This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/functions/qfunctions.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from .functions import defun, defun_wrapped

@defun
def qp(ctx, a, q=None, n=None, **kwargs):
    r"""
    Evaluates the q-Pochhammer symbol (or q-rising factorial)

    .. math ::

        (a; q)_n = \prod_{k=0}^{n-1} (1-a q^k)

    where `n = \infty` is permitted if `|q| < 1`. Called with two arguments,
    ``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)``
    computes `(q;q)_{\infty}`. The special case

    .. math ::

        \phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) =
            \sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2}

    is also known as the Euler function, or (up to a factor `q^{-1/24}`)
    the Dedekind eta function.

    **Examples**

    If `n` is a positive integer, the function amounts to a finite product::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qp(2,3,5)
        -725305.0
        >>> fprod(1-2*3**k for k in range(5))
        -725305.0
        >>> qp(2,3,0)
        1.0

    Complex arguments are allowed::

        >>> qp(2-1j, 0.75j)
        (0.4628842231660149089976379 + 4.481821753552703090628793j)

    The regular Pochhammer symbol `(a)_n` is obtained in the
    following limit as `q \to 1`::

        >>> a, n = 4, 7
        >>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1)
        604800.0
        >>> rf(a,n)
        604800.0

    The Taylor series of the reciprocal Euler function gives
    the partition function `P(n)`, i.e. the number of ways of writing
    `n` as a sum of positive integers::

        >>> taylor(lambda q: 1/qp(q), 0, 10)
        [1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0]

    Special values include::

        >>> qp(0)
        1.0
        >>> findroot(diffun(qp), -0.4)   # location of maximum
        -0.4112484791779547734440257
        >>> qp(_)
        1.228348867038575112586878

    The q-Pochhammer symbol is related to the Jacobi theta functions.
    For example, the following identity holds::

        >>> q = mpf(0.5)    # arbitrary
        >>> qp(q)
        0.2887880950866024212788997
        >>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6))
        0.2887880950866024212788997

    """
    a = ctx.convert(a)
    if n is None:
        n = ctx.inf
    else:
        n = ctx.convert(n)
    if n < 0:
        raise ValueError("n cannot be negative")
    if q is None:
        q = a
    else:
        q = ctx.convert(q)
    if n == 0:
        return ctx.one + 0*(a+q)
    infinite = (n == ctx.inf)
    same = (a == q)
    if infinite:
        if abs(q) >= 1:
            if same and (q == -1 or q == 1):
                return ctx.zero * q
            raise ValueError("q-function only defined for |q| < 1")
        elif q == 0:
            return ctx.one - a
    maxterms = kwargs.get('maxterms', 50*ctx.prec)
    if infinite and same:
        # Euler's pentagonal theorem
        def terms():
            t = 1
            yield t
            k = 1
            x1 = q
            x2 = q**2
            while 1:
                yield (-1)**k * x1
                yield (-1)**k * x2
                x1 *= q**(3*k+1)
                x2 *= q**(3*k+2)
                k += 1
                if k > maxterms:
                    raise ctx.NoConvergence
        return ctx.sum_accurately(terms)
    # return ctx.nprod(lambda k: 1-a*q**k, [0,n-1])
    def factors():
        k = 0
        r = ctx.one
        while 1:
            yield 1 - a*r
            r *= q
            k += 1
            if k >= n:
                raise StopIteration
            if k > maxterms:
                raise ctx.NoConvergence
    return ctx.mul_accurately(factors)

@defun_wrapped
def qgamma(ctx, z, q, **kwargs):
    r"""
    Evaluates the q-gamma function

    .. math ::

        \Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}.


    **Examples**

    Evaluation for real and complex arguments::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qgamma(4,0.75)
        4.046875
        >>> qgamma(6,6)
        121226245.0
        >>> qgamma(3+4j, 0.5j)
        (0.1663082382255199834630088 + 0.01952474576025952984418217j)

    The q-gamma function satisfies a functional equation similar
    to that of the ordinary gamma function::

        >>> q = mpf(0.25)
        >>> z = mpf(2.5)
        >>> qgamma(z+1,q)
        1.428277424823760954685912
        >>> (1-q**z)/(1-q)*qgamma(z,q)
        1.428277424823760954685912

    """
    if abs(q) > 1:
        return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5)
    return ctx.qp(q, q, None, **kwargs) / \
        ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z)

@defun_wrapped
def qfac(ctx, z, q, **kwargs):
    r"""
    Evaluates the q-factorial,

    .. math ::

        [n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})

    or more generally

    .. math ::

        [z]_q! = \frac{(q;q)_z}{(1-q)^z}.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qfac(0,0)
        1.0
        >>> qfac(4,3)
        2080.0
        >>> qfac(5,6)
        121226245.0
        >>> qfac(1+1j, 2+1j)
        (0.4370556551322672478613695 + 0.2609739839216039203708921j)

    """
    if ctx.isint(z) and ctx._re(z) > 0:
        n = int(ctx._re(z))
        return ctx.qp(q, q, n, **kwargs) / (1-q)**n
    return ctx.qgamma(z+1, q, **kwargs)

@defun
def qhyper(ctx, a_s, b_s, q, z, **kwargs):
    r"""
    Evaluates the basic hypergeometric series or hypergeometric q-series

    .. math ::

        \,_r\phi_s \left[\begin{matrix} 
            a_1 & a_2 & \ldots & a_r \\ 
            b_1 & b_2 & \ldots & b_s
        \end{matrix} ; q,z \right] =
        \sum_{n=0}^\infty
        \frac{(a_1;q)_n, \ldots, (a_r;q)_n}
             {(b_1;q)_n, \ldots, (b_s;q)_n}
        \left((-1)^n q^{n\choose 2}\right)^{1+s-r}
        \frac{z^n}{(q;q)_n}

    where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`).

    **Examples**

    Evaluation works for real and complex arguments::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> qhyper([0.5], [2.25], 0.25, 4)
        -0.1975849091263356009534385
        >>> qhyper([0.5], [2.25], 0.25-0.25j, 4)
        (2.806330244925716649839237 + 3.568997623337943121769938j)
        >>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j)
        (9.112885171773400017270226 - 1.272756997166375050700388j)

    Comparing with a summation of the defining series, using
    :func:`~mpmath.nsum`::

        >>> b, q, z = 3, 0.25, 0.5
        >>> qhyper([], [b], q, z)
        0.6221136748254495583228324
        >>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf])
        0.6221136748254495583228324

    """
    #a_s = [ctx._convert_param(a)[0] for a in a_s]
    #b_s = [ctx._convert_param(b)[0] for b in b_s]
    #q = ctx._convert_param(q)[0]
    a_s = [ctx.convert(a) for a in a_s]
    b_s = [ctx.convert(b) for b in b_s]
    q = ctx.convert(q)
    z = ctx.convert(z)
    r = len(a_s)
    s = len(b_s)
    d = 1+s-r
    maxterms = kwargs.get('maxterms', 50*ctx.prec)
    def terms():
        t = ctx.one
        yield t
        qk = 1
        k = 0
        x = 1
        while 1:
            for a in a_s:
                p = 1 - a*qk
                t *= p
            for b in b_s:
                p = 1 - b*qk
                if not p:
                    raise ValueError
                t /= p
            t *= z
            x *= (-1)**d * qk ** d
            qk *= q
            t /= (1 - qk)
            k += 1
            yield t * x
            if k > maxterms:
                raise ctx.NoConvergence
    return ctx.sum_accurately(terms)