This file is indexed.

/usr/lib/python2.7/dist-packages/patsy/mgcv_cubic_splines.py is in python-patsy 0.4.1+git34-ga5b54c2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
# This file is part of Patsy
# Copyright (C) 2014 GDF Suez, http://www.gdfsuez.com/
# See file LICENSE.txt for license information.

# R package 'mgcv' compatible cubic spline basis functions

# These are made available in the patsy.* namespace
__all__ = ["cr", "cc", "te"]

import numpy as np

from patsy.util import (have_pandas, atleast_2d_column_default,
                        no_pickling, assert_no_pickling, safe_string_eq)
from patsy.state import stateful_transform

if have_pandas:
    import pandas


def _get_natural_f(knots):
    """Returns mapping of natural cubic spline values to 2nd derivatives.

    .. note:: See 'Generalized Additive Models', Simon N. Wood, 2006, pp 145-146

    :param knots: The 1-d array knots used for cubic spline parametrization,
     must be sorted in ascending order.
    :return: A 2-d array mapping natural cubic spline values at
     knots to second derivatives.

    :raise ImportError: if scipy is not found, required for
     ``linalg.solve_banded()``
    """
    try:
        from scipy import linalg
    except ImportError: # pragma: no cover
        raise ImportError("Cubic spline functionality requires scipy.")

    h = knots[1:] - knots[:-1]
    diag = (h[:-1] + h[1:]) / 3.
    ul_diag = h[1:-1] / 6.
    banded_b = np.array([np.r_[0., ul_diag], diag, np.r_[ul_diag, 0.]])
    d = np.zeros((knots.size - 2, knots.size))
    for i in range(knots.size - 2):
        d[i, i] = 1. / h[i]
        d[i, i + 2] = 1. / h[i + 1]
        d[i, i + 1] = - d[i, i] - d[i, i + 2]

    fm = linalg.solve_banded((1, 1), banded_b, d)

    return np.vstack([np.zeros(knots.size), fm, np.zeros(knots.size)])


# Cyclic Cubic Regression Splines


def _map_cyclic(x, lbound, ubound):
    """Maps values into the interval [lbound, ubound] in a cyclic fashion.

    :param x: The 1-d array values to be mapped.
    :param lbound: The lower bound of the interval.
    :param ubound: The upper bound of the interval.
    :return: A new 1-d array containing mapped x values.

    :raise ValueError: if lbound >= ubound.
    """
    if lbound >= ubound:
        raise ValueError("Invalid argument: lbound (%r) should be "
                         "less than ubound (%r)."
                         % (lbound, ubound))

    x = np.copy(x)
    x[x > ubound] = lbound + (x[x > ubound] - ubound) % (ubound - lbound)
    x[x < lbound] = ubound - (lbound - x[x < lbound]) % (ubound - lbound)

    return x


def test__map_cyclic():
    x = np.array([1.5, 2.6, 0.1, 4.4, 10.7])
    x_orig = np.copy(x)
    expected_mapped_x = np.array([3.0, 2.6, 3.1, 2.9, 3.2])
    mapped_x = _map_cyclic(x, 2.1, 3.6)
    assert np.allclose(x, x_orig)
    assert np.allclose(mapped_x, expected_mapped_x)


def test__map_cyclic_errors():
    from nose.tools import assert_raises
    x = np.linspace(0.2, 5.7, 10)
    assert_raises(ValueError, _map_cyclic, x, 4.5, 3.6)
    assert_raises(ValueError, _map_cyclic, x, 4.5, 4.5)


def _get_cyclic_f(knots):
    """Returns mapping of cyclic cubic spline values to 2nd derivatives.

    .. note:: See 'Generalized Additive Models', Simon N. Wood, 2006, pp 146-147

    :param knots: The 1-d array knots used for cubic spline parametrization,
     must be sorted in ascending order.
    :return: A 2-d array mapping cyclic cubic spline values at
     knots to second derivatives.
    """
    h = knots[1:] - knots[:-1]
    n = knots.size - 1
    b = np.zeros((n, n))
    d = np.zeros((n, n))

    b[0, 0] = (h[n - 1] + h[0]) / 3.
    b[0, n - 1] = h[n - 1] / 6.
    b[n - 1, 0] = h[n - 1] / 6.

    d[0, 0] = -1. / h[0] - 1. / h[n - 1]
    d[0, n - 1] = 1. / h[n - 1]
    d[n - 1, 0] = 1. / h[n - 1]

    for i in range(1, n):
        b[i, i] = (h[i - 1] + h[i]) / 3.
        b[i, i - 1] = h[i - 1] / 6.
        b[i - 1, i] = h[i - 1] / 6.

        d[i, i] = -1. / h[i - 1] - 1. / h[i]
        d[i, i - 1] = 1. / h[i - 1]
        d[i - 1, i] = 1. / h[i - 1]

    return np.linalg.solve(b, d)


# Tensor Product


def _row_tensor_product(dms):
    """Computes row-wise tensor product of given arguments.

    .. note:: Custom algorithm to precisely match what is done in 'mgcv',
    in particular look out for order of result columns!
    For reference implementation see 'mgcv' source code,
    file 'mat.c', mgcv_tensor_mm(), l.62

    :param dms: A sequence of 2-d arrays (marginal design matrices).
    :return: The 2-d array row-wise tensor product of given arguments.

    :raise ValueError: if argument sequence is empty, does not contain only
     2-d arrays or if the arrays number of rows does not match.
    """
    if len(dms) == 0:
        raise ValueError("Tensor product arrays sequence should not be empty.")
    for dm in dms:
        if dm.ndim != 2:
            raise ValueError("Tensor product arguments should be 2-d arrays.")

    tp_nrows = dms[0].shape[0]
    tp_ncols = 1
    for dm in dms:
        if dm.shape[0] != tp_nrows:
            raise ValueError("Tensor product arguments should have "
                             "same number of rows.")
        tp_ncols *= dm.shape[1]
    tp = np.zeros((tp_nrows, tp_ncols))
    tp[:, -dms[-1].shape[1]:] = dms[-1]
    filled_tp_ncols = dms[-1].shape[1]
    for dm in dms[-2::-1]:
        p = - filled_tp_ncols * dm.shape[1]
        for j in range(dm.shape[1]):
            xj = dm[:, j]
            for t in range(-filled_tp_ncols, 0):
                tp[:, p] = tp[:, t] * xj
                p += 1
        filled_tp_ncols *= dm.shape[1]

    return tp


def test__row_tensor_product_errors():
    from nose.tools import assert_raises
    assert_raises(ValueError, _row_tensor_product, [])
    assert_raises(ValueError, _row_tensor_product, [np.arange(1, 5)])
    assert_raises(ValueError, _row_tensor_product,
                  [np.arange(1, 5), np.arange(1, 5)])
    assert_raises(ValueError, _row_tensor_product,
                  [np.arange(1, 13).reshape((3, 4)),
                   np.arange(1, 13).reshape((4, 3))])


def test__row_tensor_product():
    # Testing cases where main input array should not be modified
    dm1 = np.arange(1, 17).reshape((4, 4))
    assert np.array_equal(_row_tensor_product([dm1]), dm1)
    ones = np.ones(4).reshape((4, 1))
    tp1 = _row_tensor_product([ones, dm1])
    assert np.array_equal(tp1, dm1)
    tp2 = _row_tensor_product([dm1, ones])
    assert np.array_equal(tp2, dm1)

    # Testing cases where main input array should be scaled
    twos = 2 * ones
    tp3 = _row_tensor_product([twos, dm1])
    assert np.array_equal(tp3, 2 * dm1)
    tp4 = _row_tensor_product([dm1, twos])
    assert np.array_equal(tp4, 2 * dm1)

    # Testing main cases
    dm2 = np.array([[1, 2], [1, 2]])
    dm3 = np.arange(1, 7).reshape((2, 3))
    expected_tp5 = np.array([[1,  2,  3,  2,  4,  6],
                             [4,  5,  6,  8, 10, 12]])
    tp5 = _row_tensor_product([dm2, dm3])
    assert np.array_equal(tp5, expected_tp5)
    expected_tp6 = np.array([[1,  2,  2,  4,  3,  6],
                             [4,  8,  5, 10,  6, 12]])
    tp6 = _row_tensor_product([dm3, dm2])
    assert np.array_equal(tp6, expected_tp6)


# Common code


def _find_knots_lower_bounds(x, knots):
    """Finds knots lower bounds for given values.

    Returns an array of indices ``I`` such that
    ``0 <= I[i] <= knots.size - 2`` for all ``i``
    and
    ``knots[I[i]] < x[i] <= knots[I[i] + 1]`` if
    ``np.min(knots) < x[i] <= np.max(knots)``,
    ``I[i] = 0`` if ``x[i] <= np.min(knots)``
    ``I[i] = knots.size - 2`` if ``np.max(knots) < x[i]``
    
    :param x: The 1-d array values whose knots lower bounds are to be found.
    :param knots: The 1-d array knots used for cubic spline parametrization,
     must be sorted in ascending order.
    :return: An array of knots lower bounds indices.
    """
    lb = np.searchsorted(knots, x) - 1

    # I[i] = 0 for x[i] <= np.min(knots)
    lb[lb == -1] = 0

    # I[i] = knots.size - 2 for x[i] > np.max(knots)
    lb[lb == knots.size - 1] = knots.size - 2

    return lb


def _compute_base_functions(x, knots):
    """Computes base functions used for building cubic splines basis.

    .. note:: See 'Generalized Additive Models', Simon N. Wood, 2006, p. 146
      and for the special treatment of ``x`` values outside ``knots`` range
      see 'mgcv' source code, file 'mgcv.c', function 'crspl()', l.249

    :param x: The 1-d array values for which base functions should be computed.
    :param knots: The 1-d array knots used for cubic spline parametrization,
     must be sorted in ascending order.
    :return: 4 arrays corresponding to the 4 base functions ajm, ajp, cjm, cjp
     + the 1-d array of knots lower bounds indices corresponding to
     the given ``x`` values.
    """
    j = _find_knots_lower_bounds(x, knots)

    h = knots[1:] - knots[:-1]
    hj = h[j]
    xj1_x = knots[j + 1] - x
    x_xj = x - knots[j]

    ajm = xj1_x / hj
    ajp = x_xj / hj

    cjm_3 = xj1_x * xj1_x * xj1_x / (6. * hj)
    cjm_3[x > np.max(knots)] = 0.
    cjm_1 = hj * xj1_x / 6.
    cjm = cjm_3 - cjm_1

    cjp_3 = x_xj * x_xj * x_xj / (6. * hj)
    cjp_3[x < np.min(knots)] = 0.
    cjp_1 = hj * x_xj / 6.
    cjp = cjp_3 - cjp_1

    return ajm, ajp, cjm, cjp, j


def _absorb_constraints(design_matrix, constraints):
    """Absorb model parameters constraints into the design matrix.

    :param design_matrix: The (2-d array) initial design matrix.
    :param constraints: The 2-d array defining initial model parameters
     (``betas``) constraints (``np.dot(constraints, betas) = 0``).
    :return: The new design matrix with absorbed parameters constraints.

    :raise ImportError: if scipy is not found, used for ``scipy.linalg.qr()``
      which is cleaner than numpy's version requiring a call like
      ``qr(..., mode='complete')`` to get a full QR decomposition.
    """
    try:
        from scipy import linalg
    except ImportError: # pragma: no cover
        raise ImportError("Cubic spline functionality requires scipy.")

    m = constraints.shape[0]
    q, r = linalg.qr(np.transpose(constraints))

    return np.dot(design_matrix, q[:, m:])


def _get_free_crs_dmatrix(x, knots, cyclic=False):
    """Builds an unconstrained cubic regression spline design matrix.

    Returns design matrix with dimensions ``len(x) x n``
    for a cubic regression spline smoother
    where 
     - ``n = len(knots)`` for natural CRS
     - ``n = len(knots) - 1`` for cyclic CRS

    .. note:: See 'Generalized Additive Models', Simon N. Wood, 2006, p. 145

    :param x: The 1-d array values.
    :param knots: The 1-d array knots used for cubic spline parametrization,
     must be sorted in ascending order.
    :param cyclic: Indicates whether used cubic regression splines should
     be cyclic or not. Default is ``False``.
    :return: The (2-d array) design matrix.
    """
    n = knots.size
    if cyclic:
        x = _map_cyclic(x, min(knots), max(knots))
        n -= 1

    ajm, ajp, cjm, cjp, j = _compute_base_functions(x, knots)

    j1 = j + 1
    if cyclic:
        j1[j1 == n] = 0

    i = np.identity(n)

    if cyclic:
        f = _get_cyclic_f(knots)
    else:
        f = _get_natural_f(knots)

    dmt = ajm * i[j, :].T + ajp * i[j1, :].T + \
        cjm * f[j, :].T + cjp * f[j1, :].T

    return dmt.T


def _get_crs_dmatrix(x, knots, constraints=None, cyclic=False):
    """Builds a cubic regression spline design matrix.

    Returns design matrix with dimensions len(x) x n
    where:
     - ``n = len(knots) - nrows(constraints)`` for natural CRS
     - ``n = len(knots) - nrows(constraints) - 1`` for cyclic CRS
    for a cubic regression spline smoother

    :param x: The 1-d array values.
    :param knots: The 1-d array knots used for cubic spline parametrization,
     must be sorted in ascending order.
    :param constraints: The 2-d array defining model parameters (``betas``)
     constraints (``np.dot(constraints, betas) = 0``).
    :param cyclic: Indicates whether used cubic regression splines should
     be cyclic or not. Default is ``False``.
    :return: The (2-d array) design matrix.
    """
    dm = _get_free_crs_dmatrix(x, knots, cyclic)
    if constraints is not None:
        dm = _absorb_constraints(dm, constraints)

    return dm


def _get_te_dmatrix(design_matrices, constraints=None):
    """Builds tensor product design matrix, given the marginal design matrices.

    :param design_matrices: A sequence of 2-d arrays (marginal design matrices).
    :param constraints: The 2-d array defining model parameters (``betas``)
     constraints (``np.dot(constraints, betas) = 0``).
    :return: The (2-d array) design matrix.
    """
    dm = _row_tensor_product(design_matrices)
    if constraints is not None:
        dm = _absorb_constraints(dm, constraints)

    return dm


# Stateful Transforms


def _get_all_sorted_knots(x, n_inner_knots=None, inner_knots=None,
                              lower_bound=None, upper_bound=None):
    """Gets all knots locations with lower and upper exterior knots included.

    If needed, inner knots are computed as equally spaced quantiles of the
    input data falling between given lower and upper bounds.

    :param x: The 1-d array data values.
    :param n_inner_knots: Number of inner knots to compute.
    :param inner_knots: Provided inner knots if any.
    :param lower_bound: The lower exterior knot location. If unspecified, the
     minimum of ``x`` values is used.
    :param upper_bound: The upper exterior knot location. If unspecified, the
     maximum of ``x`` values is used.
    :return: The array of ``n_inner_knots + 2`` distinct knots.

    :raise ValueError: for various invalid parameters sets or if unable to
     compute ``n_inner_knots + 2`` distinct knots.
    """
    if lower_bound is None and x.size == 0:
        raise ValueError("Cannot set lower exterior knot location: empty "
                         "input data and lower_bound not specified.")
    elif lower_bound is None and x.size != 0:
        lower_bound = np.min(x)

    if upper_bound is None and x.size == 0:
        raise ValueError("Cannot set upper exterior knot location: empty "
                         "input data and upper_bound not specified.")
    elif upper_bound is None and x.size != 0:
        upper_bound = np.max(x)

    if upper_bound < lower_bound:
        raise ValueError("lower_bound > upper_bound (%r > %r)"
                         % (lower_bound, upper_bound))

    if inner_knots is None and n_inner_knots is not None:
        if n_inner_knots < 0:
            raise ValueError("Invalid requested number of inner knots: %r"
                             % (n_inner_knots,))

        x = x[(lower_bound <= x) & (x <= upper_bound)]
        x = np.unique(x)

        if x.size != 0:
            inner_knots_q = np.linspace(0, 100, n_inner_knots + 2)[1:-1]
            # .tolist() is necessary to work around a bug in numpy 1.8
            inner_knots = np.asarray(np.percentile(x, inner_knots_q.tolist()))
        elif n_inner_knots == 0:
            inner_knots = np.array([])
        else:
            raise ValueError("No data values between lower_bound(=%r) and "
                             "upper_bound(=%r): cannot compute requested "
                             "%r inner knot(s)."
                             % (lower_bound, upper_bound, n_inner_knots))
    elif inner_knots is not None:
        inner_knots = np.unique(inner_knots)
        if n_inner_knots is not None and n_inner_knots != inner_knots.size:
            raise ValueError("Needed number of inner knots=%r does not match "
                             "provided number of inner knots=%r."
                             % (n_inner_knots, inner_knots.size))
        n_inner_knots = inner_knots.size
        if np.any(inner_knots < lower_bound):
            raise ValueError("Some knot values (%s) fall below lower bound "
                             "(%r)."
                             % (inner_knots[inner_knots < lower_bound],
                                lower_bound))
        if np.any(inner_knots > upper_bound):
            raise ValueError("Some knot values (%s) fall above upper bound "
                             "(%r)."
                             % (inner_knots[inner_knots > upper_bound],
                                upper_bound))
    else:
        raise ValueError("Must specify either 'n_inner_knots' or 'inner_knots'.")

    all_knots = np.concatenate(([lower_bound, upper_bound], inner_knots))
    all_knots = np.unique(all_knots)
    if all_knots.size != n_inner_knots + 2:
        raise ValueError("Unable to compute n_inner_knots(=%r) + 2 distinct "
                         "knots: %r data value(s) found between "
                         "lower_bound(=%r) and upper_bound(=%r)."
                         % (n_inner_knots, x.size, lower_bound, upper_bound))

    return all_knots


def test__get_all_sorted_knots():
    from nose.tools import assert_raises
    assert_raises(ValueError, _get_all_sorted_knots,
                  np.array([]), -1)
    assert_raises(ValueError, _get_all_sorted_knots,
                  np.array([]), 0)
    assert_raises(ValueError, _get_all_sorted_knots,
                  np.array([]), 0, lower_bound=1)
    assert_raises(ValueError, _get_all_sorted_knots,
                  np.array([]), 0, upper_bound=5)
    assert_raises(ValueError, _get_all_sorted_knots,
                  np.array([]), 0, lower_bound=3, upper_bound=1)
    assert np.array_equal(
        _get_all_sorted_knots(np.array([]), 0, lower_bound=1, upper_bound=5),
        [1, 5])
    assert_raises(ValueError, _get_all_sorted_knots,
                  np.array([]), 0, lower_bound=1, upper_bound=1)
    x = np.arange(6) * 2
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, -2)
    assert np.array_equal(
        _get_all_sorted_knots(x, 0),
        [0, 10])
    assert np.array_equal(
        _get_all_sorted_knots(x, 0, lower_bound=3, upper_bound=8),
        [3, 8])
    assert np.array_equal(
        _get_all_sorted_knots(x, 2, lower_bound=1, upper_bound=9),
        [1, 4, 6, 9])
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, 2, lower_bound=1, upper_bound=3)
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, 1, lower_bound=1.3, upper_bound=1.4)
    assert np.array_equal(
        _get_all_sorted_knots(x, 1, lower_bound=1, upper_bound=3),
        [1, 2, 3])
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, 1, lower_bound=2, upper_bound=3)
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, 1, inner_knots=[2, 3])
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, lower_bound=2, upper_bound=3)
    assert np.array_equal(
        _get_all_sorted_knots(x, inner_knots=[3, 7]),
        [0, 3, 7, 10])
    assert np.array_equal(
        _get_all_sorted_knots(x, inner_knots=[3, 7], lower_bound=2),
        [2, 3, 7, 10])
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, inner_knots=[3, 7], lower_bound=4)
    assert_raises(ValueError, _get_all_sorted_knots,
                  x, inner_knots=[3, 7], upper_bound=6)


def _get_centering_constraint_from_dmatrix(design_matrix):
    """ Computes the centering constraint from the given design matrix.

    We want to ensure that if ``b`` is the array of parameters, our
    model is centered, ie ``np.mean(np.dot(design_matrix, b))`` is zero.
    We can rewrite this as ``np.dot(c, b)`` being zero with ``c`` a 1-row
    constraint matrix containing the mean of each column of ``design_matrix``.

    :param design_matrix: The 2-d array design matrix.
    :return: A 2-d array (1 x ncols(design_matrix)) defining the
     centering constraint.
    """
    return design_matrix.mean(axis=0).reshape((1, design_matrix.shape[1]))


class CubicRegressionSpline(object):
    """Base class for cubic regression spline stateful transforms

    This class contains all the functionality for the following stateful
    transforms:
     - ``cr(x, df=None, knots=None, lower_bound=None, upper_bound=None, constraints=None)``
       for natural cubic regression spline
     - ``cc(x, df=None, knots=None, lower_bound=None, upper_bound=None, constraints=None)``
       for cyclic cubic regression spline
    """
    common_doc = """
    :arg df: The number of degrees of freedom to use for this spline. The
      return value will have this many columns. You must specify at least one
      of ``df`` and ``knots``.
    :arg knots: The interior knots to use for the spline. If unspecified, then
      equally spaced quantiles of the input data are used. You must specify at
      least one of ``df`` and ``knots``.
    :arg lower_bound: The lower exterior knot location.
    :arg upper_bound: The upper exterior knot location.
    :arg constraints: Either a 2-d array defining general linear constraints
     (that is ``np.dot(constraints, betas)`` is zero, where ``betas`` denotes
     the array of *initial* parameters, corresponding to the *initial*
     unconstrained design matrix), or the string
     ``'center'`` indicating that we should apply a centering constraint
     (this constraint will be computed from the input data, remembered and
     re-used for prediction from the fitted model).
     The constraints are absorbed in the resulting design matrix which means
     that the model is actually rewritten in terms of
     *unconstrained* parameters. For more details see :ref:`spline-regression`.

    This is a stateful transforms (for details see
    :ref:`stateful-transforms`). If ``knots``, ``lower_bound``, or
    ``upper_bound`` are not specified, they will be calculated from the data
    and then the chosen values will be remembered and re-used for prediction
    from the fitted model.

    Using this function requires scipy be installed.

    .. versionadded:: 0.3.0
    """

    def __init__(self, name, cyclic):
        self._name = name
        self._cyclic = cyclic
        self._tmp = {}
        self._all_knots = None
        self._constraints = None

    def memorize_chunk(self, x, df=None, knots=None,
                       lower_bound=None, upper_bound=None,
                       constraints=None):
        args = {"df": df,
                "knots": knots,
                "lower_bound": lower_bound,
                "upper_bound": upper_bound,
                "constraints": constraints,
                }
        self._tmp["args"] = args

        x = np.atleast_1d(x)
        if x.ndim == 2 and x.shape[1] == 1:
            x = x[:, 0]
        if x.ndim > 1:
            raise ValueError("Input to %r must be 1-d, "
                             "or a 2-d column vector."
                             % (self._name,))

        self._tmp.setdefault("xs", []).append(x)

    def memorize_finish(self):
        args = self._tmp["args"]
        xs = self._tmp["xs"]
        # Guards against invalid subsequent memorize_chunk() calls.
        del self._tmp

        x = np.concatenate(xs)
        if args["df"] is None and args["knots"] is None:
            raise ValueError("Must specify either 'df' or 'knots'.")

        constraints = args["constraints"]
        n_constraints = 0
        if constraints is not None:
            if safe_string_eq(constraints, "center"):
                # Here we collect only number of constraints,
                # actual centering constraint will be computed after all_knots
                n_constraints = 1
            else:
                constraints = np.atleast_2d(constraints)
                if constraints.ndim != 2:
                    raise ValueError("Constraints must be 2-d array or "
                                     "1-d vector.")
                n_constraints = constraints.shape[0]

        n_inner_knots = None
        if args["df"] is not None:
            min_df = 1
            if not self._cyclic and n_constraints == 0:
                min_df = 2
            if args["df"] < min_df:
                raise ValueError("'df'=%r must be greater than or equal to %r."
                                 % (args["df"], min_df))
            n_inner_knots = args["df"] - 2 + n_constraints
            if self._cyclic:
                n_inner_knots += 1
        self._all_knots = _get_all_sorted_knots(x,
                                                n_inner_knots=n_inner_knots,
                                                inner_knots=args["knots"],
                                                lower_bound=args["lower_bound"],
                                                upper_bound=args["upper_bound"])
        if constraints is not None:
            if safe_string_eq(constraints, "center"):
                # Now we can compute centering constraints
                constraints = _get_centering_constraint_from_dmatrix(
                    _get_free_crs_dmatrix(x, self._all_knots, cyclic=self._cyclic)
                )

            df_before_constraints = self._all_knots.size
            if self._cyclic:
                df_before_constraints -= 1
            if constraints.shape[1] != df_before_constraints:
                raise ValueError("Constraints array should have %r columns but"
                                 " %r found."
                                 % (df_before_constraints, constraints.shape[1]))
            self._constraints = constraints

    def transform(self, x, df=None, knots=None,
                  lower_bound=None, upper_bound=None,
                  constraints=None):
        x_orig = x
        x = np.atleast_1d(x)
        if x.ndim == 2 and x.shape[1] == 1:
            x = x[:, 0]
        if x.ndim > 1:
            raise ValueError("Input to %r must be 1-d, "
                             "or a 2-d column vector."
                             % (self._name,))
        dm = _get_crs_dmatrix(x, self._all_knots,
                              self._constraints, cyclic=self._cyclic)
        if have_pandas:
            if isinstance(x_orig, (pandas.Series, pandas.DataFrame)):
                dm = pandas.DataFrame(dm)
                dm.index = x_orig.index
        return dm

    __getstate__ = no_pickling


class CR(CubicRegressionSpline):
    """cr(x, df=None, knots=None, lower_bound=None, upper_bound=None, constraints=None)

    Generates a natural cubic spline basis for ``x``
    (with the option of absorbing centering or more general parameters
    constraints), allowing non-linear fits. The usual usage is something like::

      y ~ 1 + cr(x, df=5, constraints='center')

    to fit ``y`` as a smooth function of ``x``, with 5 degrees of freedom
    given to the smooth, and centering constraint absorbed in
    the resulting design matrix. Note that in this example, due to the centering
    constraint, 6 knots will get computed from the input data ``x``
    to achieve 5 degrees of freedom.


    .. note:: This function reproduce the cubic regression splines 'cr' and 'cs'
      as implemented in the R package 'mgcv' (GAM modelling).

    """

    # Under python -OO, __doc__ will be defined but set to None
    if __doc__:
        __doc__ += CubicRegressionSpline.common_doc

    def __init__(self):
        CubicRegressionSpline.__init__(self, name='cr', cyclic=False)

cr = stateful_transform(CR)


class CC(CubicRegressionSpline):
    """cc(x, df=None, knots=None, lower_bound=None, upper_bound=None, constraints=None)

    Generates a cyclic cubic spline basis for ``x``
    (with the option of absorbing centering or more general parameters
    constraints), allowing non-linear fits. The usual usage is something like::

      y ~ 1 + cc(x, df=7, constraints='center')

    to fit ``y`` as a smooth function of ``x``, with 7 degrees of freedom
    given to the smooth, and centering constraint absorbed in
    the resulting design matrix. Note that in this example, due to the centering
    and cyclic constraints, 9 knots will get computed from the input data ``x``
    to achieve 7 degrees of freedom.

    .. note:: This function reproduce the cubic regression splines 'cc'
      as implemented in the R package 'mgcv' (GAM modelling).

    """

    # Under python -OO, __doc__ will be defined but set to None
    if __doc__:
        __doc__ += CubicRegressionSpline.common_doc

    def __init__(self):
        CubicRegressionSpline.__init__(self, name='cc', cyclic=True)

cc = stateful_transform(CC)


def test_crs_errors():
    from nose.tools import assert_raises
    # Invalid 'x' shape
    assert_raises(ValueError, cr, np.arange(16).reshape((4, 4)), df=4)
    assert_raises(ValueError, CR().transform,
                  np.arange(16).reshape((4, 4)), df=4)
    # Should provide at least 'df' or 'knots'
    assert_raises(ValueError, cr, np.arange(50))
    # Invalid constraints shape
    assert_raises(ValueError, cr, np.arange(50), df=4,
                  constraints=np.arange(27).reshape((3, 3, 3)))
    # Invalid nb of columns in constraints
    # (should have df + 1 = 5, but 6 provided)
    assert_raises(ValueError, cr, np.arange(50), df=4,
                  constraints=np.arange(6))
    # Too small 'df' for natural cubic spline
    assert_raises(ValueError, cr, np.arange(50), df=1)
    # Too small 'df' for cyclic cubic spline
    assert_raises(ValueError, cc, np.arange(50), df=0)


def test_crs_compat():
    from patsy.test_state import check_stateful
    from patsy.test_splines_crs_data import (R_crs_test_x,
                                             R_crs_test_data,
                                             R_crs_num_tests)
    lines = R_crs_test_data.split("\n")
    tests_ran = 0
    start_idx = lines.index("--BEGIN TEST CASE--")
    while True:
        if not lines[start_idx] == "--BEGIN TEST CASE--":
            break
        start_idx += 1
        stop_idx = lines.index("--END TEST CASE--", start_idx)
        block = lines[start_idx:stop_idx]
        test_data = {}
        for line in block:
            key, value = line.split("=", 1)
            test_data[key] = value
        # Translate the R output into Python calling conventions
        adjust_df = 0
        if test_data["spline_type"] == "cr" or test_data["spline_type"] == "cs":
            spline_type = CR
        elif test_data["spline_type"] == "cc":
            spline_type = CC
            adjust_df += 1
        else:
            raise ValueError("Unrecognized spline type %r"
                             % (test_data["spline_type"],))
        kwargs = {}
        if test_data["absorb_cons"] == "TRUE":
            kwargs["constraints"] = "center"
            adjust_df += 1
        if test_data["knots"] != "None":
            all_knots = np.asarray(eval(test_data["knots"]))
            all_knots.sort()
            kwargs["knots"] = all_knots[1:-1]
            kwargs["lower_bound"] = all_knots[0]
            kwargs["upper_bound"] = all_knots[-1]
        else:
            kwargs["df"] = eval(test_data["nb_knots"]) - adjust_df
        output = np.asarray(eval(test_data["output"]))
        # Do the actual test
        check_stateful(spline_type, False, R_crs_test_x, output, **kwargs)
        tests_ran += 1
        # Set up for the next one
        start_idx = stop_idx + 1
    assert tests_ran == R_crs_num_tests

test_crs_compat.slow = True

def test_crs_with_specific_constraint():
    from patsy.highlevel import incr_dbuilder, build_design_matrices, dmatrix
    x = (-1.5)**np.arange(20)
    # Hard coded R values for smooth: s(x, bs="cr", k=5)
    # R> knots <- smooth$xp
    knots_R = np.array([-2216.837820053100585937,
                        -50.456909179687500000,
                        -0.250000000000000000,
                        33.637939453125000000,
                        1477.891880035400390625])
    # R> centering.constraint <- t(qr.X(attr(smooth, "qrc")))
    centering_constraint_R = np.array([[0.064910676323168478574,
                                        1.4519875239407085132,
                                        -2.1947446912471946234,
                                        1.6129783104357671153,
                                        0.064868180547550072235]])
    # values for which we want a prediction
    new_x = np.array([-3000., -200., 300., 2000.])
    result1 = dmatrix("cr(new_x, knots=knots_R[1:-1], "
                      "lower_bound=knots_R[0], upper_bound=knots_R[-1], "
                      "constraints=centering_constraint_R)")

    data_chunked = [{"x": x[:10]}, {"x": x[10:]}]
    new_data = {"x": new_x}
    builder = incr_dbuilder("cr(x, df=4, constraints='center')",
                            lambda: iter(data_chunked))
    result2 = build_design_matrices([builder], new_data)[0]

    assert np.allclose(result1, result2, rtol=1e-12, atol=0.)


class TE(object):
    """te(s1, .., sn, constraints=None)

    Generates smooth of several covariates as a tensor product of the bases
    of marginal univariate smooths ``s1, .., sn``. The marginal smooths are
    required to transform input univariate data into some kind of smooth
    functions basis producing a 2-d array output with the ``(i, j)`` element
    corresponding to the value of the ``j`` th basis function at the ``i`` th
    data point.
    The resulting basis dimension is the product of the basis dimensions of
    the marginal smooths. The usual usage is something like::

      y ~ 1 + te(cr(x1, df=5), cc(x2, df=6), constraints='center')

    to fit ``y`` as a smooth function of both ``x1`` and ``x2``, with a natural
    cubic spline for ``x1`` marginal smooth and a cyclic cubic spline for
    ``x2`` (and centering constraint absorbed in the resulting design matrix).

    :arg constraints: Either a 2-d array defining general linear constraints
     (that is ``np.dot(constraints, betas)`` is zero, where ``betas`` denotes
     the array of *initial* parameters, corresponding to the *initial*
     unconstrained design matrix), or the string
     ``'center'`` indicating that we should apply a centering constraint
     (this constraint will be computed from the input data, remembered and
     re-used for prediction from the fitted model).
     The constraints are absorbed in the resulting design matrix which means
     that the model is actually rewritten in terms of
     *unconstrained* parameters. For more details see :ref:`spline-regression`.

    Using this function requires scipy be installed.

    .. note:: This function reproduce the tensor product smooth 'te' as
      implemented in the R package 'mgcv' (GAM modelling).
      See also 'Generalized Additive Models', Simon N. Wood, 2006, pp 158-163

    .. versionadded:: 0.3.0
    """
    def __init__(self):
        self._tmp = {}
        self._constraints = None

    def memorize_chunk(self, *args, **kwargs):
        constraints = self._tmp.setdefault("constraints",
                                           kwargs.get("constraints"))
        if safe_string_eq(constraints, "center"):
            args_2d = []
            for arg in args:
                arg = atleast_2d_column_default(arg)
                if arg.ndim != 2:
                    raise ValueError("Each tensor product argument must be "
                                     "a 2-d array or 1-d vector.")
                args_2d.append(arg)

            tp = _row_tensor_product(args_2d)
            self._tmp.setdefault("count", 0)
            self._tmp["count"] += tp.shape[0]

            chunk_sum = np.atleast_2d(tp.sum(axis=0))
            self._tmp.setdefault("sum", np.zeros(chunk_sum.shape))
            self._tmp["sum"] += chunk_sum

    def memorize_finish(self):
        tmp = self._tmp
        constraints = self._tmp["constraints"]
        # Guards against invalid subsequent memorize_chunk() calls.
        del self._tmp

        if constraints is not None:
            if safe_string_eq(constraints, "center"):
                constraints = np.atleast_2d(tmp["sum"] / tmp["count"])
            else:
                constraints = np.atleast_2d(constraints)
                if constraints.ndim != 2:
                    raise ValueError("Constraints must be 2-d array or "
                                     "1-d vector.")

        self._constraints = constraints

    def transform(self, *args, **kwargs):
        args_2d = []
        for arg in args:
            arg = atleast_2d_column_default(arg)
            if arg.ndim != 2:
                raise ValueError("Each tensor product argument must be "
                                 "a 2-d array or 1-d vector.")
            args_2d.append(arg)

        return _get_te_dmatrix(args_2d, self._constraints)

    __getstate__ = no_pickling

te = stateful_transform(TE)


def test_te_errors():
    from nose.tools import assert_raises
    x = np.arange(27)
    # Invalid input shape
    assert_raises(ValueError, te, x.reshape((3, 3, 3)))
    assert_raises(ValueError, te, x.reshape((3, 3, 3)), constraints='center')
    # Invalid constraints shape
    assert_raises(ValueError, te, x,
                  constraints=np.arange(8).reshape((2, 2, 2)))


def test_te_1smooth():
    from patsy.splines import bs
    # Tensor product of 1 smooth covariate should be the same
    # as the smooth alone
    x = (-1.5)**np.arange(20)
    assert np.allclose(cr(x, df=6), te(cr(x, df=6)))
    assert np.allclose(cc(x, df=5), te(cc(x, df=5)))
    assert np.allclose(bs(x, df=4), te(bs(x, df=4)))
    # Adding centering constraint to tensor product
    assert np.allclose(cr(x, df=3, constraints='center'),
                       te(cr(x, df=4), constraints='center'))
    # Adding specific constraint
    center_constraint = np.arange(1, 5)
    assert np.allclose(cr(x, df=3, constraints=center_constraint),
                       te(cr(x, df=4), constraints=center_constraint))


def test_te_2smooths():
    from patsy.highlevel import incr_dbuilder, build_design_matrices
    x1 = (-1.5)**np.arange(20)
    x2 = (1.6)**np.arange(20)
    # Hard coded R results for smooth: te(x1, x2, bs=c("cs", "cc"), k=c(5,7))
    # Without centering constraint:
    dmatrix_R_nocons = \
        np.array([[-4.4303024184609255207e-06,  7.9884438387230142235e-06,
                   9.7987758194797719025e-06,   -7.2894213245475212959e-08,
                   1.5907686862964493897e-09,   -3.2565884983072595159e-11,
                   0.0170749607855874667439,    -3.0788499835965849050e-02,
                   -3.7765754357352458725e-02,  2.8094376299826799787e-04,
                   -6.1310290747349201414e-06,  1.2551314933193442915e-07,
                   -0.26012671685838206770,     4.6904420337437874311e-01,
                   0.5753384627946153129230,    -4.2800085814700449330e-03,
                   9.3402525733484874533e-05,   -1.9121170389937518131e-06,
                   -0.0904312240489447832781,   1.6305991924427923334e-01,
                   2.0001237112941641638e-01,   -1.4879148887003382663e-03,
                   3.2470731316462736135e-05,   -6.6473404365914134499e-07,
                   2.0447857920168824846e-05,   -3.6870296695050991799e-05,
                   -4.5225801045409022233e-05,  3.3643990293641665710e-07,
                   -7.3421200200015877329e-09,  1.5030635073660743297e-10],
                  [-9.4006130602653794302e-04,  7.8681398069163730347e-04,
                   2.4573006857381437217e-04,   -1.4524712230452725106e-04,
                   7.8216741353106329551e-05,   -3.1304283003914264551e-04,
                   3.6231183382798337611064,    -3.0324832476174168328e+00,
                   -9.4707559178211142559e-01,  5.5980126937492580286e-01,
                   -3.0145747744342332730e-01,  1.2065077148806895302e+00,
                   -35.17561267504181188315,    2.9441339255948005160e+01,
                   9.1948319320782125885216,    -5.4349184288245195873e+00,
                   2.9267472035096449012e+00,   -1.1713569391233907169e+01,
                   34.0275626863976370373166,   -2.8480442582712722555e+01,
                   -8.8947340548151565542e+00,  5.2575353623762932642e+00,
                   -2.8312249982592527786e+00,  1.1331265795534763541e+01,
                   7.9462158845078978420e-01,   -6.6508361863670617531e-01,
                   -2.0771242914526857892e-01,  1.2277550230353953542e-01,
                   -6.6115593588420035198e-02,  2.6461103043402139923e-01]])
    # With centering constraint:
    dmatrix_R_cons = \
        np.array([[0.00329998606323867252343,   1.6537431155796576600e-04,
                   -1.2392262709790753433e-04,  6.5405304166706783407e-05,
                   -6.6764045799537624095e-05,  -0.1386431081763726258504,
                   0.124297283800864313830,     -3.5487293655619825405e-02,
                   -3.0527115315785902268e-03,  5.2009247643311604277e-04,
                   -0.00384203992301702674378,  -0.058901915802819435064,
                   0.266422358491648914036,     0.5739281693874087597607,
                   -1.3171008503525844392e-03,  8.2573456631878912413e-04,
                   6.6730833453016958831e-03,   -0.1467677784718444955470,
                   0.220757650934837484913,     0.1983127687880171796664,
                   -1.6269930328365173316e-03,  -1.7785892412241208812e-03,
                   -3.2702835436351201243e-03,  -4.3252183044300757109e-02,
                   4.3403766976235179376e-02,   3.5973406402893762387e-05,
                   -5.4035858568225075046e-04,  2.9565209382794241247e-04,
                   -2.2769990750264097637e-04],
                  [0.41547954838956052681098,   1.9843570584107707994e-02,
                   -1.5746590234791378593e-02,  8.3171184312221431434e-03,
                   -8.7233014052017516377e-03,  -15.9926770785086258541696,
                   16.503663226274017716833,    -6.6005803955894726265e-01,
                   1.3986092022708346283e-01,   -2.3516913533670955050e-01,
                   0.72251037497207359905360,   -9.827337059999853963177,
                   3.917078117294827688255,     9.0171773596973618936090,
                   -5.0616811270787671617e+00,  3.0189990249009683865e+00,
                   -1.0872720629943064097e+01,  26.9308504460453121964747,
                   -21.212262927009287949431,   -9.1088328555582247503253,
                   5.2400156972500298025e+00,   -3.0593641098325474736e+00,
                   1.0919392118399086300e+01,   -4.6564290223265718538e+00,
                   4.8071307441606982991e+00,   -1.9748377005689798924e-01,
                   5.4664183716965096538e-02,   -2.8871392916916285148e-02,
                   2.3592766838010845176e-01]])
    new_x1 = np.array([11.390625, 656.84083557128906250])
    new_x2 = np.array([16.777216000000006346, 1844.6744073709567147])
    new_data = {"x1": new_x1, "x2": new_x2}
    data_chunked = [{"x1": x1[:10], "x2": x2[:10]},
                    {"x1": x1[10:], "x2": x2[10:]}]

    builder = incr_dbuilder("te(cr(x1, df=5), cc(x2, df=6)) - 1",
                            lambda: iter(data_chunked))
    dmatrix_nocons = build_design_matrices([builder], new_data)[0]
    assert np.allclose(dmatrix_nocons, dmatrix_R_nocons, rtol=1e-12, atol=0.)

    builder = incr_dbuilder("te(cr(x1, df=5), cc(x2, df=6), "
                            "constraints='center') - 1",
                            lambda: iter(data_chunked))
    dmatrix_cons = build_design_matrices([builder], new_data)[0]
    assert np.allclose(dmatrix_cons, dmatrix_R_cons, rtol=1e-12, atol=0.)


def test_te_3smooths():
    from patsy.highlevel import incr_dbuilder, build_design_matrices
    x1 = (-1.5)**np.arange(20)
    x2 = (1.6)**np.arange(20)
    x3 = (-1.2)**np.arange(20)
    # Hard coded R results for smooth:  te(x1, x2, x3, bs=c("cr", "cs", "cc"), k=c(3,3,4))
    design_matrix_R = \
        np.array([[7.2077663709837084334e-05,   2.0648333344343273131e-03,
                   -4.7934014082310591768e-04,  2.3923430783992746568e-04,
                   6.8534265421922660466e-03,   -1.5909867344112936776e-03,
                   -6.8057712777151204314e-09,  -1.9496724335203412851e-07,
                   4.5260614658693259131e-08,   0.0101479754187435277507,
                   0.290712501531622591333,     -0.067487370093906928759,
                   0.03368233306025386619709,   0.9649092451763204847381,
                   -0.2239985793289433757547,   -9.5819975394704535133e-07,
                   -2.7449874082511405643e-05,  6.3723431275833230217e-06,
                   -1.5205851762850489204e-04,  -0.00435607204539782688624,
                   0.00101123909269346416370,   -5.0470024059694933508e-04,
                   -1.4458319360584082416e-02,  3.3564223914790921634e-03,
                   1.4357783514933466209e-08,   4.1131230514870551983e-07,
                   -9.5483976834512651038e-08]])
    new_data = {"x1": -38.443359375000000000,
                "x2": 68.719476736000032702,
                "x3": -5.1597803519999985156}
    data_chunked = [{"x1": x1[:10], "x2": x2[:10], "x3": x3[:10]},
                    {"x1": x1[10:], "x2": x2[10:], "x3": x3[10:]}]
    builder = incr_dbuilder("te(cr(x1, df=3), cr(x2, df=3), cc(x3, df=3)) - 1",
                            lambda: iter(data_chunked))
    design_matrix = build_design_matrices([builder], new_data)[0]
    assert np.allclose(design_matrix, design_matrix_R, rtol=1e-12, atol=0.)