This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/calculus/extrapolation.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
try:
    from itertools import izip
except ImportError:
    izip = zip

from ..libmp.backend import xrange
from .calculus import defun

try:
    next = next
except NameError:
    next = lambda _: _.next()

@defun
def richardson(ctx, seq):
    r"""
    Given a list ``seq`` of the first `N` elements of a slowly convergent
    infinite sequence, :func:`~mpmath.richardson` computes the `N`-term
    Richardson extrapolate for the limit.

    :func:`~mpmath.richardson` returns `(v, c)` where `v` is the estimated
    limit and `c` is the magnitude of the largest weight used during the
    computation. The weight provides an estimate of the precision
    lost to cancellation. Due to cancellation effects, the sequence must
    be typically be computed at a much higher precision than the target
    accuracy of the extrapolation.

    **Applicability and issues**

    The `N`-step Richardson extrapolation algorithm used by
    :func:`~mpmath.richardson` is described in [1].

    Richardson extrapolation only works for a specific type of sequence,
    namely one converging like partial sums of
    `P(1)/Q(1) + P(2)/Q(2) + \ldots` where `P` and `Q` are polynomials.
    When the sequence does not convergence at such a rate
    :func:`~mpmath.richardson` generally produces garbage.

    Richardson extrapolation has the advantage of being fast: the `N`-term
    extrapolate requires only `O(N)` arithmetic operations, and usually
    produces an estimate that is accurate to `O(N)` digits. Contrast with
    the Shanks transformation (see :func:`~mpmath.shanks`), which requires
    `O(N^2)` operations.

    :func:`~mpmath.richardson` is unable to produce an estimate for the
    approximation error. One way to estimate the error is to perform
    two extrapolations with slightly different `N` and comparing the
    results.

    Richardson extrapolation does not work for oscillating sequences.
    As a simple workaround, :func:`~mpmath.richardson` detects if the last
    three elements do not differ monotonically, and in that case
    applies extrapolation only to the even-index elements.

    **Example**

    Applying Richardson extrapolation to the Leibniz series for `\pi`::

        >>> from mpmath import *
        >>> mp.dps = 30; mp.pretty = True
        >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m))
        ...     for m in range(1,30)]
        >>> v, c = richardson(S[:10])
        >>> v
        3.2126984126984126984126984127
        >>> nprint([v-pi, c])
        [0.0711058, 2.0]

        >>> v, c = richardson(S[:30])
        >>> v
        3.14159265468624052829954206226
        >>> nprint([v-pi, c])
        [1.09645e-9, 20833.3]

    **References**

    1. [BenderOrszag]_ pp. 375-376

    """
    if len(seq) < 3:
        raise ValueError("seq should be of minimum length 3")
    if ctx.sign(seq[-1]-seq[-2]) != ctx.sign(seq[-2]-seq[-3]):
        seq = seq[::2]
    N = len(seq)//2-1
    s = ctx.zero
    # The general weight is c[k] = (N+k)**N * (-1)**(k+N) / k! / (N-k)!
    # To avoid repeated factorials, we simplify the quotient
    # of successive weights to obtain a recurrence relation
    c = (-1)**N * N**N / ctx.mpf(ctx._ifac(N))
    maxc = 1
    for k in xrange(N+1):
        s += c * seq[N+k]
        maxc = max(abs(c), maxc)
        c *= (k-N)*ctx.mpf(k+N+1)**N
        c /= ((1+k)*ctx.mpf(k+N)**N)
    return s, maxc

@defun
def shanks(ctx, seq, table=None, randomized=False):
    r"""
    Given a list ``seq`` of the first `N` elements of a slowly
    convergent infinite sequence `(A_k)`, :func:`~mpmath.shanks` computes the iterated
    Shanks transformation `S(A), S(S(A)), \ldots, S^{N/2}(A)`. The Shanks
    transformation often provides strong convergence acceleration,
    especially if the sequence is oscillating.

    The iterated Shanks transformation is computed using the Wynn
    epsilon algorithm (see [1]). :func:`~mpmath.shanks` returns the full
    epsilon table generated by Wynn's algorithm, which can be read
    off as follows:

    * The table is a list of lists forming a lower triangular matrix,
      where higher row and column indices correspond to more accurate
      values.
    * The columns with even index hold dummy entries (required for the
      computation) and the columns with odd index hold the actual
      extrapolates.
    * The last element in the last row is typically the most
      accurate estimate of the limit.
    * The difference to the third last element in the last row
      provides an estimate of the approximation error.
    * The magnitude of the second last element provides an estimate
      of the numerical accuracy lost to cancellation.

    For convenience, so the extrapolation is stopped at an odd index
    so that ``shanks(seq)[-1][-1]`` always gives an estimate of the
    limit.

    Optionally, an existing table can be passed to :func:`~mpmath.shanks`.
    This can be used to efficiently extend a previous computation after
    new elements have been appended to the sequence. The table will
    then be updated in-place.

    **The Shanks transformation**

    The Shanks transformation is defined as follows (see [2]): given
    the input sequence `(A_0, A_1, \ldots)`, the transformed sequence is
    given by

    .. math ::

        S(A_k) = \frac{A_{k+1}A_{k-1}-A_k^2}{A_{k+1}+A_{k-1}-2 A_k}

    The Shanks transformation gives the exact limit `A_{\infty}` in a
    single step if `A_k = A + a q^k`. Note in particular that it
    extrapolates the exact sum of a geometric series in a single step.

    Applying the Shanks transformation once often improves convergence
    substantially for an arbitrary sequence, but the optimal effect is
    obtained by applying it iteratively:
    `S(S(A_k)), S(S(S(A_k))), \ldots`.

    Wynn's epsilon algorithm provides an efficient way to generate
    the table of iterated Shanks transformations. It reduces the
    computation of each element to essentially a single division, at
    the cost of requiring dummy elements in the table. See [1] for
    details.

    **Precision issues**

    Due to cancellation effects, the sequence must be typically be
    computed at a much higher precision than the target accuracy
    of the extrapolation.

    If the Shanks transformation converges to the exact limit (such
    as if the sequence is a geometric series), then a division by
    zero occurs. By default, :func:`~mpmath.shanks` handles this case by
    terminating the iteration and returning the table it has
    generated so far. With *randomized=True*, it will instead
    replace the zero by a pseudorandom number close to zero.
    (TODO: find a better solution to this problem.)

    **Examples**

    We illustrate by applying Shanks transformation to the Leibniz
    series for `\pi`::

        >>> from mpmath import *
        >>> mp.dps = 50
        >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m))
        ...     for m in range(1,30)]
        >>>
        >>> T = shanks(S[:7])
        >>> for row in T:
        ...     nprint(row)
        ...
        [-0.75]
        [1.25, 3.16667]
        [-1.75, 3.13333, -28.75]
        [2.25, 3.14524, 82.25, 3.14234]
        [-2.75, 3.13968, -177.75, 3.14139, -969.937]
        [3.25, 3.14271, 327.25, 3.14166, 3515.06, 3.14161]

    The extrapolated accuracy is about 4 digits, and about 4 digits
    may have been lost due to cancellation::

        >>> L = T[-1]
        >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])])
        [2.22532e-5, 4.78309e-5, 3515.06]

    Now we extend the computation::

        >>> T = shanks(S[:25], T)
        >>> L = T[-1]
        >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])])
        [3.75527e-19, 1.48478e-19, 2.96014e+17]

    The value for pi is now accurate to 18 digits. About 18 digits may
    also have been lost to cancellation.

    Here is an example with a geometric series, where the convergence
    is immediate (the sum is exactly 1)::

        >>> mp.dps = 15
        >>> for row in shanks([0.5, 0.75, 0.875, 0.9375, 0.96875]):
        ...     nprint(row)
        [4.0]
        [8.0, 1.0]

    **References**

    1. [GravesMorris]_

    2. [BenderOrszag]_ pp. 368-375

    """
    if len(seq) < 2:
        raise ValueError("seq should be of minimum length 2")
    if table:
        START = len(table)
    else:
        START = 0
        table = []
    STOP = len(seq) - 1
    if STOP & 1:
        STOP -= 1
    one = ctx.one
    eps = +ctx.eps
    if randomized:
        from random import Random
        rnd = Random()
        rnd.seed(START)
    for i in xrange(START, STOP):
        row = []
        for j in xrange(i+1):
            if j == 0:
                a, b = 0, seq[i+1]-seq[i]
            else:
                if j == 1:
                    a = seq[i]
                else:
                    a = table[i-1][j-2]
                b = row[j-1] - table[i-1][j-1]
            if not b:
                if randomized:
                    b = rnd.getrandbits(10)*eps
                elif i & 1:
                    return table[:-1]
                else:
                    return table
            row.append(a + one/b)
        table.append(row)
    return table


class levin_class:
    # levin: Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
    r"""
    This interface implements Levin's (nonlinear) sequence transformation for
    convergence acceleration and summation of divergent series. It performs
    better than the Shanks/Wynn-epsilon algorithm for logarithmic convergent
    or alternating divergent series.

    Let *A* be the series we want to sum:

    .. math ::

        A = \sum_{k=0}^{\infty} a_k

    Attention: all `a_k` must be non-zero!

    Let `s_n` be the partial sums of this series:

    .. math ::

        s_n = \sum_{k=0}^n a_k.

    **Methods**

    Calling ``levin`` returns an object with the following methods.

    ``update(...)`` works with the list of individual terms `a_k` of *A*, and
    ``update_step(...)`` works with the list of partial sums `s_k` of *A*:

    .. code ::

        v, e = ...update([a_0, a_1,..., a_k])
        v, e = ...update_psum([s_0, s_1,..., s_k])

    ``step(...)`` works with the individual terms `a_k` and ``step_psum(...)``
    works with the partial sums `s_k`:

    .. code ::

        v, e = ...step(a_k)
        v, e = ...step_psum(s_k)

    *v* is the current estimate for *A*, and *e* is an error estimate which is
    simply the difference between the current estimate and the last estimate.
    One should not mix ``update``, ``update_psum``, ``step`` and ``step_psum``.

    **A word of caution**

    One can only hope for good results (i.e. convergence acceleration or
    resummation) if the `s_n` have some well defind asymptotic behavior for
    large `n` and are not erratic or random. Furthermore one usually needs very
    high working precision because of the numerical cancellation. If the working
    precision is insufficient, levin may produce silently numerical garbage.
    Furthermore even if the Levin-transformation converges, in the general case
    there is no proof that the result is mathematically sound. Only for very
    special classes of problems one can prove that the Levin-transformation
    converges to the expected result (for example Stieltjes-type integrals).
    Furthermore the Levin-transform is quite expensive (i.e. slow) in comparison
    to Shanks/Wynn-epsilon, Richardson & co.
    In summary one can say that the Levin-transformation is powerful but
    unreliable and that it may need a copious amount of working precision.

    The Levin transform has several variants differing in the choice of weights.
    Some variants are better suited for the possible flavours of convergence
    behaviour of *A* than other variants:

    .. code ::

       convergence behaviour   levin-u   levin-t   levin-v   shanks/wynn-epsilon

       logarithmic               +         -         +           -
       linear                    +         +         +           +
       alternating divergent     +         +         +           +

         "+" means the variant is suitable,"-" means the variant is not suitable;
         for comparison the Shanks/Wynn-epsilon transform is listed, too.

    The variant is controlled though the variant keyword (i.e. ``variant="u"``,
    ``variant="t"`` or ``variant="v"``). Overall "u" is probably the best choice.

    Finally it is possible to use the Sidi-S transform instead of the Levin transform
    by using the keyword ``method='sidi'``. The Sidi-S transform works better than the
    Levin transformation for some divergent series (see the examples).

    Parameters:

    .. code ::

       method      "levin" or "sidi" chooses either the Levin or the Sidi-S transformation
       variant     "u","t" or "v" chooses the weight variant.

    The Levin transform is also accessible through the nsum interface.
    ``method="l"`` or ``method="levin"`` select the normal Levin transform while
    ``method="sidi"``
    selects the Sidi-S transform. The variant is in both cases selected through the
    levin_variant keyword. The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise
    it will miss the point where the Levin transform converges resulting in numerical
    overflow/garbage. For highly divergent series a copious amount of working precision
    must be chosen.

    **Examples**

    First we sum the zeta function::

        >>> from mpmath import mp
        >>> mp.prec = 53
        >>> eps = mp.mpf(mp.eps)
        >>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision
        ...     L = mp.levin(method = "levin", variant = "u")
        ...     S, s, n = [], 0, 1
        ...     while 1:
        ...         s += mp.one / (n * n)
        ...         n += 1
        ...         S.append(s)
        ...         v, e = L.update_psum(S)
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - mp.pi ** 2 / 6))
        0.0
        >>> w = mp.nsum(lambda n: 1 / (n*n), [1, mp.inf], method = "levin", levin_variant = "u")
        >>> print(mp.chop(v - w))
        0.0

    Now we sum the zeta function outside its range of convergence
    (attention: This does not work at the negative integers!)::

        >>> eps = mp.mpf(mp.eps)
        >>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision
        ...     L = mp.levin(method = "levin", variant = "v")
        ...     A, n = [], 1
        ...     while 1:
        ...         s = mp.mpf(n) ** (2 + 3j)
        ...         n += 1
        ...         A.append(s)
        ...         v, e = L.update(A)
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - mp.zeta(-2-3j)))
        0.0
        >>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v")
        >>> print(mp.chop(v - w))
        0.0

    Now we sum the divergent asymptotic expansion of an integral related to the
    exponential integral (see also [2] p.373). The Sidi-S transform works best here::

        >>> z = mp.mpf(10)
        >>> exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
        >>> # exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral
        >>> eps = mp.mpf(mp.eps)
        >>> with mp.extraprec(2 * mp.prec): # high working precisions are mandatory for divergent resummation
        ...     L = mp.levin(method = "sidi", variant = "t")
        ...     n = 0
        ...     while 1:
        ...         s = (-1)**n * mp.fac(n) * z ** (-n)
        ...         v, e = L.step(s)
        ...         n += 1
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - exact))
        0.0
        >>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
        >>> print(mp.chop(v - w))
        0.0

    Another highly divergent integral is also summable::

        >>> z = mp.mpf(2)
        >>> eps = mp.mpf(mp.eps)
        >>> exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
        >>> # exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral
        >>> with mp.extraprec(7 * mp.prec):  # we need copious amount of precision to sum this highly divergent series
        ...     L = mp.levin(method = "levin", variant = "t")
        ...     n, s = 0, 0
        ...     while 1:
        ...         s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n))
        ...         n += 1
        ...         v, e = L.step_psum(s)
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - exact))
        0.0
        >>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)),
        ...   [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
        >>> print(mp.chop(v - w))
        0.0

    These examples run with 15-20 decimal digits precision. For higher precision the
    working precision must be raised.

    **Examples for nsum**

    Here we calculate Euler's constant as the constant term in the Laurent
    expansion of `\zeta(s)` at `s=1`. This sum converges extremly slowly because of
    the logarithmic convergence behaviour of the Dirichlet series for zeta::

        >>> mp.dps = 30
        >>> z = mp.mpf(10) ** (-10)
        >>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "l") - 1 / z
        >>> print(mp.chop(a - mp.euler, tol = 1e-10))
        0.0

    The Sidi-S transform performs excellently for the alternating series of `\log(2)`::

        >>> a = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "sidi")
        >>> print(mp.chop(a - mp.log(2)))
        0.0

    Hypergeometric series can also be summed outside their range of convergence.
    The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise it will miss the
    point where the Levin transform converges resulting in numerical overflow/garbage::

        >>> z = 2 + 1j
        >>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z)
        >>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n))
        >>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)])
        >>> print(mp.chop(exact-v))
        0.0

    References:

      [1] E.J. Weniger - "Nonlinear Sequence Transformations for the Acceleration of
          Convergence and the Summation of Divergent Series" arXiv:math/0306302

      [2] A. Sidi - "Pratical Extrapolation Methods"

      [3] H.H.H. Homeier - "Scalar Levin-Type Sequence Transformations" arXiv:math/0005209

    """

    def __init__(self, method = "levin", variant = "u"):
        self.variant = variant
        self.n = 0
        self.a0 = 0
        self.theta = 1
        self.A = []
        self.B = []
        self.last = 0
        self.last_s = False

        if method == "levin":
            self.factor = self.factor_levin
        elif method == "sidi":
            self.factor = self.factor_sidi
        else:
            raise ValueError("levin: unknown method \"%s\"" % method)

    def factor_levin(self, i):
        # original levin
        # [1] p.50,e.7.5-7 (with n-j replaced by i)
        return (self.theta + i) * (self.theta + self.n - 1) ** (self.n - i - 2) / self.ctx.mpf(self.theta + self.n) ** (self.n - i - 1)

    def factor_sidi(self, i):
        # sidi analogon to levin (factorial series)
        # [1] p.59,e.8.3-16 (with n-j replaced by i)
        return (self.theta + self.n - 1) * (self.theta + self.n - 2) / self.ctx.mpf((self.theta + 2 * self.n - i - 2) * (self.theta + 2 * self.n - i - 3))

    def run(self, s, a0, a1 = 0):
        if self.variant=="t":
            # levin t
            w=a0
        elif self.variant=="u":
            # levin u
            w=a0*(self.theta+self.n)
        elif self.variant=="v":
            # levin v
            w=a0*a1/(a0-a1)
        else:
            assert False, "unknown variant"

        if w==0:
            raise ValueError("levin: zero weight")

        self.A.append(s/w)
        self.B.append(1/w)

        for i in range(self.n-1,-1,-1):
            if i==self.n-1:
                f=1
            else:
                f=self.factor(i)

            self.A[i]=self.A[i+1]-f*self.A[i]
            self.B[i]=self.B[i+1]-f*self.B[i]

        self.n+=1

    ###########################################################################

    def update_psum(self,S):
        """
        This routine applies the convergence acceleration to the list of partial sums.

        A   = sum(a_k, k = 0..infinity)
        s_n = sum(a_k, k = 0..n)

        v, e = ...update_psum([s_0, s_1,..., s_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.run(S[0],S[0])
            while self.n<len(S):
                self.run(S[self.n],S[self.n]-S[self.n-1])
        else:
            if len(S)==1:
                self.last=0
                return S[0],abs(S[0])

            if self.n==0:
                self.a1=S[1]-S[0]
                self.run(S[0],S[0],self.a1)

            while self.n<len(S)-1:
                na1=S[self.n+1]-S[self.n]
                self.run(S[self.n],self.a1,na1)
                self.a1=na1

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

    def update(self,X):
        """
        This routine applies the convergence acceleration to the list of individual terms.

        A = sum(a_k, k = 0..infinity)

        v, e = ...update([a_0, a_1,..., a_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.s=X[0]
                self.run(self.s,X[0])
            while self.n<len(X):
                self.s+=X[self.n]
                self.run(self.s,X[self.n])
        else:
            if len(X)==1:
                self.last=0
                return X[0],abs(X[0])

            if self.n==0:
                self.s=X[0]
                self.run(self.s,X[0],X[1])

            while self.n<len(X)-1:
                self.s+=X[self.n]
                self.run(self.s,X[self.n],X[self.n+1])

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

    ###########################################################################

    def step_psum(self,s):
        """
        This routine applies the convergence acceleration to the partial sums.

        A   = sum(a_k, k = 0..infinity)
        s_n = sum(a_k, k = 0..n)

        v, e = ...step_psum(s_k)

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.last_s=s
                self.run(s,s)
            else:
                self.run(s,s-self.last_s)
                self.last_s=s
        else:
            if isinstance(self.last_s,bool):
                self.last_s=s
                self.last_w=s
                self.last=0
                return s,abs(s)

            na1=s-self.last_s
            self.run(self.last_s,self.last_w,na1)
            self.last_w=na1
            self.last_s=s

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

    def step(self,x):
        """
        This routine applies the convergence acceleration to the individual terms.

        A = sum(a_k, k = 0..infinity)

        v, e = ...step(a_k)

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.s=x
                self.run(self.s,x)
            else:
                self.s+=x
                self.run(self.s,x)
        else:
            if isinstance(self.last_s,bool):
                self.last_s=x
                self.s=0
                self.last=0
                return x,abs(x)

            self.s+=self.last_s
            self.run(self.s,self.last_s,x)
            self.last_s=x

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

def levin(ctx, method = "levin", variant = "u"):
  L = levin_class(method = method, variant = variant)
  L.ctx = ctx
  return L

levin.__doc__ = levin_class.__doc__
defun(levin)


class cohen_alt_class:
    # cohen_alt: Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
    """
    This interface implements the convergence acceleration of alternating series
    as described in H. Cohen, F.R. Villegas, D. Zagier - "Convergence Acceleration
    of Alternating Series". This series transformation works only well if the
    individual terms of the series have an alternating sign. It belongs to the
    class of linear series transformations (in contrast to the Shanks/Wynn-epsilon
    or Levin transform). This series transformation is also able to sum some types
    of divergent series. See the paper under which conditions this resummation is
    mathematical sound.

    Let *A* be the series we want to sum:

    .. math ::

        A = \sum_{k=0}^{\infty} a_k

    Let `s_n` be the partial sums of this series:

    .. math ::

        s_n = \sum_{k=0}^n a_k.


    **Interface**

    Calling ``cohen_alt`` returns an object with the following methods.

    Then ``update(...)`` works with the list of individual terms `a_k` and
    ``update_psum(...)`` works with the list of partial sums `s_k`:

    .. code ::

        v, e = ...update([a_0, a_1,..., a_k])
        v, e = ...update_psum([s_0, s_1,..., s_k])

    *v* is the current estimate for *A*, and *e* is an error estimate which is
    simply the difference between the current estimate and the last estimate.

    **Examples**

    Here we compute the alternating zeta function using ``update_psum``::

        >>> from mpmath import mp
        >>> AC = mp.cohen_alt()
        >>> S, s, n = [], 0, 1
        >>> while 1:
        ...     s += -((-1) ** n) * mp.one / (n * n)
        ...     n += 1
        ...     S.append(s)
        ...     v, e = AC.update_psum(S)
        ...     if e < mp.eps:
        ...         break
        ...     if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - mp.pi ** 2 / 12))
        0.0

    Here we compute the product `\prod_{n=1}^{\infty} \Gamma(1+1/(2n-1)) / \Gamma(1+1/(2n))`::

        >>> A = []
        >>> AC = mp.cohen_alt()
        >>> n = 1
        >>> while 1:
        ...     A.append( mp.loggamma(1 + mp.one / (2 * n - 1)))
        ...     A.append(-mp.loggamma(1 + mp.one / (2 * n)))
        ...     n += 1
        ...     v, e = AC.update(A)
        ...     if e < mp.eps:
        ...         break
        ...     if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> v = mp.exp(v)
        >>> print(mp.chop(v - 1.06215090557106, tol = 1e-12))
        0.0

    ``cohen_alt`` is also accessible through the :func:`~mpmath.nsum` interface::

        >>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a")
        >>> print(mp.chop(v - mp.log(2)))
        0.0
        >>> v = mp.nsum(lambda n: (-1)**n / (2 * n + 1), [0, mp.inf], method = "a")
        >>> print(mp.chop(v - mp.pi / 4))
        0.0
        >>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a")
        >>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1)))
        0.0

    """

    def __init__(self):
        self.last=0

    def update(self, A):
        """
        This routine applies the convergence acceleration to the list of individual terms.

        A    = sum(a_k, k = 0..infinity)

        v, e = ...update([a_0, a_1,..., a_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        n = len(A)
        d = (3 + self.ctx.sqrt(8)) ** n
        d = (d + 1 / d) / 2
        b = -self.ctx.one
        c = -d
        s = 0

        for k in xrange(n):
            c = b - c
            if k % 2 == 0:
                s = s + c * A[k]
            else:
                s = s - c * A[k]
            b = 2 * (k + n) * (k - n) * b / ((2 * k + 1) * (k + self.ctx.one))

        value = s / d

        err = abs(value - self.last)
        self.last = value

        return value, err

    def update_psum(self, S):
        """
        This routine applies the convergence acceleration to the list of partial sums.

        A   = sum(a_k, k = 0..infinity)
        s_n = sum(a_k ,k = 0..n)

        v, e = ...update_psum([s_0, s_1,..., s_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        n = len(S)
        d = (3 + self.ctx.sqrt(8)) ** n
        d = (d + 1 / d) / 2
        b = self.ctx.one
        s = 0

        for k in xrange(n):
            b = 2 * (n + k) * (n - k) * b / ((2 * k + 1) * (k + self.ctx.one))
            s += b * S[k]

        value = s / d

        err = abs(value - self.last)
        self.last = value

        return value, err

def cohen_alt(ctx):
    L = cohen_alt_class()
    L.ctx = ctx
    return L

cohen_alt.__doc__ = cohen_alt_class.__doc__
defun(cohen_alt)


@defun
def sumap(ctx, f, interval, integral=None, error=False):
    r"""
    Evaluates an infinite series of an analytic summand *f* using the
    Abel-Plana formula

    .. math ::

        \sum_{k=0}^{\infty} f(k) = \int_0^{\infty} f(t) dt + \frac{1}{2} f(0) +
            i \int_0^{\infty} \frac{f(it)-f(-it)}{e^{2\pi t}-1} dt.

    Unlike the Euler-Maclaurin formula (see :func:`~mpmath.sumem`),
    the Abel-Plana formula does not require derivatives. However,
    it only works when `|f(it)-f(-it)|` does not
    increase too rapidly with `t`.

    **Examples**

    The Abel-Plana formula is particularly useful when the summand
    decreases like a power of `k`; for example when the sum is a pure
    zeta function::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> sumap(lambda k: 1/k**2.5, [1,inf])
        1.34148725725091717975677
        >>> zeta(2.5)
        1.34148725725091717975677
        >>> sumap(lambda k: 1/(k+1j)**(2.5+2.5j), [1,inf])
        (-3.385361068546473342286084 - 0.7432082105196321803869551j)
        >>> zeta(2.5+2.5j, 1+1j)
        (-3.385361068546473342286084 - 0.7432082105196321803869551j)

    If the series is alternating, numerical quadrature along the real
    line is likely to give poor results, so it is better to evaluate
    the first term symbolically whenever possible:

        >>> n=3; z=-0.75
        >>> I = expint(n,-log(z))
        >>> chop(sumap(lambda k: z**k / k**n, [1,inf], integral=I))
        -0.6917036036904594510141448
        >>> polylog(n,z)
        -0.6917036036904594510141448

    """
    prec = ctx.prec
    try:
        ctx.prec += 10
        a, b = interval
        if  b != ctx.inf:
            raise ValueError("b should be equal to ctx.inf")
        g = lambda x: f(x+a)
        if integral is None:
            i1, err1 = ctx.quad(g, [0,ctx.inf], error=True)
        else:
            i1, err1 = integral, 0
        j = ctx.j
        p = ctx.pi * 2
        if ctx._is_real_type(i1):
            h = lambda t: -2 * ctx.im(g(j*t)) / ctx.expm1(p*t)
        else:
            h = lambda t: j*(g(j*t)-g(-j*t)) / ctx.expm1(p*t)
        i2, err2 = ctx.quad(h, [0,ctx.inf], error=True)
        err = err1+err2
        v = i1+i2+0.5*g(ctx.mpf(0))
    finally:
        ctx.prec = prec
    if error:
        return +v, err
    return +v


@defun
def sumem(ctx, f, interval, tol=None, reject=10, integral=None,
    adiffs=None, bdiffs=None, verbose=False, error=False,
    _fast_abort=False):
    r"""
    Uses the Euler-Maclaurin formula to compute an approximation accurate
    to within ``tol`` (which defaults to the present epsilon) of the sum

    .. math ::

        S = \sum_{k=a}^b f(k)

    where `(a,b)` are given by ``interval`` and `a` or `b` may be
    infinite. The approximation is

    .. math ::

        S \sim \int_a^b f(x) \,dx + \frac{f(a)+f(b)}{2} +
        \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!}
        \left(f^{(2k-1)}(b)-f^{(2k-1)}(a)\right).

    The last sum in the Euler-Maclaurin formula is not generally
    convergent (a notable exception is if `f` is a polynomial, in
    which case Euler-Maclaurin actually gives an exact result).

    The summation is stopped as soon as the quotient between two
    consecutive terms falls below *reject*. That is, by default
    (*reject* = 10), the summation is continued as long as each
    term adds at least one decimal.

    Although not convergent, convergence to a given tolerance can
    often be "forced" if `b = \infty` by summing up to `a+N` and then
    applying the Euler-Maclaurin formula to the sum over the range
    `(a+N+1, \ldots, \infty)`. This procedure is implemented by
    :func:`~mpmath.nsum`.

    By default numerical quadrature and differentiation is used.
    If the symbolic values of the integral and endpoint derivatives
    are known, it is more efficient to pass the value of the
    integral explicitly as ``integral`` and the derivatives
    explicitly as ``adiffs`` and ``bdiffs``. The derivatives
    should be given as iterables that yield
    `f(a), f'(a), f''(a), \ldots` (and the equivalent for `b`).

    **Examples**

    Summation of an infinite series, with automatic and symbolic
    integral and derivative values (the second should be much faster)::

        >>> from mpmath import *
        >>> mp.dps = 50; mp.pretty = True
        >>> sumem(lambda n: 1/n**2, [32, inf])
        0.03174336652030209012658168043874142714132886413417
        >>> I = mpf(1)/32
        >>> D = adiffs=((-1)**n*fac(n+1)*32**(-2-n) for n in range(999))
        >>> sumem(lambda n: 1/n**2, [32, inf], integral=I, adiffs=D)
        0.03174336652030209012658168043874142714132886413417

    An exact evaluation of a finite polynomial sum::

        >>> sumem(lambda n: n**5-12*n**2+3*n, [-100000, 200000])
        10500155000624963999742499550000.0
        >>> print(sum(n**5-12*n**2+3*n for n in range(-100000, 200001)))
        10500155000624963999742499550000

    """
    tol = tol or +ctx.eps
    interval = ctx._as_points(interval)
    a = ctx.convert(interval[0])
    b = ctx.convert(interval[-1])
    err = ctx.zero
    prev = 0
    M = 10000
    if a == ctx.ninf: adiffs = (0 for n in xrange(M))
    else:             adiffs = adiffs or ctx.diffs(f, a)
    if b == ctx.inf:  bdiffs = (0 for n in xrange(M))
    else:             bdiffs = bdiffs or ctx.diffs(f, b)
    orig = ctx.prec
    #verbose = 1
    try:
        ctx.prec += 10
        s = ctx.zero
        for k, (da, db) in enumerate(izip(adiffs, bdiffs)):
            if k & 1:
                term = (db-da) * ctx.bernoulli(k+1) / ctx.factorial(k+1)
                mag = abs(term)
                if verbose:
                    print("term", k, "magnitude =", ctx.nstr(mag))
                if k > 4 and mag < tol:
                    s += term
                    break
                elif k > 4 and abs(prev) / mag < reject:
                    err += mag
                    if _fast_abort:
                        return [s, (s, err)][error]
                    if verbose:
                        print("Failed to converge")
                    break
                else:
                    s += term
                prev = term
        # Endpoint correction
        if a != ctx.ninf: s += f(a)/2
        if b != ctx.inf: s += f(b)/2
        # Tail integral
        if verbose:
            print("Integrating f(x) from x = %s to %s" % (ctx.nstr(a), ctx.nstr(b)))
        if integral:
            s += integral
        else:
            integral, ierr = ctx.quad(f, interval, error=True)
            if verbose:
                print("Integration error:", ierr)
            s += integral
            err += ierr
    finally:
        ctx.prec = orig
    if error:
        return s, err
    else:
        return s

@defun
def adaptive_extrapolation(ctx, update, emfun, kwargs):
    option = kwargs.get
    if ctx._fixed_precision:
        tol = option('tol', ctx.eps*2**10)
    else:
        tol = option('tol', ctx.eps/2**10)
    verbose = option('verbose', False)
    maxterms = option('maxterms', ctx.dps*10)
    method = set(option('method', 'r+s').split('+'))
    skip = option('skip', 0)
    steps = iter(option('steps', xrange(10, 10**9, 10)))
    strict = option('strict')
    #steps = (10 for i in xrange(1000))
    summer=[]
    if 'd' in method or 'direct' in method:
        TRY_RICHARDSON = TRY_SHANKS = TRY_EULER_MACLAURIN = False
    else:
        TRY_RICHARDSON = ('r' in method) or ('richardson' in method)
        TRY_SHANKS = ('s' in method) or ('shanks' in method)
        TRY_EULER_MACLAURIN = ('e' in method) or \
            ('euler-maclaurin' in method)

        def init_levin(m):
            variant = kwargs.get("levin_variant", "u")
            if isinstance(variant, str):
                if variant == "all":
                    variant = ["u", "v", "t"]
                else:
                    variant = [variant]
            for s in variant:
                L = levin_class(method = m, variant = s)
                L.ctx = ctx
                L.name = m + "(" + s + ")"
                summer.append(L)

        if ('l' in method) or ('levin' in method):
            init_levin("levin")

        if ('sidi' in method):
            init_levin("sidi")

        if ('a' in method) or ('alternating' in method):
            L = cohen_alt_class()
            L.ctx = ctx
            L.name = "alternating"
            summer.append(L)

    last_richardson_value = 0
    shanks_table = []
    index = 0
    step = 10
    partial = []
    best = ctx.zero
    orig = ctx.prec
    try:
        if 'workprec' in kwargs:
            ctx.prec = kwargs['workprec']
        elif TRY_RICHARDSON or TRY_SHANKS or len(summer)!=0:
            ctx.prec = (ctx.prec+10) * 4
        else:
            ctx.prec += 30
        while 1:
            if index >= maxterms:
                break

            # Get new batch of terms
            try:
                step = next(steps)
            except StopIteration:
                pass
            if verbose:
                print("-"*70)
                print("Adding terms #%i-#%i" % (index, index+step))
            update(partial, xrange(index, index+step))
            index += step

            # Check direct error
            best = partial[-1]
            error = abs(best - partial[-2])
            if verbose:
                print("Direct error: %s" % ctx.nstr(error))
            if error <= tol:
                return best

            # Check each extrapolation method
            if TRY_RICHARDSON:
                value, maxc = ctx.richardson(partial)
                # Convergence
                richardson_error = abs(value - last_richardson_value)
                if verbose:
                    print("Richardson error: %s" % ctx.nstr(richardson_error))
                # Convergence
                if richardson_error <= tol:
                    return value
                last_richardson_value = value
                # Unreliable due to cancellation
                if ctx.eps*maxc > tol:
                    if verbose:
                        print("Ran out of precision for Richardson")
                    TRY_RICHARDSON = False
                if richardson_error < error:
                    error = richardson_error
                    best = value
            if TRY_SHANKS:
                shanks_table = ctx.shanks(partial, shanks_table, randomized=True)
                row = shanks_table[-1]
                if len(row) == 2:
                    est1 = row[-1]
                    shanks_error = 0
                else:
                    est1, maxc, est2 = row[-1], abs(row[-2]), row[-3]
                    shanks_error = abs(est1-est2)
                if verbose:
                    print("Shanks error: %s" % ctx.nstr(shanks_error))
                if shanks_error <= tol:
                    return est1
                if ctx.eps*maxc > tol:
                    if verbose:
                        print("Ran out of precision for Shanks")
                    TRY_SHANKS = False
                if shanks_error < error:
                    error = shanks_error
                    best = est1
            for L in summer:
                est, lerror = L.update_psum(partial)
                if verbose:
                    print("%s error: %s" % (L.name, ctx.nstr(lerror)))
                if lerror <= tol:
                   return est
                if lerror < error:
                    error = lerror
                    best = est
            if TRY_EULER_MACLAURIN:
                if ctx.mpc(ctx.sign(partial[-1]) / ctx.sign(partial[-2])).ae(-1):
                    if verbose:
                        print ("NOT using Euler-Maclaurin: the series appears"
                            " to be alternating, so numerical\n quadrature"
                            " will most likely fail")
                    TRY_EULER_MACLAURIN = False
                else:
                    value, em_error = emfun(index, tol)
                    value += partial[-1]
                    if verbose:
                        print("Euler-Maclaurin error: %s" % ctx.nstr(em_error))
                    if em_error <= tol:
                        return value
                    if em_error < error:
                        best = value
    finally:
        ctx.prec = orig
    if strict:
        raise ctx.NoConvergence
    if verbose:
        print("Warning: failed to converge to target accuracy")
    return best

@defun
def nsum(ctx, f, *intervals, **options):
    r"""
    Computes the sum

    .. math :: S = \sum_{k=a}^b f(k)

    where `(a, b)` = *interval*, and where `a = -\infty` and/or
    `b = \infty` are allowed, or more generally

    .. math :: S = \sum_{k_1=a_1}^{b_1} \cdots
                   \sum_{k_n=a_n}^{b_n} f(k_1,\ldots,k_n)

    if multiple intervals are given.

    Two examples of infinite series that can be summed by :func:`~mpmath.nsum`,
    where the first converges rapidly and the second converges slowly,
    are::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nsum(lambda n: 1/fac(n), [0, inf])
        2.71828182845905
        >>> nsum(lambda n: 1/n**2, [1, inf])
        1.64493406684823

    When appropriate, :func:`~mpmath.nsum` applies convergence acceleration to
    accurately estimate the sums of slowly convergent series. If the series is
    finite, :func:`~mpmath.nsum` currently does not attempt to perform any
    extrapolation, and simply calls :func:`~mpmath.fsum`.

    Multidimensional infinite series are reduced to a single-dimensional
    series over expanding hypercubes; if both infinite and finite dimensions
    are present, the finite ranges are moved innermost. For more advanced
    control over the summation order, use nested calls to :func:`~mpmath.nsum`,
    or manually rewrite the sum as a single-dimensional series.

    **Options**

    *tol*
        Desired maximum final error. Defaults roughly to the
        epsilon of the working precision.

    *method*
        Which summation algorithm to use (described below).
        Default: ``'richardson+shanks'``.

    *maxterms*
        Cancel after at most this many terms. Default: 10*dps.

    *steps*
        An iterable giving the number of terms to add between
        each extrapolation attempt. The default sequence is
        [10, 20, 30, 40, ...]. For example, if you know that
        approximately 100 terms will be required, efficiency might be
        improved by setting this to [100, 10]. Then the first
        extrapolation will be performed after 100 terms, the second
        after 110, etc.

    *verbose*
        Print details about progress.

    *ignore*
        If enabled, any term that raises ``ArithmeticError``
        or ``ValueError`` (e.g. through division by zero) is replaced
        by a zero. This is convenient for lattice sums with
        a singular term near the origin.

    **Methods**

    Unfortunately, an algorithm that can efficiently sum any infinite
    series does not exist. :func:`~mpmath.nsum` implements several different
    algorithms that each work well in different cases. The *method*
    keyword argument selects a method.

    The default method is ``'r+s'``, i.e. both Richardson extrapolation
    and Shanks transformation is attempted. A slower method that
    handles more cases is ``'r+s+e'``. For very high precision
    summation, or if the summation needs to be fast (for example if
    multiple sums need to be evaluated), it is a good idea to
    investigate which one method works best and only use that.

    ``'richardson'`` / ``'r'``:
        Uses Richardson extrapolation. Provides useful extrapolation
        when `f(k) \sim P(k)/Q(k)` or when `f(k) \sim (-1)^k P(k)/Q(k)`
        for polynomials `P` and `Q`. See :func:`~mpmath.richardson` for
        additional information.

    ``'shanks'`` / ``'s'``:
        Uses Shanks transformation. Typically provides useful
        extrapolation when `f(k) \sim c^k` or when successive terms
        alternate signs. Is able to sum some divergent series.
        See :func:`~mpmath.shanks` for additional information.

    ``'levin'`` / ``'l'``:
        Uses the Levin transformation. It performs better than the Shanks
        transformation for logarithmic convergent or alternating divergent
        series. The ``'levin_variant'``-keyword selects the variant. Valid
        choices are "u", "t", "v" and "all" whereby "all" uses all three
        u,t and v simultanously (This is good for performance comparison in
        conjunction with "verbose=True"). Instead of the Levin transform one can
        also use the Sidi-S transform by selecting the method ``'sidi'``.
        See :func:`~mpmath.levin` for additional details.

    ``'alternating'`` / ``'a'``:
        This is the convergence acceleration of alternating series developped
        by Cohen, Villegras and Zagier.
        See :func:`~mpmath.cohen_alt` for additional details.

    ``'euler-maclaurin'`` / ``'e'``:
        Uses the Euler-Maclaurin summation formula to approximate
        the remainder sum by an integral. This requires high-order
        numerical derivatives and numerical integration. The advantage
        of this algorithm is that it works regardless of the
        decay rate of `f`, as long as `f` is sufficiently smooth.
        See :func:`~mpmath.sumem` for additional information.

    ``'direct'`` / ``'d'``:
        Does not perform any extrapolation. This can be used
        (and should only be used for) rapidly convergent series.
        The summation automatically stops when the terms
        decrease below the target tolerance.

    **Basic examples**

    A finite sum::

        >>> nsum(lambda k: 1/k, [1, 6])
        2.45

    Summation of a series going to negative infinity and a doubly
    infinite series::

        >>> nsum(lambda k: 1/k**2, [-inf, -1])
        1.64493406684823
        >>> nsum(lambda k: 1/(1+k**2), [-inf, inf])
        3.15334809493716

    :func:`~mpmath.nsum` handles sums of complex numbers::

        >>> nsum(lambda k: (0.5+0.25j)**k, [0, inf])
        (1.6 + 0.8j)

    The following sum converges very rapidly, so it is most
    efficient to sum it by disabling convergence acceleration::

        >>> mp.dps = 1000
        >>> a = nsum(lambda k: -(-1)**k * k**2 / fac(2*k), [1, inf],
        ...     method='direct')
        >>> b = (cos(1)+sin(1))/4
        >>> abs(a-b) < mpf('1e-998')
        True

    **Examples with Richardson extrapolation**

    Richardson extrapolation works well for sums over rational
    functions, as well as their alternating counterparts::

        >>> mp.dps = 50
        >>> nsum(lambda k: 1 / k**3, [1, inf],
        ...     method='richardson')
        1.2020569031595942853997381615114499907649862923405
        >>> zeta(3)
        1.2020569031595942853997381615114499907649862923405

        >>> nsum(lambda n: (n + 3)/(n**3 + n**2), [1, inf],
        ...     method='richardson')
        2.9348022005446793094172454999380755676568497036204
        >>> pi**2/2-2
        2.9348022005446793094172454999380755676568497036204

        >>> nsum(lambda k: (-1)**k / k**3, [1, inf],
        ...     method='richardson')
        -0.90154267736969571404980362113358749307373971925537
        >>> -3*zeta(3)/4
        -0.90154267736969571404980362113358749307373971925538

    **Examples with Shanks transformation**

    The Shanks transformation works well for geometric series
    and typically provides excellent acceleration for Taylor
    series near the border of their disk of convergence.
    Here we apply it to a series for `\log(2)`, which can be
    seen as the Taylor series for `\log(1+x)` with `x = 1`::

        >>> nsum(lambda k: -(-1)**k/k, [1, inf],
        ...     method='shanks')
        0.69314718055994530941723212145817656807550013436025
        >>> log(2)
        0.69314718055994530941723212145817656807550013436025

    Here we apply it to a slowly convergent geometric series::

        >>> nsum(lambda k: mpf('0.995')**k, [0, inf],
        ...     method='shanks')
        200.0

    Finally, Shanks' method works very well for alternating series
    where `f(k) = (-1)^k g(k)`, and often does so regardless of
    the exact decay rate of `g(k)`::

        >>> mp.dps = 15
        >>> nsum(lambda k: (-1)**(k+1) / k**1.5, [1, inf],
        ...     method='shanks')
        0.765147024625408
        >>> (2-sqrt(2))*zeta(1.5)/2
        0.765147024625408

    The following slowly convergent alternating series has no known
    closed-form value. Evaluating the sum a second time at higher
    precision indicates that the value is probably correct::

        >>> nsum(lambda k: (-1)**k / log(k), [2, inf],
        ...     method='shanks')
        0.924299897222939
        >>> mp.dps = 30
        >>> nsum(lambda k: (-1)**k / log(k), [2, inf],
        ...     method='shanks')
        0.92429989722293885595957018136

    **Examples with Levin transformation**

    The following example calculates Euler's constant as the constant term in
    the Laurent expansion of zeta(s) at s=1. This sum converges extremly slow
    because of the logarithmic convergence behaviour of the Dirichlet series
    for zeta.

      >>> mp.dps = 30
      >>> z = mp.mpf(10) ** (-10)
      >>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "levin") - 1 / z
      >>> print(mp.chop(a - mp.euler, tol = 1e-10))
      0.0

    Now we sum the zeta function outside its range of convergence
    (attention: This does not work at the negative integers!):

      >>> mp.dps = 15
      >>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v")
      >>> print(mp.chop(w - mp.zeta(-2-3j)))
      0.0

    The next example resummates an asymptotic series expansion of an integral
    related to the exponential integral.

      >>> mp.dps = 15
      >>> z = mp.mpf(10)
      >>> # exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
      >>> exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral
      >>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
      >>> print(mp.chop(w - exact))
      0.0

    Following highly divergent asymptotic expansion needs some care. Firstly we
    need copious amount of working precision. Secondly the stepsize must not be
    chosen to large, otherwise nsum may miss the point where the Levin transform
    converges and reach the point where only numerical garbage is produced due to
    numerical cancellation.

      >>> mp.dps = 15
      >>> z = mp.mpf(2)
      >>> # exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
      >>> exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral
      >>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)),
      ...   [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
      >>> print(mp.chop(w - exact))
      0.0

    The hypergeoemtric function can also be summed outside its range of convergence:

      >>> mp.dps = 15
      >>> z = 2 + 1j
      >>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z)
      >>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n))
      >>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)])
      >>> print(mp.chop(exact-v))
      0.0

    **Examples with Cohen's alternating series resummation**

      The next example sums the alternating zeta function:

      >>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a")
      >>> print(mp.chop(v - mp.log(2)))
      0.0

      The derivate of the alternating zeta function outside its range of
      convergence:

      >>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a")
      >>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1)))
      0.0

    **Examples with Euler-Maclaurin summation**

    The sum in the following example has the wrong rate of convergence
    for either Richardson or Shanks to be effective.

        >>> f = lambda k: log(k)/k**2.5
        >>> mp.dps = 15
        >>> nsum(f, [1, inf], method='euler-maclaurin')
        0.38734195032621
        >>> -diff(zeta, 2.5)
        0.38734195032621

    Increasing ``steps`` improves speed at higher precision::

        >>> mp.dps = 50
        >>> nsum(f, [1, inf], method='euler-maclaurin', steps=[250])
        0.38734195032620997271199237593105101319948228874688
        >>> -diff(zeta, 2.5)
        0.38734195032620997271199237593105101319948228874688

    **Divergent series**

    The Shanks transformation is able to sum some *divergent*
    series. In particular, it is often able to sum Taylor series
    beyond their radius of convergence (this is due to a relation
    between the Shanks transformation and Pade approximations;
    see :func:`~mpmath.pade` for an alternative way to evaluate divergent
    Taylor series). Furthermore the Levin-transform examples above
    contain some divergent series resummation.

    Here we apply it to `\log(1+x)` far outside the region of
    convergence::

        >>> mp.dps = 50
        >>> nsum(lambda k: -(-9)**k/k, [1, inf],
        ...     method='shanks')
        2.3025850929940456840179914546843642076011014886288
        >>> log(10)
        2.3025850929940456840179914546843642076011014886288

    A particular type of divergent series that can be summed
    using the Shanks transformation is geometric series.
    The result is the same as using the closed-form formula
    for an infinite geometric series::

        >>> mp.dps = 15
        >>> for n in range(-8, 8):
        ...     if n == 1:
        ...         continue
        ...     print("%s %s %s" % (mpf(n), mpf(1)/(1-n),
        ...         nsum(lambda k: n**k, [0, inf], method='shanks')))
        ...
        -8.0 0.111111111111111 0.111111111111111
        -7.0 0.125 0.125
        -6.0 0.142857142857143 0.142857142857143
        -5.0 0.166666666666667 0.166666666666667
        -4.0 0.2 0.2
        -3.0 0.25 0.25
        -2.0 0.333333333333333 0.333333333333333
        -1.0 0.5 0.5
        0.0 1.0 1.0
        2.0 -1.0 -1.0
        3.0 -0.5 -0.5
        4.0 -0.333333333333333 -0.333333333333333
        5.0 -0.25 -0.25
        6.0 -0.2 -0.2
        7.0 -0.166666666666667 -0.166666666666667

    **Multidimensional sums**

    Any combination of finite and infinite ranges is allowed for the
    summation indices::

        >>> mp.dps = 15
        >>> nsum(lambda x,y: x+y, [2,3], [4,5])
        28.0
        >>> nsum(lambda x,y: x/2**y, [1,3], [1,inf])
        6.0
        >>> nsum(lambda x,y: y/2**x, [1,inf], [1,3])
        6.0
        >>> nsum(lambda x,y,z: z/(2**x*2**y), [1,inf], [1,inf], [3,4])
        7.0
        >>> nsum(lambda x,y,z: y/(2**x*2**z), [1,inf], [3,4], [1,inf])
        7.0
        >>> nsum(lambda x,y,z: x/(2**z*2**y), [3,4], [1,inf], [1,inf])
        7.0

    Some nice examples of double series with analytic solutions or
    reductions to single-dimensional series (see [1])::

        >>> nsum(lambda m, n: 1/2**(m*n), [1,inf], [1,inf])
        1.60669515241529
        >>> nsum(lambda n: 1/(2**n-1), [1,inf])
        1.60669515241529

        >>> nsum(lambda i,j: (-1)**(i+j)/(i**2+j**2), [1,inf], [1,inf])
        0.278070510848213
        >>> pi*(pi-3*ln2)/12
        0.278070510848213

        >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**2, [1,inf], [1,inf])
        0.129319852864168
        >>> altzeta(2) - altzeta(1)
        0.129319852864168

        >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**3, [1,inf], [1,inf])
        0.0790756439455825
        >>> altzeta(3) - altzeta(2)
        0.0790756439455825

        >>> nsum(lambda m,n: m**2*n/(3**m*(n*3**m+m*3**n)),
        ...     [1,inf], [1,inf])
        0.28125
        >>> mpf(9)/32
        0.28125

        >>> nsum(lambda i,j: fac(i-1)*fac(j-1)/fac(i+j),
        ...     [1,inf], [1,inf], workprec=400)
        1.64493406684823
        >>> zeta(2)
        1.64493406684823

    A hard example of a multidimensional sum is the Madelung constant
    in three dimensions (see [2]). The defining sum converges very
    slowly and only conditionally, so :func:`~mpmath.nsum` is lucky to
    obtain an accurate value through convergence acceleration. The
    second evaluation below uses a much more efficient, rapidly
    convergent 2D sum::

        >>> nsum(lambda x,y,z: (-1)**(x+y+z)/(x*x+y*y+z*z)**0.5,
        ...     [-inf,inf], [-inf,inf], [-inf,inf], ignore=True)
        -1.74756459463318
        >>> nsum(lambda x,y: -12*pi*sech(0.5*pi * \
        ...     sqrt((2*x+1)**2+(2*y+1)**2))**2, [0,inf], [0,inf])
        -1.74756459463318

    Another example of a lattice sum in 2D::

        >>> nsum(lambda x,y: (-1)**(x+y) / (x**2+y**2), [-inf,inf],
        ...     [-inf,inf], ignore=True)
        -2.1775860903036
        >>> -pi*ln2
        -2.1775860903036

    An example of an Eisenstein series::

        >>> nsum(lambda m,n: (m+n*1j)**(-4), [-inf,inf], [-inf,inf],
        ...     ignore=True)
        (3.1512120021539 + 0.0j)

    **References**

    1. [Weisstein]_ http://mathworld.wolfram.com/DoubleSeries.html,
    2. [Weisstein]_ http://mathworld.wolfram.com/MadelungConstants.html

    """
    infinite, g = standardize(ctx, f, intervals, options)
    if not infinite:
        return +g()

    def update(partial_sums, indices):
        if partial_sums:
            psum = partial_sums[-1]
        else:
            psum = ctx.zero
        for k in indices:
            psum = psum + g(ctx.mpf(k))
            partial_sums.append(psum)

    prec = ctx.prec

    def emfun(point, tol):
        workprec = ctx.prec
        ctx.prec = prec + 10
        v = ctx.sumem(g, [point, ctx.inf], tol, error=1)
        ctx.prec = workprec
        return v

    return +ctx.adaptive_extrapolation(update, emfun, options)


def wrapsafe(f):
    def g(*args):
        try:
            return f(*args)
        except (ArithmeticError, ValueError):
            return 0
    return g

def standardize(ctx, f, intervals, options):
    if options.get("ignore"):
        f = wrapsafe(f)
    finite = []
    infinite = []
    for k, points in enumerate(intervals):
        a, b = ctx._as_points(points)
        if b < a:
            return False, (lambda: ctx.zero)
        if a == ctx.ninf or b == ctx.inf:
            infinite.append((k, (a,b)))
        else:
            finite.append((k, (int(a), int(b))))
    if finite:
        f = fold_finite(ctx, f, finite)
        if not infinite:
            return False, lambda: f(*([0]*len(intervals)))
    if infinite:
        f = standardize_infinite(ctx, f, infinite)
        f = fold_infinite(ctx, f, infinite)
        args = [0] * len(intervals)
        d = infinite[0][0]
        def g(k):
            args[d] = k
            return f(*args)
        return True, g

# backwards compatible itertools.product
def cartesian_product(args):
    pools = map(tuple, args)
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)

def fold_finite(ctx, f, intervals):
    if not intervals:
        return f
    indices = [v[0] for v in intervals]
    points = [v[1] for v in intervals]
    ranges = [xrange(a, b+1) for (a,b) in points]
    def g(*args):
        args = list(args)
        s = ctx.zero
        for xs in cartesian_product(ranges):
            for dim, x in zip(indices, xs):
                args[dim] = ctx.mpf(x)
            s += f(*args)
        return s
    #print "Folded finite", indices
    return g

# Standardize each interval to [0,inf]
def standardize_infinite(ctx, f, intervals):
    if not intervals:
        return f
    dim, [a,b] = intervals[-1]
    if a == ctx.ninf:
        if b == ctx.inf:
            def g(*args):
                args = list(args)
                k = args[dim]
                if k:
                    s = f(*args)
                    args[dim] = -k
                    s += f(*args)
                    return s
                else:
                    return f(*args)
        else:
            def g(*args):
                args = list(args)
                args[dim] = b - args[dim]
                return f(*args)
    else:
        def g(*args):
            args = list(args)
            args[dim] += a
            return f(*args)
    #print "Standardized infinity along dimension", dim, a, b
    return standardize_infinite(ctx, g, intervals[:-1])

def fold_infinite(ctx, f, intervals):
    if len(intervals) < 2:
        return f
    dim1 = intervals[-2][0]
    dim2 = intervals[-1][0]
    # Assume intervals are [0,inf] x [0,inf] x ...
    def g(*args):
        args = list(args)
        #args.insert(dim2, None)
        n = int(args[dim1])
        s = ctx.zero
        #y = ctx.mpf(n)
        args[dim2] = ctx.mpf(n) #y
        for x in xrange(n+1):
            args[dim1] = ctx.mpf(x)
            s += f(*args)
        args[dim1] = ctx.mpf(n) #ctx.mpf(n)
        for y in xrange(n):
            args[dim2] = ctx.mpf(y)
            s += f(*args)
        return s
    #print "Folded infinite from", len(intervals), "to", (len(intervals)-1)
    return fold_infinite(ctx, g, intervals[:-1])

@defun
def nprod(ctx, f, interval, nsum=False, **kwargs):
    r"""
    Computes the product

    .. math ::

        P = \prod_{k=a}^b f(k)

    where `(a, b)` = *interval*, and where `a = -\infty` and/or
    `b = \infty` are allowed.

    By default, :func:`~mpmath.nprod` uses the same extrapolation methods as
    :func:`~mpmath.nsum`, except applied to the partial products rather than
    partial sums, and the same keyword options as for :func:`~mpmath.nsum` are
    supported. If ``nsum=True``, the product is instead computed via
    :func:`~mpmath.nsum` as

    .. math ::

        P = \exp\left( \sum_{k=a}^b \log(f(k)) \right).

    This is slower, but can sometimes yield better results. It is
    also required (and used automatically) when Euler-Maclaurin
    summation is requested.

    **Examples**

    A simple finite product::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> nprod(lambda k: k, [1, 4])
        24.0

    A large number of infinite products have known exact values,
    and can therefore be used as a reference. Most of the following
    examples are taken from MathWorld [1].

    A few infinite products with simple values are::

        >>> 2*nprod(lambda k: (4*k**2)/(4*k**2-1), [1, inf])
        3.141592653589793238462643
        >>> nprod(lambda k: (1+1/k)**2/(1+2/k), [1, inf])
        2.0
        >>> nprod(lambda k: (k**3-1)/(k**3+1), [2, inf])
        0.6666666666666666666666667
        >>> nprod(lambda k: (1-1/k**2), [2, inf])
        0.5

    Next, several more infinite products with more complicated
    values::

        >>> nprod(lambda k: exp(1/k**2), [1, inf]); exp(pi**2/6)
        5.180668317897115748416626
        5.180668317897115748416626

        >>> nprod(lambda k: (k**2-1)/(k**2+1), [2, inf]); pi*csch(pi)
        0.2720290549821331629502366
        0.2720290549821331629502366

        >>> nprod(lambda k: (k**4-1)/(k**4+1), [2, inf])
        0.8480540493529003921296502
        >>> pi*sinh(pi)/(cosh(sqrt(2)*pi)-cos(sqrt(2)*pi))
        0.8480540493529003921296502

        >>> nprod(lambda k: (1+1/k+1/k**2)**2/(1+2/k+3/k**2), [1, inf])
        1.848936182858244485224927
        >>> 3*sqrt(2)*cosh(pi*sqrt(3)/2)**2*csch(pi*sqrt(2))/pi
        1.848936182858244485224927

        >>> nprod(lambda k: (1-1/k**4), [2, inf]); sinh(pi)/(4*pi)
        0.9190194775937444301739244
        0.9190194775937444301739244

        >>> nprod(lambda k: (1-1/k**6), [2, inf])
        0.9826842777421925183244759
        >>> (1+cosh(pi*sqrt(3)))/(12*pi**2)
        0.9826842777421925183244759

        >>> nprod(lambda k: (1+1/k**2), [2, inf]); sinh(pi)/(2*pi)
        1.838038955187488860347849
        1.838038955187488860347849

        >>> nprod(lambda n: (1+1/n)**n * exp(1/(2*n)-1), [1, inf])
        1.447255926890365298959138
        >>> exp(1+euler/2)/sqrt(2*pi)
        1.447255926890365298959138

    The following two products are equivalent and can be evaluated in
    terms of a Jacobi theta function. Pi can be replaced by any value
    (as long as convergence is preserved)::

        >>> nprod(lambda k: (1-pi**-k)/(1+pi**-k), [1, inf])
        0.3838451207481672404778686
        >>> nprod(lambda k: tanh(k*log(pi)/2), [1, inf])
        0.3838451207481672404778686
        >>> jtheta(4,0,1/pi)
        0.3838451207481672404778686

    This product does not have a known closed form value::

        >>> nprod(lambda k: (1-1/2**k), [1, inf])
        0.2887880950866024212788997

    A product taken from `-\infty`::

        >>> nprod(lambda k: 1-k**(-3), [-inf,-2])
        0.8093965973662901095786805
        >>> cosh(pi*sqrt(3)/2)/(3*pi)
        0.8093965973662901095786805

    A doubly infinite product::

        >>> nprod(lambda k: exp(1/(1+k**2)), [-inf, inf])
        23.41432688231864337420035
        >>> exp(pi/tanh(pi))
        23.41432688231864337420035

    A product requiring the use of Euler-Maclaurin summation to compute
    an accurate value::

        >>> nprod(lambda k: (1-1/k**2.5), [2, inf], method='e')
        0.696155111336231052898125

    **References**

    1. [Weisstein]_ http://mathworld.wolfram.com/InfiniteProduct.html

    """
    if nsum or ('e' in kwargs.get('method', '')):
        orig = ctx.prec
        try:
            # TODO: we are evaluating log(1+eps) -> eps, which is
            # inaccurate. This currently works because nsum greatly
            # increases the working precision. But we should be
            # more intelligent and handle the precision here.
            ctx.prec += 10
            v = ctx.nsum(lambda n: ctx.ln(f(n)), interval, **kwargs)
        finally:
            ctx.prec = orig
        return +ctx.exp(v)

    a, b = ctx._as_points(interval)
    if a == ctx.ninf:
        if b == ctx.inf:
            return f(0) * ctx.nprod(lambda k: f(-k) * f(k), [1, ctx.inf], **kwargs)
        return ctx.nprod(f, [-b, ctx.inf], **kwargs)
    elif b != ctx.inf:
        return ctx.fprod(f(ctx.mpf(k)) for k in xrange(int(a), int(b)+1))

    a = int(a)

    def update(partial_products, indices):
        if partial_products:
            pprod = partial_products[-1]
        else:
            pprod = ctx.one
        for k in indices:
            pprod = pprod * f(a + ctx.mpf(k))
            partial_products.append(pprod)

    return +ctx.adaptive_extrapolation(update, None, kwargs)


@defun
def limit(ctx, f, x, direction=1, exp=False, **kwargs):
    r"""
    Computes an estimate of the limit

    .. math ::

        \lim_{t \to x} f(t)

    where `x` may be finite or infinite.

    For finite `x`, :func:`~mpmath.limit` evaluates `f(x + d/n)` for
    consecutive integer values of `n`, where the approach direction
    `d` may be specified using the *direction* keyword argument.
    For infinite `x`, :func:`~mpmath.limit` evaluates values of
    `f(\mathrm{sign}(x) \cdot n)`.

    If the approach to the limit is not sufficiently fast to give
    an accurate estimate directly, :func:`~mpmath.limit` attempts to find
    the limit using Richardson extrapolation or the Shanks
    transformation. You can select between these methods using
    the *method* keyword (see documentation of :func:`~mpmath.nsum` for
    more information).

    **Options**

    The following options are available with essentially the
    same meaning as for :func:`~mpmath.nsum`: *tol*, *method*, *maxterms*,
    *steps*, *verbose*.

    If the option *exp=True* is set, `f` will be
    sampled at exponentially spaced points `n = 2^1, 2^2, 2^3, \ldots`
    instead of the linearly spaced points `n = 1, 2, 3, \ldots`.
    This can sometimes improve the rate of convergence so that
    :func:`~mpmath.limit` may return a more accurate answer (and faster).
    However, do note that this can only be used if `f`
    supports fast and accurate evaluation for arguments that
    are extremely close to the limit point (or if infinite,
    very large arguments).

    **Examples**

    A basic evaluation of a removable singularity::

        >>> from mpmath import *
        >>> mp.dps = 30; mp.pretty = True
        >>> limit(lambda x: (x-sin(x))/x**3, 0)
        0.166666666666666666666666666667

    Computing the exponential function using its limit definition::

        >>> limit(lambda n: (1+3/n)**n, inf)
        20.0855369231876677409285296546
        >>> exp(3)
        20.0855369231876677409285296546

    A limit for `\pi`::

        >>> f = lambda n: 2**(4*n+1)*fac(n)**4/(2*n+1)/fac(2*n)**2
        >>> limit(f, inf)
        3.14159265358979323846264338328

    Calculating the coefficient in Stirling's formula::

        >>> limit(lambda n: fac(n) / (sqrt(n)*(n/e)**n), inf)
        2.50662827463100050241576528481
        >>> sqrt(2*pi)
        2.50662827463100050241576528481

    Evaluating Euler's constant `\gamma` using the limit representation

    .. math ::

        \gamma = \lim_{n \rightarrow \infty } \left[ \left(
        \sum_{k=1}^n \frac{1}{k} \right) - \log(n) \right]

    (which converges notoriously slowly)::

        >>> f = lambda n: sum([mpf(1)/k for k in range(1,int(n)+1)]) - log(n)
        >>> limit(f, inf)
        0.577215664901532860606512090082
        >>> +euler
        0.577215664901532860606512090082

    With default settings, the following limit converges too slowly
    to be evaluated accurately. Changing to exponential sampling
    however gives a perfect result::

        >>> f = lambda x: sqrt(x**3+x**2)/(sqrt(x**3)+x)
        >>> limit(f, inf)
        0.992831158558330281129249686491
        >>> limit(f, inf, exp=True)
        1.0

    """

    if ctx.isinf(x):
        direction = ctx.sign(x)
        g = lambda k: f(ctx.mpf(k+1)*direction)
    else:
        direction *= ctx.one
        g = lambda k: f(x + direction/(k+1))
    if exp:
        h = g
        g = lambda k: h(2**k)

    def update(values, indices):
        for k in indices:
            values.append(g(k+1))

    # XXX: steps used by nsum don't work well
    if not 'steps' in kwargs:
        kwargs['steps'] = [10]

    return +ctx.adaptive_extrapolation(update, None, kwargs)