/usr/lib/python2.7/dist-packages/nltk/util.py is in python-nltk 3.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 | # Natural Language Toolkit: Utility functions
#
# Copyright (C) 2001-2016 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
from __future__ import print_function
import locale
import re
import types
import textwrap
import pydoc
import bisect
import os
from itertools import islice, chain, combinations
from pprint import pprint
from collections import defaultdict, deque
from sys import version_info
from nltk.internals import slice_bounds, raise_unorderable_types
from nltk.compat import (class_types, text_type, string_types, total_ordering,
python_2_unicode_compatible, getproxies,
ProxyHandler, build_opener, install_opener,
HTTPPasswordMgrWithDefaultRealm,
ProxyBasicAuthHandler, ProxyDigestAuthHandler)
######################################################################
# Short usage message
######################################################################
def usage(obj, selfname='self'):
import inspect
str(obj) # In case it's lazy, this will load it.
if not isinstance(obj, class_types):
obj = obj.__class__
print('%s supports the following operations:' % obj.__name__)
for (name, method) in sorted(pydoc.allmethods(obj).items()):
if name.startswith('_'): continue
if getattr(method, '__deprecated__', False): continue
args, varargs, varkw, defaults = inspect.getargspec(method)
if (args and args[0]=='self' and
(defaults is None or len(args)>len(defaults))):
args = args[1:]
name = '%s.%s' % (selfname, name)
argspec = inspect.formatargspec(
args, varargs, varkw, defaults)
print(textwrap.fill('%s%s' % (name, argspec),
initial_indent=' - ',
subsequent_indent=' '*(len(name)+5)))
##########################################################################
# IDLE
##########################################################################
def in_idle():
"""
Return True if this function is run within idle. Tkinter
programs that are run in idle should never call ``Tk.mainloop``; so
this function should be used to gate all calls to ``Tk.mainloop``.
:warning: This function works by checking ``sys.stdin``. If the
user has modified ``sys.stdin``, then it may return incorrect
results.
:rtype: bool
"""
import sys
return sys.stdin.__class__.__name__ in ('PyShell', 'RPCProxy')
##########################################################################
# PRETTY PRINTING
##########################################################################
def pr(data, start=0, end=None):
"""
Pretty print a sequence of data items
:param data: the data stream to print
:type data: sequence or iter
:param start: the start position
:type start: int
:param end: the end position
:type end: int
"""
pprint(list(islice(data, start, end)))
def print_string(s, width=70):
"""
Pretty print a string, breaking lines on whitespace
:param s: the string to print, consisting of words and spaces
:type s: str
:param width: the display width
:type width: int
"""
print('\n'.join(textwrap.wrap(s, width=width)))
def tokenwrap(tokens, separator=" ", width=70):
"""
Pretty print a list of text tokens, breaking lines on whitespace
:param tokens: the tokens to print
:type tokens: list
:param separator: the string to use to separate tokens
:type separator: str
:param width: the display width (default=70)
:type width: int
"""
return '\n'.join(textwrap.wrap(separator.join(tokens), width=width))
##########################################################################
# Python version
##########################################################################
def py25():
return version_info[0] == 2 and version_info[1] == 5
def py26():
return version_info[0] == 2 and version_info[1] == 6
def py27():
return version_info[0] == 2 and version_info[1] == 7
##########################################################################
# Indexing
##########################################################################
class Index(defaultdict):
def __init__(self, pairs):
defaultdict.__init__(self, list)
for key, value in pairs:
self[key].append(value)
######################################################################
## Regexp display (thanks to David Mertz)
######################################################################
def re_show(regexp, string, left="{", right="}"):
"""
Return a string with markers surrounding the matched substrings.
Search str for substrings matching ``regexp`` and wrap the matches
with braces. This is convenient for learning about regular expressions.
:param regexp: The regular expression.
:type regexp: str
:param string: The string being matched.
:type string: str
:param left: The left delimiter (printed before the matched substring)
:type left: str
:param right: The right delimiter (printed after the matched substring)
:type right: str
:rtype: str
"""
print(re.compile(regexp, re.M).sub(left + r"\g<0>" + right, string.rstrip()))
##########################################################################
# READ FROM FILE OR STRING
##########################################################################
# recipe from David Mertz
def filestring(f):
if hasattr(f, 'read'):
return f.read()
elif isinstance(f, string_types):
with open(f, 'r') as infile:
return infile.read()
else:
raise ValueError("Must be called with a filename or file-like object")
##########################################################################
# Breadth-First Search
##########################################################################
def breadth_first(tree, children=iter, maxdepth=-1):
"""Traverse the nodes of a tree in breadth-first order.
(No need to check for cycles.)
The first argument should be the tree root;
children should be a function taking as argument a tree node
and returning an iterator of the node's children.
"""
queue = deque([(tree, 0)])
while queue:
node, depth = queue.popleft()
yield node
if depth != maxdepth:
try:
queue.extend((c, depth + 1) for c in children(node))
except TypeError:
pass
##########################################################################
# Guess Character Encoding
##########################################################################
# adapted from io.py in the docutils extension module (http://docutils.sourceforge.net)
# http://www.pyzine.com/Issue008/Section_Articles/article_Encodings.html
def guess_encoding(data):
"""
Given a byte string, attempt to decode it.
Tries the standard 'UTF8' and 'latin-1' encodings,
Plus several gathered from locale information.
The calling program *must* first call::
locale.setlocale(locale.LC_ALL, '')
If successful it returns ``(decoded_unicode, successful_encoding)``.
If unsuccessful it raises a ``UnicodeError``.
"""
successful_encoding = None
# we make 'utf-8' the first encoding
encodings = ['utf-8']
#
# next we add anything we can learn from the locale
try:
encodings.append(locale.nl_langinfo(locale.CODESET))
except AttributeError:
pass
try:
encodings.append(locale.getlocale()[1])
except (AttributeError, IndexError):
pass
try:
encodings.append(locale.getdefaultlocale()[1])
except (AttributeError, IndexError):
pass
#
# we try 'latin-1' last
encodings.append('latin-1')
for enc in encodings:
# some of the locale calls
# may have returned None
if not enc:
continue
try:
decoded = text_type(data, enc)
successful_encoding = enc
except (UnicodeError, LookupError):
pass
else:
break
if not successful_encoding:
raise UnicodeError(
'Unable to decode input data. Tried the following encodings: %s.'
% ', '.join([repr(enc) for enc in encodings if enc]))
else:
return (decoded, successful_encoding)
##########################################################################
# Remove repeated elements from a list deterministcally
##########################################################################
def unique_list(xs):
seen = set()
# not seen.add(x) here acts to make the code shorter without using if statements, seen.add(x) always returns None.
return [x for x in xs if x not in seen and not seen.add(x)]
##########################################################################
# Invert a dictionary
##########################################################################
def invert_dict(d):
inverted_dict = defaultdict(list)
for key in d:
if hasattr(d[key], '__iter__'):
for term in d[key]:
inverted_dict[term].append(key)
else:
inverted_dict[d[key]] = key
return inverted_dict
##########################################################################
# Utilities for directed graphs: transitive closure, and inversion
# The graph is represented as a dictionary of sets
##########################################################################
def transitive_closure(graph, reflexive=False):
"""
Calculate the transitive closure of a directed graph,
optionally the reflexive transitive closure.
The algorithm is a slight modification of the "Marking Algorithm" of
Ioannidis & Ramakrishnan (1998) "Efficient Transitive Closure Algorithms".
:param graph: the initial graph, represented as a dictionary of sets
:type graph: dict(set)
:param reflexive: if set, also make the closure reflexive
:type reflexive: bool
:rtype: dict(set)
"""
if reflexive:
base_set = lambda k: set([k])
else:
base_set = lambda k: set()
# The graph U_i in the article:
agenda_graph = dict((k, graph[k].copy()) for k in graph)
# The graph M_i in the article:
closure_graph = dict((k, base_set(k)) for k in graph)
for i in graph:
agenda = agenda_graph[i]
closure = closure_graph[i]
while agenda:
j = agenda.pop()
closure.add(j)
closure |= closure_graph.setdefault(j, base_set(j))
agenda |= agenda_graph.get(j, base_set(j))
agenda -= closure
return closure_graph
def invert_graph(graph):
"""
Inverts a directed graph.
:param graph: the graph, represented as a dictionary of sets
:type graph: dict(set)
:return: the inverted graph
:rtype: dict(set)
"""
inverted = {}
for key in graph:
for value in graph[key]:
inverted.setdefault(value, set()).add(key)
return inverted
##########################################################################
# HTML Cleaning
##########################################################################
def clean_html(html):
raise NotImplementedError ("To remove HTML markup, use BeautifulSoup's get_text() function")
def clean_url(url):
raise NotImplementedError ("To remove HTML markup, use BeautifulSoup's get_text() function")
##########################################################################
# FLATTEN LISTS
##########################################################################
def flatten(*args):
"""
Flatten a list.
>>> from nltk.util import flatten
>>> flatten(1, 2, ['b', 'a' , ['c', 'd']], 3)
[1, 2, 'b', 'a', 'c', 'd', 3]
:param args: items and lists to be combined into a single list
:rtype: list
"""
x = []
for l in args:
if not isinstance(l, (list, tuple)): l = [l]
for item in l:
if isinstance(item, (list, tuple)):
x.extend(flatten(item))
else:
x.append(item)
return x
##########################################################################
# Ngram iteration
##########################################################################
def pad_sequence(sequence, n, pad_left=False, pad_right=False,
left_pad_symbol=None, right_pad_symbol=None):
"""
Returns a padded sequence of items before ngram extraction.
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
['<s>', 1, 2, 3, 4, 5, '</s>']
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
['<s>', 1, 2, 3, 4, 5]
>>> list(pad_sequence([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
[1, 2, 3, 4, 5, '</s>']
:param sequence: the source data to be padded
:type sequence: sequence or iter
:param n: the degree of the ngrams
:type n: int
:param pad_left: whether the ngrams should be left-padded
:type pad_left: bool
:param pad_right: whether the ngrams should be right-padded
:type pad_right: bool
:param left_pad_symbol: the symbol to use for left padding (default is None)
:type left_pad_symbol: any
:param right_pad_symbol: the symbol to use for right padding (default is None)
:type right_pad_symbol: any
:rtype: sequence or iter
"""
sequence = iter(sequence)
if pad_left:
sequence = chain((left_pad_symbol,) * (n-1), sequence)
if pad_right:
sequence = chain(sequence, (right_pad_symbol,) * (n-1))
return sequence
# add a flag to pad the sequence so we get peripheral ngrams?
def ngrams(sequence, n, pad_left=False, pad_right=False,
left_pad_symbol=None, right_pad_symbol=None):
"""
Return the ngrams generated from a sequence of items, as an iterator.
For example:
>>> from nltk.util import ngrams
>>> list(ngrams([1,2,3,4,5], 3))
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
Use ngrams for a list version of this function. Set pad_left
or pad_right to true in order to get additional ngrams:
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
[(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
[(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)]
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
:param sequence: the source data to be converted into ngrams
:type sequence: sequence or iter
:param n: the degree of the ngrams
:type n: int
:param pad_left: whether the ngrams should be left-padded
:type pad_left: bool
:param pad_right: whether the ngrams should be right-padded
:type pad_right: bool
:param left_pad_symbol: the symbol to use for left padding (default is None)
:type left_pad_symbol: any
:param right_pad_symbol: the symbol to use for right padding (default is None)
:type right_pad_symbol: any
:rtype: sequence or iter
"""
sequence = pad_sequence(sequence, n, pad_left, pad_right,
left_pad_symbol, right_pad_symbol)
history = []
while n > 1:
history.append(next(sequence))
n -= 1
for item in sequence:
history.append(item)
yield tuple(history)
del history[0]
def bigrams(sequence, **kwargs):
"""
Return the bigrams generated from a sequence of items, as an iterator.
For example:
>>> from nltk.util import bigrams
>>> list(bigrams([1,2,3,4,5]))
[(1, 2), (2, 3), (3, 4), (4, 5)]
Use bigrams for a list version of this function.
:param sequence: the source data to be converted into bigrams
:type sequence: sequence or iter
:rtype: iter(tuple)
"""
for item in ngrams(sequence, 2, **kwargs):
yield item
def trigrams(sequence, **kwargs):
"""
Return the trigrams generated from a sequence of items, as an iterator.
For example:
>>> from nltk.util import trigrams
>>> list(trigrams([1,2,3,4,5]))
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
Use trigrams for a list version of this function.
:param sequence: the source data to be converted into trigrams
:type sequence: sequence or iter
:rtype: iter(tuple)
"""
for item in ngrams(sequence, 3, **kwargs):
yield item
def everygrams(sequence, min_len=1, max_len=-1, **kwargs):
"""
Returns all possible ngrams generated from a sequence of items, as an iterator.
>>> sent = 'a b c'.split()
>>> list(everygrams(sent))
[('a',), ('b',), ('c',), ('a', 'b'), ('b', 'c'), ('a', 'b', 'c')]
>>> list(everygrams(sent, max_len=2))
[('a',), ('b',), ('c',), ('a', 'b'), ('b', 'c')]
:param sequence: the source data to be converted into trigrams
:type sequence: sequence or iter
:param min_len: minimum length of the ngrams, aka. n-gram order/degree of ngram
:type min_len: int
:param max_len: maximum length of the ngrams (set to length of sequence by default)
:type max_len: int
:rtype: iter(tuple)
"""
if max_len == -1:
max_len = len(sequence)
for n in range(min_len, max_len+1):
for ng in ngrams(sequence, n, **kwargs):
yield ng
def skipgrams(sequence, n, k, **kwargs):
"""
Returns all possible skipgrams generated from a sequence of items, as an iterator.
Skipgrams are ngrams that allows tokens to be skipped.
Refer to http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf
>>> sent = "Insurgents killed in ongoing fighting".split()
>>> list(skipgrams(sent, 2, 2))
[('Insurgents', 'killed'), ('Insurgents', 'in'), ('Insurgents', 'ongoing'), ('killed', 'in'), ('killed', 'ongoing'), ('killed', 'fighting'), ('in', 'ongoing'), ('in', 'fighting'), ('ongoing', 'fighting')]
>>> list(skipgrams(sent, 3, 2))
[('Insurgents', 'killed', 'in'), ('Insurgents', 'killed', 'ongoing'), ('Insurgents', 'killed', 'fighting'), ('Insurgents', 'in', 'ongoing'), ('Insurgents', 'in', 'fighting'), ('Insurgents', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing'), ('killed', 'in', 'fighting'), ('killed', 'ongoing', 'fighting'), ('in', 'ongoing', 'fighting')]
:param sequence: the source data to be converted into trigrams
:type sequence: sequence or iter
:param n: the degree of the ngrams
:type n: int
:param k: the skip distance
:type k: int
:rtype: iter(tuple)
"""
# Pads the sequence as desired by **kwargs.
if 'pad_left' in kwargs or 'pad_right' in kwargs:
sequence = pad_sequence(sequence, n, **kwargs)
# Note when iterating through the ngrams, the pad_right here is not
# the **kwargs padding, it's for the algorithm to detect the SENTINEL
# object on the right pad to stop inner loop.
SENTINEL = object()
for ngram in ngrams(sequence, n + k, pad_right=True, right_pad_symbol=SENTINEL):
head = ngram[:1]
tail = ngram[1:]
for skip_tail in combinations(tail, n - 1):
if skip_tail[-1] is SENTINEL:
continue
yield head + skip_tail
##########################################################################
# Ordered Dictionary
##########################################################################
class OrderedDict(dict):
def __init__(self, data=None, **kwargs):
self._keys = self.keys(data, kwargs.get('keys'))
self._default_factory = kwargs.get('default_factory')
if data is None:
dict.__init__(self)
else:
dict.__init__(self, data)
def __delitem__(self, key):
dict.__delitem__(self, key)
self._keys.remove(key)
def __getitem__(self, key):
try:
return dict.__getitem__(self, key)
except KeyError:
return self.__missing__(key)
def __iter__(self):
return (key for key in self.keys())
def __missing__(self, key):
if not self._default_factory and key not in self._keys:
raise KeyError()
return self._default_factory()
def __setitem__(self, key, item):
dict.__setitem__(self, key, item)
if key not in self._keys:
self._keys.append(key)
def clear(self):
dict.clear(self)
self._keys.clear()
def copy(self):
d = dict.copy(self)
d._keys = self._keys
return d
def items(self):
# returns iterator under python 3 and list under python 2
return zip(self.keys(), self.values())
def keys(self, data=None, keys=None):
if data:
if keys:
assert isinstance(keys, list)
assert len(data) == len(keys)
return keys
else:
assert isinstance(data, dict) or \
isinstance(data, OrderedDict) or \
isinstance(data, list)
if isinstance(data, dict) or isinstance(data, OrderedDict):
return data.keys()
elif isinstance(data, list):
return [key for (key, value) in data]
elif '_keys' in self.__dict__:
return self._keys
else:
return []
def popitem(self):
if not self._keys:
raise KeyError()
key = self._keys.pop()
value = self[key]
del self[key]
return (key, value)
def setdefault(self, key, failobj=None):
dict.setdefault(self, key, failobj)
if key not in self._keys:
self._keys.append(key)
def update(self, data):
dict.update(self, data)
for key in self.keys(data):
if key not in self._keys:
self._keys.append(key)
def values(self):
# returns iterator under python 3
return map(self.get, self._keys)
######################################################################
# Lazy Sequences
######################################################################
@total_ordering
@python_2_unicode_compatible
class AbstractLazySequence(object):
"""
An abstract base class for read-only sequences whose values are
computed as needed. Lazy sequences act like tuples -- they can be
indexed, sliced, and iterated over; but they may not be modified.
The most common application of lazy sequences in NLTK is for
corpus view objects, which provide access to the contents of a
corpus without loading the entire corpus into memory, by loading
pieces of the corpus from disk as needed.
The result of modifying a mutable element of a lazy sequence is
undefined. In particular, the modifications made to the element
may or may not persist, depending on whether and when the lazy
sequence caches that element's value or reconstructs it from
scratch.
Subclasses are required to define two methods: ``__len__()``
and ``iterate_from()``.
"""
def __len__(self):
"""
Return the number of tokens in the corpus file underlying this
corpus view.
"""
raise NotImplementedError('should be implemented by subclass')
def iterate_from(self, start):
"""
Return an iterator that generates the tokens in the corpus
file underlying this corpus view, starting at the token number
``start``. If ``start>=len(self)``, then this iterator will
generate no tokens.
"""
raise NotImplementedError('should be implemented by subclass')
def __getitem__(self, i):
"""
Return the *i* th token in the corpus file underlying this
corpus view. Negative indices and spans are both supported.
"""
if isinstance(i, slice):
start, stop = slice_bounds(self, i)
return LazySubsequence(self, start, stop)
else:
# Handle negative indices
if i < 0: i += len(self)
if i < 0: raise IndexError('index out of range')
# Use iterate_from to extract it.
try:
return next(self.iterate_from(i))
except StopIteration:
raise IndexError('index out of range')
def __iter__(self):
"""Return an iterator that generates the tokens in the corpus
file underlying this corpus view."""
return self.iterate_from(0)
def count(self, value):
"""Return the number of times this list contains ``value``."""
return sum(1 for elt in self if elt==value)
def index(self, value, start=None, stop=None):
"""Return the index of the first occurrence of ``value`` in this
list that is greater than or equal to ``start`` and less than
``stop``. Negative start and stop values are treated like negative
slice bounds -- i.e., they count from the end of the list."""
start, stop = slice_bounds(self, slice(start, stop))
for i, elt in enumerate(islice(self, start, stop)):
if elt == value: return i+start
raise ValueError('index(x): x not in list')
def __contains__(self, value):
"""Return true if this list contains ``value``."""
return bool(self.count(value))
def __add__(self, other):
"""Return a list concatenating self with other."""
return LazyConcatenation([self, other])
def __radd__(self, other):
"""Return a list concatenating other with self."""
return LazyConcatenation([other, self])
def __mul__(self, count):
"""Return a list concatenating self with itself ``count`` times."""
return LazyConcatenation([self] * count)
def __rmul__(self, count):
"""Return a list concatenating self with itself ``count`` times."""
return LazyConcatenation([self] * count)
_MAX_REPR_SIZE = 60
def __repr__(self):
"""
Return a string representation for this corpus view that is
similar to a list's representation; but if it would be more
than 60 characters long, it is truncated.
"""
pieces = []
length = 5
for elt in self:
pieces.append(repr(elt))
length += len(pieces[-1]) + 2
if length > self._MAX_REPR_SIZE and len(pieces) > 2:
return '[%s, ...]' % text_type(', ').join(pieces[:-1])
else:
return '[%s]' % text_type(', ').join(pieces)
def __eq__(self, other):
return (type(self) == type(other) and list(self) == list(other))
def __ne__(self, other):
return not self == other
def __lt__(self, other):
if type(other) != type(self):
raise_unorderable_types("<", self, other)
return list(self) < list(other)
def __hash__(self):
"""
:raise ValueError: Corpus view objects are unhashable.
"""
raise ValueError('%s objects are unhashable' %
self.__class__.__name__)
class LazySubsequence(AbstractLazySequence):
"""
A subsequence produced by slicing a lazy sequence. This slice
keeps a reference to its source sequence, and generates its values
by looking them up in the source sequence.
"""
MIN_SIZE = 100
"""
The minimum size for which lazy slices should be created. If
``LazySubsequence()`` is called with a subsequence that is
shorter than ``MIN_SIZE``, then a tuple will be returned instead.
"""
def __new__(cls, source, start, stop):
"""
Construct a new slice from a given underlying sequence. The
``start`` and ``stop`` indices should be absolute indices --
i.e., they should not be negative (for indexing from the back
of a list) or greater than the length of ``source``.
"""
# If the slice is small enough, just use a tuple.
if stop-start < cls.MIN_SIZE:
return list(islice(source.iterate_from(start), stop-start))
else:
return object.__new__(cls)
def __init__(self, source, start, stop):
self._source = source
self._start = start
self._stop = stop
def __len__(self):
return self._stop - self._start
def iterate_from(self, start):
return islice(self._source.iterate_from(start+self._start),
max(0, len(self)-start))
class LazyConcatenation(AbstractLazySequence):
"""
A lazy sequence formed by concatenating a list of lists. This
underlying list of lists may itself be lazy. ``LazyConcatenation``
maintains an index that it uses to keep track of the relationship
between offsets in the concatenated lists and offsets in the
sublists.
"""
def __init__(self, list_of_lists):
self._list = list_of_lists
self._offsets = [0]
def __len__(self):
if len(self._offsets) <= len(self._list):
for tok in self.iterate_from(self._offsets[-1]): pass
return self._offsets[-1]
def iterate_from(self, start_index):
if start_index < self._offsets[-1]:
sublist_index = bisect.bisect_right(self._offsets, start_index)-1
else:
sublist_index = len(self._offsets)-1
index = self._offsets[sublist_index]
# Construct an iterator over the sublists.
if isinstance(self._list, AbstractLazySequence):
sublist_iter = self._list.iterate_from(sublist_index)
else:
sublist_iter = islice(self._list, sublist_index, None)
for sublist in sublist_iter:
if sublist_index == (len(self._offsets)-1):
assert index+len(sublist) >= self._offsets[-1], (
'offests not monotonic increasing!')
self._offsets.append(index+len(sublist))
else:
assert self._offsets[sublist_index+1] == index+len(sublist), (
'inconsistent list value (num elts)')
for value in sublist[max(0, start_index-index):]:
yield value
index += len(sublist)
sublist_index += 1
class LazyMap(AbstractLazySequence):
"""
A lazy sequence whose elements are formed by applying a given
function to each element in one or more underlying lists. The
function is applied lazily -- i.e., when you read a value from the
list, ``LazyMap`` will calculate that value by applying its
function to the underlying lists' value(s). ``LazyMap`` is
essentially a lazy version of the Python primitive function
``map``. In particular, the following two expressions are
equivalent:
>>> from nltk.util import LazyMap
>>> function = str
>>> sequence = [1,2,3]
>>> map(function, sequence) # doctest: +SKIP
['1', '2', '3']
>>> list(LazyMap(function, sequence))
['1', '2', '3']
Like the Python ``map`` primitive, if the source lists do not have
equal size, then the value None will be supplied for the
'missing' elements.
Lazy maps can be useful for conserving memory, in cases where
individual values take up a lot of space. This is especially true
if the underlying list's values are constructed lazily, as is the
case with many corpus readers.
A typical example of a use case for this class is performing
feature detection on the tokens in a corpus. Since featuresets
are encoded as dictionaries, which can take up a lot of memory,
using a ``LazyMap`` can significantly reduce memory usage when
training and running classifiers.
"""
def __init__(self, function, *lists, **config):
"""
:param function: The function that should be applied to
elements of ``lists``. It should take as many arguments
as there are ``lists``.
:param lists: The underlying lists.
:param cache_size: Determines the size of the cache used
by this lazy map. (default=5)
"""
if not lists:
raise TypeError('LazyMap requires at least two args')
self._lists = lists
self._func = function
self._cache_size = config.get('cache_size', 5)
self._cache = ({} if self._cache_size > 0 else None)
# If you just take bool() of sum() here _all_lazy will be true just
# in case n >= 1 list is an AbstractLazySequence. Presumably this
# isn't what's intended.
self._all_lazy = sum(isinstance(lst, AbstractLazySequence)
for lst in lists) == len(lists)
def iterate_from(self, index):
# Special case: one lazy sublist
if len(self._lists) == 1 and self._all_lazy:
for value in self._lists[0].iterate_from(index):
yield self._func(value)
return
# Special case: one non-lazy sublist
elif len(self._lists) == 1:
while True:
try: yield self._func(self._lists[0][index])
except IndexError: return
index += 1
# Special case: n lazy sublists
elif self._all_lazy:
iterators = [lst.iterate_from(index) for lst in self._lists]
while True:
elements = []
for iterator in iterators:
try: elements.append(next(iterator))
except: elements.append(None)
if elements == [None] * len(self._lists):
return
yield self._func(*elements)
index += 1
# general case
else:
while True:
try: elements = [lst[index] for lst in self._lists]
except IndexError:
elements = [None] * len(self._lists)
for i, lst in enumerate(self._lists):
try: elements[i] = lst[index]
except IndexError: pass
if elements == [None] * len(self._lists):
return
yield self._func(*elements)
index += 1
def __getitem__(self, index):
if isinstance(index, slice):
sliced_lists = [lst[index] for lst in self._lists]
return LazyMap(self._func, *sliced_lists)
else:
# Handle negative indices
if index < 0: index += len(self)
if index < 0: raise IndexError('index out of range')
# Check the cache
if self._cache is not None and index in self._cache:
return self._cache[index]
# Calculate the value
try: val = next(self.iterate_from(index))
except StopIteration:
raise IndexError('index out of range')
# Update the cache
if self._cache is not None:
if len(self._cache) > self._cache_size:
self._cache.popitem() # discard random entry
self._cache[index] = val
# Return the value
return val
def __len__(self):
return max(len(lst) for lst in self._lists)
class LazyZip(LazyMap):
"""
A lazy sequence whose elements are tuples, each containing the i-th
element from each of the argument sequences. The returned list is
truncated in length to the length of the shortest argument sequence. The
tuples are constructed lazily -- i.e., when you read a value from the
list, ``LazyZip`` will calculate that value by forming a tuple from
the i-th element of each of the argument sequences.
``LazyZip`` is essentially a lazy version of the Python primitive function
``zip``. In particular, an evaluated LazyZip is equivalent to a zip:
>>> from nltk.util import LazyZip
>>> sequence1, sequence2 = [1, 2, 3], ['a', 'b', 'c']
>>> zip(sequence1, sequence2) # doctest: +SKIP
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> list(LazyZip(sequence1, sequence2))
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> sequences = [sequence1, sequence2, [6,7,8,9]]
>>> list(zip(*sequences)) == list(LazyZip(*sequences))
True
Lazy zips can be useful for conserving memory in cases where the argument
sequences are particularly long.
A typical example of a use case for this class is combining long sequences
of gold standard and predicted values in a classification or tagging task
in order to calculate accuracy. By constructing tuples lazily and
avoiding the creation of an additional long sequence, memory usage can be
significantly reduced.
"""
def __init__(self, *lists):
"""
:param lists: the underlying lists
:type lists: list(list)
"""
LazyMap.__init__(self, lambda *elts: elts, *lists)
def iterate_from(self, index):
iterator = LazyMap.iterate_from(self, index)
while index < len(self):
yield next(iterator)
index += 1
return
def __len__(self):
return min(len(lst) for lst in self._lists)
class LazyEnumerate(LazyZip):
"""
A lazy sequence whose elements are tuples, each ontaining a count (from
zero) and a value yielded by underlying sequence. ``LazyEnumerate`` is
useful for obtaining an indexed list. The tuples are constructed lazily
-- i.e., when you read a value from the list, ``LazyEnumerate`` will
calculate that value by forming a tuple from the count of the i-th
element and the i-th element of the underlying sequence.
``LazyEnumerate`` is essentially a lazy version of the Python primitive
function ``enumerate``. In particular, the following two expressions are
equivalent:
>>> from nltk.util import LazyEnumerate
>>> sequence = ['first', 'second', 'third']
>>> list(enumerate(sequence))
[(0, 'first'), (1, 'second'), (2, 'third')]
>>> list(LazyEnumerate(sequence))
[(0, 'first'), (1, 'second'), (2, 'third')]
Lazy enumerations can be useful for conserving memory in cases where the
argument sequences are particularly long.
A typical example of a use case for this class is obtaining an indexed
list for a long sequence of values. By constructing tuples lazily and
avoiding the creation of an additional long sequence, memory usage can be
significantly reduced.
"""
def __init__(self, lst):
"""
:param lst: the underlying list
:type lst: list
"""
LazyZip.__init__(self, range(len(lst)), lst)
######################################################################
# Binary Search in a File
######################################################################
# inherited from pywordnet, by Oliver Steele
def binary_search_file(file, key, cache={}, cacheDepth=-1):
"""
Return the line from the file with first word key.
Searches through a sorted file using the binary search algorithm.
:type file: file
:param file: the file to be searched through.
:type key: str
:param key: the identifier we are searching for.
"""
key = key + ' '
keylen = len(key)
start = 0
currentDepth = 0
if hasattr(file, 'name'):
end = os.stat(file.name).st_size - 1
else:
file.seek(0, 2)
end = file.tell() - 1
file.seek(0)
while start < end:
lastState = start, end
middle = (start + end) // 2
if cache.get(middle):
offset, line = cache[middle]
else:
line = ""
while True:
file.seek(max(0, middle - 1))
if middle > 0:
file.readline()
offset = file.tell()
line = file.readline()
if line != "": break
# at EOF; try to find start of the last line
middle = (start + middle)//2
if middle == end -1:
return None
if currentDepth < cacheDepth:
cache[middle] = (offset, line)
if offset > end:
assert end != middle - 1, "infinite loop"
end = middle - 1
elif line[:keylen] == key:
return line
elif line > key:
assert end != middle - 1, "infinite loop"
end = middle - 1
elif line < key:
start = offset + len(line) - 1
currentDepth += 1
thisState = start, end
if lastState == thisState:
# Detects the condition where we're searching past the end
# of the file, which is otherwise difficult to detect
return None
return None
######################################################################
# Proxy configuration
######################################################################
def set_proxy(proxy, user=None, password=''):
"""
Set the HTTP proxy for Python to download through.
If ``proxy`` is None then tries to set proxy from environment or system
settings.
:param proxy: The HTTP proxy server to use. For example:
'http://proxy.example.com:3128/'
:param user: The username to authenticate with. Use None to disable
authentication.
:param password: The password to authenticate with.
"""
from nltk import compat
if proxy is None:
# Try and find the system proxy settings
try:
proxy = getproxies()['http']
except KeyError:
raise ValueError('Could not detect default proxy settings')
# Set up the proxy handler
proxy_handler = ProxyHandler({'http': proxy})
opener = build_opener(proxy_handler)
if user is not None:
# Set up basic proxy authentication if provided
password_manager = HTTPPasswordMgrWithDefaultRealm()
password_manager.add_password(realm=None, uri=proxy, user=user,
passwd=password)
opener.add_handler(ProxyBasicAuthHandler(password_manager))
opener.add_handler(ProxyDigestAuthHandler(password_manager))
# Overide the existing url opener
install_opener(opener)
######################################################################
# ElementTree pretty printing from http://www.effbot.org/zone/element-lib.htm
######################################################################
def elementtree_indent(elem, level=0):
"""
Recursive function to indent an ElementTree._ElementInterface
used for pretty printing. Run indent on elem and then output
in the normal way.
:param elem: element to be indented. will be modified.
:type elem: ElementTree._ElementInterface
:param level: level of indentation for this element
:type level: nonnegative integer
:rtype: ElementTree._ElementInterface
:return: Contents of elem indented to reflect its structure
"""
i = "\n" + level*" "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
for elem in elem:
elementtree_indent(elem, level+1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
######################################################################
# Mathematical approximations
######################################################################
def choose(n, k):
"""
This function is a fast way to calculate binomial coefficients, commonly
known as nCk, i.e. the number of combinations of n things taken k at a time.
(https://en.wikipedia.org/wiki/Binomial_coefficient).
This is the *scipy.special.comb()* with long integer computation but this
approximation is faster, see https://github.com/nltk/nltk/issues/1181
>>> choose(4, 2)
6
>>> choose(6, 2)
15
:param n: The number of things.
:type n: int
:param r: The number of times a thing is taken.
:type r: int
"""
if 0 <= k <= n:
ntok, ktok = 1, 1
for t in range(1, min(k, n - k) + 1):
ntok *= n
ktok *= t
n -= 1
return ntok // ktok
else:
return 0
######################################################################
# Trie Implementation
######################################################################
class Trie(defaultdict):
"""A Trie implementation for strings"""
LEAF = True
def __init__(self, strings=None):
"""Builds a Trie object, which is built around a ``defaultdict``
If ``strings`` is provided, it will add the ``strings``, which
consist of a ``list`` of ``strings``, to the Trie.
Otherwise, it'll construct an empty Trie.
:param strings: List of strings to insert into the trie
(Default is ``None``)
:type strings: list(str)
"""
defaultdict.__init__(self, Trie)
if strings:
for string in strings:
self.insert(string)
def insert(self, string):
"""Inserts ``string`` into the Trie
:param string: String to insert into the trie
:type string: str
:Example:
>>> from nltk.util import Trie
>>> trie = Trie(["ab"])
>>> trie
defaultdict(<class 'nltk.util.Trie'>, {'a': defaultdict(<class 'nltk.util.Trie'>, {'b': defaultdict(<class 'nltk.util.Trie'>, {True: None})})})
"""
if len(string):
self[string[0]].insert(string[1:])
else:
# mark the string is complete
self[Trie.LEAF] = None
def __str__(self):
return str(self.as_dict())
def as_dict(self, d=None):
"""Convert ``defaultdict`` to common ``dict`` representation.
:param: A defaultdict containing strings mapped to nested defaultdicts.
This is the structure of the trie. (Default is None)
:type: defaultdict(str -> defaultdict)
:return: Even though ``defaultdict`` is a subclass of ``dict`` and thus
can be converted to a simple ``dict`` using ``dict()``, in our case
it's a nested ``defaultdict``, so here's a quick trick to provide to
us the ``dict`` representation of the ``Trie`` without
``defaultdict(<class 'nltk.util.Trie'>, ...``
:rtype: dict(str -> dict(bool -> None))
Note: there can be an arbitrarily deeply nested
``dict(str -> dict(str -> dict(..))``, but the last
level will have ``dict(str -> dict(bool -> None))``
:Example:
>>> from nltk.util import Trie
>>> trie = Trie(["abc", "def"])
>>> expected = {'a': {'b': {'c': {True: None}}}, 'd': {'e': {'f': {True: None}}}}
>>> trie.as_dict() == expected
True
"""
def _default_to_regular(d):
"""
Source: http://stackoverflow.com/a/26496899/4760801
:param d: Nested ``defaultdict`` to convert to regular ``dict``
:type d: defaultdict(str -> defaultdict(...))
:return: A dict representation of the defaultdict
:rtype: dict(str -> dict(str -> ...))
:Example:
>>> from collections import defaultdict
>>> d = defaultdict(defaultdict)
>>> d["one"]["two"] = "three"
>>> d
defaultdict(<type 'collections.defaultdict'>, {'one': defaultdict(None, {'two': 'three'})})
>>> _default_to_regular(d)
{'one': {'two': 'three'}}
"""
if isinstance(d, defaultdict):
d = {k: _default_to_regular(v) for k, v in d.items()}
return d
return _default_to_regular(self)
|