

    def read(self, n):
        r = self.buf[offset:offset+n]
        if isinstance(r, array):
            r = r.tostring()
        self.offset += n
        return r

class Reader:
    """
    PNG decoder in pure Python.
    """

    def __init__(self, _guess=None, **kw):
        """
        Create a PNG decoder object.

        The constructor expects exactly one keyword argument. If you
        supply a positional argument instead, it will guess the input
        type. You can choose among the following arguments:
        filename - name of PNG input file
        file - object with a read() method
        pixels - array or string with PNG data

        """
        if ((_guess is not None and len(kw) != 0) or
            (_guess is None and len(kw) != 1)):
            raise TypeError("Reader() takes exactly 1 argument")

        if _guess is not None:
            if isinstance(_guess, array):
                kw["pixels"] = _guess
            elif isinstance(_guess, str):
                kw["filename"] = _guess
            elif isinstance(_guess, file):
                kw["file"] = _guess

        if "filename" in kw:
            self.file = file(kw["filename"])
        elif "file" in kw:
            self.file = kw["file"]
        elif "pixels" in kw:
            self.file = _readable(kw["pixels"])
        else:
            raise TypeError("expecting filename, file or pixels array")

    def read_chunk(self):
        """
        Read a PNG chunk from the input file, return tag name and data.
        """
        # http://www.w3.org/TR/PNG/#5Chunk-layout
        try:
            data_bytes, tag = struct.unpack('!I4s', self.file.read(8))
        except struct.error:
            raise ValueError('Chunk too short for header')
        data = self.file.read(data_bytes)
        if len(data) != data_bytes:
            raise ValueError('Chunk %s too short for required %i data octets'
                             % (tag, data_bytes))
        checksum = self.file.read(4)
        if len(checksum) != 4:
            raise ValueError('Chunk %s too short for checksum', tag)
        verify = zlib.crc32(tag)
        verify = zlib.crc32(data, verify)
        verify = struct.pack('!i', verify)
        if checksum != verify:
            # print repr(checksum)
            (a,) = struct.unpack('!I', checksum)
            (b,) = struct.unpack('!I', verify)
            raise ValueError("Checksum error in %s chunk: 0x%X != 0x%X"
                             % (tag, a, b))
        return tag, data

    def _reconstruct_sub(self, offset, xstep, ystep):
        """
        Reverse sub filter.
        """
        pixels = self.pixels
        a_offset = offset
        offset += self.psize * xstep
        if xstep == 1:
            for index in range(self.psize, self.row_bytes):
                x = pixels[offset]
                a = pixels[a_offset]
                pixels[offset] = (x + a) & 0xff
                offset += 1
                a_offset += 1
        else:
            byte_step = self.psize * xstep
            for index in range(byte_step, self.row_bytes, byte_step):
                for i in range(self.psize):
                    x = pixels[offset + i]
                    a = pixels[a_offset + i]
                    pixels[offset + i] = (x + a) & 0xff
                offset += self.psize * xstep
                a_offset += self.psize * xstep

    def _reconstruct_up(self, offset, xstep, ystep):
        """
        Reverse up filter.
        """
        pixels = self.pixels
        b_offset = offset - (self.row_bytes * ystep)
        if xstep == 1:
            for index in range(self.row_bytes):
                x = pixels[offset]
                b = pixels[b_offset]
                pixels[offset] = (x + b) & 0xff
                offset += 1
                b_offset += 1
        else:
            for index in range(0, self.row_bytes, xstep * self.psize):
                for i in range(self.psize):
                    x = pixels[offset + i]
                    b = pixels[b_offset + i]
                    pixels[offset + i] = (x + b) & 0xff
                offset += self.psize * xstep
                b_offset += self.psize * xstep

    def _reconstruct_average(self, offset, xstep, ystep):
        """
        Reverse average filter.
        """
        pixels = self.pixels
        a_offset = offset - (self.psize * xstep)
        b_offset = offset - (self.row_bytes * ystep)
        if xstep == 1:
            for index in range(self.row_bytes):
                x = pixels[offset]
                if index < self.psize:
                    a = 0
                else:
                    a = pixels[a_offset]
                if b_offset < 0:
                    b = 0
                else:
                    b = pixels[b_offset]
                pixels[offset] = (x + ((a + b) >> 1)) & 0xff
                offset += 1
                a_offset += 1
                b_offset += 1
        else:
            for index in range(0, self.row_bytes, self.psize * xstep):
                for i in range(self.psize):
                    x = pixels[offset+i]
                    if index < self.psize:
                        a = 0
                    else:
                        a = pixels[a_offset + i]
                    if b_offset < 0:
                        b = 0
                    else:
                        b = pixels[b_offset + i]
                    pixels[offset + i] = (x + ((a + b) >> 1)) & 0xff
                offset += self.psize * xstep
                a_offset += self.psize * xstep
                b_offset += self.psize * xstep

    def _reconstruct_paeth(self, offset, xstep, ystep):
        """
        Reverse Paeth filter.
        """
        pixels = self.pixels
        a_offset = offset - (self.psize * xstep)
        b_offset = offset - (self.row_bytes * ystep)
        c_offset = b_offset - (self.psize * xstep)
        # There's enough inside this loop that it's probably not worth
        # optimising for xstep == 1
        for index in range(0, self.row_bytes, self.psize * xstep):
            for i in range(self.psize):
                x = pixels[offset+i]
                if index < self.psize:
                    a = c = 0
                    b = pixels[b_offset+i]
                else:
                    a = pixels[a_offset+i]
                    b = pixels[b_offset+i]
                    c = pixels[c_offset+i]
                p = a + b - c
                pa = abs(p - a)
                pb = abs(p - b)
                pc = abs(p - c)
                if pa <= pb and pa <= pc:
                    pr = a
                elif pb <= pc:
                    pr = b
                else:
                    pr = c
                pixels[offset+i] = (x + pr) & 0xff
            offset += self.psize * xstep
            a_offset += self.psize * xstep
            b_offset += self.psize * xstep
            c_offset += self.psize * xstep

    # N.B. PNG files with 'up', 'average' or 'paeth' filters on the
    # first line of a pass are legal. The code above for 'average'
    # deals with this case explicitly. For up we map to the null
    # filter and for paeth we map to the sub filter.

    def reconstruct_line(self, filter_type, first_line, offset, xstep, ystep):
        # print >> sys.stderr, "Filter type %s, first_line=%s" % (
        #                      filter_type, first_line)
        filter_type += (first_line << 8)
        if filter_type == 1 or filter_type == 0x101 or filter_type == 0x104:
            self._reconstruct_sub(offset, xstep, ystep)
        elif filter_type == 2:
            self._reconstruct_up(offset, xstep, ystep)
        elif filter_type == 3 or filter_type == 0x103:
            self._reconstruct_average(offset, xstep, ystep)
        elif filter_type == 4:
            self._reconstruct_paeth(offset, xstep, ystep)
        return

    def deinterlace(self, scanlines):
        # print >> sys.stderr, ("Reading interlaced, w=%s, r=%s, planes=%s," +
        #     " bpp=%s") % (self.width, self.height, self.planes, self.bps)
        a = array('B')
        self.pixels = a
        # Make the array big enough
        temp = scanlines[0:self.width*self.height*self.psize]
        a.extend(temp)
        source_offset = 0
        for xstart, ystart, xstep, ystep in _adam7:
            # print >> sys.stderr, "Adam7: start=%s,%s step=%s,%s" % (
            #     xstart, ystart, xstep, ystep)
            filter_first_line = 1
            for y in range(ystart, self.height, ystep):
                if xstart >= self.width:
                    continue
                filter_type = scanlines[source_offset]
                source_offset += 1
                if xstep == 1:
                    offset = y * self.row_bytes
                    a[offset:offset+self.row_bytes] = \
                        scanlines[source_offset:source_offset + self.row_bytes]
                    source_offset += self.row_bytes
                else:
                    # Note we want the ceiling of (width - xstart) / xtep
                    row_len = self.psize * (
                        (self.width - xstart + xstep - 1) / xstep)
                    offset = y * self.row_bytes + xstart * self.psize
                    end_offset = (y+1) * self.row_bytes
                    skip = self.psize * xstep
                    for i in range(self.psize):
                        a[offset+i:end_offset:skip] = \
                            scanlines[source_offset + i:
                                      source_offset + row_len:
                                      self.psize]
                    source_offset += row_len
                if filter_type:
                    self.reconstruct_line(filter_type, filter_first_line,
                                          offset, xstep, ystep)
                filter_first_line = 0
        return a

    def read_flat(self, scanlines):
        a = array('B')
        self.pixels = a
        offset = 0
        source_offset = 0
        filter_first_line = 1
        for y in range(self.height):
            filter_type = scanlines[source_offset]
            source_offset += 1
            a.extend(scanlines[source_offset: source_offset + self.row_bytes])
            if filter_type:
                self.reconstruct_line(filter_type, filter_first_line,
                                      offset, 1, 1)
            filter_first_line = 0
            offset += self.row_bytes
            source_offset += self.row_bytes
        return a

    def read(self):
        """
        Read a simple PNG file, return width, height, pixels and image metadata

        This function is a very early prototype with limited flexibility
        and excessive use of memory.
        """
        signature = self.file.read(8)
        if (signature != struct.pack("8B", 137, 80, 78, 71, 13, 10, 26, 10)):
            raise Error("PNG file has invalid header")
        compressed = []
        image_metadata = {}
        while True:
            try:
                tag, data = self.read_chunk()
            except ValueError, e:
                raise Error('Chunk error: ' + e.args[0])

            # print >> sys.stderr, tag, len(data)
            if tag == 'IHDR': # http://www.w3.org/TR/PNG/#11IHDR
                (width, height, bits_per_sample, color_type,
                 compression_method, filter_method,
                 interlaced) = struct.unpack("!2I5B", data)
                bps = bits_per_sample / 8
                if bps == 0:
                    raise Error("unsupported pixel depth")
                if bps > 2 or bits_per_sample != (bps * 8):
                    raise Error("invalid pixel depth")
                if color_type == 0:
                    greyscale = True
                    has_alpha = False
                    planes = 1
                elif color_type == 2:
                    greyscale = False
                    has_alpha = False
                    planes = 3
                elif color_type == 4:
                    greyscale = True
                    has_alpha = True
                    planes = 2
                elif color_type == 6:
                    greyscale = False
                    has_alpha = True
                    planes = 4
                else:
                    raise Error("unknown PNG colour type %s" % color_type)
                if compression_method != 0:
                    raise Error("unknown compression method")
                if filter_method != 0:
                    raise Error("unknown filter method")
                self.bps = bps
                self.planes = planes
                self.psize = bps * planes
                self.width = width
                self.height = height
                self.row_bytes = width * self.psize
            elif tag == 'IDAT': # http://www.w3.org/TR/PNG/#11IDAT
                compressed.append(data)
            elif tag == 'bKGD':
                if greyscale:
                    image_metadata["background"] = struct.unpack("!1H", data)
                else:
                    image_metadata["background"] = struct.unpack("!3H", data)
            elif tag == 'tRNS':
                if greyscale:
                    image_metadata["transparent"] = struct.unpack("!1H", data)
                else:
                    image_metadata["transparent"] = struct.unpack("!3H", data)
            elif tag == 'gAMA':
                image_metadata["gamma"] = (
                    struct.unpack("!L", data)[0]) / 100000.0
            elif tag == 'IEND': # http://www.w3.org/TR/PNG/#11IEND
                break
        scanlines = array('B', zlib.decompress(''.join(compressed)))
        if interlaced:
            pixels = self.deinterlace(scanlines)
        else:
            pixels = self.read_flat(scanlines)
        image_metadata["greyscale"] = greyscale
        image_metadata["has_alpha"] = has_alpha
        image_metadata["bytes_per_sample"] = bps
        image_metadata["interlaced"] = interlaced
        return width, height, pixels, image_metadata


def test_suite(options):
    """
    Run regression test and write PNG file to stdout.
    """

    # Below is a big stack of test image generators

    def test_gradient_horizontal_lr(x, y):
        return x

    def test_gradient_horizontal_rl(x, y):
        return 1-x

    def test_gradient_vertical_tb(x, y):
        return y

    def test_gradient_vertical_bt(x, y):
        return 1-y

    def test_radial_tl(x, y):
        return max(1-math.sqrt(x*x+y*y), 0.0)

    def test_radial_center(x, y):
        return test_radial_tl(x-0.5, y-0.5)

    def test_radial_tr(x, y):
        return test_radial_tl(1-x, y)

    def test_radial_bl(x, y):
        return test_radial_tl(x, 1-y)

    def test_radial_br(x, y):
        return test_radial_tl(1-x, 1-y)

    def test_stripe(x, n):
        return 1.0*(int(x*n) & 1)

    def test_stripe_h_2(x, y):
        return test_stripe(x, 2)

    def test_stripe_h_4(x, y):
        return test_stripe(x, 4)

    def test_stripe_h_10(x, y):
        return test_stripe(x, 10)

    def test_stripe_v_2(x, y):
        return test_stripe(y, 2)

    def test_stripe_v_4(x, y):
        return test_stripe(y, 4)

    def test_stripe_v_10(x, y):
        return test_stripe(y, 10)

    def test_stripe_lr_10(x, y):
        return test_stripe(x+y, 10)

    def test_stripe_rl_10(x, y):
        return test_stripe(x-y, 10)

    def test_checker(x, y, n):
        return 1.0*((int(x*n) & 1) ^ (int(y*n) & 1))

    def test_checker_8(x, y):
        return test_checker(x, y, 8)

    def test_checker_15(x, y):
        return test_checker(x, y, 15)

    def test_zero(x, y):
        return 0

    def test_one(x, y):
        return 1

    test_patterns = {
        "GLR": test_gradient_horizontal_lr,
        "GRL": test_gradient_horizontal_rl,
        "GTB": test_gradient_vertical_tb,
        "GBT": test_gradient_vertical_bt,
        "RTL": test_radial_tl,
        "RTR": test_radial_tr,
        "RBL": test_radial_bl,
        "RBR": test_radial_br,
        "RCTR": test_radial_center,
        "HS2": test_stripe_h_2,
        "HS4": test_stripe_h_4,
        "HS10": test_stripe_h_10,
        "VS2": test_stripe_v_2,
        "VS4": test_stripe_v_4,
        "VS10": test_stripe_v_10,
        "LRS": test_stripe_lr_10,
        "RLS": test_stripe_rl_10,
        "CK8": test_checker_8,
        "CK15": test_checker_15,
        "ZERO": test_zero,
        "ONE": test_one,
        }

    def test_pattern(width, height, depth, pattern):
        a = array('B')
        fw = float(width)
        fh = float(height)
        pfun = test_patterns[pattern]
        if depth == 1:
            for y in range(height):
                for x in range(width):
                    a.append(int(pfun(float(x)/fw, float(y)/fh) * 255))
        elif depth == 2:
            for y in range(height):
                for x in range(width):
                    v = int(pfun(float(x)/fw, float(y)/fh) * 65535)
                    a.append(v >> 8)
                    a.append(v & 0xff)
        return a

    def test_rgba(size=256, depth=1,
                    red="GTB", green="GLR", blue="RTL", alpha=None):
        r = test_pattern(size, size, depth, red)
        g = test_pattern(size, size, depth, green)
        b = test_pattern(size, size, depth, blue)
        if alpha:
            a = test_pattern(size, size, depth, alpha)
        i = interleave_planes(r, g, depth, depth)
        i = interleave_planes(i, b, 2 * depth, depth)
        if alpha:
            i = interleave_planes(i, a, 3 * depth, depth)
        return i

    # The body of test_suite()
    size = 256
    if options.test_size:
        size = options.test_size
    depth = 1
    if options.test_deep:
        depth = 2

    kwargs = {}
    if options.test_red:
        kwargs["red"] = options.test_red
    if options.test_green:
        kwargs["green"] = options.test_green
    if options.test_blue:
        kwargs["blue"] = options.test_blue
    if options.test_alpha:
        kwargs["alpha"] = options.test_alpha
    pixels = test_rgba(size, depth, **kwargs)

    writer = Writer(size, size,
                    bytes_per_sample=depth,
                    transparent=options.transparent,
                    background=options.background,
                    gamma=options.gamma,
                    has_alpha=options.test_alpha,
                    compression=options.compression,
                    interlaced=options.interlace)
    writer.write_array(sys.stdout, pixels)


def read_pnm_header(infile, supported='P6'):
    """
    Read a PNM header, return width and height of the image in pixels.
    """
    header = []
    while len(header) < 4:
        line = infile.readline()
        sharp = line.find('#')
        if sharp > -1:
            line = line[:sharp]
        header.extend(line.split())
        if len(header) == 3 and header[0] == 'P4':
            break # PBM doesn't have maxval
    if header[0] not in supported:
        raise NotImplementedError('file format %s not supported' % header[0])
    if header[0] != 'P4' and header[3] != '255':
        raise NotImplementedError('maxval %s not supported' % header[3])
    return int(header[1]), int(header[2])


def color_triple(color):
    """
    Convert a command line color value to a RGB triple of integers.
    FIXME: Somewhere we need support for greyscale backgrounds etc.
    """
    if color.startswith('#') and len(color) == 4:
        return (int(color[1], 16),
                int(color[2], 16),
                int(color[3], 16))
    if color.startswith('#') and len(color) == 7:
        return (int(color[1:3], 16),
                int(color[3:5], 16),
                int(color[5:7], 16))
    elif color.startswith('#') and len(color) == 13:
        return (int(color[1:5], 16),
                int(color[5:9], 16),
                int(color[9:13], 16))


def _main():
    """
    Run the PNG encoder with options from the command line.
    """
    # Parse command line arguments
    from optparse import OptionParser
    version = '%prog ' + __revision__.strip('$').replace('Rev: ', 'r')
    parser = OptionParser(version=version)
    parser.set_usage("%prog [options] [pnmfile]")
    parser.add_option("-i", "--interlace",
                      default=False, action="store_true",
                      help="create an interlaced PNG file (Adam7)")
    parser.add_option("-t", "--transparent",
                      action="store", type="string", metavar="color",
                      help="mark the specified color as transparent")
    parser.add_option("-b", "--background",
                      action="store", type="string", metavar="color",
                      help="save the specified background color")
    parser.add_option("-a", "--alpha",
                      action="store", type="string", metavar="pgmfile",
                      help="alpha channel transparency (RGBA)")
    parser.add_option("-g", "--gamma",
                      action="store", type="float", metavar="value",
                      help="save the specified gamma value")
    parser.add_option("-c", "--compression",
                      action="store", type="int", metavar="level",
                      help="zlib compression level (0-9)")
    parser.add_option("-T", "--test",
                      default=False, action="store_true",
                      help="create a test image")
    parser.add_option("-R", "--test-red",
                      action="store", type="string", metavar="pattern",
                      help="test pattern for the red image layer")
    parser.add_option("-G", "--test-green",
                      action="store", type="string", metavar="pattern",
                      help="test pattern for the green image layer")
    parser.add_option("-B", "--test-blue",
                      action="store", type="string", metavar="pattern",
                      help="test pattern for the blue image layer")
    parser.add_option("-A", "--test-alpha",
                      action="store", type="string", metavar="pattern",
                      help="test pattern for the alpha image layer")
    parser.add_option("-D", "--test-deep",
                      default=False, action="store_true",
                      help="use test patterns with 16 bits per layer")
    parser.add_option("-S", "--test-size",
                      action="store", type="int", metavar="size",
                      help="width and height of the test image")
    (options, args) = parser.parse_args()

    # Convert options
    if options.transparent is not None:
        options.transparent = color_triple(options.transparent)
    if options.background is not None:
        options.background = color_triple(options.background)

    # Run regression tests
    if options.test:
        return test_suite(options)

    # Prepare input and output files
    if len(args) == 0:
        ppmfilename = '-'
        ppmfile = sys.stdin
    elif len(args) == 1:
        ppmfilename = args[0]
        ppmfile = open(ppmfilename, 'rb')
    else:
        parser.error("more than one input file")
    outfile = sys.stdout

    # Encode PNM to PNG
    width, height = read_pnm_header(ppmfile)
    writer = Writer(width, height,
                    transparent=options.transparent,
                    background=options.background,
                    has_alpha=options.alpha is not None,
                    gamma=options.gamma,
                    compression=options.compression)
    if options.alpha is not None:
        pgmfile = open(options.alpha, 'rb')
        awidth, aheight = read_pnm_header(pgmfile, 'P5')
        if (awidth, aheight) != (width, height):
            raise ValueError("alpha channel image size mismatch" +
                             " (%s has %sx%s but %s has %sx%s)"
                             % (ppmfilename, width, height,
                                options.alpha, awidth, aheight))
        writer.convert_ppm_and_pgm(ppmfile, pgmfile, outfile,
                           interlace=options.interlace)
    else:
        writer.convert_ppm(ppmfile, outfile,
                           interlace=options.interlace)


if __name__ == '__main__':
    _main()