This file is indexed.

/usr/lib/python2.7/dist-packages/bimdp/biflow.py is in python-mdp 3.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
"""
BiMDP Flow class for flexible (bidirectional) data flow.

The central class is a BiFlow, which implements all the flow handling options
offered by the BiNode class (see binode.py for a description).
"""
from __future__ import print_function
from builtins import zip
from builtins import str
from builtins import range
from builtins import object

# NOTE: make sure that isinstance(str, target) is never used, so that in
#    principle any object could be used.

import itertools

import mdp
n = mdp.numx

from .binode import BiNode

# this target value tells the flow to abort and return the current values
EXIT_TARGET = "exit"


class NoneIterable(object):
    """Iterable for an infinite sequence of Nones."""

    def __iter__(self):
        while True:
            yield None


class BiFlowException(mdp.FlowException):
    """Exception for BiFlow problems."""
    pass


class MessageResultContainer(object):
    """Store and combine msg output chunks from a BiNode.

    It is for example used when the flow execution yields msg output, which has
    to be joined for the end result.
    """

    def __init__(self):
        """Initialize the internal storage variables."""
        self._msg_results = dict()  # all none array message results
        self._msg_array_results = dict()  # result dict for arrays

    def add_message(self, msg):
        """Add a single msg result to the combined results.

        msg must be either a dict of results or None. numpy arrays will be
        transformed to a single numpy array in the end. For all other types the
        addition operator will be used to combine results (i.e., lists will be
        appended, single integers will be summed over).
        """
        if msg:
            for key in msg:
                if type(msg[key]) is n.ndarray:
                    if key not in self._msg_array_results:
                        self._msg_array_results[key] = []
                    self._msg_array_results[key].append(msg[key])
                else:
                    if key not in self._msg_results:
                        self._msg_results[key] = msg[key]
                    else:
                        try:
                            self._msg_results[key] += msg[key]
                        except:
                            err = ("Could not combine final msg results "
                                   "in BiFlow.")
                            raise BiFlowException(err)

    def get_message(self):
        """Return the msg which combines all the msg results."""
        # move array results from _msg_array_results to _msg_results
        for key in self._msg_array_results:
            if key in self._msg_results:
                err = ("A key in the msg results is used with "
                       "different data types.")
                raise BiFlowException(err)
            else:
                self._msg_results[key] = n.concatenate(
                                                self._msg_array_results[key])
        return self._msg_results


class BiFlow(mdp.Flow):
    """BiMDP version of a flow, which supports jumps between nodes.

    This capabilities can be used by classes derived from BiNode.

    Normal nodes can also be used in this flow, the msg argument is skipped
    for these. Normal nodes can be also jump targets, but only when a relative
    target index is used (since they do not support node ids).
    """

    def __init__(self, flow, verbose=False, **kwargs):
        kwargs["crash_recovery"] = False
        super(BiFlow, self).__init__(flow=flow, verbose=verbose, **kwargs)

    ### Basic Methods from Flow. ###

    def train(self, data_iterables, msg_iterables=None,
              stop_messages=None):
        """Train the nodes in the flow.

        The nodes will be trained according to their place in the flow.

        data_iterables -- Sequence of iterables with the training data for each
            trainable node. Can also be a single array or None.
            Note that iterables yielding tuples for additonal node arguments
            (e.g. the class labels for an FDANode) are not supported in a
            BiFlow. Instead use the BiNode version of the node and provide
            the arguments in the message (via msg_iterables).
        msg_iterables -- Sequence of iterables with the msg training data
            for each trainable node.
        stop_messages -- Sequence of messages for stop_training.

        Note that the type and iterator length of the data iterables is taken
        as reference, so the message iterables are assumed to have the
        same length.
        """
        # Note: When this method is updated BiCheckpointFlow should be updated
        #    as well.
        self._bi_reset()  # normaly not required, just for safety
        data_iterables, msg_iterables = self._sanitize_training_iterables(
                                            data_iterables=data_iterables,
                                            msg_iterables=msg_iterables)
        if stop_messages is None:
            stop_messages = [None] * len(data_iterables)
        # train each Node successively
        for i_node in range(len(self.flow)):
            if self.verbose:
                print ("training node #%d (%s)" %
                       (i_node, str(self.flow[i_node])))
            self._train_node(data_iterables[i_node], i_node,
                             msg_iterables[i_node], stop_messages[i_node])
            if self.verbose:
                print("training finished")

    def _train_node(self, iterable, nodenr, msg_iterable=None,
                    stop_msg=None):
        """Train a particular node.

        nodenr -- index of the node to be trained
        msg_iterable -- optional msg data for the training
            Note that the msg is only passed to the Node if it is an instance
            of BiNode.
        stop_msg -- optional msg data for stop_training
            Note that the message is only passed to the Node if the msg is not
            None, so for a normal node the msg has to be None.

        Note: unlike the normal mdp.Flow we do no exception handling here.
        """
        if not self.flow[nodenr].is_trainable():
            return
        iterable, msg_iterable, _ = self._sanitize_iterables(iterable,
                                                             msg_iterable)
        while True:
            if not self.flow[nodenr].get_remaining_train_phase():
                break
            self._train_node_single_phase(iterable, nodenr,
                                          msg_iterable, stop_msg)
            self._bi_reset()

    def _train_node_single_phase(self, iterable, nodenr,
                                 msg_iterable, stop_msg=None):
        """Perform a single training phase for a given node.

        This method should be only called internally in BiFlow.
        """
        empty_iterator = True
        for (x, msg) in zip(iterable, msg_iterable):
            empty_iterator = False
            ## execute the flow until the nodes return value is right
            i_node = 0
            while True:
                result = self._execute_seq(x, msg, i_node=i_node,
                                           stop_at_node=nodenr)
                ## check the execution result, target should be True
                if (not isinstance(result, tuple)) or (len(result) != 3):
                    err = ("The Node to be trained was not reached " +
                           "during training, last result: " + str(result))
                    raise BiFlowException(err)
                elif result[2] is True:
                    x = result[0]
                    msg = result[1]
                else:
                    err = ("Target node not found in flow during " +
                           "training, last target value: " + str(result[2]))
                    raise BiFlowException(err)
                ## perform node training
                if isinstance(self.flow[nodenr], BiNode):
                    result = self.flow[nodenr].train(x, msg)
                    if result is None:
                        # training is done for this chunk
                        break
                else:
                    try:
                        self.flow[nodenr].train(x)
                    except TypeError:
                        # check if error is caused by additional node arguments
                        train_arg_keys = self._get_required_train_args(
                                                        self.flow[nodenr])
                        if len(train_arg_keys):
                            err = ("The node '%s' " % str(self.flow[nodenr]) +
                                   "requires additional training " +
                                   " arguments, which is not supported in a " +
                                   "BiFlow. Instead use the BiNode version " +
                                   "of the node and put the arguments in " +
                                   "the msg.")
                            raise BiFlowException(err)
                        else:
                            raise
                    break
                ## training execution continues, interpret result
                if not isinstance(result, tuple):
                    x = result
                    msg = None
                    target = None
                elif len(result) == 2:
                    x, msg = result
                    target = None
                elif len(result) == 3:
                    x, msg, target = result
                else:
                    err = ("Node produced invalid return value " +
                           "during training: " + str(result))
                    raise BiFlowException(err)
                i_node = self._target_to_index(target, nodenr)
            self._bi_reset()
        if empty_iterator:
            if self.flow[nodenr].get_current_train_phase() == 1:
                err_str = ("The training data iteration for node "
                           "no. %d could not be repeated for the "
                           "second training phase, you probably "
                           "provided an iterable instead of an "
                           "iterable." % (nodenr+1))
                raise BiFlowException(err_str)
            else:
                err = ("The training data iterable for node "
                       "no. %d is empty." % (nodenr+1))
                raise BiFlowException(err)
        ## stop_training part
        # unlike the normal mdp.Flow we always close the training
        # to perform the stop_training phase
        self._stop_training_hook()
        if stop_msg is None:
            result = self.flow[nodenr].stop_training()
        else:
            result = self.flow[nodenr].stop_training(stop_msg)
        if result is None:
            # the training phase ends here without an execute phase
            return
        # start an execution phase
        if not isinstance(result, tuple):
            x = result
            msg = None
            target = None
        elif len(result) == 2:
            x, msg = result
            target = None
        elif len(result) == 3:
            x, msg, target = result
            if target == EXIT_TARGET:
                return
        else:
            err = ("Node produced invalid return value " +
                   "for stop_training: " + str(result))
            raise BiFlowException(err)
        i_node = self._target_to_index(target, nodenr)
        result = self._execute_seq(x, msg, i_node=i_node)
        # check that we reached the end of flow or get EXIT_TARGET,
        # only complain if the target was not found
        if isinstance(result, tuple) and len(result) == 3:
            target = result[2]
            if target not in [1, -1, EXIT_TARGET]:
                err = ("Target node not found in flow during " +
                       "stop_training phase, last target value: " +
                       str(target))
                raise BiFlowException(err)

    def execute(self, iterable, msg_iterable=None, target_iterable=None):
        """Execute the flow and return (y, msg).

        Note that the returned msg can be an empty dict, but not None.

        iterable -- Can be an iterable or iterator for arrays, a single array
            or None. In the last two cases it is assumed that msg is a single
            message as well.
        msg_iterable -- Can be an iterable or iterator or a single message
            (but only if iterable is a single array or None).
        target_iterable -- Like msg_iterable, but for target.

        Note that the type and iteration length of iterable is taken as
        reference, so msg is assumed to have the same length.

        If msg results are found and if iteration is used then the BiFlow
        tries to join the msg results (and concatenate in the case of arrays).
        """
        self._bi_reset()  # normaly not required, just for safety
        iterable, msg_iterable, target_iterable = \
            self._sanitize_iterables(iterable, msg_iterable, target_iterable)
        y_results = None
        msg_results = MessageResultContainer()
        empty_iterator = True
        for (x, msg, target) in zip(iterable, msg_iterable,
                                               target_iterable):
            empty_iterator = False
            if not target:
                i_node = 0
            else:
                i_node = self._target_to_index(target)
            result = self._execute_seq(x=x, msg=msg, i_node=i_node)
            if not isinstance(result, tuple):
                y = result
                msg = None
            elif (len(result) == 2):
                y, msg = result
            elif (len(result) == 3) and (result[2] in [1, -1, EXIT_TARGET]):
                # target -1 is allowed for easier inverse handling
                y, msg = result[:2]
            elif len(result) == 3:
                err = ("Target node not found in flow during execute," +
                       " last result: " + str(result))
                raise BiFlowException(err)
            else:
                err = ("BiNode execution returned invalid result type: " +
                       result)
                raise BiFlowException(err)
            self._bi_reset()
            if msg:
                msg_results.add_message(msg)
            # check if all y have the same type and store it
            # note that the checks for msg are less restrictive
            if y is not None:
                if y_results is None:
                    y_results = [y]
                elif y_results is False:
                    err = "Some but not all y return values were None."
                    raise BiFlowException(err)
                else:
                    y_results.append(y)
            else:
                if y_results is None:
                    y_results = False
                else:
                    err = "Some but not all y return values were None."
                    raise BiFlowException(err)
        if empty_iterator:
            err = ("The execute data iterable is empty.")
            raise BiFlowException(err)
        # consolidate results
        if y_results:
            y_results = n.concatenate(y_results)
        result_msg = msg_results.get_message()
        return y_results, result_msg

    def __call__(self, iterable, msg_iterable=None):
        """Calling an instance is equivalent to call its 'execute' method."""
        return self.execute(iterable, msg_iterable=msg_iterable)

    ### New Methods for BiMDP. ###

    def _bi_reset(self):
        """Reset the nodes and internal flow variables."""
        for node in self.flow:
            if isinstance(node, BiNode):
                node.bi_reset()

    def _request_node_id(self, node_id):
        """Return first hit of _request_node_id on internal nodes.

        So _request_node_id is called for all nodes in the flow until a return
        value is not None. If no such node is found the return value is None.
        """
        for node in self.flow:
            if isinstance(node, BiNode):
                found_node = node._request_node_id(node_id)
                if found_node:
                    return found_node
        return None

    ## container special methods to support node_id

    def __getitem__(self, key):
        if isinstance(key, __builtins__['str']):
            item = self._request_node_id(key)
            if item is None:
                err = ("This biflow contains no node with with the id " +
                       str(key))
                raise KeyError(err)
            return item
        else:
            return super(BiFlow, self).__getitem__(key)

    def __setitem__(self, key, value):
        if isinstance(key, __builtins__['str']):
            err = "Setting nodes by node_id is not supported."
            raise BiFlowException(err)
        else:
            super(BiFlow, self).__setitem__(key, value)

    def __delitem__(self, key):
        if isinstance(key, __builtins__['str']):
            err = "Deleting nodes by node_id is not supported."
            raise BiFlowException(err)
        else:
            super(BiFlow, self).__delitem__(key)

    def __contains__(self, key):
        if isinstance(key, __builtins__['str']):
            if self._request_node_id(key) is not None:
                return True
            else:
                return False
        else:
            return super(BiFlow, self).__contains__(key)

    ### Flow Implementation Methods ###

    def _sanitize_training_iterables(self, data_iterables, msg_iterables):
        """Check and adjust the training iterable list."""
        if data_iterables is None:
            if msg_iterables is None:
                err = ("Both the training data and the training messages are "
                       "None.")
                raise BiFlowException(err)
            else:
                data_iterables = [None] * len(self.flow)
        elif isinstance(data_iterables, n.ndarray):
            data_iterables = [[data_iterables]] * len(self.flow)
            # the form of msg_iterables follows that of data_iterables
            msg_iterables = [[msg_iterables]] * len(data_iterables)
        else:
            data_iterables = self._train_check_iterables(data_iterables)
            if msg_iterables is None:
                msg_iterables = [None] * len(self.flow)
            else:
                msg_iterables = self._train_check_iterables(msg_iterables)
        return data_iterables, msg_iterables

    def _sanitize_iterables(self, iterable, msg_iterable, target_iterable=None):
        """Check and adjust a data, message and target iterable."""
        # TODO: maybe add additional checks
        if isinstance(iterable, n.ndarray):
            iterable = [iterable]
            msg_iterable = [msg_iterable]
            target_iterable = [target_iterable]
        elif iterable is None:
            if msg_iterable is None:
                err = "Both the data and the message iterable is None."
                raise BiFlowException(err)
            else:
                iterable = NoneIterable()
                if isinstance(msg_iterable, dict):
                    msg_iterable = [msg_iterable]
                    target_iterable = [target_iterable]
        else:
            if msg_iterable is None:
                msg_iterable = NoneIterable()
            if target_iterable is None:
                target_iterable = NoneIterable()
        return iterable, msg_iterable, target_iterable

    def _target_to_index(self, target, current_node=0):
        """Return the absolute node index of the target code.

        If the string id target node is not found in this flow then the string
        is returned without alteration.

        When a relative index is given it is translated to the absolute index
        and it is checked if it is in the allowed range.

        target -- Can be a string node id, a relative index or None (which
            is interpreted as 1).
        current_node -- If target is specified as a relative index then this
            node index is used to translate the target to the absolute node
            index (otherwise it has no effect).
        check_bounds -- If False then it is not checked wether the node index
            is in range(len(flow)).
        """
        if target == EXIT_TARGET:
            return EXIT_TARGET
        if target is None:
            target = 1
        if not isinstance(target, int):
            for i_node, node in enumerate(self.flow):
                if isinstance(node, BiNode) and node._request_node_id(target):
                    return i_node
            # no matching node was found
            return target
        else:
            absolute_index = current_node + target
            if absolute_index < 0:
                err = "Target int value references node at position < 0."
                raise BiFlowException(err)
            elif absolute_index >= len(self.flow):
                err = ("Target int value references a node"
                       " beyond the flow length (target " + str(target) +
                       ", current node " + str(current_node) + ").")
                raise BiFlowException(err)
            return absolute_index

    # TODO: update docstring for case when target is not found

    def _execute_seq(self, x, msg=None, i_node=0, stop_at_node=None):
        """Execute the whole flow as far as possible.

        i_node -- Can specify a node index where the excecution is supposed to
            start.
        stop_at_node -- Node index where the execution should stop. The input
            values for this node are returned in this case in the form
            (x, msg, target) with target being set to True.

        If the end of the flow is reached then the return value is y
        or (y, msg).
        If the an execution target node is not found then (x, msg, target) is
        returned (target values of 1 and -1 are also possible).
        If a normal Node (not derived from BiNode) is encountered then the
        current msg is simply carried forward around it.
        """
        ## this method is also used by other classes, like BiFlowNode
        while i_node != stop_at_node:
            if isinstance(self.flow[i_node], BiNode):
                result = self.flow[i_node].execute(x, msg)
                # check the type of the result
                if type(result) is not tuple:
                    x = result
                    msg = None
                    target = 1
                elif len(result) == 2:
                    x, msg = result
                    target = 1
                elif len(result) == 3:
                    x, msg, target = result
                else:
                    err = ("BiNode execution returned invalid result type: " +
                           result)
                    raise BiFlowException(err)
            else:
                # just a normal MDP node
                x = self.flow[i_node].execute(x)
                # note that the message is carried forward unchanged
                target = 1
            ## check if the target is in this flow, return otherwise
            if isinstance(target, int):
                i_node = i_node + target
                # values of +1 and -1 beyond this flow are allowed
                if i_node == len(self.flow):
                    if not msg:
                        return x
                    else:
                        return (x, msg)
                elif i_node == -1:
                    return x, msg, -1
            else:
                i_node = self._target_to_index(target, i_node)
                if not isinstance(i_node, int):
                    # target not found in this flow
                    # this is also the exit point when EXIT_TARGET is given
                    return x, msg, target
        # reached stop_at_node, signal this by returning target value True
        return x, msg, True


### Some useful flow classes. ###

class BiCheckpointFlow(BiFlow, mdp.CheckpointFlow):
    """Similar to normal checkpoint flow.

    The main difference is that even the last training phase of a
    node is already closed before the checkpoint function is called.
    """

    def train(self, data_iterables, checkpoints, msg_iterables=None,
              stop_messages=None):
        """Train the nodes in the flow.

        The nodes will be trained according to their place in the flow.

        Additionally calls the checkpoint function 'checkpoint[i]'
        when the training phase of node #i is over.
        A checkpoint function takes as its only argument the trained node.
        If the checkpoint function returns a dictionary, its content is
        added to the instance's dictionary.
        The class CheckpointFunction can be used to define user-supplied
        checkpoint functions.
        """
        self._bi_reset()  # normaly not required, just for safety
        data_iterables, msg_iterables = self._sanitize_training_iterables(
                                                 data_iterables=data_iterables,
                                                 msg_iterables=msg_iterables)
        if stop_messages is None:
            stop_messages = [None] * len(data_iterables)
        checkpoints = self._train_check_checkpoints(checkpoints)
        # train each Node successively
        for i_node in range(len(self.flow)):
            if self.verbose:
                print ("training node #%d (%s)" %
                       (i_node, str(self.flow[i_node])))
            self._train_node(data_iterables[i_node], i_node,
                             msg_iterables[i_node], stop_messages[i_node])
            if i_node <= len(checkpoints) and checkpoints[i_node] is not None:
                checkpoint_dict = checkpoints[i_node](self.flow[i_node])
                if dict:
                    self.__dict__.update(checkpoint_dict)
            if self.verbose:
                print("training finished")