This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/tensor/monomialtransformation.py is in python-ffc 2016.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# -*- coding: utf-8 -*-
"Transformation of monomial representations of UFL forms."

# Copyright (C) 2009 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian B. Oelgaard, 2009
# Modified by Marie E. Rognes, 2010
#
# First added:  2009-03-06
# Last changed: 2010-02-17

# UFL modules
from ufl.classes import Argument
from ufl.classes import Coefficient
from ufl.classes import FixedIndex
from ufl.permutation import build_component_numbering

# FFC modules
from ffc.log import info, error, ffc_assert
from ffc.fiatinterface import create_element
from ffc.utils import all_equal
from ffc.representationutils import transform_component

# FFC tensor representation modules
from ffc.tensor.monomialextraction import MonomialForm
from ffc.tensor.monomialextraction import MonomialException


def transform_monomial_form(monomial_form):
    "Transform monomial form to reference element."

    info("Transforming monomial form to reference element")

    # Check that we get a monomial form
    ffc_assert(isinstance(monomial_form, MonomialForm),
               "Expecting a MonomialForm.")

    # Note that we check if each monomial has been transformed before
    # and if so we leave it untouched. This is to prevent repeated
    # transformation (which fails) which may sometimes happen as a
    # result of extracted integrands being cached by the monomial
    # extraction.

    # Transform each integral
    for integrand in monomial_form:
        for (i, monomial) in enumerate(integrand.monomials):
            if not isinstance(monomial, TransformedMonomial):
                integrand.monomials[i] = TransformedMonomial(monomial)


class MonomialIndex:

    """
    This class represents a monomial index. Each index has a type,
    a range and a unique id. Valid index types are listed below.
    """

    FIXED = "fixed"      # Integer index
    PRIMARY = "primary"    # Argument basis function index
    SECONDARY = "secondary"  # Index appearing both inside and outside integral
    INTERNAL = "internal"   # Index appearing only inside integral
    EXTERNAL = "external"   # Index appearing only outside integral

    def __init__(self, index=None, index_type=None, index_range=None,
                 index_id=None):
        "Create index with given type, range and id."
        if isinstance(index, MonomialIndex):
            self.index_type = index.index_type
            self.index_range = [i for i in index.index_range]
            self.index_id = index.index_id
        else:
            self.index_type = index_type
            self.index_range = index_range
            self.index_id = index_id

    def __lt__(self, other):
        "Comparison operator."
        return self.index_id < other.index_id

    def __call__(self, primary=None, secondary=None, internal=None,
                 external=None):
        "Evaluate index at current index list."

        if self.index_type == MonomialIndex.FIXED:
            return self.index_range[0]
        elif self.index_type == MonomialIndex.PRIMARY:
            if not primary:
                error("Missing index values for primary indices.")
            return primary[self.index_id]
        elif self.index_type == MonomialIndex.SECONDARY:
            if not secondary:
                error("Missing index values for secondary indices.")
            return secondary[self.index_id]
        elif self.index_type == MonomialIndex.INTERNAL:
            if not internal:
                error("Missing index values for internal auxiliary indices.")
            return internal[self.index_id]
        elif self.index_type == MonomialIndex.EXTERNAL:
            if not external:
                error("Missing index values for external auxiliary indices.")
            return external[self.index_id]
        else:
            error("Unknown index type " + str(self.type))

    def __add__(self, offset):
        "Add offset to index range."
        index = MonomialIndex(self)
        index.index_range = [offset + i for i in index.index_range]
        return index

    def __sub__(self, offset):
        "Subtract offset from index range."
        return self + (-offset)

    def __str__(self):
        "Return informal string representation (pretty-print)."
        if self.index_type == MonomialIndex.FIXED:
            return str(self.index_range[0])
        elif self.index_type == MonomialIndex.PRIMARY:
            return "i_" + str(self.index_id)
        elif self.index_type == MonomialIndex.SECONDARY:
            return "a_" + str(self.index_id)
        elif self.index_type == MonomialIndex.INTERNAL:
            return "g_" + str(self.index_id)
        elif self.index_type == MonomialIndex.EXTERNAL:
            return "b_" + str(self.index_id)
        else:
            return "?"


class MonomialDeterminant:

    "This class representes a determinant factor in a monomial."

    def __init__(self, power=None, restriction=None):
        "Create empty monomial determinant."
        if power is None:
            self.power = 0
        else:
            self.power = power
        self.restriction = restriction

    def __str__(self):
        "Return informal string representation (pretty-print)."
        # FIXME: This pretty-print is plain misleading b/c of the
        # implicit relic factor |det J| etc.
        if not self.restriction:
            r = ""
        else:
            r = "(%s)" % self.restriction
        if self.power == 0:
            return "|det F'%s|" % r
        elif self.power == 1:
            return "|det F'%s| (det F'%s)" % (r, r)
        else:
            return "|det F'%s| (det F'%s)^%s" % (r, r, str(self.power))


class MonomialCoefficient:

    "This class represents a coefficient in a monomial."

    def __init__(self, index, number):
        "Create monomial coefficient for given index and number."
        self.index = index
        self.number = number

    def __str__(self):
        "Return informal string representation (pretty-print)."
        return "c_" + str(self.index)


class MonomialTransform:

    "This class represents a transform (mapping derivative) in a form."

    J = "J"
    JINV = "JINV"

    def __init__(self, index0, index1, transform_type, restriction, offset):
        "Create monomial transform."

        # Set data
        self.index0 = index0
        self.index1 = index1
        self.transform_type = transform_type
        self.restriction = restriction
        self.offset = offset

        # Subtract offset for fixed indices. Note that the index
        # subtraction creates a new index instance. This is ok here
        # since a fixed index does not need to match any other index
        # (being the same instance) in index summation and index
        # extraction.
        if index0.index_type is MonomialIndex.FIXED:
            self.index0 = index0 - offset
        if index1.index_type is MonomialIndex.FIXED:
            self.index1 = index1 - offset

    def __str__(self):
        "Return informal string representation (pretty-print)."
        if self.restriction is None:
            r = ""
        else:
            r = "(%s)" % str(self.restriction)
        if self.transform_type == "J":
            return "dx_%s/dX_%s%s" % (str(self.index0), str(self.index1), r)
        else:
            return "dX_%s/dx_%s%s" % (str(self.index0), str(self.index1), r)


class MonomialArgument:

    """
    This class represents a monomial argument, that is, a derivative of
    a scalar component of a basis function on the reference element.
    """

    def __init__(self, element, index, components, derivatives, restriction):
        "Create monomial argument."
        self.element = element
        self.index = index
        self.components = components
        self.derivatives = derivatives
        self.restriction = restriction

    def __str__(self):
        "Return informal string representation (pretty-print)."
        if len(self.components) == 0:
            c = ""
        else:
            c = "[%s]" % ", ".join(str(c) for c in self.components)
        if len(self.derivatives) == 0:
            d0 = ""
            d1 = ""
        else:
            d0 = "(" + " ".join("d/dX_%s" % str(d) for d in self.derivatives) + " "
            d1 = ")"
        if self.restriction is None:
            r = ""
        else:
            r = "(%s)" % str(self.restriction)
        v = "V_" + str(self.index)
        return d0 + v + r + c + d1


class TransformedMonomial:

    """
    This class represents a monomial form after transformation to the
    reference element.
    """

    def __init__(self, monomial):
        "Create transformed monomial from given monomial."

        # Reset monomial data
        self.float_value = monomial.float_value
        self.determinants = []
        self.coefficients = []
        self.transforms = []
        self.arguments = []

        # Reset index counters
        _reset_indices()

        # Initialize index map
        index_map = {}

        # Iterate over factors
        for f in monomial.factors:

            # Create FIAT element
            ufl_element = f.element()
            fiat_element = create_element(ufl_element)

            # Note nifty aspect here: when gdim != tdim, it might be
            # (in particular, is for H(div)/H(curl), that the value
            # dimension is different for the physical and reference
            # elements.

            # Get number of components
            # FIXME: Can't handle tensor-valued elements: vdim = shape[0]
            shape = ufl_element.value_shape()
            assert(len(shape) <= 1), \
                "MonomialTransformation does not handle tensor-valued elements"
            if len(shape) == 0:
                vdim = 1
            else:
                vdim = shape[0]

            # Extract dimensions
            sdim = fiat_element.space_dimension()
            cell = ufl_element.cell()
            gdim = cell.geometric_dimension()
            tdim = cell.topological_dimension()

            # Extract basis function index and coefficients
            if isinstance(f.function, Argument):
                vindex = MonomialIndex(index_type=MonomialIndex.PRIMARY,
                                       index_range=list(range(sdim)),
                                       index_id=f.index())

            elif isinstance(f.function, Coefficient):
                vindex = MonomialIndex(index_range=list(range(sdim)))
                coefficient = MonomialCoefficient(vindex, f.index())
                self.coefficients.append(coefficient)

            # Extract components
            components = self._extract_components(f, index_map, vdim)

            if len(components) > 1:
                raise MonomialException("Can only handle rank 0 or rank 1 tensors.")

            # Handle non-affine mappings (Piola)
            if len(components) > 0:

                # We can only handle rank 1 elements for now
                component = components[0]

                # Get mapping (all need to be equal)
                mappings = []
                for i in component.index_range:
                    (offset, ufl_sub_element) = ufl_element.extract_component(i)
                    fiat_sub_element = create_element(ufl_sub_element)
                    mappings.extend(fiat_sub_element.mapping())
                if not all_equal(mappings):
                    raise MonomialException("Mappings differ: " + str(mappings))
                mapping = mappings[0]

                # Get component index relative to its sub element and
                # its sub element
                (component_index, sub_element) = ufl_element.extract_component(component.index_range[0])

                # Get offset
                if len(component_index) == 0:
                    offset = 0
                else:
                    offset = component.index_range[0] - component_index[0]

                # MER: Need to handle mappings in special ways if gdim
                # != tdim and some Piolas are present. This could
                # probably be merged with the offset code above, but I
                # was not able to wrap my head around the offsets
                # always referring to component.index_range[0].
                if (gdim != tdim):
                    assert len(component.index_range) == 1, \
                        "Component transform not implemented for this case. Please request this feature."
                    component, offset = transform_component(component.index_range[0], offset, ufl_element)
                    component = MonomialIndex(index_type=MonomialIndex.FIXED,
                                              index_range=[component],
                                              index_id=None)
                    components = [component, ]

                # Add transforms where appropriate
                if mapping == "affine":
                    pass
                elif mapping == "contravariant piola":
                    # phi(x) = (det J)^{-1} J Phi(X)
                    index0 = component
                    index1 = MonomialIndex(index_range=list(range(tdim))) + offset
                    transform = MonomialTransform(index0, index1,
                                                  MonomialTransform.J,
                                                  f.restriction, offset)
                    self.transforms.append(transform)
                    determinant = MonomialDeterminant(power=-1,
                                                      restriction=f.restriction)
                    self.determinants.append(determinant)
                    components[0] = index1
                elif mapping == "covariant piola":
                    # phi(x) = J^{-T} Phi(X)
                    index0 = MonomialIndex(index_range=list(range(tdim))) + offset
                    index1 = component
                    transform = MonomialTransform(index0, index1,
                                                  MonomialTransform.JINV,
                                                  f.restriction, offset)
                    self.transforms.append(transform)
                    components[0] = index0
                else:
                    raise MonomialException("Don't know how to handle mapping='%s'." % mapping)

            # Extract derivatives / transforms
            derivatives = []
            for d in f.derivatives:
                index0 = MonomialIndex(index_range=list(range(tdim)))
                if d in index_map:
                    index1 = index_map[d]
                elif isinstance(d, FixedIndex):
                    index1 = MonomialIndex(index_type=MonomialIndex.FIXED,
                                           index_range=[int(d)],
                                           index_id=int(d))
                else:
                    index1 = MonomialIndex(index_range=list(range(gdim)))
                index_map[d] = index1
                transform = MonomialTransform(index0, index1,
                                              MonomialTransform.JINV,
                                              f.restriction, 0)

                self.transforms.append(transform)
                derivatives.append(index0)

            # Extract restriction
            restriction = f.restriction

            # Create basis function
            v = MonomialArgument(ufl_element, vindex, components, derivatives,
                                 restriction)
            self.arguments.append(v)

        # Figure out secondary and auxiliary indices
        internal_indices = self._extract_internal_indices(None)
        external_indices = self._extract_external_indices(None)
        for i in internal_indices + external_indices:

            # Skip already visited indices
            if i.index_type is not None:
                continue

            # Set index type and id
            num_internal = len([j for j in internal_indices if j == i])
            num_external = len([j for j in external_indices if j == i])

            if num_internal == 1 and num_external == 1:
                i.index_type = MonomialIndex.SECONDARY
                i.index_id = _next_secondary_index()
            elif num_internal == 2 and num_external == 0:
                i.index_type = MonomialIndex.INTERNAL
                i.index_id = _next_internal_index()
            elif num_internal == 0 and num_external == 2:
                i.index_type = MonomialIndex.EXTERNAL
                i.index_id = _next_external_index()
            else:
                raise Exception("Summation index does not appear exactly twice: %s" % str(i))

    def extract_unique_indices(self, index_type=None):
        "Return all unique indices for monomial w.r.t. type and id (not range)."
        indices = []
        for index in self._extract_indices(index_type):
            if index not in indices:
                indices.append(index)
        return indices

    def _extract_components(self, f, index_map, vdim):
        "Return list of components."
        components = []
        for c in f.components:
            if c in index_map:
                index = index_map[c]
            elif isinstance(c, FixedIndex):
                # Map component using component map from UFL.
                # KBO: Is this the right place to add, and do we only have
                # scalar components in the tensor representation at this stage
                # in the representation?
                ufl_element = f.element()
                comp_map, comp_num = build_component_numbering(ufl_element.value_shape(), ufl_element.symmetry())
                comp = comp_map[(int(c),)]
                index = MonomialIndex(index_type=MonomialIndex.FIXED,
                                      index_range=[comp],
                                      index_id=None)
            else:
                index = MonomialIndex(index_range=list(range(vdim)))
            index_map[c] = index
            components.append(index)
        return components

    def _extract_internal_indices(self, index_type=None):
        "Return list of indices appearing inside integral."
        indices = []
        for v in self.arguments:
            indices += [v.index] + v.components + v.derivatives
        return [i for i in indices if i.index_type == index_type]

    def _extract_external_indices(self, index_type=None):
        "Return list of indices appearing outside integral."
        indices = [c.index for c in self.coefficients] + \
                  [t.index0 for t in self.transforms]  + \
                  [t.index1 for t in self.transforms]
        return [i for i in indices if i.index_type == index_type]

    def _extract_indices(self, index_type=None):
        "Return all indices for monomial."
        return self._extract_internal_indices(index_type) + \
            self._extract_external_indices(index_type)

    def __str__(self):
        "Return informal string representation (pretty-print)."
        factors = []
        if self.float_value != 1.0:
            factors.append(self.float_value)
        factors += self.determinants
        factors += self.coefficients
        factors += self.transforms
        return " * ".join([str(f) for f in factors]) + " | " + " * ".join([str(v) for v in self.arguments])

# Index counters
_current_secondary_index = 0
_current_internal_index = 0
_current_external_index = 0


def _next_secondary_index():
    "Return next available secondary index."
    global _current_secondary_index
    _current_secondary_index += 1
    return _current_secondary_index - 1


def _next_internal_index():
    "Return next available internal index."
    global _current_internal_index
    _current_internal_index += 1
    return _current_internal_index - 1


def _next_external_index():
    "Return next available external index."
    global _current_external_index
    _current_external_index += 1
    return _current_external_index - 1


def _reset_indices():
    "Reset all index counters."
    global _current_secondary_index
    global _current_internal_index
    global _current_external_index
    _current_secondary_index = 0
    _current_internal_index = 0
    _current_external_index = 0