This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/calculus/quadrature.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
import math

from ..libmp.backend import xrange

class QuadratureRule(object):
    """
    Quadrature rules are implemented using this class, in order to
    simplify the code and provide a common infrastructure
    for tasks such as error estimation and node caching.

    You can implement a custom quadrature rule by subclassing
    :class:`QuadratureRule` and implementing the appropriate
    methods. The subclass can then be used by :func:`~mpmath.quad` by
    passing it as the *method* argument.

    :class:`QuadratureRule` instances are supposed to be singletons.
    :class:`QuadratureRule` therefore implements instance caching
    in :func:`~mpmath.__new__`.
    """

    def __init__(self, ctx):
        self.ctx = ctx
        self.standard_cache = {}
        self.transformed_cache = {}
        self.interval_count = {}

    def clear(self):
        """
        Delete cached node data.
        """
        self.standard_cache = {}
        self.transformed_cache = {}
        self.interval_count = {}

    def calc_nodes(self, degree, prec, verbose=False):
        r"""
        Compute nodes for the standard interval `[-1, 1]`. Subclasses
        should probably implement only this method, and use
        :func:`~mpmath.get_nodes` method to retrieve the nodes.
        """
        raise NotImplementedError

    def get_nodes(self, a, b, degree, prec, verbose=False):
        """
        Return nodes for given interval, degree and precision. The
        nodes are retrieved from a cache if already computed;
        otherwise they are computed by calling :func:`~mpmath.calc_nodes`
        and are then cached.

        Subclasses should probably not implement this method,
        but just implement :func:`~mpmath.calc_nodes` for the actual
        node computation.
        """
        key = (a, b, degree, prec)
        if key in self.transformed_cache:
            return self.transformed_cache[key]
        orig = self.ctx.prec
        try:
            self.ctx.prec = prec+20
            # Get nodes on standard interval
            if (degree, prec) in self.standard_cache:
                nodes = self.standard_cache[degree, prec]
            else:
                nodes = self.calc_nodes(degree, prec, verbose)
                self.standard_cache[degree, prec] = nodes
            # Transform to general interval
            nodes = self.transform_nodes(nodes, a, b, verbose)
            if key in self.interval_count:
                self.transformed_cache[key] = nodes
            else:
                self.interval_count[key] = True
        finally:
            self.ctx.prec = orig
        return nodes

    def transform_nodes(self, nodes, a, b, verbose=False):
        r"""
        Rescale standardized nodes (for `[-1, 1]`) to a general
        interval `[a, b]`. For a finite interval, a simple linear
        change of variables is used. Otherwise, the following
        transformations are used:

        .. math ::

            [a, \infty] : t = \frac{1}{x} + (a-1)

            [-\infty, b] : t = (b+1) - \frac{1}{x}

            [-\infty, \infty] : t = \frac{x}{\sqrt{1-x^2}}

        """
        ctx = self.ctx
        a = ctx.convert(a)
        b = ctx.convert(b)
        one = ctx.one
        if (a, b) == (-one, one):
            return nodes
        half = ctx.mpf(0.5)
        new_nodes = []
        if ctx.isinf(a) or ctx.isinf(b):
            if (a, b) == (ctx.ninf, ctx.inf):
                p05 = -half
                for x, w in nodes:
                    x2 = x*x
                    px1 = one-x2
                    spx1 = px1**p05
                    x = x*spx1
                    w *= spx1/px1
                    new_nodes.append((x, w))
            elif a == ctx.ninf:
                b1 = b+1
                for x, w in nodes:
                    u = 2/(x+one)
                    x = b1-u
                    w *= half*u**2
                    new_nodes.append((x, w))
            elif b == ctx.inf:
                a1 = a-1
                for x, w in nodes:
                    u = 2/(x+one)
                    x = a1+u
                    w *= half*u**2
                    new_nodes.append((x, w))
            elif a == ctx.inf or b == ctx.ninf:
                return [(x,-w) for (x,w) in self.transform_nodes(nodes, b, a, verbose)]
            else:
                raise NotImplementedError
        else:
            # Simple linear change of variables
            C = (b-a)/2
            D = (b+a)/2
            for x, w in nodes:
                new_nodes.append((D+C*x, C*w))
        return new_nodes

    def guess_degree(self, prec):
        """
        Given a desired precision `p` in bits, estimate the degree `m`
        of the quadrature required to accomplish full accuracy for
        typical integrals. By default, :func:`~mpmath.quad` will perform up
        to `m` iterations. The value of `m` should be a slight
        overestimate, so that "slightly bad" integrals can be dealt
        with automatically using a few extra iterations. On the
        other hand, it should not be too big, so :func:`~mpmath.quad` can
        quit within a reasonable amount of time when it is given
        an "unsolvable" integral.

        The default formula used by :func:`~mpmath.guess_degree` is tuned
        for both :class:`TanhSinh` and :class:`GaussLegendre`.
        The output is roughly as follows:

            +---------+---------+
            | `p`     | `m`     |
            +=========+=========+
            | 50      | 6       |
            +---------+---------+
            | 100     | 7       |
            +---------+---------+
            | 500     | 10      |
            +---------+---------+
            | 3000    | 12      |
            +---------+---------+

        This formula is based purely on a limited amount of
        experimentation and will sometimes be wrong.
        """
        # Expected degree
        # XXX: use mag
        g = int(4 + max(0, self.ctx.log(prec/30.0, 2)))
        # Reasonable "worst case"
        g += 2
        return g

    def estimate_error(self, results, prec, epsilon):
        r"""
        Given results from integrations `[I_1, I_2, \ldots, I_k]` done
        with a quadrature of rule of degree `1, 2, \ldots, k`, estimate
        the error of `I_k`.

        For `k = 2`, we estimate  `|I_{\infty}-I_2|` as `|I_2-I_1|`.

        For `k > 2`, we extrapolate `|I_{\infty}-I_k| \approx |I_{k+1}-I_k|`
        from `|I_k-I_{k-1}|` and `|I_k-I_{k-2}|` under the assumption
        that each degree increment roughly doubles the accuracy of
        the quadrature rule (this is true for both :class:`TanhSinh`
        and :class:`GaussLegendre`). The extrapolation formula is given
        by Borwein, Bailey & Girgensohn. Although not very conservative,
        this method seems to be very robust in practice.
        """
        if len(results) == 2:
            return abs(results[0]-results[1])
        try:
            if results[-1] == results[-2] == results[-3]:
                return self.ctx.zero
            D1 = self.ctx.log(abs(results[-1]-results[-2]), 10)
            D2 = self.ctx.log(abs(results[-1]-results[-3]), 10)
        except ValueError:
            return epsilon
        D3 = -prec
        D4 = min(0, max(D1**2/D2, 2*D1, D3))
        return self.ctx.mpf(10) ** int(D4)

    def summation(self, f, points, prec, epsilon, max_degree, verbose=False):
        """
        Main integration function. Computes the 1D integral over
        the interval specified by *points*. For each subinterval,
        performs quadrature of degree from 1 up to *max_degree*
        until :func:`~mpmath.estimate_error` signals convergence.

        :func:`~mpmath.summation` transforms each subintegration to
        the standard interval and then calls :func:`~mpmath.sum_next`.
        """
        ctx = self.ctx
        I = err = ctx.zero
        for i in xrange(len(points)-1):
            a, b = points[i], points[i+1]
            if a == b:
                continue
            # XXX: we could use a single variable transformation,
            # but this is not good in practice. We get better accuracy
            # by having 0 as an endpoint.
            if (a, b) == (ctx.ninf, ctx.inf):
                _f = f
                f = lambda x: _f(-x) + _f(x)
                a, b = (ctx.zero, ctx.inf)
            results = []
            for degree in xrange(1, max_degree+1):
                nodes = self.get_nodes(a, b, degree, prec, verbose)
                if verbose:
                    print("Integrating from %s to %s (degree %s of %s)" % \
                        (ctx.nstr(a), ctx.nstr(b), degree, max_degree))
                results.append(self.sum_next(f, nodes, degree, prec, results, verbose))
                if degree > 1:
                    err = self.estimate_error(results, prec, epsilon)
                    if err <= epsilon:
                        break
                    if verbose:
                        print("Estimated error:", ctx.nstr(err))
            I += results[-1]
        if err > epsilon:
            if verbose:
                print("Failed to reach full accuracy. Estimated error:", ctx.nstr(err))
        return I, err

    def sum_next(self, f, nodes, degree, prec, previous, verbose=False):
        r"""
        Evaluates the step sum `\sum w_k f(x_k)` where the *nodes* list
        contains the `(w_k, x_k)` pairs.

        :func:`~mpmath.summation` will supply the list *results* of
        values computed by :func:`~mpmath.sum_next` at previous degrees, in
        case the quadrature rule is able to reuse them.
        """
        return self.ctx.fdot((w, f(x)) for (x,w) in nodes)


class TanhSinh(QuadratureRule):
    r"""
    This class implements "tanh-sinh" or "doubly exponential"
    quadrature. This quadrature rule is based on the Euler-Maclaurin
    integral formula. By performing a change of variables involving
    nested exponentials / hyperbolic functions (hence the name), the
    derivatives at the endpoints vanish rapidly. Since the error term
    in the Euler-Maclaurin formula depends on the derivatives at the
    endpoints, a simple step sum becomes extremely accurate. In
    practice, this means that doubling the number of evaluation
    points roughly doubles the number of accurate digits.

    Comparison to Gauss-Legendre:
      * Initial computation of nodes is usually faster
      * Handles endpoint singularities better
      * Handles infinite integration intervals better
      * Is slower for smooth integrands once nodes have been computed

    The implementation of the tanh-sinh algorithm is based on the
    description given in Borwein, Bailey & Girgensohn, "Experimentation
    in Mathematics - Computational Paths to Discovery", A K Peters,
    2003, pages 312-313. In the present implementation, a few
    improvements have been made:

      * A more efficient scheme is used to compute nodes (exploiting
        recurrence for the exponential function)
      * The nodes are computed successively instead of all at once

    Various documents describing the algorithm are available online, e.g.:

      * http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
      * http://users.cs.dal.ca/~jborwein/tanh-sinh.pdf
    """

    def sum_next(self, f, nodes, degree, prec, previous, verbose=False):
        """
        Step sum for tanh-sinh quadrature of degree `m`. We exploit the
        fact that half of the abscissas at degree `m` are precisely the
        abscissas from degree `m-1`. Thus reusing the result from
        the previous level allows a 2x speedup.
        """
        h = self.ctx.mpf(2)**(-degree)
        # Abscissas overlap, so reusing saves half of the time
        if previous:
            S = previous[-1]/(h*2)
        else:
            S = self.ctx.zero
        S += self.ctx.fdot((w,f(x)) for (x,w) in nodes)
        return h*S

    def calc_nodes(self, degree, prec, verbose=False):
        r"""
        The abscissas and weights for tanh-sinh quadrature of degree
        `m` are given by

        .. math::

            x_k = \tanh(\pi/2 \sinh(t_k))

            w_k = \pi/2 \cosh(t_k) / \cosh(\pi/2 \sinh(t_k))^2

        where `t_k = t_0 + hk` for a step length `h \sim 2^{-m}`. The
        list of nodes is actually infinite, but the weights die off so
        rapidly that only a few are needed.
        """
        ctx = self.ctx
        nodes = []

        extra = 20
        ctx.prec += extra
        tol = ctx.ldexp(1, -prec-10)
        pi4 = ctx.pi/4

        # For simplicity, we work in steps h = 1/2^n, with the first point
        # offset so that we can reuse the sum from the previous degree

        # We define degree 1 to include the "degree 0" steps, including
        # the point x = 0. (It doesn't work well otherwise; not sure why.)
        t0 = ctx.ldexp(1, -degree)
        if degree == 1:
            #nodes.append((mpf(0), pi4))
            #nodes.append((-mpf(0), pi4))
            nodes.append((ctx.zero, ctx.pi/2))
            h = t0
        else:
            h = t0*2

        # Since h is fixed, we can compute the next exponential
        # by simply multiplying by exp(h)
        expt0 = ctx.exp(t0)
        a = pi4 * expt0
        b = pi4 / expt0
        udelta = ctx.exp(h)
        urdelta = 1/udelta

        for k in xrange(0, 20*2**degree+1):
            # Reference implementation:
            # t = t0 + k*h
            # x = tanh(pi/2 * sinh(t))
            # w = pi/2 * cosh(t) / cosh(pi/2 * sinh(t))**2

            # Fast implementation. Note that c = exp(pi/2 * sinh(t))
            c = ctx.exp(a-b)
            d = 1/c
            co = (c+d)/2
            si = (c-d)/2
            x = si / co
            w = (a+b) / co**2
            diff = abs(x-1)
            if diff <= tol:
                break

            nodes.append((x, w))
            nodes.append((-x, w))

            a *= udelta
            b *= urdelta

            if verbose and k % 300 == 150:
                # Note: the number displayed is rather arbitrary. Should
                # figure out how to print something that looks more like a
                # percentage
                print("Calculating nodes:", ctx.nstr(-ctx.log(diff, 10) / prec))

        ctx.prec -= extra
        return nodes


class GaussLegendre(QuadratureRule):
    """
    This class implements Gauss-Legendre quadrature, which is
    exceptionally efficient for polynomials and polynomial-like (i.e.
    very smooth) integrands.

    The abscissas and weights are given by roots and values of
    Legendre polynomials, which are the orthogonal polynomials
    on `[-1, 1]` with respect to the unit weight
    (see :func:`~mpmath.legendre`).

    In this implementation, we take the "degree" `m` of the quadrature
    to denote a Gauss-Legendre rule of degree `3 \cdot 2^m` (following
    Borwein, Bailey & Girgensohn). This way we get quadratic, rather
    than linear, convergence as the degree is incremented.

    Comparison to tanh-sinh quadrature:
      * Is faster for smooth integrands once nodes have been computed
      * Initial computation of nodes is usually slower
      * Handles endpoint singularities worse
      * Handles infinite integration intervals worse

    """

    def calc_nodes(self, degree, prec, verbose=False):
        """
        Calculates the abscissas and weights for Gauss-Legendre
        quadrature of degree of given degree (actually `3 \cdot 2^m`).
        """
        ctx = self.ctx
        # It is important that the epsilon is set lower than the
        # "real" epsilon
        epsilon = ctx.ldexp(1, -prec-8)
        # Fairly high precision might be required for accurate
        # evaluation of the roots
        orig = ctx.prec
        ctx.prec = int(prec*1.5)
        if degree == 1:
            x = ctx.mpf(3)/5
            w = ctx.mpf(5)/9
            nodes = [(-x,w),(ctx.zero,ctx.mpf(8)/9),(x,w)]
            ctx.prec = orig
            return nodes
        nodes = []
        n = 3*2**(degree-1)
        upto = n//2 + 1
        for j in xrange(1, upto):
            # Asymptotic formula for the roots
            r = ctx.mpf(math.cos(math.pi*(j-0.25)/(n+0.5)))
            # Newton iteration
            while 1:
                t1, t2 = 1, 0
                # Evaluates the Legendre polynomial using its defining
                # recurrence relation
                for j1 in xrange(1,n+1):
                    t3, t2, t1 = t2, t1, ((2*j1-1)*r*t1 - (j1-1)*t2)/j1
                t4 = n*(r*t1- t2)/(r**2-1)
                t5 = r
                a = t1/t4
                r = r - a
                if abs(a) < epsilon:
                    break
            x = r
            w = 2/((1-r**2)*t4**2)
            if verbose  and j % 30 == 15:
                print("Computing nodes (%i of %i)" % (j, upto))
            nodes.append((x, w))
            nodes.append((-x, w))
        ctx.prec = orig
        return nodes

class QuadratureMethods(object):

    def __init__(ctx, *args, **kwargs):
        ctx._gauss_legendre = GaussLegendre(ctx)
        ctx._tanh_sinh = TanhSinh(ctx)

    def quad(ctx, f, *points, **kwargs):
        r"""
        Computes a single, double or triple integral over a given
        1D interval, 2D rectangle, or 3D cuboid. A basic example::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> quad(sin, [0, pi])
            2.0

        A basic 2D integral::

            >>> f = lambda x, y: cos(x+y/2)
            >>> quad(f, [-pi/2, pi/2], [0, pi])
            4.0

        **Interval format**

        The integration range for each dimension may be specified
        using a list or tuple. Arguments are interpreted as follows:

        ``quad(f, [x1, x2])`` -- calculates
        `\int_{x_1}^{x_2} f(x) \, dx`

        ``quad(f, [x1, x2], [y1, y2])`` -- calculates
        `\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x,y) \, dy \, dx`

        ``quad(f, [x1, x2], [y1, y2], [z1, z2])`` -- calculates
        `\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x,y,z)
        \, dz \, dy \, dx`

        Endpoints may be finite or infinite. An interval descriptor
        may also contain more than two points. In this
        case, the integration is split into subintervals, between
        each pair of consecutive points. This is useful for
        dealing with mid-interval discontinuities, or integrating
        over large intervals where the function is irregular or
        oscillates.

        **Options**

        :func:`~mpmath.quad` recognizes the following keyword arguments:

        *method*
            Chooses integration algorithm (described below).
        *error*
            If set to true, :func:`~mpmath.quad` returns `(v, e)` where `v` is the
            integral and `e` is the estimated error.
        *maxdegree*
            Maximum degree of the quadrature rule to try before
            quitting.
        *verbose*
            Print details about progress.

        **Algorithms**

        Mpmath presently implements two integration algorithms: tanh-sinh
        quadrature and Gauss-Legendre quadrature. These can be selected
        using *method='tanh-sinh'* or *method='gauss-legendre'* or by
        passing the classes *method=TanhSinh*, *method=GaussLegendre*.
        The functions :func:`~mpmath.quadts` and :func:`~mpmath.quadgl` are also available
        as shortcuts.

        Both algorithms have the property that doubling the number of
        evaluation points roughly doubles the accuracy, so both are ideal
        for high precision quadrature (hundreds or thousands of digits).

        At high precision, computing the nodes and weights for the
        integration can be expensive (more expensive than computing the
        function values). To make repeated integrations fast, nodes
        are automatically cached.

        The advantages of the tanh-sinh algorithm are that it tends to
        handle endpoint singularities well, and that the nodes are cheap
        to compute on the first run. For these reasons, it is used by
        :func:`~mpmath.quad` as the default algorithm.

        Gauss-Legendre quadrature often requires fewer function
        evaluations, and is therefore often faster for repeated use, but
        the algorithm does not handle endpoint singularities as well and
        the nodes are more expensive to compute. Gauss-Legendre quadrature
        can be a better choice if the integrand is smooth and repeated
        integrations are required (e.g. for multiple integrals).

        See the documentation for :class:`TanhSinh` and
        :class:`GaussLegendre` for additional details.

        **Examples of 1D integrals**

        Intervals may be infinite or half-infinite. The following two
        examples evaluate the limits of the inverse tangent function
        (`\int 1/(1+x^2) = \tan^{-1} x`), and the Gaussian integral
        `\int_{\infty}^{\infty} \exp(-x^2)\,dx = \sqrt{\pi}`::

            >>> mp.dps = 15
            >>> quad(lambda x: 2/(x**2+1), [0, inf])
            3.14159265358979
            >>> quad(lambda x: exp(-x**2), [-inf, inf])**2
            3.14159265358979

        Integrals can typically be resolved to high precision.
        The following computes 50 digits of `\pi` by integrating the
        area of the half-circle defined by `x^2 + y^2 \le 1`,
        `-1 \le x \le 1`, `y \ge 0`::

            >>> mp.dps = 50
            >>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1])
            3.1415926535897932384626433832795028841971693993751

        One can just as well compute 1000 digits (output truncated)::

            >>> mp.dps = 1000
            >>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1])  #doctest:+ELLIPSIS
            3.141592653589793238462643383279502884...216420198

        Complex integrals are supported. The following computes
        a residue at `z = 0` by integrating counterclockwise along the
        diamond-shaped path from `1` to `+i` to `-1` to `-i` to `1`::

            >>> mp.dps = 15
            >>> chop(quad(lambda z: 1/z, [1,j,-1,-j,1]))
            (0.0 + 6.28318530717959j)

        **Examples of 2D and 3D integrals**

        Here are several nice examples of analytically solvable
        2D integrals (taken from MathWorld [1]) that can be evaluated
        to high precision fairly rapidly by :func:`~mpmath.quad`::

            >>> mp.dps = 30
            >>> f = lambda x, y: (x-1)/((1-x*y)*log(x*y))
            >>> quad(f, [0, 1], [0, 1])
            0.577215664901532860606512090082
            >>> +euler
            0.577215664901532860606512090082

            >>> f = lambda x, y: 1/sqrt(1+x**2+y**2)
            >>> quad(f, [-1, 1], [-1, 1])
            3.17343648530607134219175646705
            >>> 4*log(2+sqrt(3))-2*pi/3
            3.17343648530607134219175646705

            >>> f = lambda x, y: 1/(1-x**2 * y**2)
            >>> quad(f, [0, 1], [0, 1])
            1.23370055013616982735431137498
            >>> pi**2 / 8
            1.23370055013616982735431137498

            >>> quad(lambda x, y: 1/(1-x*y), [0, 1], [0, 1])
            1.64493406684822643647241516665
            >>> pi**2 / 6
            1.64493406684822643647241516665

        Multiple integrals may be done over infinite ranges::

            >>> mp.dps = 15
            >>> print(quad(lambda x,y: exp(-x-y), [0, inf], [1, inf]))
            0.367879441171442
            >>> print(1/e)
            0.367879441171442

        For nonrectangular areas, one can call :func:`~mpmath.quad` recursively.
        For example, we can replicate the earlier example of calculating
        `\pi` by integrating over the unit-circle, and actually use double
        quadrature to actually measure the area circle::

            >>> f = lambda x: quad(lambda y: 1, [-sqrt(1-x**2), sqrt(1-x**2)])
            >>> quad(f, [-1, 1])
            3.14159265358979

        Here is a simple triple integral::

            >>> mp.dps = 15
            >>> f = lambda x,y,z: x*y/(1+z)
            >>> quad(f, [0,1], [0,1], [1,2], method='gauss-legendre')
            0.101366277027041
            >>> (log(3)-log(2))/4
            0.101366277027041

        **Singularities**

        Both tanh-sinh and Gauss-Legendre quadrature are designed to
        integrate smooth (infinitely differentiable) functions. Neither
        algorithm copes well with mid-interval singularities (such as
        mid-interval discontinuities in `f(x)` or `f'(x)`).
        The best solution is to split the integral into parts::

            >>> mp.dps = 15
            >>> quad(lambda x: abs(sin(x)), [0, 2*pi])   # Bad
            3.99900894176779
            >>> quad(lambda x: abs(sin(x)), [0, pi, 2*pi])  # Good
            4.0

        The tanh-sinh rule often works well for integrands having a
        singularity at one or both endpoints::

            >>> mp.dps = 15
            >>> quad(log, [0, 1], method='tanh-sinh')  # Good
            -1.0
            >>> quad(log, [0, 1], method='gauss-legendre')  # Bad
            -0.999932197413801

        However, the result may still be inaccurate for some functions::

            >>> quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh')
            1.99999999946942

        This problem is not due to the quadrature rule per se, but to
        numerical amplification of errors in the nodes. The problem can be
        circumvented by temporarily increasing the precision::

            >>> mp.dps = 30
            >>> a = quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh')
            >>> mp.dps = 15
            >>> +a
            2.0

        **Highly variable functions**

        For functions that are smooth (in the sense of being infinitely
        differentiable) but contain sharp mid-interval peaks or many
        "bumps", :func:`~mpmath.quad` may fail to provide full accuracy. For
        example, with default settings, :func:`~mpmath.quad` is able to integrate
        `\sin(x)` accurately over an interval of length 100 but not over
        length 1000::

            >>> quad(sin, [0, 100]); 1-cos(100)   # Good
            0.137681127712316
            0.137681127712316
            >>> quad(sin, [0, 1000]); 1-cos(1000)   # Bad
            -37.8587612408485
            0.437620923709297

        One solution is to break the integration into 10 intervals of
        length 100::

            >>> quad(sin, linspace(0, 1000, 10))   # Good
            0.437620923709297

        Another is to increase the degree of the quadrature::

            >>> quad(sin, [0, 1000], maxdegree=10)   # Also good
            0.437620923709297

        Whether splitting the interval or increasing the degree is
        more efficient differs from case to case. Another example is the
        function `1/(1+x^2)`, which has a sharp peak centered around
        `x = 0`::

            >>> f = lambda x: 1/(1+x**2)
            >>> quad(f, [-100, 100])   # Bad
            3.64804647105268
            >>> quad(f, [-100, 100], maxdegree=10)   # Good
            3.12159332021646
            >>> quad(f, [-100, 0, 100])   # Also good
            3.12159332021646

        **References**

        1. http://mathworld.wolfram.com/DoubleIntegral.html

        """
        rule = kwargs.get('method', 'tanh-sinh')
        if type(rule) is str:
            if rule == 'tanh-sinh':
                rule = ctx._tanh_sinh
            elif rule == 'gauss-legendre':
                rule = ctx._gauss_legendre
            else:
                raise ValueError("unknown quadrature rule: %s" % rule)
        else:
            rule = rule(ctx)
        verbose = kwargs.get('verbose')
        dim = len(points)
        orig = prec = ctx.prec
        epsilon = ctx.eps/8
        m = kwargs.get('maxdegree') or rule.guess_degree(prec)
        points = [ctx._as_points(p) for p in points]
        try:
            ctx.prec += 20
            if dim == 1:
                v, err = rule.summation(f, points[0], prec, epsilon, m, verbose)
            elif dim == 2:
                v, err = rule.summation(lambda x: \
                        rule.summation(lambda y: f(x,y), \
                        points[1], prec, epsilon, m)[0],
                    points[0], prec, epsilon, m, verbose)
            elif dim == 3:
                v, err = rule.summation(lambda x: \
                        rule.summation(lambda y: \
                            rule.summation(lambda z: f(x,y,z), \
                            points[2], prec, epsilon, m)[0],
                        points[1], prec, epsilon, m)[0],
                    points[0], prec, epsilon, m, verbose)
            else:
                raise NotImplementedError("quadrature must have dim 1, 2 or 3")
        finally:
            ctx.prec = orig
        if kwargs.get("error"):
            return +v, err
        return +v

    def quadts(ctx, *args, **kwargs):
        """
        Performs tanh-sinh quadrature. The call

            quadts(func, *points, ...)

        is simply a shortcut for:

            quad(func, *points, ..., method=TanhSinh)

        For example, a single integral and a double integral:

            quadts(lambda x: exp(cos(x)), [0, 1])
            quadts(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1])

        See the documentation for quad for information about how points
        arguments and keyword arguments are parsed.

        See documentation for TanhSinh for algorithmic information about
        tanh-sinh quadrature.
        """
        kwargs['method'] = 'tanh-sinh'
        return ctx.quad(*args, **kwargs)

    def quadgl(ctx, *args, **kwargs):
        """
        Performs Gauss-Legendre quadrature. The call

            quadgl(func, *points, ...)

        is simply a shortcut for:

            quad(func, *points, ..., method=GaussLegendre)

        For example, a single integral and a double integral:

            quadgl(lambda x: exp(cos(x)), [0, 1])
            quadgl(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1])

        See the documentation for quad for information about how points
        arguments and keyword arguments are parsed.

        See documentation for TanhSinh for algorithmic information about
        tanh-sinh quadrature.
        """
        kwargs['method'] = 'gauss-legendre'
        return ctx.quad(*args, **kwargs)

    def quadosc(ctx, f, interval, omega=None, period=None, zeros=None):
        r"""
        Calculates

        .. math ::

            I = \int_a^b f(x) dx

        where at least one of `a` and `b` is infinite and where
        `f(x) = g(x) \cos(\omega x  + \phi)` for some slowly
        decreasing function `g(x)`. With proper input, :func:`~mpmath.quadosc`
        can also handle oscillatory integrals where the oscillation
        rate is different from a pure sine or cosine wave.

        In the standard case when `|a| < \infty, b = \infty`,
        :func:`~mpmath.quadosc` works by evaluating the infinite series

        .. math ::

            I = \int_a^{x_1} f(x) dx +
            \sum_{k=1}^{\infty} \int_{x_k}^{x_{k+1}} f(x) dx

        where `x_k` are consecutive zeros (alternatively
        some other periodic reference point) of `f(x)`.
        Accordingly, :func:`~mpmath.quadosc` requires information about the
        zeros of `f(x)`. For a periodic function, you can specify
        the zeros by either providing the angular frequency `\omega`
        (*omega*) or the *period* `2 \pi/\omega`. In general, you can
        specify the `n`-th zero by providing the *zeros* arguments.
        Below is an example of each::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> f = lambda x: sin(3*x)/(x**2+1)
            >>> quadosc(f, [0,inf], omega=3)
            0.37833007080198
            >>> quadosc(f, [0,inf], period=2*pi/3)
            0.37833007080198
            >>> quadosc(f, [0,inf], zeros=lambda n: pi*n/3)
            0.37833007080198
            >>> (ei(3)*exp(-3)-exp(3)*ei(-3))/2  # Computed by Mathematica
            0.37833007080198

        Note that *zeros* was specified to multiply `n` by the
        *half-period*, not the full period. In theory, it does not matter
        whether each partial integral is done over a half period or a full
        period. However, if done over half-periods, the infinite series
        passed to :func:`~mpmath.nsum` becomes an *alternating series* and this
        typically makes the extrapolation much more efficient.

        Here is an example of an integration over the entire real line,
        and a half-infinite integration starting at `-\infty`::

            >>> quadosc(lambda x: cos(x)/(1+x**2), [-inf, inf], omega=1)
            1.15572734979092
            >>> pi/e
            1.15572734979092
            >>> quadosc(lambda x: cos(x)/x**2, [-inf, -1], period=2*pi)
            -0.0844109505595739
            >>> cos(1)+si(1)-pi/2
            -0.0844109505595738

        Of course, the integrand may contain a complex exponential just as
        well as a real sine or cosine::

            >>> quadosc(lambda x: exp(3*j*x)/(1+x**2), [-inf,inf], omega=3)
            (0.156410688228254 + 0.0j)
            >>> pi/e**3
            0.156410688228254
            >>> quadosc(lambda x: exp(3*j*x)/(2+x+x**2), [-inf,inf], omega=3)
            (0.00317486988463794 - 0.0447701735209082j)
            >>> 2*pi/sqrt(7)/exp(3*(j+sqrt(7))/2)
            (0.00317486988463794 - 0.0447701735209082j)

        **Non-periodic functions**

        If `f(x) = g(x) h(x)` for some function `h(x)` that is not
        strictly periodic, *omega* or *period* might not work, and it might
        be necessary to use *zeros*.

        A notable exception can be made for Bessel functions which, though not
        periodic, are "asymptotically periodic" in a sufficiently strong sense
        that the sum extrapolation will work out::

            >>> quadosc(j0, [0, inf], period=2*pi)
            1.0
            >>> quadosc(j1, [0, inf], period=2*pi)
            1.0

        More properly, one should provide the exact Bessel function zeros::

            >>> j0zero = lambda n: findroot(j0, pi*(n-0.25))
            >>> quadosc(j0, [0, inf], zeros=j0zero)
            1.0

        For an example where *zeros* becomes necessary, consider the
        complete Fresnel integrals

        .. math ::

            \int_0^{\infty} \cos x^2\,dx = \int_0^{\infty} \sin x^2\,dx
            = \sqrt{\frac{\pi}{8}}.

        Although the integrands do not decrease in magnitude as
        `x \to \infty`, the integrals are convergent since the oscillation
        rate increases (causing consecutive periods to asymptotically
        cancel out). These integrals are virtually impossible to calculate
        to any kind of accuracy using standard quadrature rules. However,
        if one provides the correct asymptotic distribution of zeros
        (`x_n \sim \sqrt{n}`), :func:`~mpmath.quadosc` works::

            >>> mp.dps = 30
            >>> f = lambda x: cos(x**2)
            >>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n))
            0.626657068657750125603941321203
            >>> f = lambda x: sin(x**2)
            >>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n))
            0.626657068657750125603941321203
            >>> sqrt(pi/8)
            0.626657068657750125603941321203

        (Interestingly, these integrals can still be evaluated if one
        places some other constant than `\pi` in the square root sign.)

        In general, if `f(x) \sim g(x) \cos(h(x))`, the zeros follow
        the inverse-function distribution `h^{-1}(x)`::

            >>> mp.dps = 15
            >>> f = lambda x: sin(exp(x))
            >>> quadosc(f, [1,inf], zeros=lambda n: log(n))
            -0.25024394235267
            >>> pi/2-si(e)
            -0.250243942352671

        **Non-alternating functions**

        If the integrand oscillates around a positive value, without
        alternating signs, the extrapolation might fail. A simple trick
        that sometimes works is to multiply or divide the frequency by 2::

            >>> f = lambda x: 1/x**2+sin(x)/x**4
            >>> quadosc(f, [1,inf], omega=1)  # Bad
            1.28642190869861
            >>> quadosc(f, [1,inf], omega=0.5)  # Perfect
            1.28652953559617
            >>> 1+(cos(1)+ci(1)+sin(1))/6
            1.28652953559617

        **Fast decay**

        :func:`~mpmath.quadosc` is primarily useful for slowly decaying
        integrands. If the integrand decreases exponentially or faster,
        :func:`~mpmath.quad` will likely handle it without trouble (and generally be
        much faster than :func:`~mpmath.quadosc`)::

            >>> quadosc(lambda x: cos(x)/exp(x), [0, inf], omega=1)
            0.5
            >>> quad(lambda x: cos(x)/exp(x), [0, inf])
            0.5

        """
        a, b = ctx._as_points(interval)
        a = ctx.convert(a)
        b = ctx.convert(b)
        if [omega, period, zeros].count(None) != 2:
            raise ValueError( \
                "must specify exactly one of omega, period, zeros")
        if a == ctx.ninf and b == ctx.inf:
            s1 = ctx.quadosc(f, [a, 0], omega=omega, zeros=zeros, period=period)
            s2 = ctx.quadosc(f, [0, b], omega=omega, zeros=zeros, period=period)
            return s1 + s2
        if a == ctx.ninf:
            if zeros:
                return ctx.quadosc(lambda x:f(-x), [-b,-a], lambda n: zeros(-n))
            else:
                return ctx.quadosc(lambda x:f(-x), [-b,-a], omega=omega, period=period)
        if b != ctx.inf:
            raise ValueError("quadosc requires an infinite integration interval")
        if not zeros:
            if omega:
                period = 2*ctx.pi/omega
            zeros = lambda n: n*period/2
        #for n in range(1,10):
        #    p = zeros(n)
        #    if p > a:
        #        break
        #if n >= 9:
        #    raise ValueError("zeros do not appear to be correctly indexed")
        n = 1
        s = ctx.quadgl(f, [a, zeros(n)])
        def term(k):
            return ctx.quadgl(f, [zeros(k), zeros(k+1)])
        s += ctx.nsum(term, [n, ctx.inf])
        return s

if __name__ == '__main__':
    import doctest
    doctest.testmod()