This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/functions/hypergeometric.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
from ..libmp.backend import xrange
from .functions import defun, defun_wrapped

def _check_need_perturb(ctx, terms, prec, discard_known_zeros):
    perturb = recompute = False
    extraprec = 0
    discard = []
    for term_index, term in enumerate(terms):
        w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term
        have_singular_nongamma_weight = False
        # Avoid division by zero in leading factors (TODO:
        # also check for near division by zero?)
        for k, w in enumerate(w_s):
            if not w:
                if ctx.re(c_s[k]) <= 0 and c_s[k]:
                    perturb = recompute = True
                    have_singular_nongamma_weight = True
        pole_count = [0, 0, 0]
        # Check for gamma and series poles and near-poles
        for data_index, data in enumerate([alpha_s, beta_s, b_s]):
            for i, x in enumerate(data):
                n, d = ctx.nint_distance(x)
                # Poles
                if n > 0:
                    continue
                if d == ctx.ninf:
                    # OK if we have a polynomial
                    # ------------------------------
                    ok = False
                    if data_index == 2:
                        for u in a_s:
                            if ctx.isnpint(u) and u >= int(n):
                                ok = True
                                break
                    if ok:
                        continue
                    pole_count[data_index] += 1
                    # ------------------------------
                    #perturb = recompute = True
                    #return perturb, recompute, extraprec
                elif d < -4:
                    extraprec += -d
                    recompute = True
        if discard_known_zeros and pole_count[1] > pole_count[0] + pole_count[2] \
            and not have_singular_nongamma_weight:
            discard.append(term_index)
        elif sum(pole_count):
            perturb = recompute = True
    return perturb, recompute, extraprec, discard

_hypercomb_msg = """
hypercomb() failed to converge to the requested %i bits of accuracy
using a working precision of %i bits. The function value may be zero or
infinite; try passing zeroprec=N or infprec=M to bound finite values between
2^(-N) and 2^M. Otherwise try a higher maxprec or maxterms.
"""

@defun
def hypercomb(ctx, function, params=[], discard_known_zeros=True, **kwargs):
    orig = ctx.prec
    sumvalue = ctx.zero
    dist = ctx.nint_distance
    ninf = ctx.ninf
    orig_params = params[:]
    verbose = kwargs.get('verbose', False)
    maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(orig))
    kwargs['maxprec'] = maxprec   # For calls to hypsum
    zeroprec = kwargs.get('zeroprec')
    infprec = kwargs.get('infprec')
    perturbed_reference_value = None
    hextra = 0
    try:
        while 1:
            ctx.prec += 10
            if ctx.prec > maxprec:
                raise ValueError(_hypercomb_msg % (orig, ctx.prec))
            orig2 = ctx.prec
            params = orig_params[:]
            terms = function(*params)
            if verbose:
                print()
                print("ENTERING hypercomb main loop")
                print("prec =", ctx.prec)
                print("hextra", hextra)
            perturb, recompute, extraprec, discard = \
                _check_need_perturb(ctx, terms, orig, discard_known_zeros)
            ctx.prec += extraprec
            if perturb:
                if "hmag" in kwargs:
                    hmag = kwargs["hmag"]
                elif ctx._fixed_precision:
                    hmag = int(ctx.prec*0.3)
                else:
                    hmag = orig + 10 + hextra
                h = ctx.ldexp(ctx.one, -hmag)
                ctx.prec = orig2 + 10 + hmag + 10
                for k in range(len(params)):
                    params[k] += h
                    # Heuristically ensure that the perturbations
                    # are "independent" so that two perturbations
                    # don't accidentally cancel each other out
                    # in a subtraction.
                    h += h/(k+1)
            if recompute:
                terms = function(*params)
            if discard_known_zeros:
                terms = [term for (i, term) in enumerate(terms) if i not in discard]
            if not terms:
                return ctx.zero
            evaluated_terms = []
            for term_index, term_data in enumerate(terms):
                w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term_data
                if verbose:
                    print()
                    print("  Evaluating term %i/%i : %iF%i" % \
                        (term_index+1, len(terms), len(a_s), len(b_s)))
                    print("    powers", ctx.nstr(w_s), ctx.nstr(c_s))
                    print("    gamma", ctx.nstr(alpha_s), ctx.nstr(beta_s))
                    print("    hyper", ctx.nstr(a_s), ctx.nstr(b_s))
                    print("    z", ctx.nstr(z))
                #v = ctx.hyper(a_s, b_s, z, **kwargs)
                #for a in alpha_s: v *= ctx.gamma(a)
                #for b in beta_s: v *= ctx.rgamma(b)
                #for w, c in zip(w_s, c_s): v *= ctx.power(w, c)
                v = ctx.fprod([ctx.hyper(a_s, b_s, z, **kwargs)] + \
                    [ctx.gamma(a) for a in alpha_s] + \
                    [ctx.rgamma(b) for b in beta_s] + \
                    [ctx.power(w,c) for (w,c) in zip(w_s,c_s)])
                if verbose:
                    print("    Value:", v)
                evaluated_terms.append(v)

            if len(terms) == 1 and (not perturb):
                sumvalue = evaluated_terms[0]
                break

            if ctx._fixed_precision:
                sumvalue = ctx.fsum(evaluated_terms)
                break

            sumvalue = ctx.fsum(evaluated_terms)
            term_magnitudes = [ctx.mag(x) for x in evaluated_terms]
            max_magnitude = max(term_magnitudes)
            sum_magnitude = ctx.mag(sumvalue)
            cancellation = max_magnitude - sum_magnitude
            if verbose:
                print()
                print("  Cancellation:", cancellation, "bits")
                print("  Increased precision:", ctx.prec - orig, "bits")

            precision_ok = cancellation < ctx.prec - orig

            if zeroprec is None:
                zero_ok = False
            else:
                zero_ok = max_magnitude - ctx.prec < -zeroprec
            if infprec is None:
                inf_ok = False
            else:
                inf_ok = max_magnitude > infprec

            if precision_ok and (not perturb) or ctx.isnan(cancellation):
                break
            elif precision_ok:
                if perturbed_reference_value is None:
                    hextra += 20
                    perturbed_reference_value = sumvalue
                    continue
                elif ctx.mag(sumvalue - perturbed_reference_value) <= \
                        ctx.mag(sumvalue) - orig:
                    break
                elif zero_ok:
                    sumvalue = ctx.zero
                    break
                elif inf_ok:
                    sumvalue = ctx.inf
                    break
                elif 'hmag' in kwargs:
                    break
                else:
                    hextra *= 2
                    perturbed_reference_value = sumvalue
            # Increase precision
            else:
                increment = min(max(cancellation, orig//2), max(extraprec,orig))
                ctx.prec += increment
                if verbose:
                    print("  Must start over with increased precision")
                continue
    finally:
        ctx.prec = orig
    return +sumvalue

@defun
def hyper(ctx, a_s, b_s, z, **kwargs):
    """
    Hypergeometric function, general case.
    """
    z = ctx.convert(z)
    p = len(a_s)
    q = len(b_s)
    a_s = [ctx._convert_param(a) for a in a_s]
    b_s = [ctx._convert_param(b) for b in b_s]
    # Reduce degree by eliminating common parameters
    if kwargs.get('eliminate', True):
        i = 0
        while i < q and a_s:
            b = b_s[i]
            if b in a_s:
                a_s.remove(b)
                b_s.remove(b)
                p -= 1
                q -= 1
            else:
                i += 1
    # Handle special cases
    if p == 0:
        if   q == 1: return ctx._hyp0f1(b_s, z, **kwargs)
        elif q == 0: return ctx.exp(z)
    elif p == 1:
        if   q == 1: return ctx._hyp1f1(a_s, b_s, z, **kwargs)
        elif q == 2: return ctx._hyp1f2(a_s, b_s, z, **kwargs)
        elif q == 0: return ctx._hyp1f0(a_s[0][0], z)
    elif p == 2:
        if   q == 1: return ctx._hyp2f1(a_s, b_s, z, **kwargs)
        elif q == 2: return ctx._hyp2f2(a_s, b_s, z, **kwargs)
        elif q == 3: return ctx._hyp2f3(a_s, b_s, z, **kwargs)
        elif q == 0: return ctx._hyp2f0(a_s, b_s, z, **kwargs)
    elif p == q+1:
        return ctx._hypq1fq(p, q, a_s, b_s, z, **kwargs)
    elif p > q+1 and not kwargs.get('force_series'):
        return ctx._hyp_borel(p, q, a_s, b_s, z, **kwargs)
    coeffs, types = zip(*(a_s+b_s))
    return ctx.hypsum(p, q, types, coeffs, z, **kwargs)

@defun
def hyp0f1(ctx,b,z,**kwargs):
    return ctx.hyper([],[b],z,**kwargs)

@defun
def hyp1f1(ctx,a,b,z,**kwargs):
    return ctx.hyper([a],[b],z,**kwargs)

@defun
def hyp1f2(ctx,a1,b1,b2,z,**kwargs):
    return ctx.hyper([a1],[b1,b2],z,**kwargs)

@defun
def hyp2f1(ctx,a,b,c,z,**kwargs):
    return ctx.hyper([a,b],[c],z,**kwargs)

@defun
def hyp2f2(ctx,a1,a2,b1,b2,z,**kwargs):
    return ctx.hyper([a1,a2],[b1,b2],z,**kwargs)

@defun
def hyp2f3(ctx,a1,a2,b1,b2,b3,z,**kwargs):
    return ctx.hyper([a1,a2],[b1,b2,b3],z,**kwargs)

@defun
def hyp2f0(ctx,a,b,z,**kwargs):
    return ctx.hyper([a,b],[],z,**kwargs)

@defun
def hyp3f2(ctx,a1,a2,a3,b1,b2,z,**kwargs):
    return ctx.hyper([a1,a2,a3],[b1,b2],z,**kwargs)

@defun_wrapped
def _hyp1f0(ctx, a, z):
    return (1-z) ** (-a)

@defun
def _hyp0f1(ctx, b_s, z, **kwargs):
    (b, btype), = b_s
    if z:
        magz = ctx.mag(z)
    else:
        magz = 0
    if magz >= 8 and not kwargs.get('force_series'):
        try:
            # http://functions.wolfram.com/HypergeometricFunctions/
            # Hypergeometric0F1/06/02/03/0004/
            # We don't need hypercomb because the only possible singularity
            # occurs when the value is undefined. However, we should perhaps
            # still check for cancellation...
            # TODO: handle the all-real case more efficiently!
            # TODO: figure out how much precision is needed (exponential growth)
            orig = ctx.prec
            try:
                ctx.prec += 12 + magz//2
                w = ctx.sqrt(-z)
                jw = ctx.j*w
                u = 1/(4*jw)
                c = ctx.mpq_1_2 - b
                E = ctx.exp(2*jw)
                H1 = (-jw)**c/E*ctx.hyp2f0(b-ctx.mpq_1_2, ctx.mpq_3_2-b, -u,
                    force_series=True)
                H2 = (jw)**c*E*ctx.hyp2f0(b-ctx.mpq_1_2, ctx.mpq_3_2-b, u,
                    force_series=True)
                v = ctx.gamma(b)/(2*ctx.sqrt(ctx.pi))*(H1 + H2)
            finally:
                ctx.prec = orig
            if ctx._is_real_type(b) and ctx._is_real_type(z):
                v = ctx._re(v)
            return +v
        except ctx.NoConvergence:
            pass
    return ctx.hypsum(0, 1, (btype,), [b], z, **kwargs)

@defun
def _hyp1f1(ctx, a_s, b_s, z, **kwargs):
    (a, atype), = a_s
    (b, btype), = b_s
    if not z:
        return ctx.one+z
    magz = ctx.mag(z)
    if magz >= 7 and not (ctx.isint(a) and ctx.re(a) <= 0):
        if ctx.isinf(z):
            if ctx.sign(a) == ctx.sign(b) == ctx.sign(z) == 1:
                return ctx.inf
            return ctx.nan * z
        try:
            try:
                ctx.prec += magz
                sector = ctx._im(z) < 0
                def h(a,b):
                    if sector:
                        E = ctx.expjpi(ctx.fneg(a, exact=True))
                    else:
                        E = ctx.expjpi(a)
                    rz = 1/z
                    T1 = ([E,z], [1,-a], [b], [b-a], [a, 1+a-b], [], -rz)
                    T2 = ([ctx.exp(z),z], [1,a-b], [b], [a], [b-a, 1-a], [], rz)
                    return T1, T2
                v = ctx.hypercomb(h, [a,b], force_series=True)
                if ctx._is_real_type(a) and ctx._is_real_type(b) and ctx._is_real_type(z):
                    v = ctx._re(v)
                return +v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec -= magz
    v = ctx.hypsum(1, 1, (atype, btype), [a, b], z, **kwargs)
    return v

def _hyp2f1_gosper(ctx,a,b,c,z,**kwargs):
    # Use Gosper's recurrence
    # See http://www.math.utexas.edu/pipermail/maxima/2006/000126.html
    _a,_b,_c,_z = a, b, c, z
    orig = ctx.prec
    maxprec = kwargs.get('maxprec', 100*orig)
    extra = 10
    while 1:
        ctx.prec = orig + extra
        #a = ctx.convert(_a)
        #b = ctx.convert(_b)
        #c = ctx.convert(_c)
        z = ctx.convert(_z)
        d = ctx.mpf(0)
        e = ctx.mpf(1)
        f = ctx.mpf(0)
        k = 0
        # Common subexpression elimination, unfortunately making
        # things a bit unreadable. The formula is quite messy to begin
        # with, though...
        abz = a*b*z
        ch = c * ctx.mpq_1_2
        c1h = (c+1) * ctx.mpq_1_2
        nz = 1-z
        g = z/nz
        abg = a*b*g
        cba = c-b-a
        z2 = z-2
        tol = -ctx.prec - 10
        nstr = ctx.nstr
        nprint = ctx.nprint
        mag = ctx.mag
        maxmag = ctx.ninf
        while 1:
            kch = k+ch
            kakbz = (k+a)*(k+b)*z / (4*(k+1)*kch*(k+c1h))
            d1 = kakbz*(e-(k+cba)*d*g)
            e1 = kakbz*(d*abg+(k+c)*e)
            ft = d*(k*(cba*z+k*z2-c)-abz)/(2*kch*nz)
            f1 = f + e - ft
            maxmag = max(maxmag, mag(f1))
            if mag(f1-f) < tol:
                break
            d, e, f = d1, e1, f1
            k += 1
        cancellation = maxmag - mag(f1)
        if cancellation < extra:
            break
        else:
            extra += cancellation
            if extra > maxprec:
                raise ctx.NoConvergence
    return f1

@defun
def _hyp2f1(ctx, a_s, b_s, z, **kwargs):
    (a, atype), (b, btype) = a_s
    (c, ctype), = b_s
    if z == 1:
        # TODO: the following logic can be simplified
        convergent = ctx.re(c-a-b) > 0
        finite = (ctx.isint(a) and a <= 0) or (ctx.isint(b) and b <= 0)
        zerodiv = ctx.isint(c) and c <= 0 and not \
            ((ctx.isint(a) and c <= a <= 0) or (ctx.isint(b) and c <= b <= 0))
        #print "bz", a, b, c, z, convergent, finite, zerodiv
        # Gauss's theorem gives the value if convergent
        if (convergent or finite) and not zerodiv:
            return ctx.gammaprod([c, c-a-b], [c-a, c-b], _infsign=True)
        # Otherwise, there is a pole and we take the
        # sign to be that when approaching from below
        # XXX: this evaluation is not necessarily correct in all cases
        return ctx.hyp2f1(a,b,c,1-ctx.eps*2) * ctx.inf

    # Equal to 1 (first term), unless there is a subsequent
    # division by zero
    if not z:
        # Division by zero but power of z is higher than
        # first order so cancels
        if c or a == 0 or b == 0:
            return 1+z
        # Indeterminate
        return ctx.nan

    # Hit zero denominator unless numerator goes to 0 first
    if ctx.isint(c) and c <= 0:
        if (ctx.isint(a) and c <= a <= 0) or \
           (ctx.isint(b) and c <= b <= 0):
            pass
        else:
            # Pole in series
            return ctx.inf

    absz = abs(z)

    # Fast case: standard series converges rapidly,
    # possibly in finitely many terms
    if absz <= 0.8 or (ctx.isint(a) and a <= 0 and a >= -1000) or \
                      (ctx.isint(b) and b <= 0 and b >= -1000):
        return ctx.hypsum(2, 1, (atype, btype, ctype), [a, b, c], z, **kwargs)

    orig = ctx.prec
    try:
        ctx.prec += 10

        # Use 1/z transformation
        if absz >= 1.3:
            def h(a,b):
                t = ctx.mpq_1-c; ab = a-b; rz = 1/z
                T1 = ([-z],[-a], [c,-ab],[b,c-a], [a,t+a],[ctx.mpq_1+ab],  rz)
                T2 = ([-z],[-b], [c,ab],[a,c-b], [b,t+b],[ctx.mpq_1-ab],  rz)
                return T1, T2
            v = ctx.hypercomb(h, [a,b], **kwargs)

        # Use 1-z transformation
        elif abs(1-z) <= 0.75:
            def h(a,b):
                t = c-a-b; ca = c-a; cb = c-b; rz = 1-z
                T1 = [], [], [c,t], [ca,cb], [a,b], [1-t], rz
                T2 = [rz], [t], [c,a+b-c], [a,b], [ca,cb], [1+t], rz
                return T1, T2
            v = ctx.hypercomb(h, [a,b], **kwargs)

        # Use z/(z-1) transformation
        elif abs(z/(z-1)) <= 0.75:
            v = ctx.hyp2f1(a, c-b, c, z/(z-1)) / (1-z)**a

        # Remaining part of unit circle
        else:
            v = _hyp2f1_gosper(ctx,a,b,c,z,**kwargs)

    finally:
        ctx.prec = orig
    return +v

@defun
def _hypq1fq(ctx, p, q, a_s, b_s, z, **kwargs):
    r"""
    Evaluates 3F2, 4F3, 5F4, ...
    """
    a_s, a_types = zip(*a_s)
    b_s, b_types = zip(*b_s)
    a_s = list(a_s)
    b_s = list(b_s)
    absz = abs(z)
    ispoly = False
    for a in a_s:
        if ctx.isint(a) and a <= 0:
            ispoly = True
            break
    # Direct summation
    if absz < 1 or ispoly:
        try:
            return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
        except ctx.NoConvergence:
            if absz > 1.1 or ispoly:
                raise
    # Use expansion at |z-1| -> 0.
    # Reference: Wolfgang Buhring, "Generalized Hypergeometric Functions at
    #   Unit Argument", Proc. Amer. Math. Soc., Vol. 114, No. 1 (Jan. 1992),
    #   pp.145-153
    # The current implementation has several problems:
    # 1. We only implement it for 3F2. The expansion coefficients are
    #    given by extremely messy nested sums in the higher degree cases
    #    (see reference). Is efficient sequential generation of the coefficients
    #    possible in the > 3F2 case?
    # 2. Although the series converges, it may do so slowly, so we need
    #    convergence acceleration. The acceleration implemented by
    #    nsum does not always help, so results returned are sometimes
    #    inaccurate! Can we do better?
    # 3. We should check conditions for convergence, and possibly
    #    do a better job of cancelling out gamma poles if possible.
    if z == 1:
        # XXX: should also check for division by zero in the
        # denominator of the series (cf. hyp2f1)
        S = ctx.re(sum(b_s)-sum(a_s))
        if S <= 0:
            #return ctx.hyper(a_s, b_s, 1-ctx.eps*2, **kwargs) * ctx.inf
            return ctx.hyper(a_s, b_s, 0.9, **kwargs) * ctx.inf
    if (p,q) == (3,2) and abs(z-1) < 0.05:   # and kwargs.get('sum1')
        #print "Using alternate summation (experimental)"
        a1,a2,a3 = a_s
        b1,b2 = b_s
        u = b1+b2-a3
        initial = ctx.gammaprod([b2-a3,b1-a3,a1,a2],[b2-a3,b1-a3,1,u])
        def term(k, _cache={0:initial}):
            u = b1+b2-a3+k
            if k in _cache:
                t = _cache[k]
            else:
                t = _cache[k-1]
                t *= (b1+k-a3-1)*(b2+k-a3-1)
                t /= k*(u-1)
                _cache[k] = t
            return t * ctx.hyp2f1(a1,a2,u,z)
        try:
            S = ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
                strict=kwargs.get('strict', True))
            return S * ctx.gammaprod([b1,b2],[a1,a2,a3])
        except ctx.NoConvergence:
            pass
    # Try to use convergence acceleration on and close to the unit circle.
    # Problem: the convergence acceleration degenerates as |z-1| -> 0,
    # except for special cases. Everywhere else, the Shanks transformation
    # is very efficient.
    if absz < 1.1 and ctx._re(z) <= 1:

        def term(kk, _cache={0:ctx.one}):
            k = int(kk)
            if k != kk:
                t = z ** ctx.mpf(kk) / ctx.fac(kk)
                for a in a_s: t *= ctx.rf(a,kk)
                for b in b_s: t /= ctx.rf(b,kk)
                return t
            if k in _cache:
                return _cache[k]
            t = term(k-1)
            m = k-1
            for j in xrange(p): t *= (a_s[j]+m)
            for j in xrange(q): t /= (b_s[j]+m)
            t *= z
            t /= k
            _cache[k] = t
            return t

        sum_method = kwargs.get('sum_method', 'r+s+e')

        try:
            return ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
                strict=kwargs.get('strict', True),
                method=sum_method.replace('e',''))
        except ctx.NoConvergence:
            if 'e' not in sum_method:
                raise
            pass

        if kwargs.get('verbose'):
            print("Attempting Euler-Maclaurin summation")


        """
        Somewhat slower version (one diffs_exp for each factor).
        However, this would be faster with fast direct derivatives
        of the gamma function.

        def power_diffs(k0):
            r = 0
            l = ctx.log(z)
            while 1:
                yield z**ctx.mpf(k0) * l**r
                r += 1

        def loggamma_diffs(x, reciprocal=False):
            sign = (-1) ** reciprocal
            yield sign * ctx.loggamma(x)
            i = 0
            while 1:
                yield sign * ctx.psi(i,x)
                i += 1

        def hyper_diffs(k0):
            b2 = b_s + [1]
            A = [ctx.diffs_exp(loggamma_diffs(a+k0)) for a in a_s]
            B = [ctx.diffs_exp(loggamma_diffs(b+k0,True)) for b in b2]
            Z = [power_diffs(k0)]
            C = ctx.gammaprod([b for b in b2], [a for a in a_s])
            for d in ctx.diffs_prod(A + B + Z):
                v = C * d
                yield v
        """

        def log_diffs(k0):
            b2 = b_s + [1]
            yield sum(ctx.loggamma(a+k0) for a in a_s) - \
                sum(ctx.loggamma(b+k0) for b in b2) + k0*ctx.log(z)
            i = 0
            while 1:
                v = sum(ctx.psi(i,a+k0) for a in a_s) - \
                    sum(ctx.psi(i,b+k0) for b in b2)
                if i == 0:
                    v += ctx.log(z)
                yield v
                i += 1

        def hyper_diffs(k0):
            C = ctx.gammaprod([b for b in b_s], [a for a in a_s])
            for d in ctx.diffs_exp(log_diffs(k0)):
                v = C * d
                yield v

        tol = ctx.eps / 1024
        prec = ctx.prec
        try:
            trunc = 50 * ctx.dps
            ctx.prec += 20
            for i in xrange(5):
                head = ctx.fsum(term(k) for k in xrange(trunc))
                tail, err = ctx.sumem(term, [trunc, ctx.inf], tol=tol,
                    adiffs=hyper_diffs(trunc),
                    verbose=kwargs.get('verbose'),
                    error=True,
                    _fast_abort=True)
                if err < tol:
                    v = head + tail
                    break
                trunc *= 2
                # Need to increase precision because calculation of
                # derivatives may be inaccurate
                ctx.prec += ctx.prec//2
                if i == 4:
                    raise ctx.NoConvergence(\
                        "Euler-Maclaurin summation did not converge")
        finally:
            ctx.prec = prec
        return +v

    # Use 1/z transformation
    # http://functions.wolfram.com/HypergeometricFunctions/
    #   HypergeometricPFQ/06/01/05/02/0004/
    def h(*args):
        a_s = list(args[:p])
        b_s = list(args[p:])
        Ts = []
        recz = ctx.one/z
        negz = ctx.fneg(z, exact=True)
        for k in range(q+1):
            ak = a_s[k]
            C = [negz]
            Cp = [-ak]
            Gn = b_s + [ak] + [a_s[j]-ak for j in range(q+1) if j != k]
            Gd = a_s + [b_s[j]-ak for j in range(q)]
            Fn = [ak] + [ak-b_s[j]+1 for j in range(q)]
            Fd = [1-a_s[j]+ak for j in range(q+1) if j != k]
            Ts.append((C, Cp, Gn, Gd, Fn, Fd, recz))
        return Ts
    return ctx.hypercomb(h, a_s+b_s, **kwargs)

@defun
def _hyp_borel(ctx, p, q, a_s, b_s, z, **kwargs):
    if a_s:
        a_s, a_types = zip(*a_s)
        a_s = list(a_s)
    else:
        a_s, a_types = [], ()
    if b_s:
        b_s, b_types = zip(*b_s)
        b_s = list(b_s)
    else:
        b_s, b_types = [], ()
    kwargs['maxterms'] = kwargs.get('maxterms', ctx.prec)
    try:
        return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
    except ctx.NoConvergence:
        pass
    prec = ctx.prec
    try:
        tol = kwargs.get('asymp_tol', ctx.eps/4)
        ctx.prec += 10
        # hypsum is has a conservative tolerance. So we try again:
        def term(k, cache={0:ctx.one}):
            if k in cache:
                return cache[k]
            t = term(k-1)
            for a in a_s: t *= (a+(k-1))
            for b in b_s: t /= (b+(k-1))
            t *= z
            t /= k
            cache[k] = t
            return t
        s = ctx.one
        for k in xrange(1, ctx.prec):
            t = term(k)
            s += t
            if abs(t) <= tol:
                return s
    finally:
        ctx.prec = prec
    if p <= q+3:
        contour = kwargs.get('contour')
        if not contour:
            if ctx.arg(z) < 0.25:
                u = z / max(1, abs(z))
                if ctx.arg(z) >= 0:
                    contour = [0, 2j, (2j+2)/u, 2/u, ctx.inf]
                else:
                    contour = [0, -2j, (-2j+2)/u, 2/u, ctx.inf]
                #contour = [0, 2j/z, 2/z, ctx.inf]
                #contour = [0, 2j, 2/z, ctx.inf]
                #contour = [0, 2j, ctx.inf]
            else:
                contour = [0, ctx.inf]
        quad_kwargs = kwargs.get('quad_kwargs', {})
        def g(t):
            return ctx.exp(-t)*ctx.hyper(a_s, b_s+[1], t*z)
        I, err = ctx.quad(g, contour, error=True, **quad_kwargs)
        if err <= abs(I)*ctx.eps*8:
            return I
    raise ctx.NoConvergence


@defun
def _hyp2f2(ctx, a_s, b_s, z, **kwargs):
    (a1, a1type), (a2, a2type) = a_s
    (b1, b1type), (b2, b2type) = b_s

    absz = abs(z)
    magz = ctx.mag(z)
    orig = ctx.prec

    # Asymptotic expansion is ~ exp(z)
    asymp_extraprec = magz

    # Asymptotic series is in terms of 3F1
    can_use_asymptotic = (not kwargs.get('force_series')) and \
        (ctx.mag(absz) > 3)

    # TODO: much of the following could be shared with 2F3 instead of
    # copypasted
    if can_use_asymptotic:
        #print "using asymp"
        try:
            try:
                ctx.prec += asymp_extraprec
                # http://functions.wolfram.com/HypergeometricFunctions/
                # Hypergeometric2F2/06/02/02/0002/
                def h(a1,a2,b1,b2):
                    X = a1+a2-b1-b2
                    A2 = a1+a2
                    B2 = b1+b2
                    c = {}
                    c[0] = ctx.one
                    c[1] = (A2-1)*X+b1*b2-a1*a2
                    s1 = 0
                    k = 0
                    tprev = 0
                    while 1:
                        if k not in c:
                            uu1 = 1-B2+2*a1+a1**2+2*a2+a2**2-A2*B2+a1*a2+b1*b2+(2*B2-3*(A2+1))*k+2*k**2
                            uu2 = (k-A2+b1-1)*(k-A2+b2-1)*(k-X-2)
                            c[k] = ctx.one/k * (uu1*c[k-1]-uu2*c[k-2])
                        t1 = c[k] * z**(-k)
                        if abs(t1) < 0.1*ctx.eps:
                            #print "Convergence :)"
                            break
                        # Quit if the series doesn't converge quickly enough
                        if k > 5 and abs(tprev) / abs(t1) < 1.5:
                            #print "No convergence :("
                            raise ctx.NoConvergence
                        s1 += t1
                        tprev = t1
                        k += 1
                    S = ctx.exp(z)*s1
                    T1 = [z,S], [X,1], [b1,b2],[a1,a2],[],[],0
                    T2 = [-z],[-a1],[b1,b2,a2-a1],[a2,b1-a1,b2-a1],[a1,a1-b1+1,a1-b2+1],[a1-a2+1],-1/z
                    T3 = [-z],[-a2],[b1,b2,a1-a2],[a1,b1-a2,b2-a2],[a2,a2-b1+1,a2-b2+1],[-a1+a2+1],-1/z
                    return T1, T2, T3
                v = ctx.hypercomb(h, [a1,a2,b1,b2], force_series=True, maxterms=4*ctx.prec)
                if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,z]) == 5:
                    v = ctx.re(v)
                return v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec = orig

    return ctx.hypsum(2, 2, (a1type, a2type, b1type, b2type), [a1, a2, b1, b2], z, **kwargs)



@defun
def _hyp1f2(ctx, a_s, b_s, z, **kwargs):
    (a1, a1type), = a_s
    (b1, b1type), (b2, b2type) = b_s

    absz = abs(z)
    magz = ctx.mag(z)
    orig = ctx.prec

    # Asymptotic expansion is ~ exp(sqrt(z))
    asymp_extraprec = z and magz//2

    # Asymptotic series is in terms of 3F0
    can_use_asymptotic = (not kwargs.get('force_series')) and \
        (ctx.mag(absz) > 19) and \
        (ctx.sqrt(absz) > 1.5*orig) #and \
        #ctx._hyp_check_convergence([a1, a1-b1+1, a1-b2+1], [],
        #    1/absz, orig+40+asymp_extraprec)

    # TODO: much of the following could be shared with 2F3 instead of
    # copypasted
    if can_use_asymptotic:
        #print "using asymp"
        try:
            try:
                ctx.prec += asymp_extraprec
                # http://functions.wolfram.com/HypergeometricFunctions/
                # Hypergeometric1F2/06/02/03/
                def h(a1,b1,b2):
                    X = ctx.mpq_1_2*(a1-b1-b2+ctx.mpq_1_2)
                    c = {}
                    c[0] = ctx.one
                    c[1] = 2*(ctx.mpq_1_4*(3*a1+b1+b2-2)*(a1-b1-b2)+b1*b2-ctx.mpq_3_16)
                    c[2] = 2*(b1*b2+ctx.mpq_1_4*(a1-b1-b2)*(3*a1+b1+b2-2)-ctx.mpq_3_16)**2+\
                        ctx.mpq_1_16*(-16*(2*a1-3)*b1*b2 + \
                        4*(a1-b1-b2)*(-8*a1**2+11*a1+b1+b2-2)-3)
                    s1 = 0
                    s2 = 0
                    k = 0
                    tprev = 0
                    while 1:
                        if k not in c:
                            uu1 = (3*k**2+(-6*a1+2*b1+2*b2-4)*k + 3*a1**2 - \
                                (b1-b2)**2 - 2*a1*(b1+b2-2) + ctx.mpq_1_4)
                            uu2 = (k-a1+b1-b2-ctx.mpq_1_2)*(k-a1-b1+b2-ctx.mpq_1_2)*\
                                (k-a1+b1+b2-ctx.mpq_5_2)
                            c[k] = ctx.one/(2*k)*(uu1*c[k-1]-uu2*c[k-2])
                        w = c[k] * (-z)**(-0.5*k)
                        t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
                        t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
                        if abs(t1) < 0.1*ctx.eps:
                            #print "Convergence :)"
                            break
                        # Quit if the series doesn't converge quickly enough
                        if k > 5 and abs(tprev) / abs(t1) < 1.5:
                            #print "No convergence :("
                            raise ctx.NoConvergence
                        s1 += t1
                        s2 += t2
                        tprev = t1
                        k += 1
                    S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
                        ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
                    T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2], [a1],\
                        [], [], 0
                    T2 = [-z], [-a1], [b1,b2],[b1-a1,b2-a1], \
                        [a1,a1-b1+1,a1-b2+1], [], 1/z
                    return T1, T2
                v = ctx.hypercomb(h, [a1,b1,b2], force_series=True, maxterms=4*ctx.prec)
                if sum(ctx._is_real_type(u) for u in [a1,b1,b2,z]) == 4:
                    v = ctx.re(v)
                return v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec = orig

    #print "not using asymp"
    return ctx.hypsum(1, 2, (a1type, b1type, b2type), [a1, b1, b2], z, **kwargs)



@defun
def _hyp2f3(ctx, a_s, b_s, z, **kwargs):
    (a1, a1type), (a2, a2type) = a_s
    (b1, b1type), (b2, b2type), (b3, b3type) = b_s

    absz = abs(z)
    magz = ctx.mag(z)

    # Asymptotic expansion is ~ exp(sqrt(z))
    asymp_extraprec = z and magz//2
    orig = ctx.prec

    # Asymptotic series is in terms of 4F1
    # The square root below empirically provides a plausible criterion
    # for the leading series to converge
    can_use_asymptotic = (not kwargs.get('force_series')) and \
        (ctx.mag(absz) > 19) and (ctx.sqrt(absz) > 1.5*orig)

    if can_use_asymptotic:
        #print "using asymp"
        try:
            try:
                ctx.prec += asymp_extraprec
                # http://functions.wolfram.com/HypergeometricFunctions/
                # Hypergeometric2F3/06/02/03/01/0002/
                def h(a1,a2,b1,b2,b3):
                    X = ctx.mpq_1_2*(a1+a2-b1-b2-b3+ctx.mpq_1_2)
                    A2 = a1+a2
                    B3 = b1+b2+b3
                    A = a1*a2
                    B = b1*b2+b3*b2+b1*b3
                    R = b1*b2*b3
                    c = {}
                    c[0] = ctx.one
                    c[1] = 2*(B - A + ctx.mpq_1_4*(3*A2+B3-2)*(A2-B3) - ctx.mpq_3_16)
                    c[2] = ctx.mpq_1_2*c[1]**2 + ctx.mpq_1_16*(-16*(2*A2-3)*(B-A) + 32*R +\
                        4*(-8*A2**2 + 11*A2 + 8*A + B3 - 2)*(A2-B3)-3)
                    s1 = 0
                    s2 = 0
                    k = 0
                    tprev = 0
                    while 1:
                        if k not in c:
                            uu1 = (k-2*X-3)*(k-2*X-2*b1-1)*(k-2*X-2*b2-1)*\
                                (k-2*X-2*b3-1)
                            uu2 = (4*(k-1)**3 - 6*(4*X+B3)*(k-1)**2 + \
                                2*(24*X**2+12*B3*X+4*B+B3-1)*(k-1) - 32*X**3 - \
                                24*B3*X**2 - 4*B - 8*R - 4*(4*B+B3-1)*X + 2*B3-1)
                            uu3 = (5*(k-1)**2+2*(-10*X+A2-3*B3+3)*(k-1)+2*c[1])
                            c[k] = ctx.one/(2*k)*(uu1*c[k-3]-uu2*c[k-2]+uu3*c[k-1])
                        w = c[k] * ctx.power(-z, -0.5*k)
                        t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
                        t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
                        if abs(t1) < 0.1*ctx.eps:
                            break
                        # Quit if the series doesn't converge quickly enough
                        if k > 5 and abs(tprev) / abs(t1) < 1.5:
                            raise ctx.NoConvergence
                        s1 += t1
                        s2 += t2
                        tprev = t1
                        k += 1
                    S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
                        ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
                    T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2, b3], [a1, a2],\
                        [], [], 0
                    T2 = [-z], [-a1], [b1,b2,b3,a2-a1],[a2,b1-a1,b2-a1,b3-a1], \
                        [a1,a1-b1+1,a1-b2+1,a1-b3+1], [a1-a2+1], 1/z
                    T3 = [-z], [-a2], [b1,b2,b3,a1-a2],[a1,b1-a2,b2-a2,b3-a2], \
                        [a2,a2-b1+1,a2-b2+1,a2-b3+1],[-a1+a2+1], 1/z
                    return T1, T2, T3
                v = ctx.hypercomb(h, [a1,a2,b1,b2,b3], force_series=True, maxterms=4*ctx.prec)
                if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,b3,z]) == 6:
                    v = ctx.re(v)
                return v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec = orig

    return ctx.hypsum(2, 3, (a1type, a2type, b1type, b2type, b3type), [a1, a2, b1, b2, b3], z, **kwargs)

@defun
def _hyp2f0(ctx, a_s, b_s, z, **kwargs):
    (a, atype), (b, btype) = a_s
    # We want to try aggressively to use the asymptotic expansion,
    # and fall back only when absolutely necessary
    try:
        kwargsb = kwargs.copy()
        kwargsb['maxterms'] = kwargsb.get('maxterms', ctx.prec)
        return ctx.hypsum(2, 0, (atype,btype), [a,b], z, **kwargsb)
    except ctx.NoConvergence:
        if kwargs.get('force_series'):
            raise
        pass
    def h(a, b):
        w = ctx.sinpi(b)
        rz = -1/z
        T1 = ([ctx.pi,w,rz],[1,-1,a],[],[a-b+1,b],[a],[b],rz)
        T2 = ([-ctx.pi,w,rz],[1,-1,1+a-b],[],[a,2-b],[a-b+1],[2-b],rz)
        return T1, T2
    return ctx.hypercomb(h, [a, 1+a-b], **kwargs)

@defun
def meijerg(ctx, a_s, b_s, z, r=1, series=None, **kwargs):
    an, ap = a_s
    bm, bq = b_s
    n = len(an)
    p = n + len(ap)
    m = len(bm)
    q = m + len(bq)
    a = an+ap
    b = bm+bq
    a = [ctx.convert(_) for _ in a]
    b = [ctx.convert(_) for _ in b]
    z = ctx.convert(z)
    if series is None:
        if p < q: series = 1
        if p > q: series = 2
        if p == q:
            if m+n == p and abs(z) > 1:
                series = 2
            else:
                series = 1
    if kwargs.get('verbose'):
        print("Meijer G m,n,p,q,series =", m,n,p,q,series)
    if series == 1:
        def h(*args):
            a = args[:p]
            b = args[p:]
            terms = []
            for k in range(m):
                bases = [z]
                expts = [b[k]/r]
                gn = [b[j]-b[k] for j in range(m) if j != k]
                gn += [1-a[j]+b[k] for j in range(n)]
                gd = [a[j]-b[k] for j in range(n,p)]
                gd += [1-b[j]+b[k] for j in range(m,q)]
                hn = [1-a[j]+b[k] for j in range(p)]
                hd = [1-b[j]+b[k] for j in range(q) if j != k]
                hz = (-ctx.one)**(p-m-n) * z**(ctx.one/r)
                terms.append((bases, expts, gn, gd, hn, hd, hz))
            return terms
    else:
        def h(*args):
            a = args[:p]
            b = args[p:]
            terms = []
            for k in range(n):
                bases = [z]
                if r == 1:
                    expts = [a[k]-1]
                else:
                    expts = [(a[k]-1)/ctx.convert(r)]
                gn = [a[k]-a[j] for j in range(n) if j != k]
                gn += [1-a[k]+b[j] for j in range(m)]
                gd = [a[k]-b[j] for j in range(m,q)]
                gd += [1-a[k]+a[j] for j in range(n,p)]
                hn = [1-a[k]+b[j] for j in range(q)]
                hd = [1+a[j]-a[k] for j in range(p) if j != k]
                hz = (-ctx.one)**(q-m-n) / z**(ctx.one/r)
                terms.append((bases, expts, gn, gd, hn, hd, hz))
            return terms
    return ctx.hypercomb(h, a+b, **kwargs)

@defun_wrapped
def appellf1(ctx,a,b1,b2,c,x,y,**kwargs):
    # Assume x smaller
    # We will use x for the outer loop
    if abs(x) > abs(y):
        x, y = y, x
        b1, b2 = b2, b1
    def ok(x):
        return abs(x) < 0.99
    # Finite cases
    if ctx.isnpint(a):
        pass
    elif ctx.isnpint(b1):
        pass
    elif ctx.isnpint(b2):
        x, y, b1, b2 = y, x, b2, b1
    else:
        #print x, y
        # Note: ok if |y| > 1, because
        # 2F1 implements analytic continuation
        if not ok(x):
            u1 = (x-y)/(x-1)
            if not ok(u1):
                raise ValueError("Analytic continuation not implemented")
            #print "Using analytic continuation"
            return (1-x)**(-b1)*(1-y)**(c-a-b2)*\
                ctx.appellf1(c-a,b1,c-b1-b2,c,u1,y,**kwargs)
    return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, {'m+n':[c]}, x,y, **kwargs)

@defun
def appellf2(ctx,a,b1,b2,c1,c2,x,y,**kwargs):
    # TODO: continuation
    return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]},
        {'m':[c1],'n':[c2]}, x,y, **kwargs)

@defun
def appellf3(ctx,a1,a2,b1,b2,c,x,y,**kwargs):
    outer_polynomial = ctx.isnpint(a1) or ctx.isnpint(b1)
    inner_polynomial = ctx.isnpint(a2) or ctx.isnpint(b2)
    if not outer_polynomial:
        if inner_polynomial or abs(x) > abs(y):
            x, y = y, x
            a1,a2,b1,b2 = a2,a1,b2,b1
    return ctx.hyper2d({'m':[a1,b1],'n':[a2,b2]}, {'m+n':[c]},x,y,**kwargs)

@defun
def appellf4(ctx,a,b,c1,c2,x,y,**kwargs):
    # TODO: continuation
    return ctx.hyper2d({'m+n':[a,b]}, {'m':[c1],'n':[c2]},x,y,**kwargs)

@defun
def hyper2d(ctx, a, b, x, y, **kwargs):
    r"""
    Sums the generalized 2D hypergeometric series

    .. math ::

        \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
            \frac{P((a),m,n)}{Q((b),m,n)}
            \frac{x^m y^n} {m! n!}

    where `(a) = (a_1,\ldots,a_r)`, `(b) = (b_1,\ldots,b_s)` and where
    `P` and `Q` are products of rising factorials such as `(a_j)_n` or
    `(a_j)_{m+n}`. `P` and `Q` are specified in the form of dicts, with
    the `m` and `n` dependence as keys and parameter lists as values.
    The supported rising factorials are given in the following table
    (note that only a few are supported in `Q`):

    +------------+-------------------+--------+
    | Key        |  Rising factorial | `Q`    |
    +============+===================+========+
    | ``'m'``    |   `(a_j)_m`       | Yes    |
    +------------+-------------------+--------+
    | ``'n'``    |   `(a_j)_n`       | Yes    |
    +------------+-------------------+--------+
    | ``'m+n'``  |   `(a_j)_{m+n}`   | Yes    |
    +------------+-------------------+--------+
    | ``'m-n'``  |   `(a_j)_{m-n}`   | No     |
    +------------+-------------------+--------+
    | ``'n-m'``  |   `(a_j)_{n-m}`   | No     |
    +------------+-------------------+--------+
    | ``'2m+n'`` |   `(a_j)_{2m+n}`  | No     |
    +------------+-------------------+--------+
    | ``'2m-n'`` |   `(a_j)_{2m-n}`  | No     |
    +------------+-------------------+--------+
    | ``'2n-m'`` |   `(a_j)_{2n-m}`  | No     |
    +------------+-------------------+--------+

    For example, the Appell F1 and F4 functions

    .. math ::

        F_1 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
              \frac{(a)_{m+n} (b)_m (c)_n}{(d)_{m+n}}
              \frac{x^m y^n}{m! n!}

        F_4 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
              \frac{(a)_{m+n} (b)_{m+n}}{(c)_m (d)_{n}}
              \frac{x^m y^n}{m! n!}

    can be represented respectively as

        ``hyper2d({'m+n':[a], 'm':[b], 'n':[c]}, {'m+n':[d]}, x, y)``

        ``hyper2d({'m+n':[a,b]}, {'m':[c], 'n':[d]}, x, y)``

    More generally, :func:`~mpmath.hyper2d` can evaluate any of the 34 distinct
    convergent second-order (generalized Gaussian) hypergeometric
    series enumerated by Horn, as well as the Kampe de Feriet
    function.

    The series is computed by rewriting it so that the inner
    series (i.e. the series containing `n` and `y`) has the form of an
    ordinary generalized hypergeometric series and thereby can be
    evaluated efficiently using :func:`~mpmath.hyper`. If possible,
    manually swapping `x` and `y` and the corresponding parameters
    can sometimes give better results.

    **Examples**

    Two separable cases: a product of two geometric series, and a
    product of two Gaussian hypergeometric functions::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> x, y = mpf(0.25), mpf(0.5)
        >>> hyper2d({'m':1,'n':1}, {}, x,y)
        2.666666666666666666666667
        >>> 1/(1-x)/(1-y)
        2.666666666666666666666667
        >>> hyper2d({'m':[1,2],'n':[3,4]}, {'m':[5],'n':[6]}, x,y)
        4.164358531238938319669856
        >>> hyp2f1(1,2,5,x)*hyp2f1(3,4,6,y)
        4.164358531238938319669856

    Some more series that can be done in closed form::

        >>> hyper2d({'m':1,'n':1},{'m+n':1},x,y)
        2.013417124712514809623881
        >>> (exp(x)*x-exp(y)*y)/(x-y)
        2.013417124712514809623881

    Six of the 34 Horn functions, G1-G3 and H1-H3::

        >>> from mpmath import *
        >>> mp.dps = 10; mp.pretty = True
        >>> x, y = 0.0625, 0.125
        >>> a1,a2,b1,b2,c1,c2,d = 1.1,-1.2,-1.3,-1.4,1.5,-1.6,1.7
        >>> hyper2d({'m+n':a1,'n-m':b1,'m-n':b2},{},x,y)  # G1
        1.139090746
        >>> nsum(lambda m,n: rf(a1,m+n)*rf(b1,n-m)*rf(b2,m-n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        1.139090746
        >>> hyper2d({'m':a1,'n':a2,'n-m':b1,'m-n':b2},{},x,y)  # G2
        0.9503682696
        >>> nsum(lambda m,n: rf(a1,m)*rf(a2,n)*rf(b1,n-m)*rf(b2,m-n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        0.9503682696
        >>> hyper2d({'2n-m':a1,'2m-n':a2},{},x,y)  # G3
        1.029372029
        >>> nsum(lambda m,n: rf(a1,2*n-m)*rf(a2,2*m-n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        1.029372029
        >>> hyper2d({'m-n':a1,'m+n':b1,'n':c1},{'m':d},x,y)  # H1
        -1.605331256
        >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m+n)*rf(c1,n)/rf(d,m)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        -1.605331256
        >>> hyper2d({'m-n':a1,'m':b1,'n':[c1,c2]},{'m':d},x,y)  # H2
        -2.35405404
        >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m)*rf(c1,n)*rf(c2,n)/rf(d,m)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        -2.35405404
        >>> hyper2d({'2m+n':a1,'n':b1},{'m+n':c1},x,y)  # H3
        0.974479074
        >>> nsum(lambda m,n: rf(a1,2*m+n)*rf(b1,n)/rf(c1,m+n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        0.974479074

    **References**

    1. [SrivastavaKarlsson]_
    2. [Weisstein]_ http://mathworld.wolfram.com/HornFunction.html
    3. [Weisstein]_ http://mathworld.wolfram.com/AppellHypergeometricFunction.html

    """
    x = ctx.convert(x)
    y = ctx.convert(y)
    def parse(dct, key):
        args = dct.pop(key, [])
        try:
            args = list(args)
        except TypeError:
            args = [args]
        return [ctx.convert(arg) for arg in args]
    a_s = dict(a)
    b_s = dict(b)
    a_m = parse(a, 'm')
    a_n = parse(a, 'n')
    a_m_add_n = parse(a, 'm+n')
    a_m_sub_n = parse(a, 'm-n')
    a_n_sub_m = parse(a, 'n-m')
    a_2m_add_n = parse(a, '2m+n')
    a_2m_sub_n = parse(a, '2m-n')
    a_2n_sub_m = parse(a, '2n-m')
    b_m = parse(b, 'm')
    b_n = parse(b, 'n')
    b_m_add_n = parse(b, 'm+n')
    if a: raise ValueError("unsupported key: %r" % a.keys()[0])
    if b: raise ValueError("unsupported key: %r" % b.keys()[0])
    s = 0
    outer = ctx.one
    m = ctx.mpf(0)
    ok_count = 0
    prec = ctx.prec
    maxterms = kwargs.get('maxterms', 20*prec)
    try:
        ctx.prec += 10
        tol = +ctx.eps
        while 1:
            inner_sign = 1
            outer_sign = 1
            inner_a = list(a_n)
            inner_b = list(b_n)
            outer_a = [a+m for a in a_m]
            outer_b = [b+m for b in b_m]
            # (a)_{m+n} = (a)_m (a+m)_n
            for a in a_m_add_n:
                a = a+m
                inner_a.append(a)
                outer_a.append(a)
            # (b)_{m+n} = (b)_m (b+m)_n
            for b in b_m_add_n:
                b = b+m
                inner_b.append(b)
                outer_b.append(b)
            # (a)_{n-m} = (a-m)_n / (a-m)_m
            for a in a_n_sub_m:
                inner_a.append(a-m)
                outer_b.append(a-m-1)
            # (a)_{m-n} = (-1)^(m+n) (1-a-m)_m / (1-a-m)_n
            for a in a_m_sub_n:
                inner_sign *= (-1)
                outer_sign *= (-1)**(m)
                inner_b.append(1-a-m)
                outer_a.append(-a-m)
            # (a)_{2m+n} = (a)_{2m} (a+2m)_n
            for a in a_2m_add_n:
                inner_a.append(a+2*m)
                outer_a.append((a+2*m)*(1+a+2*m))
            # (a)_{2m-n} = (-1)^(2m+n) (1-a-2m)_{2m} / (1-a-2m)_n
            for a in a_2m_sub_n:
                inner_sign *= (-1)
                inner_b.append(1-a-2*m)
                outer_a.append((a+2*m)*(1+a+2*m))
            # (a)_{2n-m} = 4^n ((a-m)/2)_n ((a-m+1)/2)_n / (a-m)_m
            for a in a_2n_sub_m:
                inner_sign *= 4
                inner_a.append(0.5*(a-m))
                inner_a.append(0.5*(a-m+1))
                outer_b.append(a-m-1)
            inner = ctx.hyper(inner_a, inner_b, inner_sign*y,
                zeroprec=ctx.prec, **kwargs)
            term = outer * inner * outer_sign
            if abs(term) < tol:
                ok_count += 1
            else:
                ok_count = 0
            if ok_count >= 3 or not outer:
                break
            s += term
            for a in outer_a: outer *= a
            for b in outer_b: outer /= b
            m += 1
            outer = outer * x / m
            if m > maxterms:
                raise ctx.NoConvergence("maxterms exceeded in hyper2d")
    finally:
        ctx.prec = prec
    return +s

"""
@defun
def kampe_de_feriet(ctx,a,b,c,d,e,f,x,y,**kwargs):
    return ctx.hyper2d({'m+n':a,'m':b,'n':c},
        {'m+n':d,'m':e,'n':f}, x,y, **kwargs)
"""

@defun
def bihyper(ctx, a_s, b_s, z, **kwargs):
    r"""
    Evaluates the bilateral hypergeometric series

    .. math ::

        \,_AH_B(a_1, \ldots, a_k; b_1, \ldots, b_B; z) =
            \sum_{n=-\infty}^{\infty}
            \frac{(a_1)_n \ldots (a_A)_n}
                 {(b_1)_n \ldots (b_B)_n} \, z^n

    where, for direct convergence, `A = B` and `|z| = 1`, although a
    regularized sum exists more generally by considering the
    bilateral series as a sum of two ordinary hypergeometric
    functions. In order for the series to make sense, none of the
    parameters may be integers.

    **Examples**

    The value of `\,_2H_2` at `z = 1` is given by Dougall's formula::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> a,b,c,d = 0.5, 1.5, 2.25, 3.25
        >>> bihyper([a,b],[c,d],1)
        -14.49118026212345786148847
        >>> gammaprod([c,d,1-a,1-b,c+d-a-b-1],[c-a,d-a,c-b,d-b])
        -14.49118026212345786148847

    The regularized function `\,_1H_0` can be expressed as the
    sum of one `\,_2F_0` function and one `\,_1F_1` function::

        >>> a = mpf(0.25)
        >>> z = mpf(0.75)
        >>> bihyper([a], [], z)
        (0.2454393389657273841385582 + 0.2454393389657273841385582j)
        >>> hyper([a,1],[],z) + (hyper([1],[1-a],-1/z)-1)
        (0.2454393389657273841385582 + 0.2454393389657273841385582j)
        >>> hyper([a,1],[],z) + hyper([1],[2-a],-1/z)/z/(a-1)
        (0.2454393389657273841385582 + 0.2454393389657273841385582j)

    **References**

    1. [Slater]_ (chapter 6: "Bilateral Series", pp. 180-189)
    2. [Wikipedia]_ http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series

    """
    z = ctx.convert(z)
    c_s = a_s + b_s
    p = len(a_s)
    q = len(b_s)
    if (p, q) == (0,0) or (p, q) == (1,1):
        return ctx.zero * z
    neg = (p-q) % 2
    def h(*c_s):
        a_s = list(c_s[:p])
        b_s = list(c_s[p:])
        aa_s = [2-b for b in b_s]
        bb_s = [2-a for a in a_s]
        rp = [(-1)**neg * z] + [1-b for b in b_s] + [1-a for a in a_s]
        rc = [-1] + [1]*len(b_s) + [-1]*len(a_s)
        T1 = [], [], [], [], a_s + [1], b_s, z
        T2 = rp, rc, [], [], aa_s + [1], bb_s, (-1)**neg / z
        return T1, T2
    return ctx.hypercomb(h, c_s, **kwargs)