This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/calculus/optimization.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
from copy import copy

from ..libmp.backend import xrange, print_

class OptimizationMethods(object):
    def __init__(ctx):
        pass

##############
# 1D-SOLVERS #
##############

class Newton:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting points x0 close to the root.

    Pro:

    * converges fast
    * sometimes more robust than secant with bad second starting point

    Contra:

    * converges slowly for multiple roots
    * needs first derivative
    * 2 function evaluations per iteration
    """
    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) == 1:
            self.x0 = x0[0]
        else:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df

    def __iter__(self):
        f = self.f
        df = self.df
        x0 = self.x0
        while True:
            x1 = x0 - f(x0) / df(x0)
            error = abs(x1 - x0)
            x0 = x1
            yield (x1, error)

class Secant:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting points x0 and x1 close to the root.
    x1 defaults to x0 + 0.25.

    Pro:

    * converges fast

    Contra:

    * converges slowly for multiple roots
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) == 1:
            self.x0 = x0[0]
            self.x1 = self.x0 + 0.25
        elif len(x0) == 2:
            self.x0 = x0[0]
            self.x1 = x0[1]
        else:
            raise ValueError('expected 1 or 2 starting points, got %i' % len(x0))
        self.f = f

    def __iter__(self):
        f = self.f
        x0 = self.x0
        x1 = self.x1
        f0 = f(x0)
        while True:
            f1 = f(x1)
            l = x1 - x0
            if not l:
                break
            s = (f1 - f0) / l
            if not s:
                break
            x0, x1 = x1, x1 - f1/s
            f0 = f1
            yield x1, abs(l)

class MNewton:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting point x0 close to the root.
    Uses modified Newton's method that converges fast regardless of the
    multiplicity of the root.

    Pro:

    * converges fast for multiple roots

    Contra:

    * needs first and second derivative of f
    * 3 function evaluations per iteration
    """
    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if not len(x0) == 1:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.x0 = x0[0]
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df
        if not 'd2f' in kwargs:
            def d2f(x):
                return self.ctx.diff(df, x)
        else:
            d2f = kwargs['df']
        self.d2f = d2f

    def __iter__(self):
        x = self.x0
        f = self.f
        df = self.df
        d2f = self.d2f
        while True:
            prevx = x
            fx = f(x)
            if fx == 0:
                break
            dfx = df(x)
            d2fx = d2f(x)
            # x = x - F(x)/F'(x) with F(x) = f(x)/f'(x)
            x -= fx / (dfx - fx * d2fx / dfx)
            error = abs(x - prevx)
            yield x, error

class Halley:
    """
    1d-solver generating pairs of approximative root and error.

    Needs a starting point x0 close to the root.
    Uses Halley's method with cubic convergence rate.

    Pro:

    * converges even faster the Newton's method
    * useful when computing with *many* digits

    Contra:

    * needs first and second derivative of f
    * 3 function evaluations per iteration
    * converges slowly for multiple roots
    """

    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if not len(x0) == 1:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.x0 = x0[0]
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df
        if not 'd2f' in kwargs:
            def d2f(x):
                return self.ctx.diff(df, x)
        else:
            d2f = kwargs['df']
        self.d2f = d2f

    def __iter__(self):
        x = self.x0
        f = self.f
        df = self.df
        d2f = self.d2f
        while True:
            prevx = x
            fx = f(x)
            dfx = df(x)
            d2fx = d2f(x)
            x -=  2*fx*dfx / (2*dfx**2 - fx*d2fx)
            error = abs(x - prevx)
            yield x, error

class Muller:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting points x0, x1 and x2 close to the root.
    x1 defaults to x0 + 0.25; x2 to x1 + 0.25.
    Uses Muller's method that converges towards complex roots.

    Pro:

    * converges fast (somewhat faster than secant)
    * can find complex roots

    Contra:

    * converges slowly for multiple roots
    * may have complex values for real starting points and real roots

    http://en.wikipedia.org/wiki/Muller's_method
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) == 1:
            self.x0 = x0[0]
            self.x1 = self.x0 + 0.25
            self.x2 = self.x1 + 0.25
        elif len(x0) == 2:
            self.x0 = x0[0]
            self.x1 = x0[1]
            self.x2 = self.x1 + 0.25
        elif len(x0) == 3:
            self.x0 = x0[0]
            self.x1 = x0[1]
            self.x2 = x0[2]
        else:
            raise ValueError('expected 1, 2 or 3 starting points, got %i'
                             % len(x0))
        self.f = f
        self.verbose = kwargs['verbose']

    def __iter__(self):
        f = self.f
        x0 = self.x0
        x1 = self.x1
        x2 = self.x2
        fx0 = f(x0)
        fx1 = f(x1)
        fx2 = f(x2)
        while True:
            # TODO: maybe refactoring with function for divided differences
            # calculate divided differences
            fx2x1 = (fx1 - fx2) / (x1 - x2)
            fx2x0 = (fx0 - fx2) / (x0 - x2)
            fx1x0 = (fx0 - fx1) / (x0 - x1)
            w = fx2x1 + fx2x0 - fx1x0
            fx2x1x0 = (fx1x0 - fx2x1) / (x0 - x2)
            if w == 0 and fx2x1x0 == 0:
                if self.verbose:
                    print_('canceled with')
                    print_('x0 =', x0, ', x1 =', x1, 'and x2 =', x2)
                break
            x0 = x1
            fx0 = fx1
            x1 = x2
            fx1 = fx2
            # denominator should be as large as possible => choose sign
            r = self.ctx.sqrt(w**2 - 4*fx2*fx2x1x0)
            if abs(w - r) > abs(w + r):
                r = -r
            x2 -= 2*fx2 / (w + r)
            fx2 = f(x2)
            error = abs(x2 - x1)
            yield x2, error

# TODO: consider raising a ValueError when there's no sign change in a and b
class Bisection:
    """
    1d-solver generating pairs of approximative root and error.

    Uses bisection method to find a root of f in [a, b].
    Might fail for multiple roots (needs sign change).

    Pro:

    * robust and reliable

    Contra:

    * converges slowly
    * needs sign change
    """
    maxsteps = 100

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) != 2:
            raise ValueError('expected interval of 2 points, got %i' % len(x0))
        self.f = f
        self.a = x0[0]
        self.b = x0[1]

    def __iter__(self):
        f = self.f
        a = self.a
        b = self.b
        l = b - a
        fb = f(b)
        while True:
            m = self.ctx.ldexp(a + b, -1)
            fm = f(m)
            sign = fm * fb
            if sign < 0:
                a = m
            elif sign > 0:
                b = m
                fb = fm
            else:
                yield m, self.ctx.zero
            l /= 2
            yield (a + b)/2, abs(l)

def _getm(method):
    """
    Return a function to calculate m for Illinois-like methods.
    """
    if method == 'illinois':
        def getm(fz, fb):
            return 0.5
    elif method == 'pegasus':
        def getm(fz, fb):
            return fb/(fb + fz)
    elif method == 'anderson':
        def getm(fz, fb):
            m = 1 - fz/fb
            if m > 0:
                return m
            else:
                return 0.5
    else:
        raise ValueError("method '%s' not recognized" % method)
    return getm

class Illinois:
    """
    1d-solver generating pairs of approximative root and error.

    Uses Illinois method or similar to find a root of f in [a, b].
    Might fail for multiple roots (needs sign change).
    Combines bisect with secant (improved regula falsi).

    The only difference between the methods is the scaling factor m, which is
    used to ensure convergence (you can choose one using the 'method' keyword):

    Illinois method ('illinois'):
        m = 0.5

    Pegasus method ('pegasus'):
        m = fb/(fb + fz)

    Anderson-Bjoerk method ('anderson'):
        m = 1 - fz/fb if positive else 0.5

    Pro:

    * converges very fast

    Contra:

    * has problems with multiple roots
    * needs sign change
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) != 2:
            raise ValueError('expected interval of 2 points, got %i' % len(x0))
        self.a = x0[0]
        self.b = x0[1]
        self.f = f
        self.tol = kwargs['tol']
        self.verbose = kwargs['verbose']
        self.method = kwargs.get('method', 'illinois')
        self.getm = _getm(self.method)
        if self.verbose:
            print_('using %s method' % self.method)

    def __iter__(self):
        method = self.method
        f = self.f
        a = self.a
        b = self.b
        fa = f(a)
        fb = f(b)
        m = None
        while True:
            l = b - a
            if l == 0:
                break
            s = (fb - fa) / l
            z = a - fa/s
            fz = f(z)
            if abs(fz) < self.tol:
                # TODO: better condition (when f is very flat)
                if self.verbose:
                    print_('canceled with z =', z)
                yield z, l
                break
            if fz * fb < 0: # root in [z, b]
                a = b
                fa = fb
                b = z
                fb = fz
            else: # root in [a, z]
                m = self.getm(fz, fb)
                b = z
                fb = fz
                fa = m*fa # scale down to ensure convergence
            if self.verbose and m and not method == 'illinois':
                print_('m:', m)
            yield (a + b)/2, abs(l)

def Pegasus(*args, **kwargs):
    """
    1d-solver generating pairs of approximative root and error.

    Uses Pegasus method to find a root of f in [a, b].
    Wrapper for illinois to use method='pegasus'.
    """
    kwargs['method'] = 'pegasus'
    return Illinois(*args, **kwargs)

def Anderson(*args, **kwargs):
    """
    1d-solver generating pairs of approximative root and error.

    Uses Anderson-Bjoerk method to find a root of f in [a, b].
    Wrapper for illinois to use method='pegasus'.
    """
    kwargs['method'] = 'anderson'
    return Illinois(*args, **kwargs)

# TODO: check whether it's possible to combine it with Illinois stuff
class Ridder:
    """
    1d-solver generating pairs of approximative root and error.

    Ridders' method to find a root of f in [a, b].
    Is told to perform as well as Brent's method while being simpler.

    Pro:

    * very fast
    * simpler than Brent's method

    Contra:

    * two function evaluations per step
    * has problems with multiple roots
    * needs sign change

    http://en.wikipedia.org/wiki/Ridders'_method
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        self.f = f
        if len(x0) != 2:
            raise ValueError('expected interval of 2 points, got %i' % len(x0))
        self.x1 = x0[0]
        self.x2 = x0[1]
        self.verbose = kwargs['verbose']
        self.tol = kwargs['tol']

    def __iter__(self):
        ctx = self.ctx
        f = self.f
        x1 = self.x1
        fx1 = f(x1)
        x2 = self.x2
        fx2 = f(x2)
        while True:
            x3 = 0.5*(x1 + x2)
            fx3 = f(x3)
            x4 = x3 + (x3 - x1) * ctx.sign(fx1 - fx2) * fx3 / ctx.sqrt(fx3**2 - fx1*fx2)
            fx4 = f(x4)
            if abs(fx4) < self.tol:
                # TODO: better condition (when f is very flat)
                if self.verbose:
                    print_('canceled with f(x4) =', fx4)
                yield x4, abs(x1 - x2)
                break
            if fx4 * fx2 < 0: # root in [x4, x2]
                x1 = x4
                fx1 = fx4
            else: # root in [x1, x4]
                x2 = x4
                fx2 = fx4
            error = abs(x1 - x2)
            yield (x1 + x2)/2, error

class ANewton:
    """
    EXPERIMENTAL 1d-solver generating pairs of approximative root and error.

    Uses Newton's method modified to use Steffensens method when convergence is
    slow. (I.e. for multiple roots.)
    """
    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if not len(x0) == 1:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.x0 = x0[0]
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df
        def phi(x):
            return x - f(x) / df(x)
        self.phi = phi
        self.verbose = kwargs['verbose']

    def __iter__(self):
        x0 = self.x0
        f = self.f
        df = self.df
        phi = self.phi
        error = 0
        counter = 0
        while True:
            prevx = x0
            try:
                x0 = phi(x0)
            except ZeroDivisionError:
                if self.verbose:
                    print_('ZeroDivisionError: canceled with x =', x0)
                break
            preverror = error
            error = abs(prevx - x0)
            # TODO: decide not to use convergence acceleration
            if error and abs(error - preverror) / error < 1:
                if self.verbose:
                    print_('converging slowly')
                counter += 1
            if counter >= 3:
                # accelerate convergence
                phi = steffensen(phi)
                counter = 0
                if self.verbose:
                    print_('accelerating convergence')
            yield x0, error

# TODO: add Brent

############################
# MULTIDIMENSIONAL SOLVERS #
############################

def jacobian(ctx, f, x):
    """
    Calculate the Jacobian matrix of a function at the point x0.

    This is the first derivative of a vectorial function:

        f : R^m -> R^n with m >= n
    """
    x = ctx.matrix(x)
    h = ctx.sqrt(ctx.eps)
    fx = ctx.matrix(f(*x))
    m = len(fx)
    n = len(x)
    J = ctx.matrix(m, n)
    for j in xrange(n):
        xj = x.copy()
        xj[j] += h
        Jj = (ctx.matrix(f(*xj)) - fx) / h
        for i in xrange(m):
            J[i,j] = Jj[i]
    return J

# TODO: test with user-specified jacobian matrix, support force_type
class MDNewton:
    """
    Find the root of a vector function numerically using Newton's method.

    f is a vector function representing a nonlinear equation system.

    x0 is the starting point close to the root.

    J is a function returning the Jacobian matrix for a point.

    Supports overdetermined systems.

    Use the 'norm' keyword to specify which norm to use. Defaults to max-norm.
    The function to calculate the Jacobian matrix can be given using the
    keyword 'J'. Otherwise it will be calculated numerically.

    Please note that this method converges only locally. Especially for high-
    dimensional systems it is not trivial to find a good starting point being
    close enough to the root.

    It is recommended to use a faster, low-precision solver from SciPy [1] or
    OpenOpt [2] to get an initial guess. Afterwards you can use this method for
    root-polishing to any precision.

    [1] http://scipy.org

    [2] http://openopt.org/Welcome
    """
    maxsteps = 10

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        self.f = f
        if isinstance(x0, (tuple, list)):
            x0 = ctx.matrix(x0)
        assert x0.cols == 1, 'need a vector'
        self.x0 = x0
        if 'J' in kwargs:
            self.J = kwargs['J']
        else:
            def J(*x):
                return ctx.jacobian(f, x)
            self.J = J
        self.norm = kwargs['norm']
        self.verbose = kwargs['verbose']

    def __iter__(self):
        f = self.f
        x0 = self.x0
        norm = self.norm
        J = self.J
        fx = self.ctx.matrix(f(*x0))
        fxnorm = norm(fx)
        cancel = False
        while not cancel:
            # get direction of descent
            fxn = -fx
            Jx = J(*x0)
            s = self.ctx.lu_solve(Jx, fxn)
            if self.verbose:
                print_('Jx:')
                print_(Jx)
                print_('s:', s)
            # damping step size TODO: better strategy (hard task)
            l = self.ctx.one
            x1 = x0 + s
            while True:
                if x1 == x0:
                    if self.verbose:
                        print_("canceled, won't get more excact")
                    cancel = True
                    break
                fx = self.ctx.matrix(f(*x1))
                newnorm = norm(fx)
                if newnorm < fxnorm:
                    # new x accepted
                    fxnorm = newnorm
                    x0 = x1
                    break
                l /= 2
                x1 = x0 + l*s
            yield (x0, fxnorm)

#############
# UTILITIES #
#############

str2solver = {'newton':Newton, 'secant':Secant,'mnewton':MNewton,
              'halley':Halley, 'muller':Muller, 'bisect':Bisection,
              'illinois':Illinois, 'pegasus':Pegasus, 'anderson':Anderson,
              'ridder':Ridder, 'anewton':ANewton, 'mdnewton':MDNewton}

def findroot(ctx, f, x0, solver=Secant, tol=None, verbose=False, verify=True, **kwargs):
    r"""
    Find a solution to `f(x) = 0`, using *x0* as starting point or
    interval for *x*.

    Multidimensional overdetermined systems are supported.
    You can specify them using a function or a list of functions.

    If the found root does not satisfy `|f(x)^2 < \mathrm{tol}|`,
    an exception is raised (this can be disabled with *verify=False*).

    **Arguments**

    *f*
        one dimensional function
    *x0*
        starting point, several starting points or interval (depends on solver)
    *tol*
        the returned solution has an error smaller than this
    *verbose*
        print additional information for each iteration if true
    *verify*
        verify the solution and raise a ValueError if `|f(x) > \mathrm{tol}|`
    *solver*
        a generator for *f* and *x0* returning approximative solution and error
    *maxsteps*
        after how many steps the solver will cancel
    *df*
        first derivative of *f* (used by some solvers)
    *d2f*
        second derivative of *f* (used by some solvers)
    *multidimensional*
        force multidimensional solving
    *J*
        Jacobian matrix of *f* (used by multidimensional solvers)
    *norm*
        used vector norm (used by multidimensional solvers)

    solver has to be callable with ``(f, x0, **kwargs)`` and return an generator
    yielding pairs of approximative solution and estimated error (which is
    expected to be positive).
    You can use the following string aliases:
    'secant', 'mnewton', 'halley', 'muller', 'illinois', 'pegasus', 'anderson',
    'ridder', 'anewton', 'bisect'

    See mpmath.calculus.optimization for their documentation.

    **Examples**

    The function :func:`~mpmath.findroot` locates a root of a given function using the
    secant method by default. A simple example use of the secant method is to
    compute `\pi` as the root of `\sin x` closest to `x_0 = 3`::

        >>> from mpmath import *
        >>> mp.dps = 30; mp.pretty = True
        >>> findroot(sin, 3)
        3.14159265358979323846264338328

    The secant method can be used to find complex roots of analytic functions,
    although it must in that case generally be given a nonreal starting value
    (or else it will never leave the real line)::

        >>> mp.dps = 15
        >>> findroot(lambda x: x**3 + 2*x + 1, j)
        (0.226698825758202 + 1.46771150871022j)

    A nice application is to compute nontrivial roots of the Riemann zeta
    function with many digits (good initial values are needed for convergence)::

        >>> mp.dps = 30
        >>> findroot(zeta, 0.5+14j)
        (0.5 + 14.1347251417346937904572519836j)

    The secant method can also be used as an optimization algorithm, by passing
    it a derivative of a function. The following example locates the positive
    minimum of the gamma function::

        >>> mp.dps = 20
        >>> findroot(lambda x: diff(gamma, x), 1)
        1.4616321449683623413

    Finally, a useful application is to compute inverse functions, such as the
    Lambert W function which is the inverse of `w e^w`, given the first
    term of the solution's asymptotic expansion as the initial value. In basic
    cases, this gives identical results to mpmath's built-in ``lambertw``
    function::

        >>> def lambert(x):
        ...     return findroot(lambda w: w*exp(w) - x, log(1+x))
        ...
        >>> mp.dps = 15
        >>> lambert(1); lambertw(1)
        0.567143290409784
        0.567143290409784
        >>> lambert(1000); lambert(1000)
        5.2496028524016
        5.2496028524016

    Multidimensional functions are also supported::

        >>> f = [lambda x1, x2: x1**2 + x2,
        ...      lambda x1, x2: 5*x1**2 - 3*x1 + 2*x2 - 3]
        >>> findroot(f, (0, 0))
        [-0.618033988749895]
        [-0.381966011250105]
        >>> findroot(f, (10, 10))
        [ 1.61803398874989]
        [-2.61803398874989]

    You can verify this by solving the system manually.

    Please note that the following (more general) syntax also works::

        >>> def f(x1, x2):
        ...     return x1**2 + x2, 5*x1**2 - 3*x1 + 2*x2 - 3
        ...
        >>> findroot(f, (0, 0))
        [-0.618033988749895]
        [-0.381966011250105]


    **Multiple roots**

    For multiple roots all methods of the Newtonian family (including secant)
    converge slowly. Consider this example::

        >>> f = lambda x: (x - 1)**99
        >>> findroot(f, 0.9, verify=False)
        0.918073542444929

    Even for a very close starting point the secant method converges very
    slowly. Use ``verbose=True`` to illustrate this.

    It is possible to modify Newton's method to make it converge regardless of
    the root's multiplicity::

        >>> findroot(f, -10, solver='mnewton')
        1.0

    This variant uses the first and second derivative of the function, which is
    not very efficient.

    Alternatively you can use an experimental Newtonian solver that keeps track
    of the speed of convergence and accelerates it using Steffensen's method if
    necessary::

        >>> findroot(f, -10, solver='anewton', verbose=True)
        x:     -9.88888888888888888889
        error: 0.111111111111111111111
        converging slowly
        x:     -9.77890011223344556678
        error: 0.10998877665544332211
        converging slowly
        x:     -9.67002233332199662166
        error: 0.108877778911448945119
        converging slowly
        accelerating convergence
        x:     -9.5622443299551077669
        error: 0.107778003366888854764
        converging slowly
        x:     0.99999999999999999214
        error: 10.562244329955107759
        x:     1.0
        error: 7.8598304758094664213e-18
        ZeroDivisionError: canceled with x = 1.0
        1.0

    **Complex roots**

    For complex roots it's recommended to use Muller's method as it converges
    even for real starting points very fast::

        >>> findroot(lambda x: x**4 + x + 1, (0, 1, 2), solver='muller')
        (0.727136084491197 + 0.934099289460529j)


    **Intersection methods**

    When you need to find a root in a known interval, it's highly recommended to
    use an intersection-based solver like ``'anderson'`` or ``'ridder'``.
    Usually they converge faster and more reliable. They have however problems
    with multiple roots and usually need a sign change to find a root::

        >>> findroot(lambda x: x**3, (-1, 1), solver='anderson')
        0.0

    Be careful with symmetric functions::

        >>> findroot(lambda x: x**2, (-1, 1), solver='anderson') #doctest:+ELLIPSIS
        Traceback (most recent call last):
          ...
        ZeroDivisionError

    It fails even for better starting points, because there is no sign change::

        >>> findroot(lambda x: x**2, (-1, .5), solver='anderson')
        Traceback (most recent call last):
          ...
        ValueError: Could not find root within given tolerance. (1 > 2.1684e-19)
        Try another starting point or tweak arguments.

    """
    prec = ctx.prec
    try:
        ctx.prec += 20

        # initialize arguments
        if tol is None:
            tol = ctx.eps * 2**10

        kwargs['verbose'] = kwargs.get('verbose', verbose)

        if 'd1f' in kwargs:
            kwargs['df'] = kwargs['d1f']

        kwargs['tol'] = tol
        if isinstance(x0, (list, tuple)):
            x0 = [ctx.convert(x) for x in x0]
        else:
            x0 = [ctx.convert(x0)]

        if isinstance(solver, str):
            try:
                solver = str2solver[solver]
            except KeyError:
                raise ValueError('could not recognize solver')

        # accept list of functions
        if isinstance(f, (list, tuple)):
            f2 = copy(f)
            def tmp(*args):
                return [fn(*args) for fn in f2]
            f = tmp

        # detect multidimensional functions
        try:
            fx = f(*x0)
            multidimensional = isinstance(fx, (list, tuple, ctx.matrix))
        except TypeError:
            fx = f(x0[0])
            multidimensional = False
        if 'multidimensional' in kwargs:
            multidimensional = kwargs['multidimensional']
        if multidimensional:
            # only one multidimensional solver available at the moment
            solver = MDNewton
            if not 'norm' in kwargs:
                norm = lambda x: ctx.norm(x, 'inf')
                kwargs['norm'] = norm
            else:
                norm = kwargs['norm']
        else:
            norm = abs

        # happily return starting point if it's a root
        if norm(fx) == 0:
            if multidimensional:
                return ctx.matrix(x0)
            else:
                return x0[0]

        # use solver
        iterations = solver(ctx, f, x0, **kwargs)
        if 'maxsteps' in kwargs:
            maxsteps = kwargs['maxsteps']
        else:
            maxsteps = iterations.maxsteps
        i = 0
        for x, error in iterations:
            if verbose:
                print_('x:    ', x)
                print_('error:', error)
            i += 1
            if error < tol * max(1, norm(x)) or i >= maxsteps:
                break
        if not isinstance(x, (list, tuple, ctx.matrix)):
            xl = [x]
        else:
            xl = x
        if verify and norm(f(*xl))**2 > tol: # TODO: better condition?
            raise ValueError('Could not find root within given tolerance. '
                             '(%g > %g)\n'
                             'Try another starting point or tweak arguments.'
                             % (norm(f(*xl))**2, tol))
        return x
    finally:
        ctx.prec = prec


def multiplicity(ctx, f, root, tol=None, maxsteps=10, **kwargs):
    """
    Return the multiplicity of a given root of f.

    Internally, numerical derivatives are used. This might be inefficient for
    higher order derviatives. Due to this, ``multiplicity`` cancels after
    evaluating 10 derivatives by default. You can be specify the n-th derivative
    using the dnf keyword.

    >>> from mpmath import *
    >>> multiplicity(lambda x: sin(x) - 1, pi/2)
    2

    """
    if tol is None:
        tol = ctx.eps ** 0.8
    kwargs['d0f'] = f
    for i in xrange(maxsteps):
        dfstr = 'd' + str(i) + 'f'
        if dfstr in kwargs:
            df = kwargs[dfstr]
        else:
            df = lambda x: ctx.diff(f, x, i)
        if not abs(df(root)) < tol:
            break
    return i

def steffensen(f):
    """
    linear convergent function -> quadratic convergent function

    Steffensen's method for quadratic convergence of a linear converging
    sequence.
    Don not use it for higher rates of convergence.
    It may even work for divergent sequences.

    Definition:
    F(x) = (x*f(f(x)) - f(x)**2) / (f(f(x)) - 2*f(x) + x)

    Example
    .......

    You can use Steffensen's method to accelerate a fixpoint iteration of linear
    (or less) convergence.

    x* is a fixpoint of the iteration x_{k+1} = phi(x_k) if x* = phi(x*). For
    phi(x) = x**2 there are two fixpoints: 0 and 1.

    Let's try Steffensen's method:

    >>> f = lambda x: x**2
    >>> from mpmath.calculus.optimization import steffensen
    >>> F = steffensen(f)
    >>> for x in [0.5, 0.9, 2.0]:
    ...     fx = Fx = x
    ...     for i in xrange(9):
    ...         try:
    ...             fx = f(fx)
    ...         except OverflowError:
    ...             pass
    ...         try:
    ...             Fx = F(Fx)
    ...         except ZeroDivisionError:
    ...             pass
    ...         print('%20g  %20g' % (fx, Fx))
                    0.25                  -0.5
                  0.0625                   0.1
              0.00390625            -0.0011236
             1.52588e-05           1.41691e-09
             2.32831e-10          -2.84465e-27
             5.42101e-20           2.30189e-80
             2.93874e-39          -1.2197e-239
             8.63617e-78                     0
            7.45834e-155                     0
                    0.81               1.02676
                  0.6561               1.00134
                0.430467                     1
                0.185302                     1
               0.0343368                     1
              0.00117902                     1
             1.39008e-06                     1
             1.93233e-12                     1
             3.73392e-24                     1
                       4                   1.6
                      16                1.2962
                     256               1.10194
                   65536               1.01659
             4.29497e+09               1.00053
             1.84467e+19                     1
             3.40282e+38                     1
             1.15792e+77                     1
            1.34078e+154                     1

    Unmodified, the iteration converges only towards 0. Modified it converges
    not only much faster, it converges even to the repelling fixpoint 1.
    """
    def F(x):
        fx = f(x)
        ffx = f(fx)
        return (x*ffx - fx**2) / (ffx - 2*fx + x)
    return F

OptimizationMethods.jacobian = jacobian
OptimizationMethods.findroot = findroot
OptimizationMethods.multiplicity = multiplicity

if __name__ == '__main__':
    import doctest
    doctest.testmod()