This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/functions/zeta.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
from ..libmp.backend import xrange, print_
from .functions import defun, defun_wrapped, defun_static

@defun
def stieltjes(ctx, n, a=1):
    n = ctx.convert(n)
    a = ctx.convert(a)
    if n < 0:
        return ctx.bad_domain("Stieltjes constants defined for n >= 0")
    if hasattr(ctx, "stieltjes_cache"):
        stieltjes_cache = ctx.stieltjes_cache
    else:
        stieltjes_cache = ctx.stieltjes_cache = {}
    if a == 1:
        if n == 0:
            return +ctx.euler
        if n in stieltjes_cache:
            prec, s = stieltjes_cache[n]
            if prec >= ctx.prec:
                return +s
    mag = 1
    def f(x):
        xa = x/a
        v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1)
        return ctx._re(v) / mag
    orig = ctx.prec
    try:
        # Normalize integrand by approx. magnitude to
        # speed up quadrature (which uses absolute error)
        if n > 50:
            ctx.prec = 20
            mag = ctx.quad(f, [0,ctx.inf], maxdegree=3)
        ctx.prec = orig + 10 + int(n**0.5)
        s = ctx.quad(f, [0,ctx.inf], maxdegree=20)
        v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag
    finally:
        ctx.prec = orig
    if a == 1 and ctx.isint(n):
        stieltjes_cache[n] = (ctx.prec, v)
    return +v

@defun_wrapped
def siegeltheta(ctx, t, derivative=0):
    d = int(derivative)
    if  (t == ctx.inf or t == ctx.ninf):
        if d < 2:
            if t == ctx.ninf and d == 0:
                return ctx.ninf
            return ctx.inf
        else:
            return ctx.zero
    if d == 0:
        if ctx._im(t):
            # XXX: cancellation occurs
            a = ctx.loggamma(0.25+0.5j*t)
            b = ctx.loggamma(0.25-0.5j*t)
            return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b)
        else:
            if ctx.isinf(t):
                return t
            return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t
    if d > 0:
        a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t)
        b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t)
        if ctx._im(t):
            if d == 1:
                return -0.5*ctx.log(ctx.pi)+0.25*(a+b)
            else:
                return 0.25*(a+b)
        else:
            if d == 1:
                return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b))
            else:
                return ctx._re(0.25*(a+b))

@defun_wrapped
def grampoint(ctx, n):
    # asymptotic expansion, from
    # http://mathworld.wolfram.com/GramPoint.html
    g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e)))
    return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g)


@defun_wrapped
def siegelz(ctx, t, **kwargs):
    d = int(kwargs.get("derivative", 0))
    t = ctx.convert(t)
    t1 = ctx._re(t)
    t2 = ctx._im(t)
    prec = ctx.prec
    try:
        if abs(t1) > 500*prec and t2**2 < t1:
            v = ctx.rs_z(t, d)
            if ctx._is_real_type(t):
                return ctx._re(v)
            return v
    except NotImplementedError:
        pass
    ctx.prec += 21
    e1 = ctx.expj(ctx.siegeltheta(t))
    z = ctx.zeta(0.5+ctx.j*t)
    if d == 0:
        v = e1*z
        ctx.prec=prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    z1 = ctx.zeta(0.5+ctx.j*t, derivative=1)
    theta1 = ctx.siegeltheta(t, derivative=1)
    if d == 1:
        v =  ctx.j*e1*(z1+z*theta1)
        ctx.prec=prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    z2 = ctx.zeta(0.5+ctx.j*t, derivative=2)
    theta2 = ctx.siegeltheta(t, derivative=2)
    comb1 = theta1**2-ctx.j*theta2
    if d == 2:
        def terms():
            return [2*z1*theta1, z2, z*comb1]
        v = ctx.sum_accurately(terms, 1)
        v =  -e1*v
        ctx.prec = prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    ctx.prec += 10
    z3 = ctx.zeta(0.5+ctx.j*t, derivative=3)
    theta3 = ctx.siegeltheta(t, derivative=3)
    comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3
    if d == 3:
        def terms():
            return  [3*theta1*z2, 3*z1*comb1, z3+z*comb2]
        v = ctx.sum_accurately(terms, 1)
        v =  -ctx.j*e1*v
        ctx.prec = prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    z4 = ctx.zeta(0.5+ctx.j*t, derivative=4)
    theta4 = ctx.siegeltheta(t, derivative=4)
    def terms():
        return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2,
            -4*theta1*theta3, ctx.j*theta4]
    comb3 = ctx.sum_accurately(terms, 1)
    if d == 4:
        def terms():
            return  [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3,
                 4*z1*comb2, z4, z*comb3]
        v = ctx.sum_accurately(terms, 1)
        v =  e1*v
        ctx.prec = prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    if d > 4:
        h = lambda x: ctx.siegelz(x, derivative=4)
        return ctx.diff(h, t, n=d-4)
        


_zeta_zeros = [
14.134725142,21.022039639,25.010857580,30.424876126,32.935061588,
37.586178159,40.918719012,43.327073281,48.005150881,49.773832478,
52.970321478,56.446247697,59.347044003,60.831778525,65.112544048,
67.079810529,69.546401711,72.067157674,75.704690699,77.144840069,
79.337375020,82.910380854,84.735492981,87.425274613,88.809111208,
92.491899271,94.651344041,95.870634228,98.831194218,101.317851006,
103.725538040,105.446623052,107.168611184,111.029535543,111.874659177,
114.320220915,116.226680321,118.790782866,121.370125002,122.946829294,
124.256818554,127.516683880,129.578704200,131.087688531,133.497737203,
134.756509753,138.116042055,139.736208952,141.123707404,143.111845808,
146.000982487,147.422765343,150.053520421,150.925257612,153.024693811,
156.112909294,157.597591818,158.849988171,161.188964138,163.030709687,
165.537069188,167.184439978,169.094515416,169.911976479,173.411536520,
174.754191523,176.441434298,178.377407776,179.916484020,182.207078484,
184.874467848,185.598783678,187.228922584,189.416158656,192.026656361,
193.079726604,195.265396680,196.876481841,198.015309676,201.264751944,
202.493594514,204.189671803,205.394697202,207.906258888,209.576509717,
211.690862595,213.347919360,214.547044783,216.169538508,219.067596349,
220.714918839,221.430705555,224.007000255,224.983324670,227.421444280,
229.337413306,231.250188700,231.987235253,233.693404179,236.524229666,
]

def _load_zeta_zeros(url):
    import urllib
    d = urllib.urlopen(url)
    L = [float(x) for x in d.readlines()]
    # Sanity check
    assert round(L[0]) == 14
    _zeta_zeros[:] = L

@defun
def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'):
    n = int(n)
    if n < 0:
        return ctx.zetazero(-n).conjugate()
    if n == 0:
        raise ValueError("n must be nonzero")
    if n > len(_zeta_zeros) and n <= 100000:
        _load_zeta_zeros(url)
    if n > len(_zeta_zeros):
        raise NotImplementedError("n too large for zetazeros")
    return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1]))

@defun_wrapped
def riemannr(ctx, x):
    if x == 0:
        return ctx.zero
    # Check if a simple asymptotic estimate is accurate enough
    if abs(x) > 1000:
        a = ctx.li(x)
        b = 0.5*ctx.li(ctx.sqrt(x))
        if abs(b) < abs(a)*ctx.eps:
            return a
    if abs(x) < 0.01:
        # XXX
        ctx.prec += int(-ctx.log(abs(x),2))
    # Sum Gram's series
    s = t = ctx.one
    u = ctx.ln(x)
    k = 1
    while abs(t) > abs(s)*ctx.eps:
        t = t * u / k
        s += t / (k * ctx._zeta_int(k+1))
        k += 1
    return s

@defun_static
def primepi(ctx, x):
    x = int(x)
    if x < 2:
        return 0
    return len(ctx.list_primes(x))

# TODO: fix the interface wrt contexts
@defun_wrapped
def primepi2(ctx, x):
    x = int(x)
    if x < 2:
        return ctx._iv.zero
    if x < 2657:
        return ctx._iv.mpf(ctx.primepi(x))
    mid = ctx.li(x)
    # Schoenfeld's estimate for x >= 2657, assuming RH
    err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d')
    a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d')
    b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u')
    return ctx._iv.mpf([a,b])

@defun_wrapped
def primezeta(ctx, s):
    if ctx.isnan(s):
        return s
    if ctx.re(s) <= 0:
        raise ValueError("prime zeta function defined only for re(s) > 0")
    if s == 1:
        return ctx.inf
    if s == 0.5:
        return ctx.mpc(ctx.ninf, ctx.pi)
    r = ctx.re(s)
    if r > ctx.prec:
        return 0.5**s
    else:
        wp = ctx.prec + int(r)
        def terms():
            orig = ctx.prec
            # zeta ~ 1+eps; need to set precision
            # to get logarithm accurately
            k = 0
            while 1:
                k += 1
                u = ctx.moebius(k)
                if not u:
                    continue
                ctx.prec = wp
                t = u*ctx.ln(ctx.zeta(k*s))/k
                if not t:
                    return
                #print ctx.prec, ctx.nstr(t)
                ctx.prec = orig
                yield t
    return ctx.sum_accurately(terms)

# TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered

@defun_wrapped
def bernpoly(ctx, n, z):
    # Slow implementation:
    #return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1))
    n = int(n)
    if n < 0:
        raise ValueError("Bernoulli polynomials only defined for n >= 0")
    if z == 0 or (z == 1 and n > 1):
        return ctx.bernoulli(n)
    if z == 0.5:
        return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n)
    if n <= 3:
        if n == 0: return z ** 0
        if n == 1: return z - 0.5
        if n == 2: return (6*z*(z-1)+1)/6
        if n == 3: return z*(z*(z-1.5)+0.5)
    if ctx.isinf(z):
        return z ** n
    if ctx.isnan(z):
        return z
    if abs(z) > 2:
        def terms():
            t = ctx.one
            yield t
            r = ctx.one/z
            k = 1
            while k <= n:
                t = t*(n+1-k)/k*r
                if not (k > 2 and k & 1):
                    yield t*ctx.bernoulli(k)
                k += 1
        return ctx.sum_accurately(terms) * z**n
    else:
        def terms():
            yield ctx.bernoulli(n)
            t = ctx.one
            k = 1
            while k <= n:
                t = t*(n+1-k)/k * z
                m = n-k
                if not (m > 2 and m & 1):
                    yield t*ctx.bernoulli(m)
                k += 1
        return ctx.sum_accurately(terms)

@defun_wrapped
def eulerpoly(ctx, n, z):
    n = int(n)
    if n < 0:
        raise ValueError("Euler polynomials only defined for n >= 0")
    if n <= 2:
        if n == 0: return z ** 0
        if n == 1: return z - 0.5
        if n == 2: return z*(z-1)
    if ctx.isinf(z):
        return z**n
    if ctx.isnan(z):
        return z
    m = n+1
    if z == 0:
        return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
    if z == 1:
        return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
    if z == 0.5:
        if n % 2:
            return ctx.zero
        # Use exact code for Euler numbers
        if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25:
            return ctx.ldexp(ctx._eulernum(n), -n)
    # http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/
    def terms():
        t = ctx.one
        k = 0
        w = ctx.ldexp(1,n+2)
        while 1:
            v = n-k+1
            if not (v > 2 and v & 1):
                yield (2-w)*ctx.bernoulli(v)*t
            k += 1
            if k > n:
                break
            t = t*z*(n-k+2)/k
            w *= 0.5
    return ctx.sum_accurately(terms) / m

@defun
def eulernum(ctx, n, exact=False):
    n = int(n)
    if exact:
        return int(ctx._eulernum(n))
    if n < 100:
        return ctx.mpf(ctx._eulernum(n))
    if n % 2:
        return ctx.zero
    return ctx.ldexp(ctx.eulerpoly(n,0.5), n)

# TODO: this should be implemented low-level
def polylog_series(ctx, s, z):
    tol = +ctx.eps
    l = ctx.zero
    k = 1
    zk = z
    while 1:
        term = zk / k**s
        l += term
        if abs(term) < tol:
            break
        zk *= z
        k += 1
    return l

def polylog_continuation(ctx, n, z):
    if n < 0:
        return z*0
    twopij = 2j * ctx.pi
    a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij)
    if ctx._is_real_type(z) and z < 0:
        a = ctx._re(a)
    if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1):
        a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1)
    return a

def polylog_unitcircle(ctx, n, z):
    tol = +ctx.eps
    if n > 1:
        l = ctx.zero
        logz = ctx.ln(z)
        logmz = ctx.one
        m = 0
        while 1:
            if (n-m) != 1:
                term = ctx.zeta(n-m) * logmz / ctx.fac(m)
                if term and abs(term) < tol:
                    break
                l += term
            logmz *= logz
            m += 1
        l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z)))
    elif n < 1:  # else
        l = ctx.fac(-n)*(-ctx.ln(z))**(n-1)
        logz = ctx.ln(z)
        logkz = ctx.one
        k = 0
        while 1:
            b = ctx.bernoulli(k-n+1)
            if b:
                term = b*logkz/(ctx.fac(k)*(k-n+1))
                if abs(term) < tol:
                    break
                l -= term
            logkz *= logz
            k += 1
    else:
        raise ValueError
    if ctx._is_real_type(z) and z < 0:
        l = ctx._re(l)
    return l

def polylog_general(ctx, s, z):
    v = ctx.zero
    u = ctx.ln(z)
    if not abs(u) < 5: # theoretically |u| < 2*pi
        raise NotImplementedError("polylog for arbitrary s and z")
    t = 1
    k = 0
    while 1:
        term = ctx.zeta(s-k) * t
        if abs(term) < ctx.eps:
            break
        v += term
        k += 1
        t *= u
        t /= k
    return ctx.gamma(1-s)*(-u)**(s-1) + v

@defun_wrapped
def polylog(ctx, s, z):
    s = ctx.convert(s)
    z = ctx.convert(z)
    if z == 1:
        return ctx.zeta(s)
    if z == -1:
        return -ctx.altzeta(s)
    if s == 0:
        return z/(1-z)
    if s == 1:
        return -ctx.ln(1-z)
    if s == -1:
        return z/(1-z)**2
    if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9):
        return polylog_series(ctx, s, z)
    if abs(z) >= 1.4 and ctx.isint(s):
        return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, s, z)
    if ctx.isint(s):
        return polylog_unitcircle(ctx, int(s), z)
    return polylog_general(ctx, s, z)

    #raise NotImplementedError("polylog for arbitrary s and z")
    # This could perhaps be used in some cases
    #from quadrature import quad
    #return quad(lambda t: t**(s-1)/(exp(t)/z-1),[0,inf])/gamma(s)

@defun_wrapped
def clsin(ctx, s, z, pi=False):
    if ctx.isint(s) and s < 0 and int(s) % 2 == 1:
        return z*0
    if pi:
        a = ctx.expjpi(z)
    else:
        a = ctx.expj(z)
    if ctx._is_real_type(z) and ctx._is_real_type(s):
        return ctx.im(ctx.polylog(s,a))
    b = 1/a
    return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b))

@defun_wrapped
def clcos(ctx, s, z, pi=False):
    if ctx.isint(s) and s < 0 and int(s) % 2 == 0:
        return z*0
    if pi:
        a = ctx.expjpi(z)
    else:
        a = ctx.expj(z)
    if ctx._is_real_type(z) and ctx._is_real_type(s):
        return ctx.re(ctx.polylog(s,a))
    b = 1/a
    return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b))

@defun
def altzeta(ctx, s, **kwargs):
    try:
        return ctx._altzeta(s, **kwargs)
    except NotImplementedError:
        return ctx._altzeta_generic(s)

@defun_wrapped
def _altzeta_generic(ctx, s):
    if s == 1:
        return ctx.ln2 + 0*s
    return -ctx.powm1(2, 1-s) * ctx.zeta(s)

@defun
def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs):
    d = int(derivative)
    if a == 1 and not (d or method):
        try:
            return ctx._zeta(s, **kwargs)
        except NotImplementedError:
            pass
    s = ctx.convert(s)
    prec = ctx.prec
    method = kwargs.get('method')
    verbose = kwargs.get('verbose')
    if a == 1 and method != 'euler-maclaurin':
        im = abs(ctx._im(s))
        re = abs(ctx._re(s))
        #if (im < prec or method == 'borwein') and not derivative:
        #    try:
        #        if verbose:
        #            print "zeta: Attempting to use the Borwein algorithm"
        #        return ctx._zeta(s, **kwargs)
        #    except NotImplementedError:
        #        if verbose:
        #            print "zeta: Could not use the Borwein algorithm"
        #        pass
        if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \
            method == 'riemann-siegel':
            try:   #  py2.4 compatible try block
                try:
                    if verbose:
                        print("zeta: Attempting to use the Riemann-Siegel algorithm")
                    return ctx.rs_zeta(s, derivative, **kwargs)
                except NotImplementedError:
                    if verbose:
                        print("zeta: Could not use the Riemann-Siegel algorithm")
                    pass
            finally:
                ctx.prec = prec
    if s == 1:
        return ctx.inf
    abss = abs(s)
    if abss == ctx.inf:
        if ctx.re(s) == ctx.inf:
            if d == 0:
                return ctx.one
            return ctx.zero
        return s*0
    elif ctx.isnan(abss):
        return 1/s
    if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative:
        return ctx.one + ctx.power(2, -s)
    return +ctx._hurwitz(s, a, d, **kwargs)

@defun
def _hurwitz(ctx, s, a=1, d=0, **kwargs):
    prec = ctx.prec
    verbose = kwargs.get('verbose')
    try:
        extraprec = 10
        ctx.prec += extraprec
        # We strongly want to special-case rational a
        a, atype = ctx._convert_param(a)
        if ctx.re(s) < 0:
            if verbose:
                print("zeta: Attempting reflection formula")
            try:
                return _hurwitz_reflection(ctx, s, a, d, atype)
            except NotImplementedError:
                pass
            if verbose:
                print("zeta: Reflection formula failed")
        if verbose:
            print("zeta: Using the Euler-Maclaurin algorithm")
        while 1:
            ctx.prec = prec + extraprec
            T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose)
            cancellation = ctx.mag(T1) - ctx.mag(T1+T2)
            if verbose:
                print_("Term 1:", T1)
                print_("Term 2:", T2)
                print_("Cancellation:", cancellation, "bits")
            if cancellation < extraprec:
                return T1 + T2
            else:
                extraprec = max(2*extraprec, min(cancellation + 5, 100*prec))
                if extraprec > kwargs.get('maxprec', 100*prec):
                    raise ctx.NoConvergence("zeta: too much cancellation")
    finally:
        ctx.prec = prec

def _hurwitz_reflection(ctx, s, a, d, atype):
    # TODO: implement for derivatives
    if d != 0:
        raise NotImplementedError
    res = ctx.re(s)
    negs = -s
    # Integer reflection formula
    if ctx.isnpint(s):
        n = int(res)
        if n <= 0:
            return ctx.bernpoly(1-n, a) / (n-1)
    t = 1-s
    # We now require a to be standardized
    v = 0
    shift = 0
    b = a
    while ctx.re(b) > 1:
        b -= 1
        v -= b**negs
        shift -= 1
    while ctx.re(b) <= 0:
        v += b**negs
        b += 1
        shift += 1
    # Rational reflection formula
    if atype == 'Q' or atype == 'Z':
        try:
            p, q = a._mpq_
        except:
            assert a == int(a)
            p = int(a)
            q = 1
        p += shift*q
        assert 1 <= p <= q
        g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \
            for k in range(1,q+1))
        g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t
        v += g
        return v
    # General reflection formula
    # Note: clcos/clsin can raise NotImplementedError
    else:
        C1, C2 = ctx.cospi_sinpi(0.5*t)
        # Clausen functions; could maybe use polylog directly
        if C1: C1 *= ctx.clcos(t, 2*a, pi=True)
        if C2: C2 *= ctx.clsin(t, 2*a, pi=True)
        v += 2*ctx.gamma(t)/(2*ctx.pi)**t*(C1+C2)
        return v

def _hurwitz_em(ctx, s, a, d, prec, verbose):
    # May not be converted at this point
    a = ctx.convert(a)
    tol = -prec
    # Estimate number of terms for Euler-Maclaurin summation; could be improved
    M1 = 0
    M2 = prec // 3
    N = M2
    lsum = 0
    # This speeds up the recurrence for derivatives
    if ctx.isint(s):
        s = int(ctx._re(s))
    s1 = s-1
    while 1:
        # Truncated L-series
        l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0]
        #if d:
        #    l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2))
        #else:
        #    l = ctx.fsum((n+a)**negs for n in range(M1,M2))
        lsum += l
        M2a = M2+a
        logM2a = ctx.ln(M2a)
        logM2ad = logM2a**d
        logs = [logM2ad]
        logr = 1/logM2a
        rM2a = 1/M2a
        M2as = rM2a**s
        if d:
            tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1)
        else:
            tailsum = 1/((s1)*(M2a)**s1)
        tailsum += 0.5 * logM2ad * M2as
        U = [1]
        r = M2as
        fact = 2
        for j in range(1, N+1):
            # TODO: the following could perhaps be tidied a bit
            j2 = 2*j
            if j == 1:
                upds = [1]
            else:
                upds = [j2-2, j2-1]
            for m in upds:
                D = min(m,d+1)
                if m <= d:
                    logs.append(logs[-1] * logr)
                Un = [0]*(D+1)
                for i in xrange(D): Un[i] = (1-m-s)*U[i]
                for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1]
                U = Un
                r *= rM2a
            t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact)
            tailsum += t
            if ctx.mag(t) < tol:
                return lsum, (-1)**d * tailsum
            fact *= (j2+1)*(j2+2)
        if verbose:
            print_("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol)
        M1, M2 = M2, M2*2
        if ctx.re(s) < 0:
            N += N//2



@defun
def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False):
    """
    Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where

    xdk = D^k     ( 1/a^s     +  1/(a+1)^s      +  ...  +  1/(a+n)^s     )
    ydk = D^k conj( 1/a^(1-s) +  1/(a+1)^(1-s)  +  ...  +  1/(a+n)^(1-s) )

    D^k = kth derivative with respect to s, k ranges over the given list of
    derivatives (which should consist of either a single element
    or a range 0,1,...r). If reflect=False, the ydks are not computed.
    """
    #print "zetasum", s, a, n
    # don't use the fixed-point code if there are large exponentials
    if abs(ctx.re(s)) < 0.5 * ctx.prec:
        try:
            return ctx._zetasum_fast(s, a, n, derivatives, reflect)
        except NotImplementedError:
            pass
    negs = ctx.fneg(s, exact=True)
    have_derivatives = derivatives != [0]
    have_one_derivative = len(derivatives) == 1
    if not reflect:
        if not have_derivatives:
            return [ctx.fsum((a+k)**negs for k in xrange(n+1))], []
        if have_one_derivative:
            d = derivatives[0]
            x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1))
            return [(-1)**d * x], []
    maxd = max(derivatives)
    if not have_one_derivative:
        derivatives = range(maxd+1)
    xs = [ctx.zero for d in derivatives]
    if reflect:
        ys = [ctx.zero for d in derivatives]
    else:
        ys = []
    for k in xrange(n+1):
        w = a + k
        xterm = w ** negs
        if reflect:
            yterm = ctx.conj(ctx.one / (w * xterm))
        if have_derivatives:
            logw = -ctx.ln(w)
            if have_one_derivative:
                logw = logw ** maxd
                xs[0] += xterm * logw
                if reflect:
                    ys[0] += yterm * logw
            else:
                t = ctx.one
                for d in derivatives:
                    xs[d] += xterm * t
                    if reflect:
                        ys[d] += yterm * t
                    t *= logw
        else:
            xs[0] += xterm
            if reflect:
                ys[0] += yterm
    return xs, ys

@defun
def dirichlet(ctx, s, chi=[1], derivative=0):
    s = ctx.convert(s)
    q = len(chi)
    d = int(derivative)
    if d > 2:
        raise NotImplementedError("arbitrary order derivatives")
    prec = ctx.prec
    try:
        ctx.prec += 10
        if s == 1:
            have_pole = True
            for x in chi:
                if x and x != 1:
                    have_pole = False
                    h = +ctx.eps
                    ctx.prec *= 2*(d+1)
                    s += h
            if have_pole:
                return +ctx.inf
        z = ctx.zero
        for p in range(1,q+1):
            if chi[p%q]:
                if d == 1:
                    z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \
                        ctx.zeta(s, (p,q))*ctx.log(q))
                else:
                    z += chi[p%q] * ctx.zeta(s, (p,q))
        z /= q**s
    finally:
        ctx.prec = prec
    return +z


def secondzeta_main_term(ctx, s, a, **kwargs):
    tol = ctx.eps
    f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s)
    totsum = term = ctx.zero
    mg = ctx.inf
    n = 0
    while mg > tol:
        totsum += term
        n += 1
        gamm = ctx.im(ctx.zetazero_memoized(n))
        term = f(n)
        mg = abs(term)
    err = 0
    if kwargs.get("error"):
        sg = ctx.re(s)
        err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\
             ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2))
        err = abs(err)
    return +totsum, err, n

def secondzeta_prime_term(ctx, s, a, **kwargs):
    tol = ctx.eps
    f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\
        ((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\
        (2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi))
    totsum = term = ctx.zero
    mg = ctx.inf
    n = 1
    while mg > tol or n < 9:
        totsum += term
        n += 1
        term = f(n)
        if term == 0:
            mg = ctx.inf
        else:
            mg = abs(term)
    if kwargs.get("error"):
        err = mg
    return +totsum, err, n

def secondzeta_exp_term(ctx, s, a):
    if ctx.isint(s) and ctx.re(s) <= 0:
        m = int(round(ctx.re(s)))
        if not m & 1:
            return ctx.mpf('-0.25')**(-m//2)
    tol = ctx.eps
    f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n))
    totsum = ctx.zero
    term = f(0)
    mg = ctx.inf
    n = 0
    while mg > tol:
        totsum += term
        n += 1
        term = f(n)
        mg = abs(term)
    v = a**(0.5*s)*totsum/ctx.gamma(0.5*s)
    return v
    
def secondzeta_singular_term(ctx, s, a, **kwargs):
    factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
    extraprec = ctx.mag(factor)
    ctx.prec += extraprec
    factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
    tol = ctx.eps
    f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\
       ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n))
    totsum = ctx.zero
    mg1 = ctx.inf
    n = 1
    term = f(n)
    mg2 = abs(term)
    while mg2 > tol and mg2 <= mg1:
        totsum += term
        n += 1
        term = f(n)
        totsum += term
        n +=1
        term = f(n)    
        mg1 = mg2
        mg2 = abs(term)
    totsum += term
    pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1)
    st = factor*(pole+totsum)
    err = 0
    if kwargs.get("error"):
        if not ((mg2 > tol) and (mg2 <= mg1)):
            if mg2 <= tol:
                err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10))
            if mg2 > mg1:
                err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10))
        err = max(err, ctx.eps*1.)
    ctx.prec -= extraprec
    return +st, err

@defun
def secondzeta(ctx, s, a = 0.015, **kwargs):
    r"""
    Evaluates the secondary zeta function `Z(s)`, defined for
    `\mathrm{Re}(s)>1` by

    .. math ::

        Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s}

    where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with
    imaginary part positive.

    `Z(s)` extends to a meromorphic function on `\mathbb{C}`  with a
    double pole at `s=1` and  simple poles at the points `-2n` for
    `n=0`,  1, 2, ...

    **Examples**

        >>> from mpmath import *
        >>> mp.pretty = True; mp.dps = 15
        >>> secondzeta(2)
        0.023104993115419
        >>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s)
        >>> Xi = lambda t: xi(0.5+t*j)
        >>> -0.5*diff(Xi,0,n=2)/Xi(0)
        (0.023104993115419 + 0.0j)

    We may ask for an approximate error value::

        >>> secondzeta(0.5+100j, error=True)
        ((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16)

    The function has poles at the negative odd integers,
    and dyadic rational values at the negative even integers::

        >>> mp.dps = 30
        >>> secondzeta(-8)
        -0.67236328125
        >>> secondzeta(-7)
        +inf

    **Implementation notes**

    The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)`
    respectively main, prime, exponential and singular terms.
    The main term `A(s)` is computed from the zeros of zeta.
    The prime term depends on the von Mangoldt function.
    The singular term is responsible for the poles of the function.

    The four terms depends on a small parameter `a`. We may change the
    value of `a`. Theoretically this has no effect on the sum of the four
    terms, but in practice may be important.

    A smaller value of the parameter `a` makes `A(s)` depend on
    a smaller number of zeros of zeta, but `P(s)`  uses more values of
    von Mangoldt function.

    We may also add a verbose option to obtain data about the
    values of the four terms.

        >>> mp.dps = 10
        >>> secondzeta(0.5 + 40j, error=True, verbose=True)
        main term = (-30190318549.138656312556 - 13964804384.624622876523j)
            computed using 19 zeros of zeta
        prime term = (132717176.89212754625045 + 188980555.17563978290601j)
            computed using 9 values of the von Mangoldt function
        exponential term = (542447428666.07179812536 + 362434922978.80192435203j)
        singular term = (512124392939.98154322355 + 348281138038.65531023921j)
        ((0.059471043 + 0.3463514534j), 1.455191523e-11)

        >>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True)
        main term = (-151962888.19606243907725 - 217930683.90210294051982j)
            computed using 9 zeros of zeta
        prime term = (2476659342.3038722372461 + 28711581821.921627163136j)
            computed using 37 values of the von Mangoldt function
        exponential term = (178506047114.7838188264 + 819674143244.45677330576j)
        singular term = (175877424884.22441310708 + 790744630738.28669174871j)
        ((0.059471043 + 0.3463514534j), 1.455191523e-11)

    Notice the great cancellation between the four terms. Changing `a`, the
    four terms are very different numbers but the cancellation gives
    the good value of Z(s).

    **References**

    A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier,
    53, (2003) 665--699.

    A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes
    of the Unione Matematica Italiana, Springer, 2009.
    """
    s = ctx.convert(s)
    a = ctx.convert(a)
    tol = ctx.eps
    if ctx.isint(s) and ctx.re(s) <= 1:
        if abs(s-1) < tol*1000:
            return ctx.inf
        m = int(round(ctx.re(s)))
        if m & 1:
            return ctx.inf
        else:
            return ((-1)**(-m//2)*\
                   ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3)))
    prec = ctx.prec
    try:
        t3 = secondzeta_exp_term(ctx, s, a)
        extraprec = max(ctx.mag(t3),0)
        ctx.prec += extraprec + 3
        t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True')
        t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True')
        t4, r4 = secondzeta_singular_term(ctx,s,a,error='True')
        t3 = secondzeta_exp_term(ctx, s, a)
        err = r1+r2+r4
        t = t1-t2+t3-t4
        if kwargs.get("verbose"):
            print_('main term =', t1)
            print_('    computed using', gt, 'zeros of zeta')
            print_('prime term =', t2)
            print_('    computed using', pt, 'values of the von Mangoldt function')
            print_('exponential term =', t3)
            print_('singular term =', t4)
    finally:
        ctx.prec = prec
    if kwargs.get("error"):
        w = max(ctx.mag(abs(t)),0)
        err = max(err*2**w, ctx.eps*1.*2**w)
        return +t, err
    return +t


@defun_wrapped
def lerchphi(ctx, z, s, a):
    r"""
    Gives the Lerch transcendent, defined for `|z| < 1` and
    `\Re{a} > 0` by

    .. math ::

        \Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s}

    and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}`
    along with the integral representation valid for `\Re{a} > 0`

    .. math ::

        \Phi(z,s,a) = \frac{1}{2 a^s} +
                \int_0^{\infty} \frac{z^t}{(a+t)^s} dt -
                2 \int_0^{\infty} \frac{\sin(t \log z - s
                    \operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2}
                    (e^{2 \pi t}-1)} dt.

    The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta`
    (`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`).

    **Examples**

    Several evaluations in terms of simpler functions::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> lerchphi(-1,2,0.5); 4*catalan
        3.663862376708876060218414
        3.663862376708876060218414
        >>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2)
        0.2131391994087528954617607
        0.2131391994087528954617607
        >>> lerchphi(-4,1,1); log(5)/4
        0.4023594781085250936501898
        0.4023594781085250936501898
        >>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j)
        (1.142423447120257137774002 + 0.2118232380980201350495795j)
        (1.142423447120257137774002 + 0.2118232380980201350495795j)

    Evaluation works for complex arguments and `|z| \ge 1`::

        >>> lerchphi(1+2j, 3-j, 4+2j)
        (0.002025009957009908600539469 + 0.003327897536813558807438089j)
        >>> lerchphi(-2,2,-2.5)
        -12.28676272353094275265944
        >>> lerchphi(10,10,10)
        (-4.462130727102185701817349e-11 + 1.575172198981096218823481e-12j)
        >>> lerchphi(10,10,-10.5)
        (112658784011940.5605789002 + 498113185.5756221777743631j)

    Some degenerate cases::

        >>> lerchphi(0,1,2)
        0.5
        >>> lerchphi(0,1,-2)
        -0.5

    Reduction to simpler functions::

        >>> lerchphi(1, 4.25+1j, 1)
        (1.044674457556746668033975 - 0.04674508654012658932271226j)
        >>> zeta(4.25+1j)
        (1.044674457556746668033975 - 0.04674508654012658932271226j)
        >>> lerchphi(1 - 0.5**10, 4.25+1j, 1)
        (1.044629338021507546737197 - 0.04667768813963388181708101j)
        >>> lerchphi(3, 4, 1)
        (1.249503297023366545192592 - 0.2314252413375664776474462j)
        >>> polylog(4, 3) / 3
        (1.249503297023366545192592 - 0.2314252413375664776474462j)
        >>> lerchphi(3, 4, 1 - 0.5**10)
        (1.253978063946663945672674 + 0.2316736622836535468765376j)

    **References**

    1. [DLMF]_ section 25.14

    """
    if z == 0:
        return a ** (-s)
    # Faster, but these cases are useful for testing right now
    if z == 1:
        return ctx.zeta(s, a)
    if a == 1:
        return ctx.polylog(s, z) / z
    if ctx.re(a) < 1:
        if ctx.isnpint(a):
            raise ValueError("Lerch transcendent complex infinity")
        m = int(ctx.ceil(1-ctx.re(a)))
        v = ctx.zero
        zpow = ctx.one
        for n in xrange(m):
            v += zpow / (a+n)**s
            zpow *= z
        return zpow * ctx.lerchphi(z,s, a+m) + v
    g = ctx.ln(z)
    v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a
    h = s / 2
    r = 2*ctx.pi
    f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \
        ((a**2+t**2)**h * ctx.expm1(r*t))
    v += 2*ctx.quad(f, [0, ctx.inf])
    if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1:
        v = ctx.chop(v)
    return v