This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/functions/orthogonal.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
from .functions import defun, defun_wrapped

def _hermite_param(ctx, n, z, parabolic_cylinder):
    """
    Combined calculation of the Hermite polynomial H_n(z) (and its
    generalization to complex n) and the parabolic cylinder
    function D.
    """
    n, ntyp = ctx._convert_param(n)
    z = ctx.convert(z)
    q = -ctx.mpq_1_2
    # For re(z) > 0, 2F0 -- http://functions.wolfram.com/
    #     HypergeometricFunctions/HermiteHGeneral/06/02/0009/
    # Otherwise, there is a reflection formula
    # 2F0 + http://functions.wolfram.com/HypergeometricFunctions/
    #           HermiteHGeneral/16/01/01/0006/
    #
    # TODO:
    # An alternative would be to use
    # http://functions.wolfram.com/HypergeometricFunctions/
    #     HermiteHGeneral/06/02/0006/
    #
    # Also, the 1F1 expansion
    # http://functions.wolfram.com/HypergeometricFunctions/
    #     HermiteHGeneral/26/01/02/0001/
    # should probably be used for tiny z
    if not z:
        T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0
        if parabolic_cylinder:
            T1[1][0] += q*n
        return T1,
    can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \
        (ctx.re(z) == 0 and ctx.im(z) > 0)
    expprec = ctx.prec*4 + 20
    if parabolic_cylinder:
        u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True)
        w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec)
    else:
        w = z
    w2 = ctx.fmul(w, w, prec=expprec)
    rw2 = ctx.fdiv(1, w2, prec=expprec)
    nrw2 = ctx.fneg(rw2, exact=True)
    nw = ctx.fneg(w, exact=True)
    if can_use_2f0:
        T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
        terms = [T1]
    else:
        T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
        T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2
        terms = [T1,T2]
    # Multiply by prefactor for D_n
    if parabolic_cylinder:
        expu = ctx.exp(u)
        for i in range(len(terms)):
            terms[i][1][0] += q*n
            terms[i][0].append(expu)
            terms[i][1].append(1)
    return tuple(terms)

@defun
def hermite(ctx, n, z, **kwargs):
    return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs)

@defun
def pcfd(ctx, n, z, **kwargs):
    r"""
    Gives the parabolic cylinder function in Whittaker's notation
    `D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`).
    It solves the differential equation

    .. math ::

        y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0.

    and can be represented in terms of Hermite polynomials
    (see :func:`~mpmath.hermite`) as

    .. math ::

        D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right).

    **Plots**

    .. literalinclude :: /plots/pcfd.py
    .. image :: /plots/pcfd.png

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0)
        1.0
        0.0
        -1.0
        0.0
        >>> pcfd(4,0); pcfd(-3,0)
        3.0
        0.6266570686577501256039413
        >>> pcfd('1/2', 2+3j)
        (-5.363331161232920734849056 - 3.858877821790010714163487j)
        >>> pcfd(2, -10)
        1.374906442631438038871515e-9

    Verifying the differential equation::

        >>> n = mpf(2.5)
        >>> y = lambda z: pcfd(n,z)
        >>> z = 1.75
        >>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z))
        0.0

    Rational Taylor series expansion when `n` is an integer::

        >>> taylor(lambda z: pcfd(5,z), 0, 7)
        [0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625]

    """
    return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs)

@defun
def pcfu(ctx, a, z, **kwargs):
    r"""
    Gives the parabolic cylinder function `U(a,z)`, which may be
    defined for `\Re(z) > 0` in terms of the confluent
    U-function (see :func:`~mpmath.hyperu`) by

    .. math ::

        U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2}
            U\left(\frac{a}{2}+\frac{1}{4},
            \frac{1}{2}, \frac{1}{2}z^2\right)

    or, for arbitrary `z`,

    .. math ::

        e^{-\frac{1}{4}z^2} U(a,z) =
            U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4};
            \tfrac{1}{2}; -\tfrac{1}{2}z^2\right) +
            U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4};
            \tfrac{3}{2}; -\tfrac{1}{2}z^2\right).

    **Examples**

    Connection to other functions::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> z = mpf(3)
        >>> pcfu(0.5,z)
        0.03210358129311151450551963
        >>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2))
        0.03210358129311151450551963
        >>> pcfu(0.5,-z)
        23.75012332835297233711255
        >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
        23.75012332835297233711255
        >>> pcfu(0.5,-z)
        23.75012332835297233711255
        >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
        23.75012332835297233711255

    """
    n, _ = ctx._convert_param(a)
    return ctx.pcfd(-n-ctx.mpq_1_2, z)

@defun
def pcfv(ctx, a, z, **kwargs):
    r"""
    Gives the parabolic cylinder function `V(a,z)`, which can be
    represented in terms of :func:`~mpmath.pcfu` as

    .. math ::

        V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}.

    **Examples**

    Wronskian relation between `U` and `V`::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> a, z = 2, 3
        >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
        0.7978845608028653558798921
        >>> sqrt(2/pi)
        0.7978845608028653558798921
        >>> a, z = 2.5, 3
        >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
        0.7978845608028653558798921
        >>> a, z = 0.25, -1
        >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
        0.7978845608028653558798921
        >>> a, z = 2+1j, 2+3j
        >>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z))
        0.7978845608028653558798921

    """
    n, ntype = ctx._convert_param(a)
    z = ctx.convert(z)
    q = ctx.mpq_1_2
    r = ctx.mpq_1_4
    if ntype == 'Q' and ctx.isint(n*2):
        # Faster for half-integers
        def h():
            jz = ctx.fmul(z, -1j, exact=True)
            T1terms = _hermite_param(ctx, -n-q, z, 1)
            T2terms = _hermite_param(ctx, n-q, jz, 1)
            for T in T1terms:
                T[0].append(1j)
                T[1].append(1)
                T[3].append(q-n)
            u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi)
            for T in T2terms:
                T[0].append(u)
                T[1].append(1)
            return T1terms + T2terms
        v = ctx.hypercomb(h, [], **kwargs)
        if ctx._is_real_type(n) and ctx._is_real_type(z):
            v = ctx._re(v)
        return v
    else:
        def h(n):
            w = ctx.square_exp_arg(z, -0.25)
            u = ctx.square_exp_arg(z, 0.5)
            e = ctx.exp(w)
            l = [ctx.pi, q, ctx.exp(w)]
            Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u
            Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u
            c, s = ctx.cospi_sinpi(r+q*n)
            Y1[0].append(s)
            Y2[0].append(c)
            for Y in (Y1, Y2):
                Y[1].append(1)
                Y[3].append(q-n)
            return Y1, Y2
        return ctx.hypercomb(h, [n], **kwargs)


@defun
def pcfw(ctx, a, z, **kwargs):
    r"""
    Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14).

    **Examples**

    Value at the origin::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> a = mpf(0.25)
        >>> pcfw(a,0)
        0.9722833245718180765617104
        >>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a)))
        0.9722833245718180765617104
        >>> diff(pcfw,(a,0),(0,1))
        -0.5142533944210078966003624
        >>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a)))
        -0.5142533944210078966003624

    """
    n, _ = ctx._convert_param(a)
    z = ctx.convert(z)
    def terms():
        phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n))
        phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j
        rho = ctx.pi/8 + 0.5*phi2
        # XXX: cancellation computing k
        k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n)
        C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n)
        yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25))
        yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25))
    v = ctx.sum_accurately(terms)
    if ctx._is_real_type(n) and ctx._is_real_type(z):
        v = ctx._re(v)
    return v

"""
Even/odd PCFs. Useful?

@defun
def pcfy1(ctx, a, z, **kwargs):
    a, _ = ctx._convert_param(n)
    z = ctx.convert(z)
    def h():
        w = ctx.square_exp_arg(z)
        w1 = ctx.fmul(w, -0.25, exact=True)
        w2 = ctx.fmul(w, 0.5, exact=True)
        e = ctx.exp(w1)
        return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2
    return ctx.hypercomb(h, [], **kwargs)

@defun
def pcfy2(ctx, a, z, **kwargs):
    a, _ = ctx._convert_param(n)
    z = ctx.convert(z)
    def h():
        w = ctx.square_exp_arg(z)
        w1 = ctx.fmul(w, -0.25, exact=True)
        w2 = ctx.fmul(w, 0.5, exact=True)
        e = ctx.exp(w1)
        return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \
            [ctx.mpq_3_2], w2
    return ctx.hypercomb(h, [], **kwargs)
"""

@defun_wrapped
def gegenbauer(ctx, n, a, z, **kwargs):
    # Special cases: a+0.5, a*2 poles
    if ctx.isnpint(a):
        return 0*(z+n)
    if ctx.isnpint(a+0.5):
        # TODO: something else is required here
        # E.g.: gegenbauer(-2, -0.5, 3) == -12
        if ctx.isnpint(n+1):
            raise NotImplementedError("Gegenbauer function with two limits")
        def h(a):
            a2 = 2*a
            T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
            return [T]
        return ctx.hypercomb(h, [a], **kwargs)
    def h(n):
        a2 = 2*a
        T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
        return [T]
    return ctx.hypercomb(h, [n], **kwargs)

@defun_wrapped
def jacobi(ctx, n, a, b, x, **kwargs):
    if not ctx.isnpint(a):
        def h(n):
            return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),)
        return ctx.hypercomb(h, [n], **kwargs)
    if not ctx.isint(b):
        def h(n, a):
            return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),)
        return ctx.hypercomb(h, [n, a], **kwargs)
    # XXX: determine appropriate limit
    return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs)

@defun_wrapped
def laguerre(ctx, n, a, z, **kwargs):
    # XXX: limits, poles
    #if ctx.isnpint(n):
    #    return 0*(a+z)
    def h(a):
        return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),)
    return ctx.hypercomb(h, [a], **kwargs)

@defun_wrapped
def legendre(ctx, n, x, **kwargs):
    if ctx.isint(n):
        n = int(n)
        # Accuracy near zeros
        if (n + (n < 0)) & 1:
            if not x:
                return x
            mag = ctx.mag(x)
            if mag < -2*ctx.prec-10:
                return x
            if mag < -5:
                ctx.prec += -mag
    return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs)

@defun
def legenp(ctx, n, m, z, type=2, **kwargs):
    # Legendre function, 1st kind
    n = ctx.convert(n)
    m = ctx.convert(m)
    # Faster
    if not m:
        return ctx.legendre(n, z, **kwargs)
    # TODO: correct evaluation at singularities
    if type == 2:
        def h(n,m):
            g = m*0.5
            T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
            return (T,)
        return ctx.hypercomb(h, [n,m], **kwargs)
    if type == 3:
        def h(n,m):
            g = m*0.5
            T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
            return (T,)
        return ctx.hypercomb(h, [n,m], **kwargs)
    raise ValueError("requires type=2 or type=3")

@defun
def legenq(ctx, n, m, z, type=2, **kwargs):
    # Legendre function, 2nd kind
    n = ctx.convert(n)
    m = ctx.convert(m)
    z = ctx.convert(z)
    if z in (1, -1):
        #if ctx.isint(m):
        #    return ctx.nan
        #return ctx.inf  # unsigned
        return ctx.nan
    if type == 2:
        def h(n, m):
            cos, sin = ctx.cospi_sinpi(m)
            s = 2 * sin / ctx.pi
            c = cos
            a = 1+z
            b = 1-z
            u = m/2
            w = (1-z)/2
            T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
                [-n, n+1], [1-m], w
            T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \
                [-n, n+1], [m+1], w
            return T1, T2
        return ctx.hypercomb(h, [n, m], **kwargs)
    if type == 3:
        # The following is faster when there only is a single series
        # Note: not valid for -1 < z < 0 (?)
        if abs(z) > 1:
            def h(n, m):
                T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \
                     [1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \
                     [n+m+1], [n+1.5], \
                     [0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2)
                return [T1]
            return ctx.hypercomb(h, [n, m], **kwargs)
        else:
            # not valid for 1 < z < inf ?
            def h(n, m):
                s = 2 * ctx.sinpi(m) / ctx.pi
                c = ctx.expjpi(m)
                a = 1+z
                b = z-1
                u = m/2
                w = (1-z)/2
                T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
                    [-n, n+1], [1-m], w
                T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \
                    [-n, n+1], [m+1], w
                return T1, T2
            return ctx.hypercomb(h, [n, m], **kwargs)
    raise ValueError("requires type=2 or type=3")

@defun_wrapped
def chebyt(ctx, n, x, **kwargs):
    if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
        return x * 0
    return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs)

@defun_wrapped
def chebyu(ctx, n, x, **kwargs):
    if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
        return x * 0
    return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs)

@defun
def spherharm(ctx, l, m, theta, phi, **kwargs):
    l = ctx.convert(l)
    m = ctx.convert(m)
    theta = ctx.convert(theta)
    phi = ctx.convert(phi)
    l_isint = ctx.isint(l)
    l_natural = l_isint and l >= 0
    m_isint = ctx.isint(m)
    if l_isint and l < 0 and m_isint:
        return ctx.spherharm(-(l+1), m, theta, phi, **kwargs)
    if theta == 0 and m_isint and m < 0:
        return ctx.zero * 1j
    if l_natural and m_isint:
        if abs(m) > l:
            return ctx.zero * 1j
        # http://functions.wolfram.com/Polynomials/
        #     SphericalHarmonicY/26/01/02/0004/
        def h(l,m):
            absm = abs(m)
            C = [-1, ctx.expj(m*phi),
                 (2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm),
                 ctx.sin(theta)**2,
                 ctx.fac(absm), 2]
            P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1]
            return ((C, P, [], [], [absm-l, l+absm+1], [absm+1],
                ctx.sin(0.5*theta)**2),)
    else:
        # http://functions.wolfram.com/HypergeometricFunctions/
        #     SphericalHarmonicYGeneral/26/01/02/0001/
        def h(l,m):
            if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m):
                return (([0], [-1], [], [], [], [], 0),)
            cos, sin = ctx.cos_sin(0.5*theta)
            C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi,
                 ctx.gamma(l-m+1), ctx.gamma(l+m+1),
                 cos**2, sin**2]
            P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m]
            return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),)
    return ctx.hypercomb(h, [l,m], **kwargs)