/usr/lib/python2.7/dist-packages/ginga/AutoCuts.py is in python-ginga 2.6.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | #
# AutoCuts.py -- class for calculating auto cut levels
#
# This is open-source software licensed under a BSD license.
# Please see the file LICENSE.txt for details.
#
import numpy
import time
import threading
from ginga.misc import Bunch
#from ginga.misc.ParamSet import Param
from ginga.util import zscale
have_scipy = True
autocut_methods = ('minmax', 'median', 'histogram', 'stddev', 'zscale')
try:
import scipy.ndimage.filters
import scipy.optimize as optimize
#import scipy.misc
except ImportError:
have_scipy = False
autocut_methods = ('minmax', 'histogram', 'stddev', 'zscale')
# Lock to work around a non-threadsafe bug in scipy
_lock = threading.RLock()
class Param(Bunch.Bunch):
pass
class AutoCutsError(Exception):
pass
class AutoCutsBase(object):
@classmethod
def get_params_metadata(cls):
return []
def __init__(self, logger):
super(AutoCutsBase, self).__init__()
self.logger = logger
self.kind = 'base'
self.crop_radius = 512
def get_algorithms(self):
return autocut_methods
def get_autocut_levels(self, image):
loval, hival = self.calc_cut_levels(image)
return loval, hival
def get_crop(self, image, crop_radius=None):
# Even with numpy, it's kind of slow for some of the autocut
# methods on a large image, so in those cases we can optionally
# take a crop of size (radius*2)x(radius*2) from the center of
# the image and calculate the cut levels on that
if crop_radius is None:
crop_radius = self.crop_radius
wd, ht = image.get_size()
(data, x1, y1, x2, y2) = image.cutout_radius(wd//2, ht//2,
crop_radius)
return data
def cut_levels(self, data, loval, hival, vmin=0.0, vmax=255.0):
loval, hival = float(loval), float(hival)
self.logger.debug("loval=%.2f hival=%.2f" % (loval, hival))
delta = hival - loval
if delta != 0.0:
data = data.clip(loval, hival)
f = ((data - loval) / delta)
else:
#f = (data - loval).clip(0.0, 1.0)
f = data - loval
f.clip(0.0, 1.0, out=f)
# threshold
f[numpy.nonzero(f)] = 1.0
# f = f.clip(0.0, 1.0) * vmax
# NOTE: optimization using in-place outputs for speed
f.clip(0.0, 1.0, out=f)
numpy.multiply(f, vmax, out=f)
return f
def __str__(self):
return self.kind
class Clip(AutoCutsBase):
def __init__(self, logger):
super(Clip, self).__init__(logger)
self.kind = 'clip'
def calc_cut_levels(self, image):
loval, hival = image.get_minmax()
return (float(loval), float(hival))
def cut_levels(self, data, loval, hival, vmin=0.0, vmax=255.0):
return data.clip(vmin, vmax)
class Minmax(AutoCutsBase):
def __init__(self, logger):
super(Minmax, self).__init__(logger)
self.kind = 'minmax'
def calc_cut_levels(self, image):
loval, hival = image.get_minmax()
return (float(loval), float(hival))
class Histogram(AutoCutsBase):
@classmethod
def get_params_metadata(cls):
return [
Param(name='usecrop', type=_bool,
valid=[True, False],
default=True,
description="Use center crop of image for speed"),
Param(name='pct', type=float,
widget='spinfloat', incr=0.001,
min=0.0, max=1.0, default=0.999,
description="Percentage of the histogram to retain"),
Param(name='numbins', type=int,
min=100, max=10000, default=2048,
description="Number of bins for the histogram"),
]
def __init__(self, logger, usecrop=True, pct=0.999, numbins=2048):
super(Histogram, self).__init__(logger)
self.kind = 'histogram'
self.usecrop = usecrop
self.pct = pct
self.numbins = numbins
def calc_cut_levels(self, image):
if self.usecrop:
data = self.get_crop(image)
else:
data = image.get_data()
bnch = self.calc_histogram(data, pct=self.pct, numbins=self.numbins)
loval, hival = bnch.loval, bnch.hival
return loval, hival
def calc_histogram(self, data, pct=1.0, numbins=2048):
self.logger.debug("Computing histogram, pct=%.4f numbins=%d" % (
pct, numbins))
height, width = data.shape[:2]
self.logger.debug("Median analysis array is %dx%d" % (
width, height))
total_px = width * height
dsum = numpy.sum(data)
if numpy.isnan(dsum) or numpy.isinf(dsum):
# Oh crap, the array has a NaN or Inf value.
# We have to workaround this by making a copy of the array
# and substituting for the problem values, otherwise numpy's
# histogram() cannot handle it
self.logger.warning("NaN's found in data, using workaround for histogram")
data = data.copy()
# TODO: calculate a reasonable replacement value
data[numpy.isinf(data)] = 0.0
minval = numpy.nanmin(data)
maxval = numpy.nanmax(data)
substval = (minval + maxval)/2.0
data[numpy.isnan(data)] = substval
data[numpy.isinf(data)] = substval
## dsum = numpy.sum(data)
## if numpy.isnan(dsum) or numpy.isinf(dsum):
## print "NaNs STILL PRESENT"
dist, bins = numpy.histogram(data, bins=numbins,
density=False)
else:
dist, bins = numpy.histogram(data, bins=numbins,
density=False)
cutoff = int((float(total_px)*(1.0-pct))/2.0)
top = len(dist)-1
self.logger.debug("top=%d cutoff=%d" % (top, cutoff))
#print "DIST: %s\nBINS: %s" % (str(dist), str(bins))
# calculate low cutoff
cumsum = numpy.cumsum(dist)
li = numpy.flatnonzero(cumsum > cutoff)
if len(li) > 0:
i = li[0]
count_px = cumsum[i]
else:
i = 0
count_px = 0
if i > 0:
nprev = cumsum[i-1]
else:
nprev = 0
loidx = i
# interpolate between last two low bins
val1, val2 = bins[i], bins[i+1]
divisor = float(count_px) - float(nprev)
if divisor > 0.0:
interp = (float(cutoff)-float(nprev))/ divisor
else:
interp = 0.0
loval = val1 + ((val2 - val1) * interp)
self.logger.debug("loval=%f val1=%f val2=%f interp=%f" % (
loval, val1, val2, interp))
# calculate high cutoff
revdist = dist[::-1]
cumsum = numpy.cumsum(revdist)
li = numpy.flatnonzero(cumsum > cutoff)
if len(li) > 0:
i = li[0]
count_px = cumsum[i]
else:
i = 0
count_px = 0
if i > 0:
nprev = cumsum[i-1]
else:
nprev = 0
j = top - i
hiidx = j+1
# interpolate between last two high bins
val1, val2 = bins[j], bins[j+1]
divisor = float(count_px) - float(nprev)
if divisor > 0.0:
interp = (float(cutoff)-float(nprev))/ divisor
else:
interp = 0.0
hival = val1 + ((val2 - val1) * interp)
self.logger.debug("hival=%f val1=%f val2=%f interp=%f" % (
hival, val1, val2, interp))
return Bunch.Bunch(dist=dist, bins=bins, loval=loval, hival=hival,
loidx=loidx, hiidx=hiidx)
class StdDev(AutoCutsBase):
@classmethod
def get_params_metadata(cls):
return [
Param(name='usecrop', type=_bool,
valid=[True, False],
default=True,
description="Use center crop of image for speed"),
## Param(name='hensa_lo', type=float, default=35.0,
## description="Low subtraction factor"),
## Param(name='hensa_hi', type=float, default=90.0,
## description="High subtraction factor"),
]
def __init__(self, logger, usecrop=True):
super(StdDev, self).__init__(logger)
self.kind = 'stddev'
# Constants used to calculate the lo and hi cut levels using the
# "stddev" algorithm (from the old SOSS fits viewer)
self.usecrop = usecrop
self.hensa_lo = 35.0
self.hensa_hi = 90.0
def calc_cut_levels(self, image):
if self.usecrop:
data = self.get_crop(image)
else:
data = image.get_data()
loval, hival = self.calc_stddev(data, hensa_lo=self.hensa_lo,
hensa_hi=self.hensa_hi)
return loval, hival
def calc_stddev(self, data, hensa_lo=35.0, hensa_hi=90.0):
# This is the method used in the old SOSS fits viewer
mdata = numpy.ma.masked_array(data, numpy.isnan(data))
mean = numpy.mean(mdata)
sdev = numpy.std(mdata)
self.logger.debug("mean=%f std=%f" % (mean, sdev))
hensa_lo_factor = (hensa_lo - 50.0) / 10.0
hensa_hi_factor = (hensa_hi - 50.0) / 10.0
loval = hensa_lo_factor * sdev + mean
hival = hensa_hi_factor * sdev + mean
return loval, hival
class MedianFilter(AutoCutsBase):
@classmethod
def get_params_metadata(cls):
return [
## Param(name='usecrop', type=_bool,
## valid=set([True, False]),
## default=True,
## description="Use center crop of image for speed"),
Param(name='num_points', type=int,
default=2000, allow_none=True,
description="Number of points to sample"),
Param(name='length', type=int, default=5,
description="Median kernel length"),
]
def __init__(self, logger, num_points=2000, length=5):
super(MedianFilter, self).__init__(logger)
self.kind = 'median'
self.num_points = num_points
self.length = length
def calc_cut_levels(self, image):
wd, ht = image.get_size()
# sample the data
xmax = wd - 1
ymax = ht - 1
# evenly spaced sampling over rows and cols
xskip = int(max(1.0, numpy.sqrt(xmax * ymax / float(self.num_points))))
yskip = xskip
cutout = image.cutout_data(0, 0, xmax, ymax,
xstep=xskip, ystep=yskip)
loval, hival = self.calc_medianfilter(cutout, length=self.length)
return loval, hival
def calc_medianfilter(self, data, length=5):
assert len(data.shape) >= 2, \
AutoCutsError("input data should be 2D or greater")
if length is None:
length = 5
xout = scipy.ndimage.filters.median_filter(data, size=length)
loval = numpy.nanmin(xout)
hival = numpy.nanmax(xout)
return loval, hival
class ZScale(AutoCutsBase):
"""
Based on STScI's numdisplay implementation of IRAF's ZScale.
"""
@classmethod
def get_params_metadata(cls):
return [
Param(name='contrast', type=float,
default=0.25, allow_none=False,
description="Contrast"),
Param(name='num_points', type=int,
default=1000, allow_none=True,
description="Number of points to sample"),
]
def __init__(self, logger, contrast=0.25, num_points=1000):
super(ZScale, self).__init__(logger)
self.kind = 'zscale'
self.contrast = contrast
self.num_points = num_points
def calc_cut_levels(self, image):
wd, ht = image.get_size()
# calculate num_points parameter, if omitted
total_points = wd * ht
num_points = self.num_points
if num_points is None:
num_points = max(int(total_points * 0.0002), 1000)
num_points = min(num_points, total_points)
assert (0 < num_points <= total_points), \
AutoCutsError("num_points not in range 0-%d" % (total_points))
# sample the data
xmax = wd - 1
ymax = ht - 1
# evenly spaced sampling over rows and cols
xskip = int(max(1.0, numpy.sqrt(xmax * ymax / float(num_points))))
yskip = xskip
cutout = image.cutout_data(0, 0, xmax, ymax,
xstep=xskip, ystep=yskip)
loval, hival = self.calc_zscale(cutout, contrast=self.contrast,
num_points=self.num_points)
return loval, hival
def calc_zscale(self, data, contrast=0.25, num_points=1000):
# NOTE: num_per_row is ignored in this implementation
assert len(data.shape) >= 2, \
AutoCutsError("input data should be 2D or greater")
ht, wd = data.shape[:2]
# sanity check on contrast parameter
assert (0.0 < contrast <= 1.0), \
AutoCutsError("contrast (%.2f) not in range 0 < c <= 1" % (
contrast))
# remove NaN and Inf from samples
samples = data[numpy.isfinite(data)].flatten()
samples = samples[:num_points]
loval, hival = zscale.zscale_samples(samples, contrast=contrast)
return loval, hival
class ZScale2(AutoCutsBase):
@classmethod
def get_params_metadata(cls):
return [
Param(name='contrast', type=float,
default=0.25, allow_none=True,
description="Contrast"),
Param(name='num_points', type=int,
default=600, allow_none=True,
description="Number of points to sample"),
Param(name='num_per_row', type=int,
default=None, allow_none=True,
description="Number of points to sample"),
]
def __init__(self, logger, contrast=0.25, num_points=1000,
num_per_row=None):
super(ZScale2, self).__init__(logger)
self.kind = 'zscale'
self.contrast = contrast
self.num_points = num_points
self.num_per_row = num_per_row
def calc_cut_levels(self, image):
data = image.get_data()
loval, hival = self.calc_zscale(data, contrast=self.contrast,
num_points=self.num_points,
num_per_row=self.num_per_row)
return loval, hival
def calc_zscale(self, data, contrast=0.25,
num_points=1000, num_per_row=None):
"""
From the IRAF documentation:
The zscale algorithm is designed to display the image values
near the median image value without the time consuming process of
computing a full image histogram. This is particularly useful for
astronomical images which generally have a very peaked histogram
corresponding to the background sky in direct imaging or the
continuum in a two dimensional spectrum.
The sample of pixels, specified by values greater than zero in the
sample mask zmask or by an image section, is selected up to a
maximum of nsample pixels. If a bad pixel mask is specified by the
bpmask parameter then any pixels with mask values which are greater
than zero are not counted in the sample. Only the first pixels up
to the limit are selected where the order is by line beginning from
the first line. If no mask is specified then a grid of pixels with
even spacing along lines and columns that make up a number less
than or equal to the maximum sample size is used.
If a contrast of zero is specified (or the zrange flag is used and
the image does not have a valid minimum/maximum value) then the
minimum and maximum of the sample is used for the intensity mapping
range.
If the contrast is not zero the sample pixels are ranked in
brightness to form the function I(i), where i is the rank of the
pixel and I is its value. Generally the midpoint of this function
(the median) is very near the peak of the image histogram and there
is a well defined slope about the midpoint which is related to the
width of the histogram. At the ends of the I(i) function there are
a few very bright and dark pixels due to objects and defects in the
field. To determine the slope a linear function is fit with
iterative rejection;
I(i) = intercept + slope * (i - midpoint)
If more than half of the points are rejected then there is no well
defined slope and the full range of the sample defines z1 and z2.
Otherwise the endpoints of the linear function are used (provided
they are within the original range of the sample):
z1 = I(midpoint) + (slope / contrast) * (1 - midpoint)
z2 = I(midpoint) + (slope / contrast) * (npoints - midpoint)
As can be seen, the parameter contrast may be used to adjust the
contrast produced by this algorithm.
"""
assert len(data.shape) >= 2, \
AutoCutsError("input data should be 2D or greater")
ht, wd = data.shape[:2]
assert (0.0 < contrast <= 1.0), \
AutoCutsError("contrast (%.2f) not in range 0 < c <= 1" % (
contrast))
# calculate num_points parameter, if omitted
total_points = numpy.size(data)
if num_points is None:
num_points = max(int(total_points * 0.0002), 600)
num_points = min(num_points, total_points)
assert (0 < num_points <= total_points), \
AutoCutsError("num_points not in range 0-%d" % (total_points))
# calculate num_per_row parameter, if omitted
if num_per_row is None:
num_per_row = max(int(0.015 * num_points), 1)
self.logger.debug("contrast=%.4f num_points=%d num_per_row=%d" % (
contrast, num_points, num_per_row))
# sample the data
num_rows = num_points // num_per_row
xmax = wd - 1
xskip = max(xmax // num_per_row, 1)
ymax = ht - 1
yskip = max(ymax // num_rows, 1)
# evenly spaced sampling over rows and cols
## xskip = int(max(1.0, numpy.sqrt(xmax * ymax / float(num_points))))
## yskip = xskip
cutout = data[0:ymax:yskip, 0:xmax:xskip]
# flatten and trim off excess
cutout = cutout.flat[0:num_points]
# actual number of points selected
num_pix = len(cutout)
assert num_pix <= num_points, \
AutoCutsError("Actual number of points (%d) exceeds calculated number (%d)" % (
num_pix, num_points))
# sort the data by value
cutout = numpy.sort(cutout)
# flat distribution?
data_min = numpy.nanmin(cutout)
data_max = numpy.nanmax(cutout)
if (data_min == data_max) or (contrast == 0.0):
return (data_min, data_max)
# compute the midpoint and median
midpoint = (num_pix // 2)
if num_pix % 2 != 0:
median = cutout[midpoint]
else:
median = 0.5 * (cutout[midpoint-1] + cutout[midpoint])
self.logger.debug("num_pix=%d midpoint=%d median=%.4f" % (
num_pix, midpoint, median))
## # Remove outliers to aid fitting
## threshold = numpy.std(cutout) * 2.5
## cutout = cutout[numpy.where(numpy.fabs(cutout - median) > threshold)]
## num_pix = len(cutout)
# zscale fitting function:
# I(x) = slope * (x - midpoint) + intercept
def fitting(x, slope, intercept):
y = slope * (x - midpoint) + intercept
return y
# compute a least squares fit
X = numpy.arange(num_pix)
Y = cutout
sigma = numpy.array([ 1.0 ]* num_pix)
guess = numpy.array([0.0, 0.0])
# Curve fit
with _lock:
# NOTE: without this mutex, optimize.curvefit causes a fatal error
# sometimes--it appears not to be thread safe.
# The error is:
# "SystemError: null argument to internal routine"
# "Fatal Python error: GC object already tracked"
try:
p, cov = optimize.curve_fit(fitting, X, Y, guess, sigma)
except Exception as e:
self.logger.debug("curve fitting failed: %s" % (str(e)))
cov = None
if cov is None:
self.logger.debug("curve fitting failed")
return (float(data_min), float(data_max))
slope, intercept = p
num_chosen = 0
self.logger.debug("intercept=%f slope=%f" % (
intercept, slope))
## if num_chosen < (num_pix // 2):
## self.logger.debug("more than half pixels rejected--falling back to min/max of sample")
## return (data_min, data_max)
# finally, compute the range
falloff = slope / contrast
z1 = median - midpoint * falloff
z2 = median + (num_pix - midpoint) * falloff
# final sanity check on cut levels
locut = max(z1, data_min)
hicut = min(z2, data_max)
if locut >= hicut:
locut = data_min
hicut = data_max
return (float(locut), float(hicut))
# funky boolean converter
_bool = lambda st: str(st).lower() == 'true'
autocuts_table = {
'clip': Clip,
'minmax': Minmax,
'stddev': StdDev,
'histogram': Histogram,
'median': MedianFilter,
'zscale': ZScale,
#'zscale2': ZScale2,
}
def get_autocuts(name):
if not name in autocut_methods:
raise AutoCutsError("Method '%s' is not supported" % (name))
return autocuts_table[name]
def get_autocuts_names():
l = list(autocuts_table.keys())
l.sort()
return l
# END
|