This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/matrices/linalg.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
"""
Linear algebra
--------------

Linear equations
................

Basic linear algebra is implemented; you can for example solve the linear
equation system::

      x + 2*y = -10
    3*x + 4*y =  10

using ``lu_solve``::

    >>> from mpmath import *
    >>> mp.pretty = False
    >>> A = matrix([[1, 2], [3, 4]])
    >>> b = matrix([-10, 10])
    >>> x = lu_solve(A, b)
    >>> x
    matrix(
    [['30.0'],
     ['-20.0']])

If you don't trust the result, use ``residual`` to calculate the residual ||A*x-b||::

    >>> residual(A, x, b)
    matrix(
    [['3.46944695195361e-18'],
     ['3.46944695195361e-18']])
    >>> str(eps)
    '2.22044604925031e-16'

As you can see, the solution is quite accurate. The error is caused by the
inaccuracy of the internal floating point arithmetic. Though, it's even smaller
than the current machine epsilon, which basically means you can trust the
result.

If you need more speed, use NumPy. Or choose a faster data type using the
keyword ``force_type``::

    >>> lu_solve(A, b, force_type=float)
    matrix(
    [['30.0'],
     ['-20.0']])

``lu_solve`` accepts overdetermined systems. It is usually not possible to solve
such systems, so the residual is minimized instead. Internally this is done
using Cholesky decomposition to compute a least squares approximation. This means
that that ``lu_solve`` will square the errors. If you can't afford this, use
``qr_solve`` instead. It is twice as slow but more accurate, and it calculates
the residual automatically.


Matrix factorization
....................

The function ``lu`` computes an explicit LU factorization of a matrix::

    >>> P, L, U = lu(matrix([[0,2,3],[4,5,6],[7,8,9]]))
    >>> print(P)
    [0.0  0.0  1.0]
    [1.0  0.0  0.0]
    [0.0  1.0  0.0]
    >>> print(L)
    [              1.0                0.0  0.0]
    [              0.0                1.0  0.0]
    [0.571428571428571  0.214285714285714  1.0]
    >>> print(U)
    [7.0  8.0                9.0]
    [0.0  2.0                3.0]
    [0.0  0.0  0.214285714285714]
    >>> print(P.T*L*U)
    [0.0  2.0  3.0]
    [4.0  5.0  6.0]
    [7.0  8.0  9.0]

Interval matrices
-----------------

Matrices may contain interval elements. This allows one to perform
basic linear algebra operations such as matrix multiplication
and equation solving with rigorous error bounds::

    >>> a = iv.matrix([['0.1','0.3','1.0'],
    ...             ['7.1','5.5','4.8'],
    ...             ['3.2','4.4','5.6']], force_type=mpi)
    >>>
    >>> b = iv.matrix(['4','0.6','0.5'], force_type=mpi)
    >>> c = iv.lu_solve(a, b)
    >>> print(c)
    [   [5.2582327113062568605927528666, 5.25823271130625686059275702219]]
    [[-13.1550493962678375411635581388, -13.1550493962678375411635540152]]
    [  [7.42069154774972557628979076189, 7.42069154774972557628979190734]]
    >>> print(a*c)
    [  [3.99999999999999999999999844904, 4.00000000000000000000000155096]]
    [[0.599999999999999999999968898009, 0.600000000000000000000031763736]]
    [[0.499999999999999999999979320485, 0.500000000000000000000020679515]]
"""

# TODO:
# *implement high-level qr()
# *test unitvector
# *iterative solving

from copy import copy

from ..libmp.backend import xrange

class LinearAlgebraMethods(object):

    def LU_decomp(ctx, A, overwrite=False, use_cache=True):
        """
        LU-factorization of a n*n matrix using the Gauss algorithm.
        Returns L and U in one matrix and the pivot indices.

        Use overwrite to specify whether A will be overwritten with L and U.
        """
        if not A.rows == A.cols:
            raise ValueError('need n*n matrix')
        # get from cache if possible
        if use_cache and isinstance(A, ctx.matrix) and A._LU:
            return A._LU
        if not overwrite:
            orig = A
            A = A.copy()
        tol = ctx.absmin(ctx.mnorm(A,1) * ctx.eps) # each pivot element has to be bigger
        n = A.rows
        p = [None]*(n - 1)
        for j in xrange(n - 1):
            # pivoting, choose max(abs(reciprocal row sum)*abs(pivot element))
            biggest = 0
            for k in xrange(j, n):
                s = ctx.fsum([ctx.absmin(A[k,l]) for l in xrange(j, n)])
                if ctx.absmin(s) <= tol:
                    raise ZeroDivisionError('matrix is numerically singular')
                current = 1/s * ctx.absmin(A[k,j])
                if current > biggest: # TODO: what if equal?
                    biggest = current
                    p[j] = k
            # swap rows according to p
            ctx.swap_row(A, j, p[j])
            if ctx.absmin(A[j,j]) <= tol:
                raise ZeroDivisionError('matrix is numerically singular')
            # calculate elimination factors and add rows
            for i in xrange(j + 1, n):
                A[i,j] /= A[j,j]
                for k in xrange(j + 1, n):
                    A[i,k] -= A[i,j]*A[j,k]
        if ctx.absmin(A[n - 1,n - 1]) <= tol:
            raise ZeroDivisionError('matrix is numerically singular')
        # cache decomposition
        if not overwrite and isinstance(orig, ctx.matrix):
            orig._LU = (A, p)
        return A, p

    def L_solve(ctx, L, b, p=None):
        """
        Solve the lower part of a LU factorized matrix for y.
        """
        if L.rows != L.cols:
            raise RuntimeError("need n*n matrix")
        n = L.rows
        if len(b) != n:
            raise ValueError("Value should be equal to n")
        b = copy(b)
        if p: # swap b according to p
            for k in xrange(0, len(p)):
                ctx.swap_row(b, k, p[k])
        # solve
        for i in xrange(1, n):
            for j in xrange(i):
                b[i] -= L[i,j] * b[j]
        return b

    def U_solve(ctx, U, y):
        """
        Solve the upper part of a LU factorized matrix for x.
        """
        if U.rows != U.cols:
            raise RuntimeError("need n*n matrix")
        n = U.rows
        if len(y) != n:
            raise ValueError("Value should be equal to n")
        x = copy(y)
        for i in xrange(n - 1, -1, -1):
            for j in xrange(i + 1, n):
                x[i] -= U[i,j] * x[j]
            x[i] /= U[i,i]
        return x

    def lu_solve(ctx, A, b, **kwargs):
        """
        Ax = b => x

        Solve a determined or overdetermined linear equations system.
        Fast LU decomposition is used, which is less accurate than QR decomposition
        (especially for overdetermined systems), but it's twice as efficient.
        Use qr_solve if you want more precision or have to solve a very ill-
        conditioned system.

        If you specify real=True, it does not check for overdeterminded complex
        systems.
        """
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A nor b
            A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
            if A.rows < A.cols:
                raise ValueError('cannot solve underdetermined system')
            if A.rows > A.cols:
                # use least-squares method if overdetermined
                # (this increases errors)
                AH = A.H
                A = AH * A
                b = AH * b
                if (kwargs.get('real', False) or
                    not sum(type(i) is ctx.mpc for i in A)):
                    # TODO: necessary to check also b?
                    x = ctx.cholesky_solve(A, b)
                else:
                    x = ctx.lu_solve(A, b)
            else:
                # LU factorization
                A, p = ctx.LU_decomp(A)
                b = ctx.L_solve(A, b, p)
                x = ctx.U_solve(A, b)
        finally:
            ctx.prec = prec
        return x

    def improve_solution(ctx, A, x, b, maxsteps=1):
        """
        Improve a solution to a linear equation system iteratively.

        This re-uses the LU decomposition and is thus cheap.
        Usually 3 up to 4 iterations are giving the maximal improvement.
        """
        if A.rows != A.cols:
            raise RuntimeError("need n*n matrix") # TODO: really?
        for _ in xrange(maxsteps):
            r = ctx.residual(A, x, b)
            if ctx.norm(r, 2) < 10*ctx.eps:
                break
            # this uses cached LU decomposition and is thus cheap
            dx = ctx.lu_solve(A, -r)
            x += dx
        return x

    def lu(ctx, A):
        """
        A -> P, L, U

        LU factorisation of a square matrix A. L is the lower, U the upper part.
        P is the permutation matrix indicating the row swaps.

        P*A = L*U

        If you need efficiency, use the low-level method LU_decomp instead, it's
        much more memory efficient.
        """
        # get factorization
        A, p = ctx.LU_decomp(A)
        n = A.rows
        L = ctx.matrix(n)
        U = ctx.matrix(n)
        for i in xrange(n):
            for j in xrange(n):
                if i > j:
                    L[i,j] = A[i,j]
                elif i == j:
                    L[i,j] = 1
                    U[i,j] = A[i,j]
                else:
                    U[i,j] = A[i,j]
        # calculate permutation matrix
        P = ctx.eye(n)
        for k in xrange(len(p)):
            ctx.swap_row(P, k, p[k])
        return P, L, U

    def unitvector(ctx, n, i):
        """
        Return the i-th n-dimensional unit vector.
        """
        assert 0 < i <= n, 'this unit vector does not exist'
        return [ctx.zero]*(i-1) + [ctx.one] + [ctx.zero]*(n-i)

    def inverse(ctx, A, **kwargs):
        """
        Calculate the inverse of a matrix.

        If you want to solve an equation system Ax = b, it's recommended to use
        solve(A, b) instead, it's about 3 times more efficient.
        """
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A
            A = ctx.matrix(A, **kwargs).copy()
            n = A.rows
            # get LU factorisation
            A, p = ctx.LU_decomp(A)
            cols = []
            # calculate unit vectors and solve corresponding system to get columns
            for i in xrange(1, n + 1):
                e = ctx.unitvector(n, i)
                y = ctx.L_solve(A, e, p)
                cols.append(ctx.U_solve(A, y))
            # convert columns to matrix
            inv = []
            for i in xrange(n):
                row = []
                for j in xrange(n):
                    row.append(cols[j][i])
                inv.append(row)
            result = ctx.matrix(inv, **kwargs)
        finally:
            ctx.prec = prec
        return result

    def householder(ctx, A):
        """
        (A|b) -> H, p, x, res

        (A|b) is the coefficient matrix with left hand side of an optionally
        overdetermined linear equation system.
        H and p contain all information about the transformation matrices.
        x is the solution, res the residual.
        """
        if not isinstance(A, ctx.matrix):
            raise TypeError("A should be a type of ctx.matrix")
        m = A.rows
        n = A.cols
        if m < n - 1:
            raise RuntimeError("Columns should not be less than rows")
        # calculate Householder matrix
        p = []
        for j in xrange(0, n - 1):
            s = ctx.fsum((A[i,j])**2 for i in xrange(j, m))
            if not abs(s) > ctx.eps:
                raise ValueError('matrix is numerically singular')
            p.append(-ctx.sign(A[j,j]) * ctx.sqrt(s))
            kappa = ctx.one / (s - p[j] * A[j,j])
            A[j,j] -= p[j]
            for k in xrange(j+1, n):
                y = ctx.fsum(A[i,j] * A[i,k] for i in xrange(j, m)) * kappa
                for i in xrange(j, m):
                    A[i,k] -= A[i,j] * y
        # solve Rx = c1
        x = [A[i,n - 1] for i in xrange(n - 1)]
        for i in xrange(n - 2, -1, -1):
            x[i] -= ctx.fsum(A[i,j] * x[j] for j in xrange(i + 1, n - 1))
            x[i] /= p[i]
        # calculate residual
        if not m == n - 1:
            r = [A[m-1-i, n-1] for i in xrange(m - n + 1)]
        else:
            # determined system, residual should be 0
            r = [0]*m # maybe a bad idea, changing r[i] will change all elements
        return A, p, x, r

    #def qr(ctx, A):
    #    """
    #    A -> Q, R
    #
    #    QR factorisation of a square matrix A using Householder decomposition.
    #    Q is orthogonal, this leads to very few numerical errors.
    #
    #    A = Q*R
    #    """
    #    H, p, x, res = householder(A)
    # TODO: implement this

    def residual(ctx, A, x, b, **kwargs):
        """
        Calculate the residual of a solution to a linear equation system.

        r = A*x - b for A*x = b
        """
        oldprec = ctx.prec
        try:
            ctx.prec *= 2
            A, x, b = ctx.matrix(A, **kwargs), ctx.matrix(x, **kwargs), ctx.matrix(b, **kwargs)
            return A*x - b
        finally:
            ctx.prec = oldprec

    def qr_solve(ctx, A, b, norm=None, **kwargs):
        """
        Ax = b => x, ||Ax - b||

        Solve a determined or overdetermined linear equations system and
        calculate the norm of the residual (error).
        QR decomposition using Householder factorization is applied, which gives very
        accurate results even for ill-conditioned matrices. qr_solve is twice as
        efficient.
        """
        if norm is None:
            norm = ctx.norm
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A nor b
            A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
            if A.rows < A.cols:
                raise ValueError('cannot solve underdetermined system')
            H, p, x, r = ctx.householder(ctx.extend(A, b))
            res = ctx.norm(r)
            # calculate residual "manually" for determined systems
            if res == 0:
                res = ctx.norm(ctx.residual(A, x, b))
            return ctx.matrix(x, **kwargs), res
        finally:
            ctx.prec = prec

    def cholesky(ctx, A, tol=None):
        r"""
        Cholesky decomposition of a symmetric positive-definite matrix `A`.
        Returns a lower triangular matrix `L` such that `A = L \times L^T`.
        More generally, for a complex Hermitian positive-definite matrix,
        a Cholesky decomposition satisfying `A = L \times L^H` is returned.

        The Cholesky decomposition can be used to solve linear equation
        systems twice as efficiently as LU decomposition, or to
        test whether `A` is positive-definite.

        The optional parameter ``tol`` determines the tolerance for
        verifying positive-definiteness.

        **Examples**

        Cholesky decomposition of a positive-definite symmetric matrix::

            >>> from mpmath import *
            >>> mp.dps = 25; mp.pretty = True
            >>> A = eye(3) + hilbert(3)
            >>> nprint(A)
            [     2.0      0.5  0.333333]
            [     0.5  1.33333      0.25]
            [0.333333     0.25       1.2]
            >>> L = cholesky(A)
            >>> nprint(L)
            [ 1.41421      0.0      0.0]
            [0.353553  1.09924      0.0]
            [0.235702  0.15162  1.05899]
            >>> chop(A - L*L.T)
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]

        Cholesky decomposition of a Hermitian matrix::

            >>> A = eye(3) + matrix([[0,0.25j,-0.5j],[-0.25j,0,0],[0.5j,0,0]])
            >>> L = cholesky(A)
            >>> nprint(L)
            [          1.0                0.0                0.0]
            [(0.0 - 0.25j)  (0.968246 + 0.0j)                0.0]
            [ (0.0 + 0.5j)  (0.129099 + 0.0j)  (0.856349 + 0.0j)]
            >>> chop(A - L*L.H)
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]

        Attempted Cholesky decomposition of a matrix that is not positive
        definite::

            >>> A = -eye(3) + hilbert(3)
            >>> L = cholesky(A)
            Traceback (most recent call last):
              ...
            ValueError: matrix is not positive-definite

        **References**

        1. [Wikipedia]_ http://en.wikipedia.org/wiki/Cholesky_decomposition

        """
        if not isinstance(A, ctx.matrix):
            raise RuntimeError("A should be a type of ctx.matrix")
        if not A.rows == A.cols:
            raise ValueError('need n*n matrix')
        if tol is None:
            tol = +ctx.eps
        n = A.rows
        L = ctx.matrix(n)
        for j in xrange(n):
            c = ctx.re(A[j,j])
            if abs(c-A[j,j]) > tol:
                raise ValueError('matrix is not Hermitian')
            s = c - ctx.fsum((L[j,k] for k in xrange(j)),
                absolute=True, squared=True)
            if s < tol:
                raise ValueError('matrix is not positive-definite')
            L[j,j] = ctx.sqrt(s)
            for i in xrange(j, n):
                it1 = (L[i,k] for k in xrange(j))
                it2 = (L[j,k] for k in xrange(j))
                t = ctx.fdot(it1, it2, conjugate=True)
                L[i,j] = (A[i,j] - t) / L[j,j]
        return L

    def cholesky_solve(ctx, A, b, **kwargs):
        """
        Ax = b => x

        Solve a symmetric positive-definite linear equation system.
        This is twice as efficient as lu_solve.

        Typical use cases:
        * A.T*A
        * Hessian matrix
        * differential equations
        """
        prec = ctx.prec
        try:
            ctx.prec += 10
            # do not overwrite A nor b
            A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
            if A.rows !=  A.cols:
                raise ValueError('can only solve determined system')
            # Cholesky factorization
            L = ctx.cholesky(A)
            # solve
            n = L.rows
            if len(b) != n:
                raise ValueError("Value should be equal to n")
            for i in xrange(n):
                b[i] -= ctx.fsum(L[i,j] * b[j] for j in xrange(i))
                b[i] /= L[i,i]
            x = ctx.U_solve(L.T, b)
            return x
        finally:
            ctx.prec = prec

    def det(ctx, A):
        """
        Calculate the determinant of a matrix.
        """
        prec = ctx.prec
        try:
            # do not overwrite A
            A = ctx.matrix(A).copy()
            # use LU factorization to calculate determinant
            try:
                R, p = ctx.LU_decomp(A)
            except ZeroDivisionError:
                return 0
            z = 1
            for i, e in enumerate(p):
                if i != e:
                    z *= -1
            for i in xrange(A.rows):
                z *= R[i,i]
            return z
        finally:
            ctx.prec = prec

    def cond(ctx, A, norm=None):
        """
        Calculate the condition number of a matrix using a specified matrix norm.

        The condition number estimates the sensitivity of a matrix to errors.
        Example: small input errors for ill-conditioned coefficient matrices
        alter the solution of the system dramatically.

        For ill-conditioned matrices it's recommended to use qr_solve() instead
        of lu_solve(). This does not help with input errors however, it just avoids
        to add additional errors.

        Definition:    cond(A) = ||A|| * ||A**-1||
        """
        if norm is None:
            norm = lambda x: ctx.mnorm(x,1)
        return norm(A) * norm(ctx.inverse(A))

    def lu_solve_mat(ctx, a, b):
        """Solve a * x = b  where a and b are matrices."""
        r = ctx.matrix(a.rows, b.cols)
        for i in range(b.cols):
            c = ctx.lu_solve(a, b.column(i))
            for j in range(len(c)):
                r[j, i] = c[j]
        return r

    def qr(ctx, A, mode = 'full', edps = 10):
        """
        Compute a QR factorization $A = QR$ where
        A is an m x n matrix of real or complex numbers where m >= n

        mode has following meanings:
        (1) mode = 'raw' returns two matrixes (A, tau) in the
            internal format used by LAPACK
        (2) mode = 'skinny' returns the leading n columns of Q
            and n rows of R
        (3) Any other value returns the leading m columns of Q
            and m rows of R

        edps is the increase in mp precision used for calculations

        **Examples**

            >>> from mpmath import *
            >>> mp.dps = 15
            >>> mp.pretty = True
            >>> A = matrix([[1, 2], [3, 4], [1, 1]])
            >>> Q, R = qr(A)
            >>> Q
            [-0.301511344577764   0.861640436855329   0.408248290463863]
            [-0.904534033733291  -0.123091490979333  -0.408248290463863]
            [-0.301511344577764  -0.492365963917331   0.816496580927726]
            >>> R
            [-3.3166247903554  -4.52267016866645]
            [             0.0  0.738548945875996]
            [             0.0                0.0]
            >>> Q * R
            [1.0  2.0]
            [3.0  4.0]
            [1.0  1.0]
            >>> chop(Q.T * Q)
            [1.0  0.0  0.0]
            [0.0  1.0  0.0]
            [0.0  0.0  1.0]
            >>> B = matrix([[1+0j, 2-3j], [3+j, 4+5j]])
            >>> Q, R = qr(B)
            >>> nprint(Q)
            [     (-0.301511 + 0.0j)   (0.0695795 - 0.95092j)]
            [(-0.904534 - 0.301511j)  (-0.115966 + 0.278318j)]
            >>> nprint(R)
            [(-3.31662 + 0.0j)  (-5.72872 - 2.41209j)]
            [              0.0       (3.91965 + 0.0j)]
            >>> Q * R
            [(1.0 + 0.0j)  (2.0 - 3.0j)]
            [(3.0 + 1.0j)  (4.0 + 5.0j)]
            >>> chop(Q.T * Q.conjugate())
            [1.0  0.0]
            [0.0  1.0]

        """
        
        # check values before continuing
        assert isinstance(A, ctx.matrix)
        m = A.rows
        n = A.cols
        assert n > 1
        assert m >= n
        assert edps >= 0

        # check for complex data type
        cmplx = any(type(x) is ctx.mpc for x in A)

        # temporarily increase the precision and initialize
        with ctx.extradps(edps):
            tau = ctx.matrix(n,1)
            A = A.copy() 

            # ---------------
            # FACTOR MATRIX A 
            # ---------------
            if cmplx:
                one = ctx.mpc('1.0', '0.0')
                zero = ctx.mpc('0.0', '0.0')
                rzero = ctx.mpf('0.0')
            
                # main loop to factor A (complex) 
                for j in xrange(0, n):
                    alpha = A[j,j]
                    alphr = ctx.re(alpha)
                    alphi = ctx.im(alpha)
                
                    if (m-j) >= 2:
                        xnorm = ctx.fsum( A[i,j]*ctx.conj(A[i,j]) for i in xrange(j+1, m) )
                        xnorm = ctx.re( ctx.sqrt(xnorm) )
                    else:
                        xnorm = rzero

                    if (xnorm == rzero) and (alphi == rzero):
                        tau[j] = zero
                        continue

                    if alphr < rzero:
                        beta = ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)
                    else:
                        beta = -ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)

                    tau[j] = ctx.mpc( (beta - alphr) / beta, -alphi / beta )
                    t = -ctx.conj(tau[j])
                    za = one / (alpha - beta)
                
                    for i in xrange(j+1, m):
                        A[i,j] *= za

                    A[j,j] = one
                    for k in xrange(j+1, n):
                        y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j, m))
                        temp = t * ctx.conj(y)
                        for i in xrange(j, m):
                            A[i,k] += A[i,j] * temp

                    A[j,j] = ctx.mpc(beta, '0.0')
            else:
                one = ctx.mpf('1.0')
                zero = ctx.mpf('0.0')

                # main loop to factor A (real)
                for j in xrange(0, n):
                    alpha = A[j,j]

                    if (m-j) > 2:
                        xnorm = ctx.fsum( (A[i,j])**2 for i in xrange(j+1, m) )
                        xnorm = ctx.sqrt(xnorm)
                    elif (m-j) == 2:
                        xnorm = abs( A[m-1,j] )
                    else:
                        xnorm = zero

                    if xnorm == zero:
                        tau[j] = zero
                        continue

                    if alpha < zero:
                        beta = ctx.sqrt(alpha**2 + xnorm**2)
                    else:
                        beta = -ctx.sqrt(alpha**2 + xnorm**2)
                
                    tau[j] = (beta - alpha) / beta
                    t = -tau[j]
                    da = one / (alpha - beta)
                
                    for i in xrange(j+1, m):
                        A[i,j] *= da
                    
                    A[j,j] = one
                    for k in xrange(j+1, n):
                        y = ctx.fsum( A[i,j] * A[i,k] for i in xrange(j, m) )
                        temp = t * y
                        for i in xrange(j,m):
                            A[i,k] += A[i,j] * temp    
                        
                    A[j,j] = beta

            # return factorization in same internal format as LAPACK
            if (mode == 'raw') or (mode == 'RAW'):
                return A, tau
            
            # ----------------------------------
            # FORM Q USING BACKWARD ACCUMULATION 
            # ----------------------------------

            # form R before the values are overwritten
            R = A.copy()
            for j in xrange(0, n):
                for i in xrange(j+1, m):
                    R[i,j] = zero

            # set the value of p (number of columns of Q to return)
            p = m
            if (mode == 'skinny') or (mode == 'SKINNY'):
                p = n

            # add columns to A if needed and initialize
            A.cols += (p-n)
            for j in xrange(0, p):
                A[j,j] = one
                for i in xrange(0, j):
                    A[i,j] = zero
                
            # main loop to form Q
            for j in xrange(n-1, -1, -1):
                t = -tau[j]
                A[j,j] += t

                for k in xrange(j+1, p):
                    if cmplx:
                        y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j+1, m)) 
                        temp = t * ctx.conj(y)
                    else:
                        y = ctx.fsum(A[i,j] * A[i,k] for i in xrange(j+1, m))
                        temp = t * y               
                    A[j,k] = temp
                    for i in xrange(j+1, m):
                        A[i,k] += A[i,j] * temp
                        
                for i in xrange(j+1, m):
                    A[i, j] *= t
               
            return A, R[0:p,0:n]

        # ------------------
        # END OF FUNCTION QR
        # ------------------