This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/calculus/differentiation.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
from ..libmp.backend import xrange
from .calculus import defun

try:
    iteritems = dict.iteritems
except AttributeError:
    iteritems = dict.items

#----------------------------------------------------------------------------#
#                                Differentiation                             #
#----------------------------------------------------------------------------#

@defun
def difference(ctx, s, n):
    r"""
    Given a sequence `(s_k)` containing at least `n+1` items, returns the
    `n`-th forward difference,

    .. math ::

        \Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k.
    """
    n = int(n)
    d = ctx.zero
    b = (-1) ** (n & 1)
    for k in xrange(n+1):
        d += b * s[k]
        b = (b * (k-n)) // (k+1)
    return d

def hsteps(ctx, f, x, n, prec, **options):
    singular = options.get('singular')
    addprec = options.get('addprec', 10)
    direction = options.get('direction', 0)
    workprec = (prec+2*addprec) * (n+1)
    orig = ctx.prec
    try:
        ctx.prec = workprec
        h = options.get('h')
        if h is None:
            if options.get('relative'):
                hextramag = int(ctx.mag(x))
            else:
                hextramag = 0
            h = ctx.ldexp(1, -prec-addprec-hextramag)
        else:
            h = ctx.convert(h)
        # Directed: steps x, x+h, ... x+n*h
        direction = options.get('direction', 0)
        if direction:
            h *= ctx.sign(direction)
            steps = xrange(n+1)
            norm = h
        # Central: steps x-n*h, x-(n-2)*h ..., x, ..., x+(n-2)*h, x+n*h
        else:
            steps = xrange(-n, n+1, 2)
            norm = (2*h)
        # Perturb
        if singular:
            x += 0.5*h
        values = [f(x+k*h) for k in steps]
        return values, norm, workprec
    finally:
        ctx.prec = orig


@defun
def diff(ctx, f, x, n=1, **options):
    r"""
    Numerically computes the derivative of `f`, `f'(x)`, or generally for
    an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`.
    A few basic examples are::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> diff(lambda x: x**2 + x, 1.0)
        3.0
        >>> diff(lambda x: x**2 + x, 1.0, 2)
        2.0
        >>> diff(lambda x: x**2 + x, 1.0, 3)
        0.0
        >>> nprint([diff(exp, 3, n) for n in range(5)])   # exp'(x) = exp(x)
        [20.0855, 20.0855, 20.0855, 20.0855, 20.0855]

    Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)`
    and order `(n_1, \ldots, n_k)`, the partial derivative
    `f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example::

        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1))
        2.75
        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1))
        3.0

    **Options**

    The following optional keyword arguments are recognized:

    ``method``
        Supported methods are ``'step'`` or ``'quad'``: derivatives may be
        computed using either a finite difference with a small step
        size `h` (default), or numerical quadrature.
    ``direction``
        Direction of finite difference: can be -1 for a left
        difference, 0 for a central difference (default), or +1
        for a right difference; more generally can be any complex number.
    ``addprec``
        Extra precision for `h` used to account for the function's
        sensitivity to perturbations (default = 10).
    ``relative``
        Choose `h` relative to the magnitude of `x`, rather than an
        absolute value; useful for large or tiny `x` (default = False).
    ``h``
        As an alternative to ``addprec`` and ``relative``, manually
        select the step size `h`.
    ``singular``
        If True, evaluation exactly at the point `x` is avoided; this is
        useful for differentiating functions with removable singularities.
        Default = False.
    ``radius``
        Radius of integration contour (with ``method = 'quad'``).
        Default = 0.25. A larger radius typically is faster and more
        accurate, but it must be chosen so that `f` has no
        singularities within the radius from the evaluation point.

    A finite difference requires `n+1` function evaluations and must be
    performed at `(n+1)` times the target precision. Accordingly, `f` must
    support fast evaluation at high precision.

    With integration, a larger number of function evaluations is
    required, but not much extra precision is required. For high order
    derivatives, this method may thus be faster if f is very expensive to
    evaluate at high precision.

    **Further examples**

    The direction option is useful for computing left- or right-sided
    derivatives of nonsmooth functions::

        >>> diff(abs, 0, direction=0)
        0.0
        >>> diff(abs, 0, direction=1)
        1.0
        >>> diff(abs, 0, direction=-1)
        -1.0

    More generally, if the direction is nonzero, a right difference
    is computed where the step size is multiplied by sign(direction).
    For example, with direction=+j, the derivative from the positive
    imaginary direction will be computed::

        >>> diff(abs, 0, direction=j)
        (0.0 - 1.0j)

    With integration, the result may have a small imaginary part
    even even if the result is purely real::

        >>> diff(sqrt, 1, method='quad')    # doctest:+ELLIPSIS
        (0.5 - 4.59...e-26j)
        >>> chop(_)
        0.5

    Adding precision to obtain an accurate value::

        >>> diff(cos, 1e-30)
        0.0
        >>> diff(cos, 1e-30, h=0.0001)
        -9.99999998328279e-31
        >>> diff(cos, 1e-30, addprec=100)
        -1.0e-30

    """
    partial = False
    try:
        orders = list(n)
        x = list(x)
        partial = True
    except TypeError:
        pass
    if partial:
        x = [ctx.convert(_) for _ in x]
        return _partial_diff(ctx, f, x, orders, options)
    method = options.get('method', 'step')
    if n == 0 and method != 'quad' and not options.get('singular'):
        return f(ctx.convert(x))
    prec = ctx.prec
    try:
        if method == 'step':
            values, norm, workprec = hsteps(ctx, f, x, n, prec, **options)
            ctx.prec = workprec
            v = ctx.difference(values, n) / norm**n
        elif method == 'quad':
            ctx.prec += 10
            radius = ctx.convert(options.get('radius', 0.25))
            def g(t):
                rei = radius*ctx.expj(t)
                z = x + rei
                return f(z) / rei**n
            d = ctx.quadts(g, [0, 2*ctx.pi])
            v = d * ctx.factorial(n) / (2*ctx.pi)
        else:
            raise ValueError("unknown method: %r" % method)
    finally:
        ctx.prec = prec
    return +v

def _partial_diff(ctx, f, xs, orders, options):
    if not orders:
        return f()
    if not sum(orders):
        return f(*xs)
    i = 0
    for i in range(len(orders)):
        if orders[i]:
            break
    order = orders[i]
    def fdiff_inner(*f_args):
        def inner(t):
            return f(*(f_args[:i] + (t,) + f_args[i+1:]))
        return ctx.diff(inner, f_args[i], order, **options)
    orders[i] = 0
    return _partial_diff(ctx, fdiff_inner, xs, orders, options)

@defun
def diffs(ctx, f, x, n=None, **options):
    r"""
    Returns a generator that yields the sequence of derivatives

    .. math ::

        f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots

    With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)`
    function evaluations to generate the first `k` derivatives,
    rather than the roughly `O(k^2)` evaluations
    required if one calls :func:`~mpmath.diff` `k` separate times.

    With `n < \infty`, the generator stops as soon as the
    `n`-th derivative has been generated. If the exact number of
    needed derivatives is known in advance, this is further
    slightly more efficient.

    Options are the same as for :func:`~mpmath.diff`.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15
        >>> nprint(list(diffs(cos, 1, 5)))
        [0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471]
        >>> for i, d in zip(range(6), diffs(cos, 1)):
        ...     print("%s %s" % (i, d))
        ...
        0 0.54030230586814
        1 -0.841470984807897
        2 -0.54030230586814
        3 0.841470984807897
        4 0.54030230586814
        5 -0.841470984807897

    """
    if n is None:
        n = ctx.inf
    else:
        n = int(n)
    if options.get('method', 'step') != 'step':
        k = 0
        while k < n + 1:
            yield ctx.diff(f, x, k, **options)
            k += 1
        return
    singular = options.get('singular')
    if singular:
        yield ctx.diff(f, x, 0, singular=True)
    else:
        yield f(ctx.convert(x))
    if n < 1:
        return
    if n == ctx.inf:
        A, B = 1, 2
    else:
        A, B = 1, n+1
    while 1:
        callprec = ctx.prec
        y, norm, workprec = hsteps(ctx, f, x, B, callprec, **options)
        for k in xrange(A, B):
            try:
                ctx.prec = workprec
                d = ctx.difference(y, k) / norm**k
            finally:
                ctx.prec = callprec
            yield +d
            if k >= n:
                return
        A, B = B, int(A*1.4+1)
        B = min(B, n)

def iterable_to_function(gen):
    gen = iter(gen)
    data = []
    def f(k):
        for i in xrange(len(data), k+1):
            data.append(next(gen))
        return data[k]
    return f

@defun
def diffs_prod(ctx, factors):
    r"""
    Given a list of `N` iterables or generators yielding
    `f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`,
    generate `g(x), g'(x), g''(x), \ldots` where
    `g(x) = f_1(x) f_2(x) \cdots f_N(x)`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of each `f_k(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> f = lambda x: exp(x)*cos(x)*sin(x)
        >>> u = diffs(f, 1)
        >>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)])
        >>> next(u); next(v)
        1.23586333600241
        1.23586333600241
        >>> next(u); next(v)
        0.104658952245596
        0.104658952245596
        >>> next(u); next(v)
        -5.96999877552086
        -5.96999877552086
        >>> next(u); next(v)
        -12.4632923122697
        -12.4632923122697

    """
    N = len(factors)
    if N == 1:
        for c in factors[0]:
            yield c
    else:
        u = iterable_to_function(ctx.diffs_prod(factors[:N//2]))
        v = iterable_to_function(ctx.diffs_prod(factors[N//2:]))
        n = 0
        while 1:
            #yield sum(binomial(n,k)*u(n-k)*v(k) for k in xrange(n+1))
            s = u(n) * v(0)
            a = 1
            for k in xrange(1,n+1):
                a = a * (n-k+1) // k
                s += a * u(n-k) * v(k)
            yield s
            n += 1

def dpoly(n, _cache={}):
    """
    nth differentiation polynomial for exp (Faa di Bruno's formula).

    TODO: most exponents are zero, so maybe a sparse representation
    would be better.
    """
    if n in _cache:
        return _cache[n]
    if not _cache:
        _cache[0] = {(0,):1}
    R = dpoly(n-1)
    R = dict((c+(0,),v) for (c,v) in iteritems(R))
    Ra = {}
    for powers, count in iteritems(R):
        powers1 = (powers[0]+1,) + powers[1:]
        if powers1 in Ra:
            Ra[powers1] += count
        else:
            Ra[powers1] = count
    for powers, count in iteritems(R):
        if not sum(powers):
            continue
        for k,p in enumerate(powers):
            if p:
                powers2 = powers[:k] + (p-1,powers[k+1]+1) + powers[k+2:]
                if powers2 in Ra:
                    Ra[powers2] += p*count
                else:
                    Ra[powers2] = p*count
    _cache[n] = Ra
    return _cache[n]

@defun
def diffs_exp(ctx, fdiffs):
    r"""
    Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots`
    generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of `f(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

    The derivatives of the gamma function can be computed using
    logarithmic differentiation::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>>
        >>> def diffs_loggamma(x):
        ...     yield loggamma(x)
        ...     i = 0
        ...     while 1:
        ...         yield psi(i,x)
        ...         i += 1
        ...
        >>> u = diffs_exp(diffs_loggamma(3))
        >>> v = diffs(gamma, 3)
        >>> next(u); next(v)
        2.0
        2.0
        >>> next(u); next(v)
        1.84556867019693
        1.84556867019693
        >>> next(u); next(v)
        2.49292999190269
        2.49292999190269
        >>> next(u); next(v)
        3.44996501352367
        3.44996501352367

    """
    fn = iterable_to_function(fdiffs)
    f0 = ctx.exp(fn(0))
    yield f0
    i = 1
    while 1:
        s = ctx.mpf(0)
        for powers, c in iteritems(dpoly(i)):
            s += c*ctx.fprod(fn(k+1)**p for (k,p) in enumerate(powers) if p)
        yield s * f0
        i += 1

@defun
def differint(ctx, f, x, n=1, x0=0):
    r"""
    Calculates the Riemann-Liouville differintegral, or fractional
    derivative, defined by

    .. math ::

        \,_{x_0}{\mathbb{D}}^n_xf(x) \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m}
        \int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt

    where `f` is a given (presumably well-behaved) function,
    `x` is the evaluation point, `n` is the order, and `x_0` is
    the reference point of integration (`m` is an arbitrary
    parameter selected automatically).

    With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`,
    the second derivative `f''(x)`, etc. With `n = -1`, it gives
    `\int_{x_0}^x f(t) dt`, with `n = -2`
    it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc.

    As `n` is permitted to be any number, this operator generalizes
    iterated differentiation and iterated integration to a single
    operator with a continuous order parameter.

    **Examples**

    There is an exact formula for the fractional derivative of a
    monomial `x^p`, which may be used as a reference. For example,
    the following gives a half-derivative (order 0.5)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> x = mpf(3); p = 2; n = 0.5
        >>> differint(lambda t: t**p, x, n)
        7.81764019044672
        >>> gamma(p+1)/gamma(p-n+1) * x**(p-n)
        7.81764019044672

    Another useful test function is the exponential function, whose
    integration / differentiation formula easy generalizes
    to arbitrary order. Here we first compute a third derivative,
    and then a triply nested integral. (The reference point `x_0`
    is set to `-\infty` to avoid nonzero endpoint terms.)::

        >>> differint(lambda x: exp(pi*x), -1.5, 3)
        0.278538406900792
        >>> exp(pi*-1.5) * pi**3
        0.278538406900792
        >>> differint(lambda x: exp(pi*x), 3.5, -3, -inf)
        1922.50563031149
        >>> exp(pi*3.5) / pi**3
        1922.50563031149

    However, for noninteger `n`, the differentiation formula for the
    exponential function must be modified to give the same result as the
    Riemann-Liouville differintegral::

        >>> x = mpf(3.5)
        >>> c = pi
        >>> n = 1+2*j
        >>> differint(lambda x: exp(c*x), x, n)
        (-123295.005390743 + 140955.117867654j)
        >>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n)
        (-123295.005390743 + 140955.117867654j)


    """
    m = max(int(ctx.ceil(ctx.re(n)))+1, 1)
    r = m-n-1
    g = lambda x: ctx.quad(lambda t: (x-t)**r * f(t), [x0, x])
    return ctx.diff(g, x, m) / ctx.gamma(m-n)

@defun
def diffun(ctx, f, n=1, **options):
    r"""
    Given a function `f`, returns a function `g(x)` that evaluates the nth
    derivative `f^{(n)}(x)`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> cos2 = diffun(sin)
        >>> sin2 = diffun(sin, 4)
        >>> cos(1.3), cos2(1.3)
        (0.267498828624587, 0.267498828624587)
        >>> sin(1.3), sin2(1.3)
        (0.963558185417193, 0.963558185417193)

    The function `f` must support arbitrary precision evaluation.
    See :func:`~mpmath.diff` for additional details and supported
    keyword options.
    """
    if n == 0:
        return f
    def g(x):
        return ctx.diff(f, x, n, **options)
    return g

@defun
def taylor(ctx, f, x, n, **options):
    r"""
    Produces a degree-`n` Taylor polynomial around the point `x` of the
    given function `f`. The coefficients are returned as a list.

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nprint(chop(taylor(sin, 0, 5)))
        [0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333]

    The coefficients are computed using high-order numerical
    differentiation. The function must be possible to evaluate
    to arbitrary precision. See :func:`~mpmath.diff` for additional details
    and supported keyword options.

    Note that to evaluate the Taylor polynomial as an approximation
    of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed,
    and the point of the Taylor expansion must be subtracted from
    the argument:

        >>> p = taylor(exp, 2.0, 10)
        >>> polyval(p[::-1], 2.5 - 2.0)
        12.1824939606092
        >>> exp(2.5)
        12.1824939607035

    """
    gen = enumerate(ctx.diffs(f, x, n, **options))
    if options.get("chop", True):
        return [ctx.chop(d)/ctx.factorial(i) for i, d in gen]
    else:
        return [d/ctx.factorial(i) for i, d in gen]

@defun
def pade(ctx, a, L, M):
    r"""
    Computes a Pade approximation of degree `(L, M)` to a function.
    Given at least `L+M+1` Taylor coefficients `a` approximating
    a function `A(x)`, :func:`~mpmath.pade` returns coefficients of
    polynomials `P, Q` satisfying

    .. math ::

        P = \sum_{k=0}^L p_k x^k

        Q = \sum_{k=0}^M q_k x^k

        Q_0 = 1

        A(x) Q(x) = P(x) + O(x^{L+M+1})

    `P(x)/Q(x)` can provide a good approximation to an analytic function
    beyond the radius of convergence of its Taylor series (example
    from G.A. Baker 'Essentials of Pade Approximants' Academic Press,
    Ch.1A)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> one = mpf(1)
        >>> def f(x):
        ...     return sqrt((one + 2*x)/(one + x))
        ...
        >>> a = taylor(f, 0, 6)
        >>> p, q = pade(a, 3, 3)
        >>> x = 10
        >>> polyval(p[::-1], x)/polyval(q[::-1], x)
        1.38169105566806
        >>> f(x)
        1.38169855941551

    """
    # To determine L+1 coefficients of P and M coefficients of Q
    # L+M+1 coefficients of A must be provided
    if len(a) < L+M+1:
        raise ValueError("L+M+1 Coefficients should be provided")

    if M == 0:
        if L == 0:
            return [ctx.one], [ctx.one]
        else:
            return a[:L+1], [ctx.one]

    # Solve first
    # a[L]*q[1] + ... + a[L-M+1]*q[M] = -a[L+1]
    # ...
    # a[L+M-1]*q[1] + ... + a[L]*q[M] = -a[L+M]
    A = ctx.matrix(M)
    for j in range(M):
        for i in range(min(M, L+j+1)):
            A[j, i] = a[L+j-i]
    v = -ctx.matrix(a[(L+1):(L+M+1)])
    x = ctx.lu_solve(A, v)
    q = [ctx.one] + list(x)
    # compute p
    p = [0]*(L+1)
    for i in range(L+1):
        s = a[i]
        for j in range(1, min(M,i) + 1):
            s += q[j]*a[i-j]
        p[i] = s
    return p, q