This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/libmp/libelefun.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
"""
This module implements computation of elementary transcendental
functions (powers, logarithms, trigonometric and hyperbolic
functions, inverse trigonometric and hyperbolic) for real
floating-point numbers.

For complex and interval implementations of the same functions,
see libmpc and libmpi.

"""

import math
from bisect import bisect

from .backend import xrange
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND

from .libmpf import (
    round_floor, round_ceiling, round_down, round_up,
    round_nearest, round_fast,
    ComplexResult,
    bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed,
    from_int, to_int, from_man_exp, to_fixed, to_float, from_float,
    from_rational, normalize,
    fzero, fone, fnone, fhalf, finf, fninf, fnan,
    mpf_cmp, mpf_sign, mpf_abs,
    mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift,
    mpf_rdiv_int, mpf_pow_int, mpf_sqrt,
    reciprocal_rnd, negative_rnd, mpf_perturb,
    isqrt_fast
)

from .libintmath import ifib


#-------------------------------------------------------------------------------
# Tuning parameters
#-------------------------------------------------------------------------------

# Cutoff for computing exp from cosh+sinh. This reduces the
# number of terms by half, but also requires a square root which
# is expensive with the pure-Python square root code.
if BACKEND == 'python':
    EXP_COSH_CUTOFF = 600
else:
    EXP_COSH_CUTOFF = 400
# Cutoff for using more than 2 series
EXP_SERIES_U_CUTOFF = 1500

# Also basically determined by sqrt
if BACKEND == 'python':
    COS_SIN_CACHE_PREC = 400
else:
    COS_SIN_CACHE_PREC = 200
COS_SIN_CACHE_STEP = 8
cos_sin_cache = {}

# Number of integer logarithms to cache (for zeta sums)
MAX_LOG_INT_CACHE = 2000
log_int_cache = {}

LOG_TAYLOR_PREC = 2500  # Use Taylor series with caching up to this prec
LOG_TAYLOR_SHIFT = 9    # Cache log values in steps of size 2^-N
log_taylor_cache = {}
# prec/size ratio of x for fastest convergence in AGM formula
LOG_AGM_MAG_PREC_RATIO = 20

ATAN_TAYLOR_PREC = 3000  # Same as for log
ATAN_TAYLOR_SHIFT = 7   # steps of size 2^-N
atan_taylor_cache = {}


# ~= next power of two + 20
cache_prec_steps = [22,22]
for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1):
    cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1)


#----------------------------------------------------------------------------#
#                                                                            #
#                   Elementary mathematical constants                        #
#                                                                            #
#----------------------------------------------------------------------------#

def constant_memo(f):
    """
    Decorator for caching computed values of mathematical
    constants. This decorator should be applied to a
    function taking a single argument prec as input and
    returning a fixed-point value with the given precision.
    """
    f.memo_prec = -1
    f.memo_val = None
    def g(prec, **kwargs):
        memo_prec = f.memo_prec
        if prec <= memo_prec:
            return f.memo_val >> (memo_prec-prec)
        newprec = int(prec*1.05+10)
        f.memo_val = f(newprec, **kwargs)
        f.memo_prec = newprec
        return f.memo_val >> (newprec-prec)
    g.__name__ = f.__name__
    g.__doc__ = f.__doc__
    return g

def def_mpf_constant(fixed):
    """
    Create a function that computes the mpf value for a mathematical
    constant, given a function that computes the fixed-point value.

    Assumptions: the constant is positive and has magnitude ~= 1;
    the fixed-point function rounds to floor.
    """
    def f(prec, rnd=round_fast):
        wp = prec + 20
        v = fixed(wp)
        if rnd in (round_up, round_ceiling):
            v += 1
        return normalize(0, v, -wp, bitcount(v), prec, rnd)
    f.__doc__ = fixed.__doc__
    return f

def bsp_acot(q, a, b, hyperbolic):
    if b - a == 1:
        a1 = MPZ(2*a + 3)
        if hyperbolic or a&1:
            return MPZ_ONE, a1 * q**2, a1
        else:
            return -MPZ_ONE, a1 * q**2, a1
    m = (a+b)//2
    p1, q1, r1 = bsp_acot(q, a, m, hyperbolic)
    p2, q2, r2 = bsp_acot(q, m, b, hyperbolic)
    return q2*p1 + r1*p2, q1*q2, r1*r2

# the acoth(x) series converges like the geometric series for x^2
# N = ceil(p*log(2)/(2*log(x)))
def acot_fixed(a, prec, hyperbolic):
    """
    Compute acot(a) or acoth(a) for an integer a with binary splitting; see
    http://numbers.computation.free.fr/Constants/Algorithms/splitting.html
    """
    N = int(0.35 * prec/math.log(a) + 20)
    p, q, r = bsp_acot(a, 0,N, hyperbolic)
    return ((p+q)<<prec)//(q*a)

def machin(coefs, prec, hyperbolic=False):
    """
    Evaluate a Machin-like formula, i.e., a linear combination of
    acot(n) or acoth(n) for specific integer values of n, using fixed-
    point arithmetic. The input should be a list [(c, n), ...], giving
    c*acot[h](n) + ...
    """
    extraprec = 10
    s = MPZ_ZERO
    for a, b in coefs:
        s += MPZ(a) * acot_fixed(MPZ(b), prec+extraprec, hyperbolic)
    return (s >> extraprec)

# Logarithms of integers are needed for various computations involving
# logarithms, powers, radix conversion, etc

@constant_memo
def ln2_fixed(prec):
    """
    Computes ln(2). This is done with a hyperbolic Machin-type formula,
    with binary splitting at high precision.
    """
    return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True)

@constant_memo
def ln10_fixed(prec):
    """
    Computes ln(10). This is done with a hyperbolic Machin-type formula.
    """
    return machin([(46, 31), (34, 49), (20, 161)], prec, True)


"""
For computation of pi, we use the Chudnovsky series:

             oo
             ___        k
      1     \       (-1)  (6 k)! (A + B k)
    ----- =  )     -----------------------
    12 pi   /___               3  3k+3/2
                    (3 k)! (k!)  C
            k = 0

where A, B, and C are certain integer constants. This series adds roughly
14 digits per term. Note that C^(3/2) can be extracted so that the
series contains only rational terms. This makes binary splitting very
efficient.

The recurrence formulas for the binary splitting were taken from
ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c

Previously, Machin's formula was used at low precision and the AGM iteration
was used at high precision. However, the Chudnovsky series is essentially as
fast as the Machin formula at low precision and in practice about 3x faster
than the AGM at high precision (despite theoretically having a worse
asymptotic complexity), so there is no reason not to use it in all cases.

"""

# Constants in Chudnovsky's series
CHUD_A = MPZ(13591409)
CHUD_B = MPZ(545140134)
CHUD_C = MPZ(640320)
CHUD_D = MPZ(12)

def bs_chudnovsky(a, b, level, verbose):
    """
    Computes the sum from a to b of the series in the Chudnovsky
    formula. Returns g, p, q where p/q is the sum as an exact
    fraction and g is a temporary value used to save work
    for recursive calls.
    """
    if b-a == 1:
        g = MPZ((6*b-5)*(2*b-1)*(6*b-1))
        p = b**3 * CHUD_C**3 // 24
        q = (-1)**b * g * (CHUD_A+CHUD_B*b)
    else:
        if verbose and level < 4:
            print("  binary splitting", a, b)
        mid = (a+b)//2
        g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose)
        g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose)
        p = p1*p2
        g = g1*g2
        q = q1*p2 + q2*g1
    return g, p, q

@constant_memo
def pi_fixed(prec, verbose=False, verbose_base=None):
    """
    Compute floor(pi * 2**prec) as a big integer.

    This is done using Chudnovsky's series (see comments in
    libelefun.py for details).
    """
    # The Chudnovsky series gives 14.18 digits per term
    N = int(prec/3.3219280948/14.181647462 + 2)
    if verbose:
        print("binary splitting with N =", N)
    g, p, q = bs_chudnovsky(0, N, 0, verbose)
    sqrtC = isqrt_fast(CHUD_C<<(2*prec))
    v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D)
    return v

def degree_fixed(prec):
    return pi_fixed(prec)//180

def bspe(a, b):
    """
    Sum series for exp(1)-1 between a, b, returning the result
    as an exact fraction (p, q).
    """
    if b-a == 1:
        return MPZ_ONE, MPZ(b)
    m = (a+b)//2
    p1, q1 = bspe(a, m)
    p2, q2 = bspe(m, b)
    return p1*q2+p2, q1*q2

@constant_memo
def e_fixed(prec):
    """
    Computes exp(1). This is done using the ordinary Taylor series for
    exp, with binary splitting. For a description of the algorithm,
    see:

        http://numbers.computation.free.fr/Constants/
            Algorithms/splitting.html
    """
    # Slight overestimate of N needed for 1/N! < 2**(-prec)
    # This could be tightened for large N.
    N = int(1.1*prec/math.log(prec) + 20)
    p, q = bspe(0,N)
    return ((p+q)<<prec)//q

@constant_memo
def phi_fixed(prec):
    """
    Computes the golden ratio, (1+sqrt(5))/2
    """
    prec += 10
    a = isqrt_fast(MPZ_FIVE<<(2*prec)) + (MPZ_ONE << prec)
    return a >> 11

mpf_phi    = def_mpf_constant(phi_fixed)
mpf_pi     = def_mpf_constant(pi_fixed)
mpf_e      = def_mpf_constant(e_fixed)
mpf_degree = def_mpf_constant(degree_fixed)
mpf_ln2    = def_mpf_constant(ln2_fixed)
mpf_ln10   = def_mpf_constant(ln10_fixed)


@constant_memo
def ln_sqrt2pi_fixed(prec):
    wp = prec + 10
    # ln(sqrt(2*pi)) = ln(2*pi)/2
    return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1)

@constant_memo
def sqrtpi_fixed(prec):
    return sqrt_fixed(pi_fixed(prec), prec)

mpf_sqrtpi   = def_mpf_constant(sqrtpi_fixed)
mpf_ln_sqrt2pi   = def_mpf_constant(ln_sqrt2pi_fixed)


#----------------------------------------------------------------------------#
#                                                                            #
#                                    Powers                                  #
#                                                                            #
#----------------------------------------------------------------------------#

def mpf_pow(s, t, prec, rnd=round_fast):
    """
    Compute s**t. Raises ComplexResult if s is negative and t is
    fractional.
    """
    ssign, sman, sexp, sbc = s
    tsign, tman, texp, tbc = t
    if ssign and texp < 0:
        raise ComplexResult("negative number raised to a fractional power")
    if texp >= 0:
        return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd)
    # s**(n/2) = sqrt(s)**n
    if texp == -1:
        if tman == 1:
            if tsign:
                return mpf_div(fone, mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), prec, rnd)
            return mpf_sqrt(s, prec, rnd)
        else:
            if tsign:
                return mpf_pow_int(mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), -tman, prec, rnd)
            return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd)
    # General formula: s**t = exp(t*log(s))
    # TODO: handle rnd direction of the logarithm carefully
    c = mpf_log(s, prec+10, rnd)
    return mpf_exp(mpf_mul(t, c), prec, rnd)

def int_pow_fixed(y, n, prec):
    """n-th power of a fixed point number with precision prec

       Returns the power in the form man, exp,
       man * 2**exp ~= y**n
    """
    if n == 2:
        return (y*y), 0
    bc = bitcount(y)
    exp = 0
    workprec = 2 * (prec + 4*bitcount(n) + 4)
    _, pm, pe, pbc = fone
    while 1:
        if n & 1:
            pm = pm*y
            pe = pe+exp
            pbc += bc - 2
            pbc = pbc + bctable[int(pm >> pbc)]
            if pbc > workprec:
                pm = pm >> (pbc-workprec)
                pe += pbc - workprec
                pbc = workprec
            n -= 1
            if not n:
                break
        y = y*y
        exp = exp+exp
        bc = bc + bc - 2
        bc = bc + bctable[int(y >> bc)]
        if bc > workprec:
            y = y >> (bc-workprec)
            exp += bc - workprec
            bc = workprec
        n = n // 2
    return pm, pe

# froot(s, n, prec, rnd) computes the real n-th root of a
# positive mpf tuple s.
# To compute the root we start from a 50-bit estimate for r
# generated with ordinary floating-point arithmetic, and then refine
# the value to full accuracy using the iteration

#            1  /                     y       \
#   r     = --- | (n-1)  * r   +  ----------  |
#    n+1     n  \           n     r_n**(n-1)  /

# which is simply Newton's method applied to the equation r**n = y.
# With giant_steps(start, prec+extra) = [p0,...,pm, prec+extra]
# and y = man * 2**-shift  one has
# (man * 2**exp)**(1/n) =
# y**(1/n) * 2**(start-prec/n) * 2**(p0-start) * ... * 2**(prec+extra-pm) *
# 2**((exp+shift-(n-1)*prec)/n -extra))
# The last factor is accounted for in the last line of froot.

def nthroot_fixed(y, n, prec, exp1):
    start = 50
    try:
        y1 = rshift(y, prec - n*start)
        r = MPZ(int(y1**(1.0/n)))
    except OverflowError:
        y1 = from_int(y1, start)
        fn = from_int(n)
        fn = mpf_rdiv_int(1, fn, start)
        r = mpf_pow(y1, fn, start)
        r = to_int(r)
    extra = 10
    extra1 = n
    prevp = start
    for p in giant_steps(start, prec+extra):
        pm, pe = int_pow_fixed(r, n-1, prevp)
        r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
        B = lshift(y, 2*p-prec+extra1)//r2
        r = (B + (n-1) * lshift(r, p-prevp))//n
        prevp = p
    return r

def mpf_nthroot(s, n, prec, rnd=round_fast):
    """nth-root of a positive number

    Use the Newton method when faster, otherwise use x**(1/n)
    """
    sign, man, exp, bc = s
    if sign:
        raise ComplexResult("nth root of a negative number")
    if not man:
        if s == fnan:
            return fnan
        if s == fzero:
            if n > 0:
                return fzero
            if n == 0:
                return fone
            return finf
        # Infinity
        if not n:
            return fnan
        if n < 0:
            return fzero
        return finf
    flag_inverse = False
    if n < 2:
        if n == 0:
            return fone
        if n == 1:
            return mpf_pos(s, prec, rnd)
        if n == -1:
            return mpf_div(fone, s, prec, rnd)
        # n < 0
        rnd = reciprocal_rnd[rnd]
        flag_inverse = True
        extra_inverse = 5
        prec += extra_inverse
        n = -n
    if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)):
        prec2 = prec + 10
        fn = from_int(n)
        nth = mpf_rdiv_int(1, fn, prec2)
        r = mpf_pow(s, nth, prec2, rnd)
        s = normalize(r[0], r[1], r[2], r[3], prec, rnd)
        if flag_inverse:
            return mpf_div(fone, s, prec-extra_inverse, rnd)
        else:
            return s
    # Convert to a fixed-point number with prec2 bits.
    prec2 = prec + 2*n - (prec%n)
    # a few tests indicate that
    # for 10 < n < 10**4 a bit more precision is needed
    if n > 10:
        prec2 += prec2//10
        prec2 = prec2 - prec2%n
    # Mantissa may have more bits than we need. Trim it down.
    shift = bc - prec2
    # Adjust exponents to make prec2 and exp+shift multiples of n.
    sign1 = 0
    es = exp+shift
    if es < 0:
        sign1 = 1
        es = -es
    if sign1:
        shift += es%n
    else:
        shift -= es%n
    man = rshift(man, shift)
    extra = 10
    exp1 = ((exp+shift-(n-1)*prec2)//n) - extra
    rnd_shift = 0
    if flag_inverse:
        if rnd == 'u' or rnd == 'c':
            rnd_shift = 1
    else:
        if rnd == 'd' or rnd == 'f':
            rnd_shift = 1
    man = nthroot_fixed(man+rnd_shift, n, prec2, exp1)
    s = from_man_exp(man, exp1, prec, rnd)
    if flag_inverse:
        return mpf_div(fone, s, prec-extra_inverse, rnd)
    else:
        return s

def mpf_cbrt(s, prec, rnd=round_fast):
    """cubic root of a positive number"""
    return mpf_nthroot(s, 3, prec, rnd)

#----------------------------------------------------------------------------#
#                                                                            #
#                                Logarithms                                  #
#                                                                            #
#----------------------------------------------------------------------------#


def log_int_fixed(n, prec, ln2=None):
    """
    Fast computation of log(n), caching the value for small n,
    intended for zeta sums.
    """
    if n in log_int_cache:
        value, vprec = log_int_cache[n]
        if vprec >= prec:
            return value >> (vprec - prec)
    wp = prec + 10
    if wp <= LOG_TAYLOR_SHIFT:
        if ln2 is None:
            ln2 = ln2_fixed(wp)
        r = bitcount(n)
        x = n << (wp-r)
        v = log_taylor_cached(x, wp) + r*ln2
    else:
        v = to_fixed(mpf_log(from_int(n), wp+5), wp)
    if n < MAX_LOG_INT_CACHE:
        log_int_cache[n] = (v, wp)
    return v >> (wp-prec)

def agm_fixed(a, b, prec):
    """
    Fixed-point computation of agm(a,b), assuming
    a, b both close to unit magnitude.
    """
    i = 0
    while 1:
        anew = (a+b)>>1
        if i > 4 and abs(a-anew) < 8:
            return a
        b = isqrt_fast(a*b)
        a = anew
        i += 1
    return a

def log_agm(x, prec):
    """
    Fixed-point computation of -log(x) = log(1/x), suitable
    for large precision. It is required that 0 < x < 1. The
    algorithm used is the Sasaki-Kanada formula

        -log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1]

    For faster convergence in the theta functions, x should
    be chosen closer to 0.

    Guard bits must be added by the caller.

    HYPOTHESIS: if x = 2^(-n), n bits need to be added to
    account for the truncation to a fixed-point number,
    and this is the only significant cancellation error.

    The number of bits lost to roundoff is small and can be
    considered constant.

    [1] Richard P. Brent, "Fast Algorithms for High-Precision
        Computation of Elementary Functions (extended abstract)",
        http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf

    """
    x2 = (x*x) >> prec
    # Compute jtheta2(x)**2
    s = a = b = x2
    while a:
        b = (b*x2) >> prec
        a = (a*b) >> prec
        s += a
    s += (MPZ_ONE<<prec)
    s = (s*s)>>(prec-2)
    s = (s*isqrt_fast(x<<prec))>>prec
    # Compute jtheta3(x)**2
    t = a = b = x
    while a:
        b = (b*x2) >> prec
        a = (a*b) >> prec
        t += a
    t = (MPZ_ONE<<prec) + (t<<1)
    t = (t*t)>>prec
    # Final formula
    p = agm_fixed(s, t, prec)
    return (pi_fixed(prec) << prec) // p

def log_taylor(x, prec, r=0):
    """
    Fixed-point calculation of log(x). It is assumed that x is close
    enough to 1 for the Taylor series to converge quickly. Convergence
    can be improved by specifying r > 0 to compute
    log(x^(1/2^r))*2^r, at the cost of performing r square roots.

    The caller must provide sufficient guard bits.
    """
    for i in xrange(r):
        x = isqrt_fast(x<<prec)
    one = MPZ_ONE << prec
    v = ((x-one)<<prec)//(x+one)
    sign = v < 0
    if sign:
        v = -v
    v2 = (v*v) >> prec
    v4 = (v2*v2) >> prec
    s0 = v
    s1 = v//3
    v = (v*v4) >> prec
    k = 5
    while v:
        s0 += v // k
        k += 2
        s1 += v // k
        v = (v*v4) >> prec
        k += 2
    s1 = (s1*v2) >> prec
    s = (s0+s1) << (1+r)
    if sign:
        return -s
    return s

def log_taylor_cached(x, prec):
    """
    Fixed-point computation of log(x), assuming x in (0.5, 2)
    and prec <= LOG_TAYLOR_PREC.
    """
    n = x >> (prec-LOG_TAYLOR_SHIFT)
    cached_prec = cache_prec_steps[prec]
    dprec = cached_prec - prec
    if (n, cached_prec) in log_taylor_cache:
        a, log_a = log_taylor_cache[n, cached_prec]
    else:
        a = n << (cached_prec - LOG_TAYLOR_SHIFT)
        log_a = log_taylor(a, cached_prec, 8)
        log_taylor_cache[n, cached_prec] = (a, log_a)
    a >>= dprec
    log_a >>= dprec
    u = ((x - a) << prec) // a
    v = (u << prec) // ((MPZ_TWO << prec) + u)
    v2 = (v*v) >> prec
    v4 = (v2*v2) >> prec
    s0 = v
    s1 = v//3
    v = (v*v4) >> prec
    k = 5
    while v:
        s0 += v//k
        k += 2
        s1 += v//k
        v = (v*v4) >> prec
        k += 2
    s1 = (s1*v2) >> prec
    s = (s0+s1) << 1
    return log_a + s

def mpf_log(x, prec, rnd=round_fast):
    """
    Compute the natural logarithm of the mpf value x. If x is negative,
    ComplexResult is raised.
    """
    sign, man, exp, bc = x
    #------------------------------------------------------------------
    # Handle special values
    if not man:
        if x == fzero: return fninf
        if x == finf: return finf
        if x == fnan: return fnan
    if sign:
        raise ComplexResult("logarithm of a negative number")
    wp = prec + 20
    #------------------------------------------------------------------
    # Handle log(2^n) = log(n)*2.
    # Here we catch the only possible exact value, log(1) = 0
    if man == 1:
        if not exp:
            return fzero
        return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
    mag = exp+bc
    abs_mag = abs(mag)
    #------------------------------------------------------------------
    # Handle x = 1+eps, where log(x) ~ x. We need to check for
    # cancellation when moving to fixed-point math and compensate
    # by increasing the precision. Note that abs_mag in (0, 1) <=>
    # 0.5 < x < 2 and x != 1
    if abs_mag <= 1:
        # Calculate t = x-1 to measure distance from 1 in bits
        tsign = 1-abs_mag
        if tsign:
            tman = (MPZ_ONE<<bc) - man
        else:
            tman = man - (MPZ_ONE<<(bc-1))
        tbc = bitcount(tman)
        cancellation = bc - tbc
        if cancellation > wp:
            t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n')
            return mpf_perturb(t, tsign, prec, rnd)
        else:
            wp += cancellation
        # TODO: if close enough to 1, we could use Taylor series
        # even in the AGM precision range, since the Taylor series
        # converges rapidly
    #------------------------------------------------------------------
    # Another special case:
    # n*log(2) is a good enough approximation
    if abs_mag > 10000:
        if bitcount(abs_mag) > wp:
            return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
    #------------------------------------------------------------------
    # General case.
    # Perform argument reduction using log(x) = log(x*2^n) - n*log(2):
    # If we are in the Taylor precision range, choose magnitude 0 or 1.
    # If we are in the AGM precision range, choose magnitude -m for
    # some large m; benchmarking on one machine showed m = prec/20 to be
    # optimal between 1000 and 100,000 digits.
    if wp <= LOG_TAYLOR_PREC:
        m = log_taylor_cached(lshift(man, wp-bc), wp)
        if mag:
            m += mag*ln2_fixed(wp)
    else:
        optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO
        n = optimal_mag - mag
        x = mpf_shift(x, n)
        wp += (-optimal_mag)
        m = -log_agm(to_fixed(x, wp), wp)
        m -= n*ln2_fixed(wp)
    return from_man_exp(m, -wp, prec, rnd)

def mpf_log_hypot(a, b, prec, rnd):
    """
    Computes log(sqrt(a^2+b^2)) accurately.
    """
    # If either a or b is inf/nan/0, assume it to be a
    if not b[1]:
        a, b = b, a
    # a is inf/nan/0
    if not a[1]:
        # both are inf/nan/0
        if not b[1]:
            if a == b == fzero:
                return fninf
            if fnan in (a, b):
                return fnan
            # at least one term is (+/- inf)^2
            return finf
        # only a is inf/nan/0
        if a == fzero:
            # log(sqrt(0+b^2)) = log(|b|)
            return mpf_log(mpf_abs(b), prec, rnd)
        if a == fnan:
            return fnan
        return finf
    # Exact
    a2 = mpf_mul(a,a)
    b2 = mpf_mul(b,b)
    extra = 20
    # Not exact
    h2 = mpf_add(a2, b2, prec+extra)
    cancelled = mpf_add(h2, fnone, 10)
    mag_cancelled = cancelled[2]+cancelled[3]
    # Just redo the sum exactly if necessary (could be smarter
    # and avoid memory allocation when a or b is precisely 1
    # and the other is tiny...)
    if cancelled == fzero or mag_cancelled < -extra//2:
        h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2]))
    return mpf_shift(mpf_log(h2, prec, rnd), -1)


#----------------------------------------------------------------------
# Inverse tangent
#

def atan_newton(x, prec):
    if prec >= 100:
        r = math.atan(int((x>>(prec-53)))/2.0**53)
    else:
        r = math.atan(int(x)/2.0**prec)
    prevp = 50
    r = MPZ(int(r * 2.0**53) >> (53-prevp))
    extra_p = 50
    for wp in giant_steps(prevp, prec):
        wp += extra_p
        r = r << (wp-prevp)
        cos, sin = cos_sin_fixed(r, wp)
        tan = (sin << wp) // cos
        a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<<wp) + ((tan**2)>>wp))
        r = r - a
        prevp = wp
    return rshift(r, prevp-prec)

def atan_taylor_get_cached(n, prec):
    # Taylor series with caching wins up to huge precisions
    # To avoid unnecessary precomputation at low precision, we
    # do it in steps
    # Round to next power of 2
    prec2 = (1<<(bitcount(prec-1))) + 20
    dprec = prec2 - prec
    if (n, prec2) in atan_taylor_cache:
        a, atan_a = atan_taylor_cache[n, prec2]
    else:
        a = n << (prec2 - ATAN_TAYLOR_SHIFT)
        atan_a = atan_newton(a, prec2)
        atan_taylor_cache[n, prec2] = (a, atan_a)
    return (a >> dprec), (atan_a >> dprec)

def atan_taylor(x, prec):
    n = (x >> (prec-ATAN_TAYLOR_SHIFT))
    a, atan_a = atan_taylor_get_cached(n, prec)
    d = x - a
    s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec))
    v2 = (v**2 >> prec)
    v4 = (v2 * v2) >> prec
    s1 = v//3
    v = (v * v4) >> prec
    k = 5
    while v:
        s0 += v // k
        k += 2
        s1 += v // k
        v = (v * v4) >> prec
        k += 2
    s1 = (s1 * v2) >> prec
    s = s0 - s1
    return atan_a + s

def atan_inf(sign, prec, rnd):
    if not sign:
        return mpf_shift(mpf_pi(prec, rnd), -1)
    return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))

def mpf_atan(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fzero
        if x == finf: return atan_inf(0, prec, rnd)
        if x == fninf: return atan_inf(1, prec, rnd)
        return fnan
    mag = exp + bc
    # Essentially infinity
    if mag > prec+20:
        return atan_inf(sign, prec, rnd)
    # Essentially ~ x
    if -mag > prec+20:
        return mpf_perturb(x, 1-sign, prec, rnd)
    wp = prec + 30 + abs(mag)
    # For large x, use atan(x) = pi/2 - atan(1/x)
    if mag >= 2:
        x = mpf_rdiv_int(1, x, wp)
        reciprocal = True
    else:
        reciprocal = False
    t = to_fixed(x, wp)
    if sign:
        t = -t
    if wp < ATAN_TAYLOR_PREC:
        a = atan_taylor(t, wp)
    else:
        a = atan_newton(t, wp)
    if reciprocal:
        a = ((pi_fixed(wp)>>1)+1) - a
    if sign:
        a = -a
    return from_man_exp(a, -wp, prec, rnd)

# TODO: cleanup the special cases
def mpf_atan2(y, x, prec, rnd=round_fast):
    xsign, xman, xexp, xbc = x
    ysign, yman, yexp, ybc = y
    if not yman:
        if y == fzero and x != fnan:
            if mpf_sign(x) >= 0:
                return fzero
            return mpf_pi(prec, rnd)
        if y in (finf, fninf):
            if x in (finf, fninf):
                return fnan
            # pi/2
            if y == finf:
                return mpf_shift(mpf_pi(prec, rnd), -1)
            # -pi/2
            return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
        return fnan
    if ysign:
        return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd]))
    if not xman:
        if x == fnan:
            return fnan
        if x == finf:
            return fzero
        if x == fninf:
            return mpf_pi(prec, rnd)
        if y == fzero:
            return fzero
        return mpf_shift(mpf_pi(prec, rnd), -1)
    tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4)
    if xsign:
        return mpf_add(mpf_pi(prec+4), tquo, prec, rnd)
    else:
        return mpf_pos(tquo, prec, rnd)

def mpf_asin(x, prec, rnd=round_fast):
  sign, man, exp, bc = x
  if bc+exp > 0 and x not in (fone, fnone):
      raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
  # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
  wp = prec + 15
  a = mpf_mul(x, x)
  b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
  c = mpf_div(x, b, wp)
  return mpf_shift(mpf_atan(c, prec, rnd), 1)

def mpf_acos(x, prec, rnd=round_fast):
    # acos(x) = 2*atan(sqrt(1-x**2)/(1+x))
    sign, man, exp, bc = x
    if bc + exp > 0:
        if x not in (fone, fnone):
            raise ComplexResult("acos(x) is real only for -1 <= x <= 1")
        if x == fnone:
            return mpf_pi(prec, rnd)
    wp = prec + 15
    a = mpf_mul(x, x)
    b = mpf_sqrt(mpf_sub(fone, a, wp), wp)
    c = mpf_div(b, mpf_add(fone, x, wp), wp)
    return mpf_shift(mpf_atan(c, prec, rnd), 1)

def mpf_asinh(x, prec, rnd=round_fast):
    wp = prec + 20
    sign, man, exp, bc = x
    mag = exp+bc
    if mag < -8:
        if mag < -wp:
            return mpf_perturb(x, 1-sign, prec, rnd)
        wp += (-mag)
    # asinh(x) = log(x+sqrt(x**2+1))
    # use reflection symmetry to avoid cancellation
    q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp)
    q = mpf_add(mpf_abs(x), q, wp)
    if sign:
        return mpf_neg(mpf_log(q, prec, negative_rnd[rnd]))
    else:
        return mpf_log(q, prec, rnd)

def mpf_acosh(x, prec, rnd=round_fast):
    # acosh(x) = log(x+sqrt(x**2-1))
    wp = prec + 15
    if mpf_cmp(x, fone) == -1:
        raise ComplexResult("acosh(x) is real only for x >= 1")
    q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp)
    return mpf_log(mpf_add(x, q, wp), prec, rnd)

def mpf_atanh(x, prec, rnd=round_fast):
    # atanh(x) = log((1+x)/(1-x))/2
    sign, man, exp, bc = x
    if (not man) and exp:
        if x in (fzero, fnan):
            return x
        raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
    mag = bc + exp
    if mag > 0:
        if mag == 1 and man == 1:
            return [finf, fninf][sign]
        raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
    wp = prec + 15
    if mag < -8:
        if mag < -wp:
            return mpf_perturb(x, sign, prec, rnd)
        wp += (-mag)
    a = mpf_add(x, fone, wp)
    b = mpf_sub(fone, x, wp)
    return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1)

def mpf_fibonacci(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fninf:
            return fnan
        return x
    # F(2^n) ~= 2^(2^n)
    size = abs(exp+bc)
    if exp >= 0:
        # Exact
        if size < 10 or size <= bitcount(prec):
            return from_int(ifib(to_int(x)), prec, rnd)
    # Use the modified Binet formula
    wp = prec + size + 20
    a = mpf_phi(wp)
    b = mpf_add(mpf_shift(a, 1), fnone, wp)
    u = mpf_pow(a, x, wp)
    v = mpf_cos_pi(x, wp)
    v = mpf_div(v, u, wp)
    u = mpf_sub(u, v, wp)
    u = mpf_div(u, b, prec, rnd)
    return u


#-------------------------------------------------------------------------------
# Exponential-type functions
#-------------------------------------------------------------------------------

def exponential_series(x, prec, type=0):
    """
    Taylor series for cosh/sinh or cos/sin.

    type = 0 -- returns exp(x)  (slightly faster than cosh+sinh)
    type = 1 -- returns (cosh(x), sinh(x))
    type = 2 -- returns (cos(x), sin(x))
    """
    if x < 0:
        x = -x
        sign = 1
    else:
        sign = 0
    r = int(0.5*prec**0.5)
    xmag = bitcount(x) - prec
    r = max(0, xmag + r)
    extra = 10 + 2*max(r,-xmag)
    wp = prec + extra
    x <<= (extra - r)
    one = MPZ_ONE << wp
    alt = (type == 2)
    if prec < EXP_SERIES_U_CUTOFF:
        x2 = a = (x*x) >> wp
        x4 = (x2*x2) >> wp
        s0 = s1 = MPZ_ZERO
        k = 2
        while a:
            a //= (k-1)*k; s0 += a; k += 2
            a //= (k-1)*k; s1 += a; k += 2
            a = (a*x4) >> wp
        s1 = (x2*s1) >> wp
        if alt:
            c = s1 - s0 + one
        else:
            c = s1 + s0 + one
    else:
        u = int(0.3*prec**0.35)
        x2 = a = (x*x) >> wp
        xpowers = [one, x2]
        for i in xrange(1, u):
            xpowers.append((xpowers[-1]*x2)>>wp)
        sums = [MPZ_ZERO] * u
        k = 2
        while a:
            for i in xrange(u):
                a //= (k-1)*k
                if alt and k & 2: sums[i] -= a
                else:             sums[i] += a
                k += 2
            a = (a*xpowers[-1]) >> wp
        for i in xrange(1, u):
            sums[i] = (sums[i]*xpowers[i]) >> wp
        c = sum(sums) + one
    if type == 0:
        s = isqrt_fast(c*c - (one<<wp))
        if sign:
            v = c - s
        else:
            v = c + s
        for i in xrange(r):
            v = (v*v) >> wp
        return v >> extra
    else:
        # Repeatedly apply the double-angle formula
        # cosh(2*x) = 2*cosh(x)^2 - 1
        # cos(2*x) = 2*cos(x)^2 - 1
        pshift = wp-1
        for i in xrange(r):
            c = ((c*c) >> pshift) - one
        # With the abs, this is the same for sinh and sin
        s = isqrt_fast(abs((one<<wp) - c*c))
        if sign:
            s = -s
        return (c>>extra), (s>>extra)

def exp_basecase(x, prec):
    """
    Compute exp(x) as a fixed-point number. Works for any x,
    but for speed should have |x| < 1. For an arbitrary number,
    use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)).
    """
    if prec > EXP_COSH_CUTOFF:
        return exponential_series(x, prec, 0)
    r = int(prec**0.5)
    prec += r
    s0 = s1 = (MPZ_ONE << prec)
    k = 2
    a = x2 = (x*x) >> prec
    while a:
        a //= k; s0 += a; k += 1
        a //= k; s1 += a; k += 1
        a = (a*x2) >> prec
    s1 = (s1*x) >> prec
    s = s0 + s1
    u = r
    while r:
        s = (s*s) >> prec
        r -= 1
    return s >> u

def exp_expneg_basecase(x, prec):
    """
    Computation of exp(x), exp(-x)
    """
    if prec > EXP_COSH_CUTOFF:
        cosh, sinh = exponential_series(x, prec, 1)
        return cosh+sinh, cosh-sinh
    a = exp_basecase(x, prec)
    b = (MPZ_ONE << (prec+prec)) // a
    return a, b

def cos_sin_basecase(x, prec):
    """
    Compute cos(x), sin(x) as fixed-point numbers, assuming x
    in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2)
    where m = floor(x/(pi/2)) along with quarter-period symmetries.
    """
    if prec > COS_SIN_CACHE_PREC:
        return exponential_series(x, prec, 2)
    precs = prec - COS_SIN_CACHE_STEP
    t = x >> precs
    n = int(t)
    if n not in cos_sin_cache:
        w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP)
        cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2)
        cos_sin_cache[n] = (cos_t>>10), (sin_t>>10)
    cos_t, sin_t = cos_sin_cache[n]
    offset = COS_SIN_CACHE_PREC - prec
    cos_t >>= offset
    sin_t >>= offset
    x -= t << precs
    cos = MPZ_ONE << prec
    sin = x
    k = 2
    a = -((x*x) >> prec)
    while a:
        a //= k; cos += a; k += 1; a = (a*x) >> prec
        a //= k; sin += a; k += 1; a = -((a*x) >> prec)
    return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec)

def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if man:
        mag = bc + exp
        wp = prec + 14
        if sign:
            man = -man
        # TODO: the best cutoff depends on both x and the precision.
        if prec > 600 and exp >= 0:
            # Need about log2(exp(n)) ~= 1.45*mag extra precision
            e = mpf_e(wp+int(1.45*mag))
            return mpf_pow_int(e, man<<exp, prec, rnd)
        if mag < -wp:
            return mpf_perturb(fone, sign, prec, rnd)
        # |x| >= 2
        if mag > 1:
            # For large arguments: exp(2^mag*(1+eps)) =
            # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...)
            # so about mag extra bits is required.
            wpmod = wp + mag
            offset = exp + wpmod
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            lg2 = ln2_fixed(wpmod)
            n, t = divmod(t, lg2)
            n = int(n)
            t >>= mag
        else:
            offset = exp + wp
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            n = 0
        man = exp_basecase(t, wp)
        return from_man_exp(man, n-wp, prec, rnd)
    if not exp:
        return fone
    if x == fninf:
        return fzero
    return x


def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0):
    """Simultaneously compute (cosh(x), sinh(x)) for real x"""
    sign, man, exp, bc = x
    if (not man) and exp:
        if tanh:
            if x == finf: return fone
            if x == fninf: return fnone
            return fnan
        if x == finf: return (finf, finf)
        if x == fninf: return (finf, fninf)
        return fnan, fnan
    mag = exp+bc
    wp = prec+14
    if mag < -4:
        # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1
        if mag < -wp:
            if tanh:
                return mpf_perturb(x, 1-sign, prec, rnd)
            cosh = mpf_perturb(fone, 0, prec, rnd)
            sinh = mpf_perturb(x, sign, prec, rnd)
            return cosh, sinh
        # Fix for cancellation when computing sinh
        wp += (-mag)
    # Does exp(-2*x) vanish?
    if mag > 10:
        if 3*(1<<(mag-1)) > wp:
            # XXX: rounding
            if tanh:
                return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd)
            c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1)
            if sign:
                s = mpf_neg(s)
            return c, s
    # |x| > 1
    if mag > 1:
        wpmod = wp + mag
        offset = exp + wpmod
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        lg2 = ln2_fixed(wpmod)
        n, t = divmod(t, lg2)
        n = int(n)
        t >>= mag
    else:
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        n = 0
    a, b = exp_expneg_basecase(t, wp)
    # TODO: optimize division precision
    cosh = a + (b>>(2*n))
    sinh = a - (b>>(2*n))
    if sign:
        sinh = -sinh
    if tanh:
        man = (sinh << wp) // cosh
        return from_man_exp(man, -wp, prec, rnd)
    else:
        cosh = from_man_exp(cosh, n-wp-1, prec, rnd)
        sinh = from_man_exp(sinh, n-wp-1, prec, rnd)
        return cosh, sinh


def mod_pi2(man, exp, mag, wp):
    # Reduce to standard interval
    if mag > 0:
        i = 0
        while 1:
            cancellation_prec = 20 << i
            wpmod = wp + mag + cancellation_prec
            pi2 = pi_fixed(wpmod-1)
            pi4 = pi2 >> 1
            offset = wpmod + exp
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            n, y = divmod(t, pi2)
            if y > pi4:
                small = pi2 - y
            else:
                small = y
            if small >> (wp+mag-10):
                n = int(n)
                t = y >> mag
                wp = wpmod - mag
                break
            i += 1
    else:
        wp += (-mag)
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        n = 0
    return t, n, wp


def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False):
    """
    which:
    0 -- return cos(x), sin(x)
    1 -- return cos(x)
    2 -- return sin(x)
    3 -- return tan(x)

    if pi=True, compute for pi*x
    """
    sign, man, exp, bc = x
    if not man:
        if exp:
            c, s = fnan, fnan
        else:
            c, s = fone, fzero
        if which == 0: return c, s
        if which == 1: return c
        if which == 2: return s
        if which == 3: return s

    mag = bc + exp
    wp = prec + 10

    # Extremely small?
    if mag < 0:
        if mag < -wp:
            if pi:
                x = mpf_mul(x, mpf_pi(wp))
            c = mpf_perturb(fone, 1, prec, rnd)
            s = mpf_perturb(x, 1-sign, prec, rnd)
            if which == 0: return c, s
            if which == 1: return c
            if which == 2: return s
            if which == 3: return mpf_perturb(x, sign, prec, rnd)
    if pi:
        if exp >= -1:
            if exp == -1:
                c = fzero
                s = (fone, fnone)[bool(man & 2) ^ sign]
            elif exp == 0:
                c, s = (fnone, fzero)
            else:
                c, s = (fone, fzero)
            if which == 0: return c, s
            if which == 1: return c
            if which == 2: return s
            if which == 3: return mpf_div(s, c, prec, rnd)
        # Subtract nearest half-integer (= mod by pi/2)
        n = ((man >> (-exp-2)) + 1) >> 1
        man = man - (n << (-exp-1))
        mag2 = bitcount(man) + exp
        wp = prec + 10 - mag2
        offset = exp + wp
        if offset >= 0:
            t = man << offset
        else:
            t = man >> (-offset)
        t = (t*pi_fixed(wp)) >> wp
    else:
        t, n, wp = mod_pi2(man, exp, mag, wp)
    c, s = cos_sin_basecase(t, wp)
    m = n & 3
    if   m == 1: c, s = -s, c
    elif m == 2: c, s = -c, -s
    elif m == 3: c, s = s, -c
    if sign:
        s = -s
    if which == 0:
        c = from_man_exp(c, -wp, prec, rnd)
        s = from_man_exp(s, -wp, prec, rnd)
        return c, s
    if which == 1:
        return from_man_exp(c, -wp, prec, rnd)
    if which == 2:
        return from_man_exp(s, -wp, prec, rnd)
    if which == 3:
        return from_rational(s, c, prec, rnd)

def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1)
def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2)
def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3)
def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1)
def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1)
def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1)
def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0]
def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1]
def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1)


# Low-overhead fixed-point versions

def cos_sin_fixed(x, prec, pi2=None):
    if pi2 is None:
        pi2 = pi_fixed(prec-1)
    n, t = divmod(x, pi2)
    n = int(n)
    c, s = cos_sin_basecase(t, prec)
    m = n & 3
    if m == 0: return c, s
    if m == 1: return -s, c
    if m == 2: return -c, -s
    if m == 3: return s, -c

def exp_fixed(x, prec, ln2=None):
    if ln2 is None:
        ln2 = ln2_fixed(prec)
    n, t = divmod(x, ln2)
    n = int(n)
    v = exp_basecase(t, prec)
    if n >= 0:
        return v << n
    else:
        return v >> (-n)


if BACKEND == 'sage':
    try:
        import sage.libs.mpmath.ext_libmp as _lbmp
        mpf_sqrt = _lbmp.mpf_sqrt
        mpf_exp = _lbmp.mpf_exp
        mpf_log = _lbmp.mpf_log
        mpf_cos = _lbmp.mpf_cos
        mpf_sin = _lbmp.mpf_sin
        mpf_pow = _lbmp.mpf_pow
        exp_fixed = _lbmp.exp_fixed
        cos_sin_fixed = _lbmp.cos_sin_fixed
        log_int_fixed = _lbmp.log_int_fixed
    except (ImportError, AttributeError):
        print("Warning: Sage imports in libelefun failed")