This file is indexed.

/usr/share/doc/python-linop-doc/html/intro.html is in python-linop-doc 0.8.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Introduction &mdash; linop 0.8.2 documentation</title>
    
    <link rel="stylesheet" href="_static/agogo.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '0.8.2',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="_static/MathJax.js"></script>
    <link rel="top" title="linop 0.8.2 documentation" href="index.html" />
    <link rel="next" title="The linop Module" href="linop.html" />
    <link rel="prev" title="linop documentation" href="index.html" /> 
  </head>
  <body>
    <div class="header-wrapper">
      <div class="header">
        <div class="headertitle"><a
          href="index.html">linop 0.8.2 documentation</a></div>
        <div class="rel">
          <a href="index.html" title="linop documentation"
             accesskey="P">previous</a> |
          <a href="linop.html" title="The linop Module"
             accesskey="N">next</a> |
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> |
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a>
        </div>
       </div>
    </div>

    <div class="content-wrapper">
      <div class="content">
        <div class="document">
            
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="introduction">
<h1>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">ΒΆ</a></h1>
<p>When working towards a solution of a linear system <span class="math">\(Ax=b\)</span>, Krylov methods
do not need to know anything structural about the matrix <span class="math">\(A\)</span>; all they
require is the ability to form matrix-vector products <span class="math">\(v \mapsto Av\)</span> and,
possibly, products with the transpose <span class="math">\(u \mapsto A^T u\)</span>. In essence, we
do not even need the <em>operator</em> <span class="math">\(A\)</span> to be represented by a matrix at all;
we simply consider it as a linear function.</p>
<p>In PyKrylov, such linear functions can be conveniently packaged as
<tt class="docutils literal"><span class="pre">LinearOperator</span></tt> objects. If <tt class="docutils literal"><span class="pre">A</span></tt> is an instance of <tt class="docutils literal"><span class="pre">LinearOperator</span></tt> and
represents the &#8220;matrix&#8221; <span class="math">\(A\)</span> above, we may computes matrix-vector products
by simply writing <tt class="docutils literal"><span class="pre">A*v</span></tt>, where <tt class="docutils literal"><span class="pre">v</span></tt> is a Numpy array of appropriate size.</p>
<p>Similarly, if a Krylov method requires access to the transpose operator
<span class="math">\(A^T\)</span>, it is conveniently available as <tt class="docutils literal"><span class="pre">A.T</span></tt> and products may be
computed using, e.g., <tt class="docutils literal"><span class="pre">A.T</span> <span class="pre">*</span> <span class="pre">u</span></tt>. If <tt class="docutils literal"><span class="pre">A</span></tt> represents a symmetric operator
<span class="math">\(A = A^T\)</span>, then <tt class="docutils literal"><span class="pre">A.T</span></tt> is simply a reference to <tt class="docutils literal"><span class="pre">A</span></tt> itself.</p>
<p>More generally, since <span class="math">\((A^T)^T = A\)</span>, the Python statement <tt class="docutils literal"><span class="pre">A.T.T</span> <span class="pre">is</span> <span class="pre">A</span></tt>
always evaluates to <tt class="docutils literal"><span class="pre">True</span></tt>, which means that they are the <em>same</em> object.</p>
<p>In the next two sections, we describe generic linear operators and linear
operators constructed by blocks.</p>
</div>


          </div>
        </div>
      </div>
        </div>
        <div class="sidebar">
          <h3>Table Of Contents</h3>
          <ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="">Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="linop.html">Linear Operators</a></li>
<li class="toctree-l1"><a class="reference internal" href="blkop.html">Block Linear Operators</a></li>
</ul>

          <h3 style="margin-top: 1.5em;">Search</h3>
          <form class="search" action="search.html" method="get">
            <input type="text" name="q" />
            <input type="submit" value="Go" />
            <input type="hidden" name="check_keywords" value="yes" />
            <input type="hidden" name="area" value="default" />
          </form>
          <p class="searchtip" style="font-size: 90%">
            Enter search terms or a module, class or function name.
          </p>
        </div>
        <div class="clearer"></div>
      </div>
    </div>

    <div class="footer-wrapper">
      <div class="footer">
        <div class="left">
          <a href="index.html" title="linop documentation"
             >previous</a> |
          <a href="linop.html" title="The linop Module"
             >next</a> |
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> |
          <a href="genindex.html" title="General Index"
             >index</a>
            <br/>
            <a href="_sources/intro.txt"
               rel="nofollow">Show Source</a>
        </div>

        <div class="right">
          
    <div class="footer">
        &copy; Copyright 2013, G. Vaillant.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.2.3.
    </div>
        </div>
        <div class="clearer"></div>
      </div>
    </div>

  </body>
</html>