This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/ctx_mp_python.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
#from ctx_base import StandardBaseContext

from .libmp.backend import basestring, exec_

from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
    round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
    ComplexResult, to_pickable, from_pickable, normalize,
    from_int, from_float, from_str, to_int, to_float, to_str,
    from_rational, from_man_exp,
    fone, fzero, finf, fninf, fnan,
    mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
    mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
    mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
    mpf_hash, mpf_rand,
    mpf_sum,
    bitcount, to_fixed,
    mpc_to_str,
    mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
    mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
    mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
    mpc_mpf_div,
    mpf_pow,
    mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
    mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
    mpf_glaisher, mpf_twinprime, mpf_mertens,
    int_types)

from . import rational
from . import function_docs

new = object.__new__

class mpnumeric(object):
    """Base class for mpf and mpc."""
    __slots__ = []
    def __new__(cls, val):
        raise NotImplementedError

class _mpf(mpnumeric):
    """
    An mpf instance holds a real-valued floating-point number. mpf:s
    work analogously to Python floats, but support arbitrary-precision
    arithmetic.
    """
    __slots__ = ['_mpf_']

    def __new__(cls, val=fzero, **kwargs):
        """A new mpf can be created from a Python float, an int, a
        or a decimal string representing a number in floating-point
        format."""
        prec, rounding = cls.context._prec_rounding
        if kwargs:
            prec = kwargs.get('prec', prec)
            if 'dps' in kwargs:
                prec = dps_to_prec(kwargs['dps'])
            rounding = kwargs.get('rounding', rounding)
        if type(val) is cls:
            sign, man, exp, bc = val._mpf_
            if (not man) and exp:
                return val
            v = new(cls)
            v._mpf_ = normalize(sign, man, exp, bc, prec, rounding)
            return v
        elif type(val) is tuple:
            if len(val) == 2:
                v = new(cls)
                v._mpf_ = from_man_exp(val[0], val[1], prec, rounding)
                return v
            if len(val) == 4:
                sign, man, exp, bc = val
                v = new(cls)
                v._mpf_ = normalize(sign, MPZ(man), exp, bc, prec, rounding)
                return v
            raise ValueError
        else:
            v = new(cls)
            v._mpf_ = mpf_pos(cls.mpf_convert_arg(val, prec, rounding), prec, rounding)
            return v

    @classmethod
    def mpf_convert_arg(cls, x, prec, rounding):
        if isinstance(x, int_types): return from_int(x)
        if isinstance(x, float): return from_float(x)
        if isinstance(x, basestring): return from_str(x, prec, rounding)
        if isinstance(x, cls.context.constant): return x.func(prec, rounding)
        if hasattr(x, '_mpf_'): return x._mpf_
        if hasattr(x, '_mpmath_'):
            t = cls.context.convert(x._mpmath_(prec, rounding))
            if hasattr(t, '_mpf_'):
                return t._mpf_
        if hasattr(x, '_mpi_'):
            a, b = x._mpi_
            if a == b:
                return a
            raise ValueError("can only create mpf from zero-width interval")
        raise TypeError("cannot create mpf from " + repr(x))

    @classmethod
    def mpf_convert_rhs(cls, x):
        if isinstance(x, int_types): return from_int(x)
        if isinstance(x, float): return from_float(x)
        if isinstance(x, complex_types): return cls.context.mpc(x)
        if isinstance(x, rational.mpq):
            p, q = x._mpq_
            return from_rational(p, q, cls.context.prec)
        if hasattr(x, '_mpf_'): return x._mpf_
        if hasattr(x, '_mpmath_'):
            t = cls.context.convert(x._mpmath_(*cls.context._prec_rounding))
            if hasattr(t, '_mpf_'):
                return t._mpf_
            return t
        return NotImplemented

    @classmethod
    def mpf_convert_lhs(cls, x):
        x = cls.mpf_convert_rhs(x)
        if type(x) is tuple:
            return cls.context.make_mpf(x)
        return x

    man_exp = property(lambda self: self._mpf_[1:3])
    man = property(lambda self: self._mpf_[1])
    exp = property(lambda self: self._mpf_[2])
    bc = property(lambda self: self._mpf_[3])

    real = property(lambda self: self)
    imag = property(lambda self: self.context.zero)

    conjugate = lambda self: self

    def __getstate__(self): return to_pickable(self._mpf_)
    def __setstate__(self, val): self._mpf_ = from_pickable(val)

    def __repr__(s):
        if s.context.pretty:
            return str(s)
        return "mpf('%s')" % to_str(s._mpf_, s.context._repr_digits)

    def __str__(s): return to_str(s._mpf_, s.context._str_digits)
    def __hash__(s): return mpf_hash(s._mpf_)
    def __int__(s): return int(to_int(s._mpf_))
    def __long__(s): return long(to_int(s._mpf_))
    def __float__(s): return to_float(s._mpf_)
    def __complex__(s): return complex(float(s))
    def __nonzero__(s): return s._mpf_ != fzero

    __bool__ = __nonzero__

    def __abs__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpf_ = mpf_abs(s._mpf_, prec, rounding)
        return v

    def __pos__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpf_ = mpf_pos(s._mpf_, prec, rounding)
        return v

    def __neg__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpf_ = mpf_neg(s._mpf_, prec, rounding)
        return v

    def _cmp(s, t, func):
        if hasattr(t, '_mpf_'):
            t = t._mpf_
        else:
            t = s.mpf_convert_rhs(t)
            if t is NotImplemented:
                return t
        return func(s._mpf_, t)

    def __cmp__(s, t): return s._cmp(t, mpf_cmp)
    def __lt__(s, t): return s._cmp(t, mpf_lt)
    def __gt__(s, t): return s._cmp(t, mpf_gt)
    def __le__(s, t): return s._cmp(t, mpf_le)
    def __ge__(s, t): return s._cmp(t, mpf_ge)

    def __ne__(s, t):
        v = s.__eq__(t)
        if v is NotImplemented:
            return v
        return not v

    def __rsub__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if type(t) in int_types:
            v = new(cls)
            v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding)
            return v
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t - s

    def __rdiv__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if isinstance(t, int_types):
            v = new(cls)
            v._mpf_ = mpf_rdiv_int(t, s._mpf_, prec, rounding)
            return v
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t / s

    def __rpow__(s, t):
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t ** s

    def __rmod__(s, t):
        t = s.mpf_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t % s

    def sqrt(s):
        return s.context.sqrt(s)

    def ae(s, t, rel_eps=None, abs_eps=None):
        return s.context.almosteq(s, t, rel_eps, abs_eps)

    def to_fixed(self, prec):
        return to_fixed(self._mpf_, prec)

    def __round__(self, *args):
        return round(float(self), *args)

mpf_binary_op = """
def %NAME%(self, other):
    mpf, new, (prec, rounding) = self._ctxdata
    sval = self._mpf_
    if hasattr(other, '_mpf_'):
        tval = other._mpf_
        %WITH_MPF%
    ttype = type(other)
    if ttype in int_types:
        %WITH_INT%
    elif ttype is float:
        tval = from_float(other)
        %WITH_MPF%
    elif hasattr(other, '_mpc_'):
        tval = other._mpc_
        mpc = type(other)
        %WITH_MPC%
    elif ttype is complex:
        tval = from_float(other.real), from_float(other.imag)
        mpc = self.context.mpc
        %WITH_MPC%
    if isinstance(other, mpnumeric):
        return NotImplemented
    try:
        other = mpf.context.convert(other, strings=False)
    except TypeError:
        return NotImplemented
    return self.%NAME%(other)
"""

return_mpf = "; obj = new(mpf); obj._mpf_ = val; return obj"
return_mpc = "; obj = new(mpc); obj._mpc_ = val; return obj"

mpf_pow_same = """
        try:
            val = mpf_pow(sval, tval, prec, rounding) %s
        except ComplexResult:
            if mpf.context.trap_complex:
                raise
            mpc = mpf.context.mpc
            val = mpc_pow((sval, fzero), (tval, fzero), prec, rounding) %s
""" % (return_mpf, return_mpc)

def binary_op(name, with_mpf='', with_int='', with_mpc=''):
    code = mpf_binary_op
    code = code.replace("%WITH_INT%", with_int)
    code = code.replace("%WITH_MPC%", with_mpc)
    code = code.replace("%WITH_MPF%", with_mpf)
    code = code.replace("%NAME%", name)
    np = {}
    exec_(code, globals(), np)
    return np[name]

_mpf.__eq__ = binary_op('__eq__',
    'return mpf_eq(sval, tval)',
    'return mpf_eq(sval, from_int(other))',
    'return (tval[1] == fzero) and mpf_eq(tval[0], sval)')

_mpf.__add__ = binary_op('__add__',
    'val = mpf_add(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_add(sval, from_int(other), prec, rounding)' + return_mpf,
    'val = mpc_add_mpf(tval, sval, prec, rounding)' + return_mpc)

_mpf.__sub__ = binary_op('__sub__',
    'val = mpf_sub(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_sub(sval, from_int(other), prec, rounding)' + return_mpf,
    'val = mpc_sub((sval, fzero), tval, prec, rounding)' + return_mpc)

_mpf.__mul__ = binary_op('__mul__',
    'val = mpf_mul(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_mul_int(sval, other, prec, rounding)' + return_mpf,
    'val = mpc_mul_mpf(tval, sval, prec, rounding)' + return_mpc)

_mpf.__div__ = binary_op('__div__',
    'val = mpf_div(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_div(sval, from_int(other), prec, rounding)' + return_mpf,
    'val = mpc_mpf_div(sval, tval, prec, rounding)' + return_mpc)

_mpf.__mod__ = binary_op('__mod__',
    'val = mpf_mod(sval, tval, prec, rounding)' + return_mpf,
    'val = mpf_mod(sval, from_int(other), prec, rounding)' + return_mpf,
    'raise NotImplementedError("complex modulo")')

_mpf.__pow__ = binary_op('__pow__',
    mpf_pow_same,
    'val = mpf_pow_int(sval, other, prec, rounding)' + return_mpf,
    'val = mpc_pow((sval, fzero), tval, prec, rounding)' + return_mpc)

_mpf.__radd__ = _mpf.__add__
_mpf.__rmul__ = _mpf.__mul__
_mpf.__truediv__ = _mpf.__div__
_mpf.__rtruediv__ = _mpf.__rdiv__


class _constant(_mpf):
    """Represents a mathematical constant with dynamic precision.
    When printed or used in an arithmetic operation, a constant
    is converted to a regular mpf at the working precision. A
    regular mpf can also be obtained using the operation +x."""

    def __new__(cls, func, name, docname=''):
        a = object.__new__(cls)
        a.name = name
        a.func = func
        a.__doc__ = getattr(function_docs, docname, '')
        return a

    def __call__(self, prec=None, dps=None, rounding=None):
        prec2, rounding2 = self.context._prec_rounding
        if not prec: prec = prec2
        if not rounding: rounding = rounding2
        if dps: prec = dps_to_prec(dps)
        return self.context.make_mpf(self.func(prec, rounding))

    @property
    def _mpf_(self):
        prec, rounding = self.context._prec_rounding
        return self.func(prec, rounding)

    def __repr__(self):
        return "<%s: %s~>" % (self.name, self.context.nstr(self(dps=15)))


class _mpc(mpnumeric):
    """
    An mpc represents a complex number using a pair of mpf:s (one
    for the real part and another for the imaginary part.) The mpc
    class behaves fairly similarly to Python's complex type.
    """

    __slots__ = ['_mpc_']

    def __new__(cls, real=0, imag=0):
        s = object.__new__(cls)
        if isinstance(real, complex_types):
            real, imag = real.real, real.imag
        elif hasattr(real, '_mpc_'):
            s._mpc_ = real._mpc_
            return s
        real = cls.context.mpf(real)
        imag = cls.context.mpf(imag)
        s._mpc_ = (real._mpf_, imag._mpf_)
        return s

    real = property(lambda self: self.context.make_mpf(self._mpc_[0]))
    imag = property(lambda self: self.context.make_mpf(self._mpc_[1]))

    def __getstate__(self):
        return to_pickable(self._mpc_[0]), to_pickable(self._mpc_[1])

    def __setstate__(self, val):
        self._mpc_ = from_pickable(val[0]), from_pickable(val[1])

    def __repr__(s):
        if s.context.pretty:
            return str(s)
        r = repr(s.real)[4:-1]
        i = repr(s.imag)[4:-1]
        return "%s(real=%s, imag=%s)" % (type(s).__name__, r, i)

    def __str__(s):
        return "(%s)" % mpc_to_str(s._mpc_, s.context._str_digits)

    def __complex__(s):
        return mpc_to_complex(s._mpc_)

    def __pos__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpc_ = mpc_pos(s._mpc_, prec, rounding)
        return v

    def __abs__(s):
        prec, rounding = s.context._prec_rounding
        v = new(s.context.mpf)
        v._mpf_ = mpc_abs(s._mpc_, prec, rounding)
        return v

    def __neg__(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpc_ = mpc_neg(s._mpc_, prec, rounding)
        return v

    def conjugate(s):
        cls, new, (prec, rounding) = s._ctxdata
        v = new(cls)
        v._mpc_ = mpc_conjugate(s._mpc_, prec, rounding)
        return v

    def __nonzero__(s):
        return mpc_is_nonzero(s._mpc_)

    __bool__ = __nonzero__

    def __hash__(s):
        return mpc_hash(s._mpc_)

    @classmethod
    def mpc_convert_lhs(cls, x):
        try:
            y = cls.context.convert(x)
            return y
        except TypeError:
            return NotImplemented

    def __eq__(s, t):
        if not hasattr(t, '_mpc_'):
            if isinstance(t, str):
                return False
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
        return s.real == t.real and s.imag == t.imag

    def __ne__(s, t):
        b = s.__eq__(t)
        if b is NotImplemented:
            return b
        return not b

    def _compare(*args):
        raise TypeError("no ordering relation is defined for complex numbers")

    __gt__ = _compare
    __le__ = _compare
    __gt__ = _compare
    __ge__ = _compare

    def __add__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_add_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
        v = new(cls)
        v._mpc_ = mpc_add(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __sub__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_sub_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
        v = new(cls)
        v._mpc_ = mpc_sub(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __mul__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            if isinstance(t, int_types):
                v = new(cls)
                v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
                return v
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_mul_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
            t = s.mpc_convert_lhs(t)
        v = new(cls)
        v._mpc_ = mpc_mul(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __div__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if not hasattr(t, '_mpc_'):
            t = s.mpc_convert_lhs(t)
            if t is NotImplemented:
                return t
            if hasattr(t, '_mpf_'):
                v = new(cls)
                v._mpc_ = mpc_div_mpf(s._mpc_, t._mpf_, prec, rounding)
                return v
        v = new(cls)
        v._mpc_ = mpc_div(s._mpc_, t._mpc_, prec, rounding)
        return v

    def __pow__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if isinstance(t, int_types):
            v = new(cls)
            v._mpc_ = mpc_pow_int(s._mpc_, t, prec, rounding)
            return v
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        v = new(cls)
        if hasattr(t, '_mpf_'):
            v._mpc_ = mpc_pow_mpf(s._mpc_, t._mpf_, prec, rounding)
        else:
            v._mpc_ = mpc_pow(s._mpc_, t._mpc_, prec, rounding)
        return v

    __radd__ = __add__

    def __rsub__(s, t):
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t - s

    def __rmul__(s, t):
        cls, new, (prec, rounding) = s._ctxdata
        if isinstance(t, int_types):
            v = new(cls)
            v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
            return v
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t * s

    def __rdiv__(s, t):
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t / s

    def __rpow__(s, t):
        t = s.mpc_convert_lhs(t)
        if t is NotImplemented:
            return t
        return t ** s

    __truediv__ = __div__
    __rtruediv__ = __rdiv__

    def ae(s, t, rel_eps=None, abs_eps=None):
        return s.context.almosteq(s, t, rel_eps, abs_eps)


complex_types = (complex, _mpc)


class PythonMPContext(object):

    def __init__(ctx):
        ctx._prec_rounding = [53, round_nearest]
        ctx.mpf = type('mpf', (_mpf,), {})
        ctx.mpc = type('mpc', (_mpc,), {})
        ctx.mpf._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
        ctx.mpc._ctxdata = [ctx.mpc, new, ctx._prec_rounding]
        ctx.mpf.context = ctx
        ctx.mpc.context = ctx
        ctx.constant = type('constant', (_constant,), {})
        ctx.constant._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
        ctx.constant.context = ctx

    def make_mpf(ctx, v):
        a = new(ctx.mpf)
        a._mpf_ = v
        return a

    def make_mpc(ctx, v):
        a = new(ctx.mpc)
        a._mpc_ = v
        return a

    def default(ctx):
        ctx._prec = ctx._prec_rounding[0] = 53
        ctx._dps = 15
        ctx.trap_complex = False

    def _set_prec(ctx, n):
        ctx._prec = ctx._prec_rounding[0] = max(1, int(n))
        ctx._dps = prec_to_dps(n)

    def _set_dps(ctx, n):
        ctx._prec = ctx._prec_rounding[0] = dps_to_prec(n)
        ctx._dps = max(1, int(n))

    prec = property(lambda ctx: ctx._prec, _set_prec)
    dps = property(lambda ctx: ctx._dps, _set_dps)

    def convert(ctx, x, strings=True):
        """
        Converts *x* to an ``mpf`` or ``mpc``. If *x* is of type ``mpf``,
        ``mpc``, ``int``, ``float``, ``complex``, the conversion
        will be performed losslessly.

        If *x* is a string, the result will be rounded to the present
        working precision. Strings representing fractions or complex
        numbers are permitted.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> mpmathify(3.5)
            mpf('3.5')
            >>> mpmathify('2.1')
            mpf('2.1000000000000001')
            >>> mpmathify('3/4')
            mpf('0.75')
            >>> mpmathify('2+3j')
            mpc(real='2.0', imag='3.0')

        """
        if type(x) in ctx.types: return x
        if isinstance(x, int_types): return ctx.make_mpf(from_int(x))
        if isinstance(x, float): return ctx.make_mpf(from_float(x))
        if isinstance(x, complex):
            return ctx.make_mpc((from_float(x.real), from_float(x.imag)))
        prec, rounding = ctx._prec_rounding
        if isinstance(x, rational.mpq):
            p, q = x._mpq_
            return ctx.make_mpf(from_rational(p, q, prec))
        if strings and isinstance(x, basestring):
            try:
                _mpf_ = from_str(x, prec, rounding)
                return ctx.make_mpf(_mpf_)
            except ValueError:
                pass
        if hasattr(x, '_mpf_'): return ctx.make_mpf(x._mpf_)
        if hasattr(x, '_mpc_'): return ctx.make_mpc(x._mpc_)
        if hasattr(x, '_mpmath_'):
            return ctx.convert(x._mpmath_(prec, rounding))
        return ctx._convert_fallback(x, strings)

    def isnan(ctx, x):
        """
        Return *True* if *x* is a NaN (not-a-number), or for a complex
        number, whether either the real or complex part is NaN;
        otherwise return *False*::

            >>> from mpmath import *
            >>> isnan(3.14)
            False
            >>> isnan(nan)
            True
            >>> isnan(mpc(3.14,2.72))
            False
            >>> isnan(mpc(3.14,nan))
            True

        """
        if hasattr(x, "_mpf_"):
            return x._mpf_ == fnan
        if hasattr(x, "_mpc_"):
            return fnan in x._mpc_
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return False
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isnan(x)
        raise TypeError("isnan() needs a number as input")

    def isinf(ctx, x):
        """
        Return *True* if the absolute value of *x* is infinite;
        otherwise return *False*::

            >>> from mpmath import *
            >>> isinf(inf)
            True
            >>> isinf(-inf)
            True
            >>> isinf(3)
            False
            >>> isinf(3+4j)
            False
            >>> isinf(mpc(3,inf))
            True
            >>> isinf(mpc(inf,3))
            True

        """
        if hasattr(x, "_mpf_"):
            return x._mpf_ in (finf, fninf)
        if hasattr(x, "_mpc_"):
            re, im = x._mpc_
            return re in (finf, fninf) or im in (finf, fninf)
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return False
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isinf(x)
        raise TypeError("isinf() needs a number as input")

    def isnormal(ctx, x):
        """
        Determine whether *x* is "normal" in the sense of floating-point
        representation; that is, return *False* if *x* is zero, an
        infinity or NaN; otherwise return *True*. By extension, a
        complex number *x* is considered "normal" if its magnitude is
        normal::

            >>> from mpmath import *
            >>> isnormal(3)
            True
            >>> isnormal(0)
            False
            >>> isnormal(inf); isnormal(-inf); isnormal(nan)
            False
            False
            False
            >>> isnormal(0+0j)
            False
            >>> isnormal(0+3j)
            True
            >>> isnormal(mpc(2,nan))
            False
        """
        if hasattr(x, "_mpf_"):
            return bool(x._mpf_[1])
        if hasattr(x, "_mpc_"):
            re, im = x._mpc_
            re_normal = bool(re[1])
            im_normal = bool(im[1])
            if re == fzero: return im_normal
            if im == fzero: return re_normal
            return re_normal and im_normal
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return bool(x)
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isnormal(x)
        raise TypeError("isnormal() needs a number as input")

    def isint(ctx, x, gaussian=False):
        """
        Return *True* if *x* is integer-valued; otherwise return
        *False*::

            >>> from mpmath import *
            >>> isint(3)
            True
            >>> isint(mpf(3))
            True
            >>> isint(3.2)
            False
            >>> isint(inf)
            False

        Optionally, Gaussian integers can be checked for::

            >>> isint(3+0j)
            True
            >>> isint(3+2j)
            False
            >>> isint(3+2j, gaussian=True)
            True

        """
        if isinstance(x, int_types):
            return True
        if hasattr(x, "_mpf_"):
            sign, man, exp, bc = xval = x._mpf_
            return bool((man and exp >= 0) or xval == fzero)
        if hasattr(x, "_mpc_"):
            re, im = x._mpc_
            rsign, rman, rexp, rbc = re
            isign, iman, iexp, ibc = im
            re_isint = (rman and rexp >= 0) or re == fzero
            if gaussian:
                im_isint = (iman and iexp >= 0) or im == fzero
                return re_isint and im_isint
            return re_isint and im == fzero
        if isinstance(x, rational.mpq):
            p, q = x._mpq_
            return p % q == 0
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isint(x, gaussian)
        raise TypeError("isint() needs a number as input")

    def fsum(ctx, terms, absolute=False, squared=False):
        """
        Calculates a sum containing a finite number of terms (for infinite
        series, see :func:`~mpmath.nsum`). The terms will be converted to
        mpmath numbers. For len(terms) > 2, this function is generally
        faster and produces more accurate results than the builtin
        Python function :func:`sum`.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fsum([1, 2, 0.5, 7])
            mpf('10.5')

        With squared=True each term is squared, and with absolute=True
        the absolute value of each term is used.
        """
        prec, rnd = ctx._prec_rounding
        real = []
        imag = []
        other = 0
        for term in terms:
            reval = imval = 0
            if hasattr(term, "_mpf_"):
                reval = term._mpf_
            elif hasattr(term, "_mpc_"):
                reval, imval = term._mpc_
            else:
                term = ctx.convert(term)
                if hasattr(term, "_mpf_"):
                    reval = term._mpf_
                elif hasattr(term, "_mpc_"):
                    reval, imval = term._mpc_
                else:
                    if absolute: term = ctx.absmax(term)
                    if squared: term = term**2
                    other += term
                    continue
            if imval:
                if squared:
                    if absolute:
                        real.append(mpf_mul(reval,reval))
                        real.append(mpf_mul(imval,imval))
                    else:
                        reval, imval = mpc_pow_int((reval,imval),2,prec+10)
                        real.append(reval)
                        imag.append(imval)
                elif absolute:
                    real.append(mpc_abs((reval,imval), prec))
                else:
                    real.append(reval)
                    imag.append(imval)
            else:
                if squared:
                    reval = mpf_mul(reval, reval)
                elif absolute:
                    reval = mpf_abs(reval)
                real.append(reval)
        s = mpf_sum(real, prec, rnd, absolute)
        if imag:
            s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
        else:
            s = ctx.make_mpf(s)
        if other is 0:
            return s
        else:
            return s + other

    def fdot(ctx, A, B=None, conjugate=False):
        r"""
        Computes the dot product of the iterables `A` and `B`,

        .. math ::

            \sum_{k=0} A_k B_k.

        Alternatively, :func:`~mpmath.fdot` accepts a single iterable of pairs.
        In other words, ``fdot(A,B)`` and ``fdot(zip(A,B))`` are equivalent.
        The elements are automatically converted to mpmath numbers.

        With ``conjugate=True``, the elements in the second vector
        will be conjugated:

        .. math ::

            \sum_{k=0} A_k \overline{B_k}

        **Examples**

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> A = [2, 1.5, 3]
            >>> B = [1, -1, 2]
            >>> fdot(A, B)
            mpf('6.5')
            >>> list(zip(A, B))
            [(2, 1), (1.5, -1), (3, 2)]
            >>> fdot(_)
            mpf('6.5')
            >>> A = [2, 1.5, 3j]
            >>> B = [1+j, 3, -1-j]
            >>> fdot(A, B)
            mpc(real='9.5', imag='-1.0')
            >>> fdot(A, B, conjugate=True)
            mpc(real='3.5', imag='-5.0')

        """
        if B:
            A = zip(A, B)
        prec, rnd = ctx._prec_rounding
        real = []
        imag = []
        other = 0
        hasattr_ = hasattr
        types = (ctx.mpf, ctx.mpc)
        for a, b in A:
            if type(a) not in types: a = ctx.convert(a)
            if type(b) not in types: b = ctx.convert(b)
            a_real = hasattr_(a, "_mpf_")
            b_real = hasattr_(b, "_mpf_")
            if a_real and b_real:
                real.append(mpf_mul(a._mpf_, b._mpf_))
                continue
            a_complex = hasattr_(a, "_mpc_")
            b_complex = hasattr_(b, "_mpc_")
            if a_real and b_complex:
                aval = a._mpf_
                bre, bim = b._mpc_
                if conjugate:
                    bim = mpf_neg(bim)
                real.append(mpf_mul(aval, bre))
                imag.append(mpf_mul(aval, bim))
            elif b_real and a_complex:
                are, aim = a._mpc_
                bval = b._mpf_
                real.append(mpf_mul(are, bval))
                imag.append(mpf_mul(aim, bval))
            elif a_complex and b_complex:
                #re, im = mpc_mul(a._mpc_, b._mpc_, prec+20)
                are, aim = a._mpc_
                bre, bim = b._mpc_
                if conjugate:
                    bim = mpf_neg(bim)
                real.append(mpf_mul(are, bre))
                real.append(mpf_neg(mpf_mul(aim, bim)))
                imag.append(mpf_mul(are, bim))
                imag.append(mpf_mul(aim, bre))
            else:
                if conjugate:
                    other += a*ctx.conj(b)
                else:
                    other += a*b
        s = mpf_sum(real, prec, rnd)
        if imag:
            s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
        else:
            s = ctx.make_mpf(s)
        if other is 0:
            return s
        else:
            return s + other

    def _wrap_libmp_function(ctx, mpf_f, mpc_f=None, mpi_f=None, doc="<no doc>"):
        """
        Given a low-level mpf_ function, and optionally similar functions
        for mpc_ and mpi_, defines the function as a context method.

        It is assumed that the return type is the same as that of
        the input; the exception is that propagation from mpf to mpc is possible
        by raising ComplexResult.

        """
        def f(x, **kwargs):
            if type(x) not in ctx.types:
                x = ctx.convert(x)
            prec, rounding = ctx._prec_rounding
            if kwargs:
                prec = kwargs.get('prec', prec)
                if 'dps' in kwargs:
                    prec = dps_to_prec(kwargs['dps'])
                rounding = kwargs.get('rounding', rounding)
            if hasattr(x, '_mpf_'):
                try:
                    return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding))
                except ComplexResult:
                    # Handle propagation to complex
                    if ctx.trap_complex:
                        raise
                    return ctx.make_mpc(mpc_f((x._mpf_, fzero), prec, rounding))
            elif hasattr(x, '_mpc_'):
                return ctx.make_mpc(mpc_f(x._mpc_, prec, rounding))
            raise NotImplementedError("%s of a %s" % (name, type(x)))
        name = mpf_f.__name__[4:]
        f.__doc__ = function_docs.__dict__.get(name, "Computes the %s of x" % doc)
        return f

    # Called by SpecialFunctions.__init__()
    @classmethod
    def _wrap_specfun(cls, name, f, wrap):
        if wrap:
            def f_wrapped(ctx, *args, **kwargs):
                convert = ctx.convert
                args = [convert(a) for a in args]
                prec = ctx.prec
                try:
                    ctx.prec += 10
                    retval = f(ctx, *args, **kwargs)
                finally:
                    ctx.prec = prec
                return +retval
        else:
            f_wrapped = f
        f_wrapped.__doc__ = function_docs.__dict__.get(name, f.__doc__)
        setattr(cls, name, f_wrapped)

    def _convert_param(ctx, x):
        if hasattr(x, "_mpc_"):
            v, im = x._mpc_
            if im != fzero:
                return x, 'C'
        elif hasattr(x, "_mpf_"):
            v = x._mpf_
        else:
            if type(x) in int_types:
                return int(x), 'Z'
            p = None
            if isinstance(x, tuple):
                p, q = x
            elif hasattr(x, '_mpq_'):
                p, q = x._mpq_
            elif isinstance(x, basestring) and '/' in x:
                p, q = x.split('/')
                p = int(p)
                q = int(q)
            if p is not None:
                if not p % q:
                    return p // q, 'Z'
                return ctx.mpq(p,q), 'Q'
            x = ctx.convert(x)
            if hasattr(x, "_mpc_"):
                v, im = x._mpc_
                if im != fzero:
                    return x, 'C'
            elif hasattr(x, "_mpf_"):
                v = x._mpf_
            else:
                return x, 'U'
        sign, man, exp, bc = v
        if man:
            if exp >= -4:
                if sign:
                    man = -man
                if exp >= 0:
                    return int(man) << exp, 'Z'
                if exp >= -4:
                    p, q = int(man), (1<<(-exp))
                    return ctx.mpq(p,q), 'Q'
            x = ctx.make_mpf(v)
            return x, 'R'
        elif not exp:
            return 0, 'Z'
        else:
            return x, 'U'

    def _mpf_mag(ctx, x):
        sign, man, exp, bc = x
        if man:
            return exp+bc
        if x == fzero:
            return ctx.ninf
        if x == finf or x == fninf:
            return ctx.inf
        return ctx.nan

    def mag(ctx, x):
        """
        Quick logarithmic magnitude estimate of a number. Returns an
        integer or infinity `m` such that `|x| <= 2^m`. It is not
        guaranteed that `m` is an optimal bound, but it will never
        be too large by more than 2 (and probably not more than 1).

        **Examples**

            >>> from mpmath import *
            >>> mp.pretty = True
            >>> mag(10), mag(10.0), mag(mpf(10)), int(ceil(log(10,2)))
            (4, 4, 4, 4)
            >>> mag(10j), mag(10+10j)
            (4, 5)
            >>> mag(0.01), int(ceil(log(0.01,2)))
            (-6, -6)
            >>> mag(0), mag(inf), mag(-inf), mag(nan)
            (-inf, +inf, +inf, nan)

        """
        if hasattr(x, "_mpf_"):
            return ctx._mpf_mag(x._mpf_)
        elif hasattr(x, "_mpc_"):
            r, i = x._mpc_
            if r == fzero:
                return ctx._mpf_mag(i)
            if i == fzero:
                return ctx._mpf_mag(r)
            return 1+max(ctx._mpf_mag(r), ctx._mpf_mag(i))
        elif isinstance(x, int_types):
            if x:
                return bitcount(abs(x))
            return ctx.ninf
        elif isinstance(x, rational.mpq):
            p, q = x._mpq_
            if p:
                return 1 + bitcount(abs(p)) - bitcount(q)
            return ctx.ninf
        else:
            x = ctx.convert(x)
            if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
                return ctx.mag(x)
            else:
                raise TypeError("requires an mpf/mpc")


# Register with "numbers" ABC
#     We do not subclass, hence we do not use the @abstractmethod checks. While
#     this is less invasive it may turn out that we do not actually support
#     parts of the expected interfaces.  See
#     http://docs.python.org/2/library/numbers.html for list of abstract
#     methods.
try:
    import numbers
    numbers.Complex.register(_mpc)
    numbers.Real.register(_mpf)
except ImportError:
    pass