This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/ctx_mp.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
"""
This module defines the mpf, mpc classes, and standard functions for
operating with them.
"""
__docformat__ = 'plaintext'

import re

from .ctx_base import StandardBaseContext

from .libmp.backend import basestring, BACKEND

from . import libmp

from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
    round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
    ComplexResult, to_pickable, from_pickable, normalize,
    from_int, from_float, from_str, to_int, to_float, to_str,
    from_rational, from_man_exp,
    fone, fzero, finf, fninf, fnan,
    mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
    mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
    mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
    mpf_hash, mpf_rand,
    mpf_sum,
    bitcount, to_fixed,
    mpc_to_str,
    mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
    mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
    mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
    mpc_mpf_div,
    mpf_pow,
    mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
    mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
    mpf_glaisher, mpf_twinprime, mpf_mertens,
    int_types)

from . import function_docs
from . import rational

new = object.__new__

get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*\.?\d*(e[\+\-]?\d+)?)??'
                         r'(?P<im>[\+\-]?\d*\.?\d*(e[\+\-]?\d+)?j)?\)?$')

if BACKEND == 'sage':
    from sage.libs.mpmath.ext_main import Context as BaseMPContext
    # pickle hack
    import sage.libs.mpmath.ext_main as _mpf_module
else:
    from .ctx_mp_python import PythonMPContext as BaseMPContext
    from . import ctx_mp_python as _mpf_module

from .ctx_mp_python import _mpf, _mpc, mpnumeric

class MPContext(BaseMPContext, StandardBaseContext):
    """
    Context for multiprecision arithmetic with a global precision.
    """

    def __init__(ctx):
        BaseMPContext.__init__(ctx)
        ctx.trap_complex = False
        ctx.pretty = False
        ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
        ctx._mpq = rational.mpq
        ctx.default()
        StandardBaseContext.__init__(ctx)

        ctx.mpq = rational.mpq
        ctx.init_builtins()

        ctx.hyp_summators = {}

        ctx._init_aliases()

        # XXX: automate
        try:
            ctx.bernoulli.im_func.func_doc = function_docs.bernoulli
            ctx.primepi.im_func.func_doc = function_docs.primepi
            ctx.psi.im_func.func_doc = function_docs.psi
            ctx.atan2.im_func.func_doc = function_docs.atan2
        except AttributeError:
            # python 3
            ctx.bernoulli.__func__.func_doc = function_docs.bernoulli
            ctx.primepi.__func__.func_doc = function_docs.primepi
            ctx.psi.__func__.func_doc = function_docs.psi
            ctx.atan2.__func__.func_doc = function_docs.atan2

        ctx.digamma.func_doc = function_docs.digamma
        ctx.cospi.func_doc = function_docs.cospi
        ctx.sinpi.func_doc = function_docs.sinpi

    def init_builtins(ctx):

        mpf = ctx.mpf
        mpc = ctx.mpc

        # Exact constants
        ctx.one = ctx.make_mpf(fone)
        ctx.zero = ctx.make_mpf(fzero)
        ctx.j = ctx.make_mpc((fzero,fone))
        ctx.inf = ctx.make_mpf(finf)
        ctx.ninf = ctx.make_mpf(fninf)
        ctx.nan = ctx.make_mpf(fnan)

        eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1),
            "epsilon of working precision", "eps")
        ctx.eps = eps

        # Approximate constants
        ctx.pi = ctx.constant(mpf_pi, "pi", "pi")
        ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2")
        ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10")
        ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi")
        ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e")
        ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler")
        ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan")
        ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin")
        ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher")
        ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery")
        ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree")
        ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime")
        ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens")

        # Standard functions
        ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt)
        ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt)
        ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log)
        ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
        ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp)
        ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj)
        ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi)
        ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin)
        ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos)
        ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan)
        ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh)
        ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh)
        ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh)
        ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin)
        ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos)
        ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
        ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh)
        ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh)
        ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh)
        ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi)
        ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi)
        ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor)
        ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil)
        ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint)
        ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac)
        ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci)

        ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma)
        ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma)
        ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma)
        ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial)
        ctx.gamma_old = ctx._wrap_libmp_function(libmp.mpf_gamma_old, libmp.mpc_gamma_old)
        ctx.fac_old = ctx.factorial_old = ctx._wrap_libmp_function(libmp.mpf_factorial_old, libmp.mpc_factorial_old)

        ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0)
        ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic)
        ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei)
        ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1)
        ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci)
        ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si)
        ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk)
        ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe)
        ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1)
        ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None)
        ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None)
        ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta)
        ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta)

        # Faster versions
        ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt)
        ctx.exp = getattr(ctx, "_sage_exp", ctx.exp)
        ctx.ln = getattr(ctx, "_sage_ln", ctx.ln)
        ctx.cos = getattr(ctx, "_sage_cos", ctx.cos)
        ctx.sin = getattr(ctx, "_sage_sin", ctx.sin)

    def to_fixed(ctx, x, prec):
        return x.to_fixed(prec)

    def hypot(ctx, x, y):
        r"""
        Computes the Euclidean norm of the vector `(x, y)`, equal
        to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real."""
        x = ctx.convert(x)
        y = ctx.convert(y)
        return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding))

    def _gamma_upper_int(ctx, n, z):
        n = int(ctx._re(n))
        if n == 0:
            return ctx.e1(z)
        if not hasattr(z, '_mpf_'):
            raise NotImplementedError
        prec, rounding = ctx._prec_rounding
        real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True)
        if imag is None:
            return ctx.make_mpf(real)
        else:
            return ctx.make_mpc((real, imag))

    def _expint_int(ctx, n, z):
        n = int(n)
        if n == 1:
            return ctx.e1(z)
        if not hasattr(z, '_mpf_'):
            raise NotImplementedError
        prec, rounding = ctx._prec_rounding
        real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding)
        if imag is None:
            return ctx.make_mpf(real)
        else:
            return ctx.make_mpc((real, imag))

    def _nthroot(ctx, x, n):
        if hasattr(x, '_mpf_'):
            try:
                return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding))
            except ComplexResult:
                if ctx.trap_complex:
                    raise
                x = (x._mpf_, libmp.fzero)
        else:
            x = x._mpc_
        return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding))

    def _besselj(ctx, n, z):
        prec, rounding = ctx._prec_rounding
        if hasattr(z, '_mpf_'):
            return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding))
        elif hasattr(z, '_mpc_'):
            return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding))

    def _agm(ctx, a, b=1):
        prec, rounding = ctx._prec_rounding
        if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'):
            try:
                v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding)
                return ctx.make_mpf(v)
            except ComplexResult:
                pass
        if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero)
        else: a = a._mpc_
        if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero)
        else: b = b._mpc_
        return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding))

    def bernoulli(ctx, n):
        return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding))

    def _zeta_int(ctx, n):
        return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding))

    def atan2(ctx, y, x):
        x = ctx.convert(x)
        y = ctx.convert(y)
        return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding))

    def psi(ctx, m, z):
        z = ctx.convert(z)
        m = int(m)
        if ctx._is_real_type(z):
            return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding))
        else:
            return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding))

    def cos_sin(ctx, x, **kwargs):
        if type(x) not in ctx.types:
            x = ctx.convert(x)
        prec, rounding = ctx._parse_prec(kwargs)
        if hasattr(x, '_mpf_'):
            c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding)
            return ctx.make_mpf(c), ctx.make_mpf(s)
        elif hasattr(x, '_mpc_'):
            c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding)
            return ctx.make_mpc(c), ctx.make_mpc(s)
        else:
            return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)

    def cospi_sinpi(ctx, x, **kwargs):
        if type(x) not in ctx.types:
            x = ctx.convert(x)
        prec, rounding = ctx._parse_prec(kwargs)
        if hasattr(x, '_mpf_'):
            c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding)
            return ctx.make_mpf(c), ctx.make_mpf(s)
        elif hasattr(x, '_mpc_'):
            c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding)
            return ctx.make_mpc(c), ctx.make_mpc(s)
        else:
            return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)

    def clone(ctx):
        """
        Create a copy of the context, with the same working precision.
        """
        a = ctx.__class__()
        a.prec = ctx.prec
        return a

    # Several helper methods
    # TODO: add more of these, make consistent, write docstrings, ...

    def _is_real_type(ctx, x):
        if hasattr(x, '_mpc_') or type(x) is complex:
            return False
        return True

    def _is_complex_type(ctx, x):
        if hasattr(x, '_mpc_') or type(x) is complex:
            return True
        return False

    def isnan(ctx, x):
        """
        Return *True* if *x* is a NaN (not-a-number), or for a complex
        number, whether either the real or complex part is NaN;
        otherwise return *False*::

            >>> from mpmath import *
            >>> isnan(3.14)
            False
            >>> isnan(nan)
            True
            >>> isnan(mpc(3.14,2.72))
            False
            >>> isnan(mpc(3.14,nan))
            True

        """
        if hasattr(x, "_mpf_"):
            return x._mpf_ == fnan
        if hasattr(x, "_mpc_"):
            return fnan in x._mpc_
        if isinstance(x, int_types) or isinstance(x, rational.mpq):
            return False
        x = ctx.convert(x)
        if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
            return ctx.isnan(x)
        raise TypeError("isnan() needs a number as input")

    def isfinite(ctx, x):
        """
        Return *True* if *x* is a finite number, i.e. neither
        an infinity or a NaN.

            >>> from mpmath import *
            >>> isfinite(inf)
            False
            >>> isfinite(-inf)
            False
            >>> isfinite(3)
            True
            >>> isfinite(nan)
            False
            >>> isfinite(3+4j)
            True
            >>> isfinite(mpc(3,inf))
            False
            >>> isfinite(mpc(nan,3))
            False

        """
        if ctx.isinf(x) or ctx.isnan(x):
            return False
        return True

    def isnpint(ctx, x):
        """
        Determine if *x* is a nonpositive integer.
        """
        if not x:
            return True
        if hasattr(x, '_mpf_'):
            sign, man, exp, bc = x._mpf_
            return sign and exp >= 0
        if hasattr(x, '_mpc_'):
            return not x.imag and ctx.isnpint(x.real)
        if type(x) in int_types:
            return x <= 0
        if isinstance(x, ctx.mpq):
            p, q = x._mpq_
            if not p:
                return True
            return q == 1 and p <= 0
        return ctx.isnpint(ctx.convert(x))

    def __str__(ctx):
        lines = ["Mpmath settings:",
            ("  mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]",
            ("  mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]",
            ("  mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]",
        ]
        return "\n".join(lines)

    @property
    def _repr_digits(ctx):
        return repr_dps(ctx._prec)

    @property
    def _str_digits(ctx):
        return ctx._dps

    def extraprec(ctx, n, normalize_output=False):
        """
        The block

            with extraprec(n):
                <code>

        increases the precision n bits, executes <code>, and then
        restores the precision.

        extraprec(n)(f) returns a decorated version of the function f
        that increases the working precision by n bits before execution,
        and restores the parent precision afterwards. With
        normalize_output=True, it rounds the return value to the parent
        precision.
        """
        return PrecisionManager(ctx, lambda p: p + n, None, normalize_output)

    def extradps(ctx, n, normalize_output=False):
        """
        This function is analogous to extraprec (see documentation)
        but changes the decimal precision instead of the number of bits.
        """
        return PrecisionManager(ctx, None, lambda d: d + n, normalize_output)

    def workprec(ctx, n, normalize_output=False):
        """
        The block

            with workprec(n):
                <code>

        sets the precision to n bits, executes <code>, and then restores
        the precision.

        workprec(n)(f) returns a decorated version of the function f
        that sets the precision to n bits before execution,
        and restores the precision afterwards. With normalize_output=True,
        it rounds the return value to the parent precision.
        """
        return PrecisionManager(ctx, lambda p: n, None, normalize_output)

    def workdps(ctx, n, normalize_output=False):
        """
        This function is analogous to workprec (see documentation)
        but changes the decimal precision instead of the number of bits.
        """
        return PrecisionManager(ctx, None, lambda d: n, normalize_output)

    def autoprec(ctx, f, maxprec=None, catch=(), verbose=False):
        """
        Return a wrapped copy of *f* that repeatedly evaluates *f*
        with increasing precision until the result converges to the
        full precision used at the point of the call.

        This heuristically protects against rounding errors, at the cost of
        roughly a 2x slowdown compared to manually setting the optimal
        precision. This method can, however, easily be fooled if the results
        from *f* depend "discontinuously" on the precision, for instance
        if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec`
        should be used judiciously.

        **Examples**

        Many functions are sensitive to perturbations of the input arguments.
        If the arguments are decimal numbers, they may have to be converted
        to binary at a much higher precision. If the amount of required
        extra precision is unknown, :func:`~mpmath.autoprec` is convenient::

            >>> from mpmath import *
            >>> mp.dps = 15
            >>> mp.pretty = True
            >>> besselj(5, 125 * 10**28)    # Exact input
            -8.03284785591801e-17
            >>> besselj(5, '1.25e30')   # Bad
            7.12954868316652e-16
            >>> autoprec(besselj)(5, '1.25e30')   # Good
            -8.03284785591801e-17

        The following fails to converge because `\sin(\pi) = 0` whereas all
        finite-precision approximations of `\pi` give nonzero values::

            >>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL
            Traceback (most recent call last):
              ...
            NoConvergence: autoprec: prec increased to 2910 without convergence

        As the following example shows, :func:`~mpmath.autoprec` can protect against
        cancellation, but is fooled by too severe cancellation::

            >>> x = 1e-10
            >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
            1.00000008274037e-10
            1.00000000005e-10
            1.00000000005e-10
            >>> x = 1e-50
            >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
            0.0
            1.0e-50
            0.0

        With *catch*, an exception or list of exceptions to intercept
        may be specified. The raised exception is interpreted
        as signaling insufficient precision. This permits, for example,
        evaluating a function where a too low precision results in a
        division by zero::

            >>> f = lambda x: 1/(exp(x)-1)
            >>> f(1e-30)
            Traceback (most recent call last):
              ...
            ZeroDivisionError
            >>> autoprec(f, catch=ZeroDivisionError)(1e-30)
            1.0e+30


        """
        def f_autoprec_wrapped(*args, **kwargs):
            prec = ctx.prec
            if maxprec is None:
                maxprec2 = ctx._default_hyper_maxprec(prec)
            else:
                maxprec2 = maxprec
            try:
                ctx.prec = prec + 10
                try:
                    v1 = f(*args, **kwargs)
                except catch:
                    v1 = ctx.nan
                prec2 = prec + 20
                while 1:
                    ctx.prec = prec2
                    try:
                        v2 = f(*args, **kwargs)
                    except catch:
                        v2 = ctx.nan
                    if v1 == v2:
                        break
                    err = ctx.mag(v2-v1) - ctx.mag(v2)
                    if err < (-prec):
                        break
                    if verbose:
                        print("autoprec: target=%s, prec=%s, accuracy=%s" \
                            % (prec, prec2, -err))
                    v1 = v2
                    if prec2 >= maxprec2:
                        raise ctx.NoConvergence(\
                        "autoprec: prec increased to %i without convergence"\
                        % prec2)
                    prec2 += int(prec2*2)
                    prec2 = min(prec2, maxprec2)
            finally:
                ctx.prec = prec
            return +v2
        return f_autoprec_wrapped

    def nstr(ctx, x, n=6, **kwargs):
        """
        Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n*
        significant digits. The small default value for *n* is chosen to
        make this function useful for printing collections of numbers
        (lists, matrices, etc).

        If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively
        to each element. For unrecognized classes, :func:`~mpmath.nstr`
        simply returns ``str(x)``.

        The companion function :func:`~mpmath.nprint` prints the result
        instead of returning it.

            >>> from mpmath import *
            >>> nstr([+pi, ldexp(1,-500)])
            '[3.14159, 3.05494e-151]'
            >>> nprint([+pi, ldexp(1,-500)])
            [3.14159, 3.05494e-151]
        """
        if isinstance(x, list):
            return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
        if isinstance(x, tuple):
            return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
        if hasattr(x, '_mpf_'):
            return to_str(x._mpf_, n, **kwargs)
        if hasattr(x, '_mpc_'):
            return "(" + mpc_to_str(x._mpc_, n, **kwargs)  + ")"
        if isinstance(x, basestring):
            return repr(x)
        if isinstance(x, ctx.matrix):
            return x.__nstr__(n, **kwargs)
        return str(x)

    def _convert_fallback(ctx, x, strings):
        if strings and isinstance(x, basestring):
            if 'j' in x.lower():
                x = x.lower().replace(' ', '')
                match = get_complex.match(x)
                re = match.group('re')
                if not re:
                    re = 0
                im = match.group('im').rstrip('j')
                return ctx.mpc(ctx.convert(re), ctx.convert(im))
        if hasattr(x, "_mpi_"):
            a, b = x._mpi_
            if a == b:
                return ctx.make_mpf(a)
            else:
                raise ValueError("can only create mpf from zero-width interval")
        raise TypeError("cannot create mpf from " + repr(x))

    def mpmathify(ctx, *args, **kwargs):
        return ctx.convert(*args, **kwargs)

    def _parse_prec(ctx, kwargs):
        if kwargs:
            if kwargs.get('exact'):
                return 0, 'f'
            prec, rounding = ctx._prec_rounding
            if 'rounding' in kwargs:
                rounding = kwargs['rounding']
            if 'prec' in kwargs:
                prec = kwargs['prec']
                if prec == ctx.inf:
                    return 0, 'f'
                else:
                    prec = int(prec)
            elif 'dps' in kwargs:
                dps = kwargs['dps']
                if dps == ctx.inf:
                    return 0, 'f'
                prec = dps_to_prec(dps)
            return prec, rounding
        return ctx._prec_rounding

    _exact_overflow_msg = "the exact result does not fit in memory"

    _hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy
using a working precision of %i bits. Try with a higher maxprec,
maxterms, or set zeroprec."""

    def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs):
        if hasattr(z, "_mpf_"):
            key = p, q, flags, 'R'
            v = z._mpf_
        elif hasattr(z, "_mpc_"):
            key = p, q, flags, 'C'
            v = z._mpc_
        if key not in ctx.hyp_summators:
            ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1]
        summator = ctx.hyp_summators[key]
        prec = ctx.prec
        maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec))
        extraprec = 50
        epsshift = 25
        # Jumps in magnitude occur when parameters are close to negative
        # integers. We must ensure that these terms are included in
        # the sum and added accurately
        magnitude_check = {}
        max_total_jump = 0
        for i, c in enumerate(coeffs):
            if flags[i] == 'Z':
                if i >= p and c <= 0:
                    ok = False
                    for ii, cc in enumerate(coeffs[:p]):
                        # Note: c <= cc or c < cc, depending on convention
                        if flags[ii] == 'Z' and cc <= 0 and c <= cc:
                            ok = True
                    if not ok:
                        raise ZeroDivisionError("pole in hypergeometric series")
                continue
            n, d = ctx.nint_distance(c)
            n = -int(n)
            d = -d
            if i >= p and n >= 0 and d > 4:
                if n in magnitude_check:
                    magnitude_check[n] += d
                else:
                    magnitude_check[n] = d
                extraprec = max(extraprec, d - prec + 60)
            max_total_jump += abs(d)
        while 1:
            if extraprec > maxprec:
                raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec))
            wp = prec + extraprec
            if magnitude_check:
                mag_dict = dict((n,None) for n in magnitude_check)
            else:
                mag_dict = {}
            zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \
                epsshift, mag_dict, **kwargs)
            cancel = -magnitude
            jumps_resolved = True
            if extraprec < max_total_jump:
                for n in mag_dict.values():
                    if (n is None) or (n < prec):
                        jumps_resolved = False
                        break
            accurate = (cancel < extraprec-25-5 or not accurate_small)
            if jumps_resolved:
                if accurate:
                    break
                # zero?
                zeroprec = kwargs.get('zeroprec')
                if zeroprec is not None:
                    if cancel > zeroprec:
                        if have_complex:
                            return ctx.mpc(0)
                        else:
                            return ctx.zero

            # Some near-singularities were not included, so increase
            # precision and repeat until they are
            extraprec *= 2
            # Possible workaround for bad roundoff in fixed-point arithmetic
            epsshift += 5
            extraprec += 5

        if type(zv) is tuple:
            if have_complex:
                return ctx.make_mpc(zv)
            else:
                return ctx.make_mpf(zv)
        else:
            return zv

    def ldexp(ctx, x, n):
        r"""
        Computes `x 2^n` efficiently. No rounding is performed.
        The argument `x` must be a real floating-point number (or
        possible to convert into one) and `n` must be a Python ``int``.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> ldexp(1, 10)
            mpf('1024.0')
            >>> ldexp(1, -3)
            mpf('0.125')

        """
        x = ctx.convert(x)
        return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n))

    def frexp(ctx, x):
        r"""
        Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`,
        `n` a Python integer, and such that `x = y 2^n`. No rounding is
        performed.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> frexp(7.5)
            (mpf('0.9375'), 3)

        """
        x = ctx.convert(x)
        y, n = libmp.mpf_frexp(x._mpf_)
        return ctx.make_mpf(y), n

    def fneg(ctx, x, **kwargs):
        """
        Negates the number *x*, giving a floating-point result, optionally
        using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        An mpmath number is returned::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fneg(2.5)
            mpf('-2.5')
            >>> fneg(-5+2j)
            mpc(real='5.0', imag='-2.0')

        Precise control over rounding is possible::

            >>> x = fadd(2, 1e-100, exact=True)
            >>> fneg(x)
            mpf('-2.0')
            >>> fneg(x, rounding='f')
            mpf('-2.0000000000000004')

        Negating with and without roundoff::

            >>> n = 200000000000000000000001
            >>> print(int(-mpf(n)))
            -200000000000000016777216
            >>> print(int(fneg(n)))
            -200000000000000016777216
            >>> print(int(fneg(n, prec=log(n,2)+1)))
            -200000000000000000000001
            >>> print(int(fneg(n, dps=log(n,10)+1)))
            -200000000000000000000001
            >>> print(int(fneg(n, prec=inf)))
            -200000000000000000000001
            >>> print(int(fneg(n, dps=inf)))
            -200000000000000000000001
            >>> print(int(fneg(n, exact=True)))
            -200000000000000000000001

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        if hasattr(x, '_mpf_'):
            return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding))
        if hasattr(x, '_mpc_'):
            return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding))
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fadd(ctx, x, y, **kwargs):
        """
        Adds the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        The default precision is the working precision of the context.
        You can specify a custom precision in bits by passing the *prec* keyword
        argument, or by providing an equivalent decimal precision with the *dps*
        keyword argument. If the precision is set to ``+inf``, or if the flag
        *exact=True* is passed, an exact addition with no rounding is performed.

        When the precision is finite, the optional *rounding* keyword argument
        specifies the direction of rounding. Valid options are ``'n'`` for
        nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'``
        for down, ``'u'`` for up.

        **Examples**

        Using :func:`~mpmath.fadd` with precision and rounding control::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fadd(2, 1e-20)
            mpf('2.0')
            >>> fadd(2, 1e-20, rounding='u')
            mpf('2.0000000000000004')
            >>> nprint(fadd(2, 1e-20, prec=100), 25)
            2.00000000000000000001
            >>> nprint(fadd(2, 1e-20, dps=15), 25)
            2.0
            >>> nprint(fadd(2, 1e-20, dps=25), 25)
            2.00000000000000000001
            >>> nprint(fadd(2, 1e-20, exact=True), 25)
            2.00000000000000000001

        Exact addition avoids cancellation errors, enforcing familiar laws
        of numbers such as `x+y-x = y`, which don't hold in floating-point
        arithmetic with finite precision::

            >>> x, y = mpf(2), mpf('1e-1000')
            >>> print(x + y - x)
            0.0
            >>> print(fadd(x, y, prec=inf) - x)
            1.0e-1000
            >>> print(fadd(x, y, exact=True) - x)
            1.0e-1000

        Exact addition can be inefficient and may be impossible to perform
        with large magnitude differences::

            >>> fadd(1, '1e-100000000000000000000', prec=inf)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fsub(ctx, x, y, **kwargs):
        """
        Subtracts the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        Using :func:`~mpmath.fsub` with precision and rounding control::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fsub(2, 1e-20)
            mpf('2.0')
            >>> fsub(2, 1e-20, rounding='d')
            mpf('1.9999999999999998')
            >>> nprint(fsub(2, 1e-20, prec=100), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, dps=15), 25)
            2.0
            >>> nprint(fsub(2, 1e-20, dps=25), 25)
            1.99999999999999999999
            >>> nprint(fsub(2, 1e-20, exact=True), 25)
            1.99999999999999999999

        Exact subtraction avoids cancellation errors, enforcing familiar laws
        of numbers such as `x-y+y = x`, which don't hold in floating-point
        arithmetic with finite precision::

            >>> x, y = mpf(2), mpf('1e1000')
            >>> print(x - y + y)
            0.0
            >>> print(fsub(x, y, prec=inf) + y)
            2.0
            >>> print(fsub(x, y, exact=True) + y)
            2.0

        Exact addition can be inefficient and may be impossible to perform
        with large magnitude differences::

            >>> fsub(1, '1e-100000000000000000000', prec=inf)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fmul(ctx, x, y, **kwargs):
        """
        Multiplies the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        The result is an mpmath number::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fmul(2, 5.0)
            mpf('10.0')
            >>> fmul(0.5j, 0.5)
            mpc(real='0.0', imag='0.25')

        Avoiding roundoff::

            >>> x, y = 10**10+1, 10**15+1
            >>> print(x*y)
            10000000001000010000000001
            >>> print(mpf(x) * mpf(y))
            1.0000000001e+25
            >>> print(int(mpf(x) * mpf(y)))
            10000000001000011026399232
            >>> print(int(fmul(x, y)))
            10000000001000011026399232
            >>> print(int(fmul(x, y, dps=25)))
            10000000001000010000000001
            >>> print(int(fmul(x, y, exact=True)))
            10000000001000010000000001

        Exact multiplication with complex numbers can be inefficient and may
        be impossible to perform with large magnitude differences between
        real and imaginary parts::

            >>> x = 1+2j
            >>> y = mpc(2, '1e-100000000000000000000')
            >>> fmul(x, y)
            mpc(real='2.0', imag='4.0')
            >>> fmul(x, y, rounding='u')
            mpc(real='2.0', imag='4.0000000000000009')
            >>> fmul(x, y, exact=True)
            Traceback (most recent call last):
              ...
            OverflowError: the exact result does not fit in memory

        """
        prec, rounding = ctx._parse_prec(kwargs)
        x = ctx.convert(x)
        y = ctx.convert(y)
        try:
            if hasattr(x, '_mpf_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
            if hasattr(x, '_mpc_'):
                if hasattr(y, '_mpf_'):
                    return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
                if hasattr(y, '_mpc_'):
                    return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
        except (ValueError, OverflowError):
            raise OverflowError(ctx._exact_overflow_msg)
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def fdiv(ctx, x, y, **kwargs):
        """
        Divides the numbers *x* and *y*, giving a floating-point result,
        optionally using a custom precision and rounding mode.

        See the documentation of :func:`~mpmath.fadd` for a detailed description
        of how to specify precision and rounding.

        **Examples**

        The result is an mpmath number::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fdiv(3, 2)
            mpf('1.5')
            >>> fdiv(2, 3)
            mpf('0.66666666666666663')
            >>> fdiv(2+4j, 0.5)
            mpc(real='4.0', imag='8.0')

        The rounding direction and precision can be controlled::

            >>> fdiv(2, 3, dps=3)    # Should be accurate to at least 3 digits
            mpf('0.6666259765625')
            >>> fdiv(2, 3, rounding='d')
            mpf('0.66666666666666663')
            >>> fdiv(2, 3, prec=60)
            mpf('0.66666666666666667')
            >>> fdiv(2, 3, rounding='u')
            mpf('0.66666666666666674')

        Checking the error of a division by performing it at higher precision::

            >>> fdiv(2, 3) - fdiv(2, 3, prec=100)
            mpf('-3.7007434154172148e-17')

        Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not
        allowed since the quotient of two floating-point numbers generally
        does not have an exact floating-point representation. (In the
        future this might be changed to allow the case where the division
        is actually exact.)

            >>> fdiv(2, 3, exact=True)
            Traceback (most recent call last):
              ...
            ValueError: division is not an exact operation

        """
        prec, rounding = ctx._parse_prec(kwargs)
        if not prec:
            raise ValueError("division is not an exact operation")
        x = ctx.convert(x)
        y = ctx.convert(y)
        if hasattr(x, '_mpf_'):
            if hasattr(y, '_mpf_'):
                return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding))
            if hasattr(y, '_mpc_'):
                return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding))
        if hasattr(x, '_mpc_'):
            if hasattr(y, '_mpf_'):
                return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding))
            if hasattr(y, '_mpc_'):
                return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding))
        raise ValueError("Arguments need to be mpf or mpc compatible numbers")

    def nint_distance(ctx, x):
        r"""
        Return `(n,d)` where `n` is the nearest integer to `x` and `d` is
        an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision
        (measured in bits) lost to cancellation when computing `x-n`.

            >>> from mpmath import *
            >>> n, d = nint_distance(5)
            >>> print(n); print(d)
            5
            -inf
            >>> n, d = nint_distance(mpf(5))
            >>> print(n); print(d)
            5
            -inf
            >>> n, d = nint_distance(mpf(5.00000001))
            >>> print(n); print(d)
            5
            -26
            >>> n, d = nint_distance(mpf(4.99999999))
            >>> print(n); print(d)
            5
            -26
            >>> n, d = nint_distance(mpc(5,10))
            >>> print(n); print(d)
            5
            4
            >>> n, d = nint_distance(mpc(5,0.000001))
            >>> print(n); print(d)
            5
            -19

        """
        typx = type(x)
        if typx in int_types:
            return int(x), ctx.ninf
        elif typx is rational.mpq:
            p, q = x._mpq_
            n, r = divmod(p, q)
            if 2*r >= q:
                n += 1
            elif not r:
                return n, ctx.ninf
            # log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q)
            d = bitcount(abs(p-n*q)) - bitcount(q)
            return n, d
        if hasattr(x, "_mpf_"):
            re = x._mpf_
            im_dist = ctx.ninf
        elif hasattr(x, "_mpc_"):
            re, im = x._mpc_
            isign, iman, iexp, ibc = im
            if iman:
                im_dist = iexp + ibc
            elif im == fzero:
                im_dist = ctx.ninf
            else:
                raise ValueError("requires a finite number")
        else:
            x = ctx.convert(x)
            if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
                return ctx.nint_distance(x)
            else:
                raise TypeError("requires an mpf/mpc")
        sign, man, exp, bc = re
        mag = exp+bc
        # |x| < 0.5
        if mag < 0:
            n = 0
            re_dist = mag
        elif man:
            # exact integer
            if exp >= 0:
                n = man << exp
                re_dist = ctx.ninf
            # exact half-integer
            elif exp == -1:
                n = (man>>1)+1
                re_dist = 0
            else:
                d = (-exp-1)
                t = man >> d
                if t & 1:
                    t += 1
                    man = (t<<d) - man
                else:
                    man -= (t<<d)
                n = t>>1   # int(t)>>1
                re_dist = exp+bitcount(man)
            if sign:
                n = -n
        elif re == fzero:
            re_dist = ctx.ninf
            n = 0
        else:
            raise ValueError("requires a finite number")
        return n, max(re_dist, im_dist)

    def fprod(ctx, factors):
        r"""
        Calculates a product containing a finite number of factors (for
        infinite products, see :func:`~mpmath.nprod`). The factors will be
        converted to mpmath numbers.

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> fprod([1, 2, 0.5, 7])
            mpf('7.0')

        """
        orig = ctx.prec
        try:
            v = ctx.one
            for p in factors:
                v *= p
        finally:
            ctx.prec = orig
        return +v

    def rand(ctx):
        """
        Returns an ``mpf`` with value chosen randomly from `[0, 1)`.
        The number of randomly generated bits in the mantissa is equal
        to the working precision.
        """
        return ctx.make_mpf(mpf_rand(ctx._prec))

    def fraction(ctx, p, q):
        """
        Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
        the fraction `p/q`. The value is updated with the precision.

            >>> from mpmath import *
            >>> mp.dps = 15
            >>> a = fraction(1,100)
            >>> b = mpf(1)/100
            >>> print(a); print(b)
            0.01
            0.01
            >>> mp.dps = 30
            >>> print(a); print(b)      # a will be accurate
            0.01
            0.0100000000000000002081668171172
            >>> mp.dps = 15
        """
        return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
            '%s/%s' % (p, q))

    def absmin(ctx, x):
        return abs(ctx.convert(x))

    def absmax(ctx, x):
        return abs(ctx.convert(x))

    def _as_points(ctx, x):
        # XXX: remove this?
        if hasattr(x, '_mpi_'):
            a, b = x._mpi_
            return [ctx.make_mpf(a), ctx.make_mpf(b)]
        return x

    '''
    def _zetasum(ctx, s, a, b):
        """
        Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small
        integers.
        """
        a = int(a)
        b = int(b)
        s = ctx.convert(s)
        prec, rounding = ctx._prec_rounding
        if hasattr(s, '_mpf_'):
            v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec))
        elif hasattr(s, '_mpc_'):
            v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec))
        return v
    '''

    def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False):
        if not (ctx.isint(a) and hasattr(s, "_mpc_")):
            raise NotImplementedError
        a = int(a)
        prec = ctx._prec
        xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec)
        xs = [ctx.make_mpc(x) for x in xs]
        ys = [ctx.make_mpc(y) for y in ys]
        return xs, ys

class PrecisionManager:
    def __init__(self, ctx, precfun, dpsfun, normalize_output=False):
        self.ctx = ctx
        self.precfun = precfun
        self.dpsfun = dpsfun
        self.normalize_output = normalize_output
    def __call__(self, f):
        def g(*args, **kwargs):
            orig = self.ctx.prec
            try:
                if self.precfun:
                    self.ctx.prec = self.precfun(self.ctx.prec)
                else:
                    self.ctx.dps = self.dpsfun(self.ctx.dps)
                if self.normalize_output:
                    v = f(*args, **kwargs)
                    if type(v) is tuple:
                        return tuple([+a for a in v])
                    return +v
                else:
                    return f(*args, **kwargs)
            finally:
                self.ctx.prec = orig
        g.__name__ = f.__name__
        g.__doc__ = f.__doc__
        return g
    def __enter__(self):
        self.origp = self.ctx.prec
        if self.precfun:
            self.ctx.prec = self.precfun(self.ctx.prec)
        else:
            self.ctx.dps = self.dpsfun(self.ctx.dps)
    def __exit__(self, exc_type, exc_val, exc_tb):
        self.ctx.prec = self.origp
        return False


if __name__ == '__main__':
    import doctest
    doctest.testmod()