This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/quadrature/tabulate_basis.py is in python-ffc 2016.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# -*- coding: utf-8 -*-

# Copyright (C) 2009-2014 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009, 2015
# Modified by Martin Sandve Alnæs, 2013-2014

"Quadrature representation class."

import numpy
import itertools

# UFL modules
from ufl.cell import num_cell_entities
from ufl.classes import ReferenceGrad, Grad, CellAvg, FacetAvg
from ufl.algorithms import extract_unique_elements, extract_type, extract_elements
from ufl import custom_integral_types

# FFC modules
from ffc.log import error
from ffc.utils import product, insert_nested_dict
from ffc.fiatinterface import create_element
from ffc.fiatinterface import map_facet_points, reference_cell_vertices
from ffc.representationutils import create_quadrature_points_and_weights
from ffc.representationutils import integral_type_to_entity_dim


def _find_element_derivatives(expr, elements, element_replace_map):
    "Find the highest derivatives of given elements in expression."
    # TODO: This is most likely not the best way to get the highest
    #       derivative of an element, but it works!

    # Initialise dictionary of elements and the number of derivatives.
    # (Note that elements are already mapped through the
    # element_replace_map)
    num_derivatives = dict((e, 0) for e in elements)

    # Extract the derivatives from the integral.
    derivatives = set(extract_type(expr, Grad)) | set(extract_type(expr,
                                                                   ReferenceGrad))

    # Loop derivatives and extract multiple derivatives.
    for d in list(derivatives):
        # After UFL has evaluated derivatives, only one element can be
        # found inside any single Grad expression
        elem, = extract_elements(d.ufl_operands[0])
        elem = element_replace_map[elem]
        # Set the number of derivatives to the highest value
        # encountered so far.
        num_derivatives[elem] = max(num_derivatives[elem],
                                    len(extract_type(d, Grad)),
                                    len(extract_type(d, ReferenceGrad)))
    return num_derivatives


def _tabulate_empty_psi_table(tdim, deriv_order, element):
    "Tabulate psi table when there are no points (custom integrals)."

    # All combinations of partial derivatives up to given order
    gdim = tdim  # hack, consider passing gdim variable here
    derivs = [d for d in itertools.product(*(gdim*[list(range(0, deriv_order + 1))]))]
    derivs = [d for d in derivs if sum(d) <= deriv_order]

    # Return empty table
    table = {}
    for d in derivs:
        value_shape = element.value_shape()
        if value_shape == ():
            table[d] = [[]]
        else:
            value_size = product(value_shape)
            table[d] = [[[] for c in range(value_size)]]

    # Let entity be 0 even for non-cells, this is for
    # custom integrals where we don't need tables to
    # contain multiple entitites
    entity = 0
    return {entity: table}


def _map_entity_points(cellname, tdim, points, entity_dim, entity):
    # Not sure if this is useful anywhere else than in _tabulate_psi_table!
    if entity_dim == tdim:
        assert entity == 0
        return points
    elif entity_dim == tdim-1:
        return map_facet_points(points, entity)
    elif entity_dim == 0:
        return (reference_cell_vertices(cellname)[entity],)


def _tabulate_psi_table(integral_type, cellname, tdim,
                        element, deriv_order, points):
    "Tabulate psi table for different integral types."
    # Handle case when list of points is empty
    if points is None:
        return _tabulate_empty_psi_table(tdim, deriv_order, element)

    # Otherwise, call FIAT to tabulate
    entity_dim = integral_type_to_entity_dim(integral_type, tdim)
    num_entities = num_cell_entities[cellname][entity_dim]
    psi_table = {}
    for entity in range(num_entities):
        entity_points = _map_entity_points(cellname, tdim, points, entity_dim, entity)
        psi_table[entity] = element.tabulate(deriv_order, entity_points)
    return psi_table


# MSA: This function is in serious need for some refactoring and
#      splitting up.  Or perhaps I should just add a new
#      implementation for uflacs, but I'd rather not have two versions
#      to maintain.
def tabulate_basis(sorted_integrals, form_data, itg_data):
    "Tabulate the basisfunctions and derivatives."

    # MER: Note to newbies: this code assumes that each integral in
    # the dictionary of sorted_integrals that enters here, has a
    # unique number of quadrature points ...

    # Initialise return values.
    quadrature_rules = {}
    psi_tables = {}
    integrals = {}
    avg_elements = {"cell": [], "facet": []}

    # Get some useful variables in short form
    integral_type = itg_data.integral_type
    cell = itg_data.domain.ufl_cell()
    cellname = cell.cellname()
    tdim = itg_data.domain.topological_dimension()
    entity_dim = integral_type_to_entity_dim(integral_type, tdim)
    num_entities = num_cell_entities[cellname][entity_dim]

    # Create canonical ordering of quadrature rules
    rules = sorted(sorted_integrals.keys())

    # Loop the quadrature points and tabulate the basis values.
    for rule in rules:
        scheme, degree = rule

        # --------- Creating quadrature rule
        # Make quadrature rule and get points and weights.
        (points, weights) = create_quadrature_points_and_weights(integral_type,
                                                                 cell, degree,
                                                                 scheme)

        # The TOTAL number of weights/points
        num_points = None if weights is None else len(weights)

        # Add points and rules to dictionary
        if num_points in quadrature_rules:
            error("This number of points is already present in the weight table: " + repr(quadrature_rules))
        quadrature_rules[num_points] = (weights, points)

        # --------- Store integral
        # Add the integral with the number of points as a key to the
        # return integrals.
        integral = sorted_integrals[rule]
        if num_points in integrals:
            error("This number of points is already present in the integrals: " + repr(integrals))
        integrals[num_points] = integral

        # --------- Analyse UFL elements in integral

        # Get all unique elements in integral.
        ufl_elements = [form_data.element_replace_map[e]
                        for e in extract_unique_elements(integral)]

        # Insert elements for x and J
        domain = integral.ufl_domain()  # FIXME: For all domains to be sure? Better to rewrite though.
        x_element = domain.ufl_coordinate_element()
        if x_element not in ufl_elements:
            if integral_type in custom_integral_types:
                # FIXME: Not yet implemented, in progress
                # warning("Vector elements not yet supported in custom integrals so element for coordinate function x will not be generated.")
                pass
            else:
                ufl_elements.append(x_element)

        # Find all CellAvg and FacetAvg in integrals and extract
        # elements
        for avg, AvgType in (("cell", CellAvg), ("facet", FacetAvg)):
            expressions = extract_type(integral, AvgType)
            avg_elements[avg] = [form_data.element_replace_map[e]
                                 for expr in expressions
                                 for e in extract_unique_elements(expr)]

        # Find the highest number of derivatives needed for each element
        num_derivatives = _find_element_derivatives(integral.integrand(),
                                                    ufl_elements,
                                                    form_data.element_replace_map)
        # Need at least 1 for the Jacobian
        num_derivatives[x_element] = max(num_derivatives.get(x_element, 0), 1)

        # --------- Evaluate FIAT elements in quadrature points and
        # --------- store in tables

        # Add the number of points to the psi tables dictionary
        if num_points in psi_tables:
            error("This number of points is already present in the psi table: " + repr(psi_tables))
        psi_tables[num_points] = {}

        # Loop FIAT elements and tabulate basis as usual.
        for ufl_element in ufl_elements:
            fiat_element = create_element(ufl_element)

            # Tabulate table of basis functions and derivatives in
            # points
            psi_table = _tabulate_psi_table(integral_type, cellname, tdim,
                                            fiat_element,
                                            num_derivatives[ufl_element],
                                            points)

            # Insert table into dictionary based on UFL elements
            # (None=not averaged)
            avg = None
            psi_tables[num_points][ufl_element] = { avg: psi_table }

    # Loop over elements found in CellAvg and tabulate basis averages
    num_points = 1
    for avg in ("cell", "facet"):
        # Doesn't matter if it's exterior or interior
        if avg == "cell":
            avg_integral_type = "cell"
        elif avg == "facet":
            avg_integral_type = "exterior_facet"

        for element in avg_elements[avg]:
            fiat_element = create_element(element)

            # Make quadrature rule and get points and weights.
            (points, weights) = create_quadrature_points_and_weights(avg_integral_type, cell, element.degree(), "default")
            wsum = sum(weights)

            # Tabulate table of basis functions and derivatives in
            # points
            entity_psi_tables = _tabulate_psi_table(avg_integral_type,
                                                    cellname, tdim,
                                                    fiat_element, 0, points)
            rank = len(element.value_shape())

            # Hack, duplicating table with per-cell values for each
            # facet in the case of cell_avg(f) in a facet integral
            if num_entities > len(entity_psi_tables):
                assert len(entity_psi_tables) == 1
                assert avg_integral_type == "cell"
                assert "facet" in integral_type
                v, = sorted(entity_psi_tables.values())
                entity_psi_tables = dict((e, v) for e in range(num_entities))

            for entity, deriv_table in sorted(entity_psi_tables.items()):
                deriv, = sorted(deriv_table.keys())  # Not expecting derivatives of averages
                psi_table = deriv_table[deriv]

                if rank:
                    # Compute numeric integral
                    num_dofs, num_components, num_points = psi_table.shape
                    if num_points != len(weights):
                        error("Weights and table shape does not match.")
                    avg_psi_table = numpy.asarray([[[numpy.dot(psi_table[j, k, :], weights) / wsum]
                                                    for k in range(num_components)]
                                                   for j in range(num_dofs)])
                else:
                    # Compute numeric integral
                    num_dofs, num_points = psi_table.shape
                    if num_points != len(weights):
                        error("Weights and table shape does not match.")
                    avg_psi_table = numpy.asarray([[numpy.dot(psi_table[j, :],
                                                              weights) / wsum] for j in range(num_dofs)])

                # Insert table into dictionary based on UFL elements
                insert_nested_dict(psi_tables, (num_points, element, avg,
                                                entity, deriv), avg_psi_table)

    return (integrals, psi_tables, quadrature_rules)