This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/quadrature/quadraturetransformerbase.py is in python-ffc 2016.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
# -*- coding: utf-8 -*-
"""QuadratureTransformerBase, a common class for quadrature
transformers to translate UFL expressions."""

# Copyright (C) 2009-2013 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Martin Sandve Alnæs, 2013
# Modified by Garth N. Wells, 2013
# Modified by Lizao Li, 2015
# Modified by Anders Logg, 2015

# Python modules.
from six.moves import zip
from numpy import shape, array

# UFL Classes.
from ufl.classes import FixedIndex, Index
from ufl.utils.stacks import StackDict, Stack
from ufl.permutation import build_component_numbering
from ufl import custom_integral_types

# UFL Algorithms.
from ufl.algorithms import Transformer

# FFC modules.
from ffc.log import ffc_assert, error
from ffc.fiatinterface import create_element, map_facet_points
from ffc.mixedelement import MixedElement
from ffc.cpp import format

# FFC tensor modules.
from ffc.tensor.multiindex import MultiIndex as FFCMultiIndex
from ffc.representationutils import transform_component

# Utility and optimisation functions for quadraturegenerator.
from ffc.quadrature.quadratureutils import create_psi_tables
from ffc.quadrature.symbolics import BASIS, IP, GEO


class QuadratureTransformerBase(Transformer):

    "Transform UFL representation to quadrature code."

    def __init__(self,
                 psi_tables,
                 quad_weights,
                 gdim,
                 tdim,
                 entity_type,
                 function_replace_map,
                 optimise_parameters):

        Transformer.__init__(self)

        # Save optimise_parameters, weights and fiat_elements_map.
        self.optimise_parameters = optimise_parameters

        # Map from original functions with possibly incomplete
        # elements to functions with properly completed elements
        self._function_replace_map = function_replace_map
        self._function_replace_values = set(function_replace_map.values())  # For assertions

        # Create containers and variables.
        self.used_psi_tables = set()
        self.psi_tables_map = {}
        self.used_weights = set()
        self.quad_weights = quad_weights
        self.used_nzcs = set()
        self.ip_consts = {}
        self.trans_set = set()
        self.function_data = {}
        self.tdim = tdim
        self.gdim = gdim
        self.entity_type = entity_type
        self.points = 0
        self.facet0 = None
        self.facet1 = None
        self.vertex = None
        self.restriction = None
        self.avg = None
        self.coordinate = None
        self.conditionals = {}
        self.additional_includes_set = set()

        # Stacks.
        self._derivatives = []
        self._index2value = StackDict()
        self._components = Stack()

        self.element_map, self.name_map, self.unique_tables =\
            create_psi_tables(psi_tables,
                              self.optimise_parameters["eliminate zeros"],
                              self.entity_type)

        # Cache.
        self.argument_cache = {}
        self.function_cache = {}

    def update_cell(self):
        ffc_assert(self.entity_type == "cell",
                   "Not expecting update_cell on a %s." % self.entity_type)
        self.facet0 = None
        self.facet1 = None
        self.vertex = None
        self.coordinate = None
        self.conditionals = {}

    def update_facets(self, facet0, facet1):
        ffc_assert(self.entity_type == "facet",
                   "Not expecting update_facet on a %s." % self.entity_type)
        self.facet0 = facet0
        self.facet1 = facet1
        self.vertex = None
        self.coordinate = None
        self.conditionals = {}

    def update_vertex(self, vertex):
        ffc_assert(self.entity_type == "vertex",
                   "Not expecting update_vertex on a %s." % self.entity_type)
        self.facet0 = None
        self.facet1 = None
        self.vertex = vertex
        self.coordinate = None
        self.conditionals = {}

    def update_points(self, points):
        self.points = points
        self.coordinate = None
        # Reset functions everytime we move to a new quadrature loop
        self.conditionals = {}
        self.function_data = {}

        # Reset cache
        self.argument_cache = {}
        self.function_cache = {}

    def disp(self):
        print("\n\n **** Displaying QuadratureTransformer ****")
        print("\nQuadratureTransformer, element_map:\n", self.element_map)
        print("\nQuadratureTransformer, name_map:\n", self.name_map)
        print("\nQuadratureTransformer, unique_tables:\n", self.unique_tables)
        print("\nQuadratureTransformer, used_psi_tables:\n",
              self.used_psi_tables)
        print("\nQuadratureTransformer, psi_tables_map:\n", self.psi_tables_map)
        print("\nQuadratureTransformer, used_weights:\n", self.used_weights)

    def component(self):
        "Return current component tuple."
        if len(self._components):
            return self._components.peek()
        return ()

    def derivatives(self):
        "Return all derivatives tuple."
        if len(self._derivatives):
            return tuple(self._derivatives[:])
        return ()

    # -------------------------------------------------------------------------
    # Start handling UFL classes.
    # -------------------------------------------------------------------------

    # Nothing in expr.py is handled. Can only handle children of these clases.
    def expr(self, o):
        print("\n\nVisiting basic Expr:", repr(o), "with operands:")
        error("This expression is not handled: " + repr(o))

    # Nothing in terminal.py is handled. Can only handle children of
    # these clases.
    def terminal(self, o):
        print("\n\nVisiting basic Terminal:", repr(o), "with operands:")
        error("This terminal is not handled: " + repr(o))

    # -------------------------------------------------------------------------
    # Things which should not be here (after expansion etc.) from:
    # algebra.py, differentiation.py, finiteelement.py, form.py,
    # geometry.py, indexing.py, integral.py, tensoralgebra.py,
    # variable.py.
    # -------------------------------------------------------------------------
    def derivative(self, o, *operands):
        print("\n\nVisiting Derivative: ", repr(o))
        error("All derivatives apart from Grad should have been expanded!!")

    def compound_tensor_operator(self, o):
        print("\n\nVisiting CompoundTensorOperator: ", repr(o))
        error("CompoundTensorOperator should have been expanded.")

    def label(self, o):
        print("\n\nVisiting Label: ", repr(o))
        error("What is a Lable doing in the integrand?")

    # -------------------------------------------------------------------------
    # Things which are not supported yet, from:
    # condition.py, constantvalue.py, function.py, geometry.py, lifting.py,
    # mathfunctions.py, restriction.py
    # -------------------------------------------------------------------------
    def condition(self, o):
        print("\n\nVisiting Condition:", repr(o))
        error("This type of Condition is not supported (yet).")

    def constant_value(self, o):
        print("\n\nVisiting ConstantValue:", repr(o))
        error("This type of ConstantValue is not supported (yet).")

    def geometric_quantity(self, o):
        print("\n\nVisiting GeometricQuantity:", repr(o))
        error("This type of GeometricQuantity is not supported (yet).")

    def math_function(self, o):
        print("\n\nVisiting MathFunction:", repr(o))
        error("This MathFunction is not supported (yet).")

    def atan_2_function(self, o):
        print("\n\nVisiting Atan2Function:", repr(o))
        error("Atan2Function is not implemented (yet).")

    def bessel_function(self, o):
        print("\n\nVisiting BesselFunction:", repr(o))
        error("BesselFunction is not implemented (yet).")

    def restricted(self, o):
        print("\n\nVisiting Restricted:", repr(o))
        error("This type of Restricted is not supported (only positive and negative are currently supported).")

    # -------------------------------------------------------------------------
    # Handlers that should be implemented by child classes.
    # -------------------------------------------------------------------------

    # -------------------------------------------------------------------------
    # AlgebraOperators (algebra.py).
    # -------------------------------------------------------------------------
    def sum(self, o, *operands):
        print("\n\nVisiting Sum: ", repr(o))
        error("This object should be implemented by the child class.")

    def product(self, o, *operands):
        print("\n\nVisiting Product: ", repr(o))
        error("This object should be implemented by the child class.")

    def division(self, o, *operands):
        print("\n\nVisiting Division: ", repr(o))
        error("This object should be implemented by the child class.")

    def power(self, o):
        print("\n\nVisiting Power: ", repr(o))
        error("This object should be implemented by the child class.")

    def abs(self, o, *operands):
        print("\n\nVisiting Abs: ", repr(o))
        error("This object should be implemented by the child class.")

    # -------------------------------------------------------------------------
    # FacetNormal, CellVolume, Circumradius (geometry.py).
    # -------------------------------------------------------------------------
    def cell_coordinate(self, o):
        error("This object should be implemented by the child class.")

    def facet_coordinate(self, o):
        error("This object should be implemented by the child class.")

    def cell_origin(self, o):
        error("This object should be implemented by the child class.")

    def facet_origin(self, o):
        error("This object should be implemented by the child class.")

    def cell_facet_origin(self, o):
        error("This object should be implemented by the child class.")

    def jacobian(self, o):
        error("This object should be implemented by the child class.")

    def jacobian_determinant(self, o):
        error("This object should be implemented by the child class.")

    def jacobian_inverse(self, o):
        error("This object should be implemented by the child class.")

    def facet_jacobian(self, o):
        error("This object should be implemented by the child class.")

    def facet_jacobian_determinant(self, o):
        error("This object should be implemented by the child class.")

    def facet_jacobian_inverse(self, o):
        error("This object should be implemented by the child class.")

    def cell_facet_jacobian(self, o):
        error("This object should be implemented by the child class.")

    def cell_facet_jacobian_determinant(self, o):
        error("This object should be implemented by the child class.")

    def cell_facet_jacobian_inverse(self, o):
        error("This object should be implemented by the child class.")

    def facet_normal(self, o):
        error("This object should be implemented by the child class.")

    def cell_normal(self, o):
        error("This object should be implemented by the child class.")

    def cell_volume(self, o):
        error("This object should be implemented by the child class.")

    def circumradius(self, o):
        error("This object should be implemented by the child class.")

    def facet_area(self, o):
        error("This object should be implemented by the child class.")

    def min_facet_edge_length(self, o):
        error("This object should be implemented by the child class.")

    def max_facet_edge_length(self, o):
        error("This object should be implemented by the child class.")

    def cell_orientation(self, o):
        error("This object should be implemented by the child class.")

    def quadrature_weight(self, o):
        error("This object should be implemented by the child class.")

    # -------------------------------------------------------------------------
    # Things that can be handled by the base class.
    # -------------------------------------------------------------------------

    # -------------------------------------------------------------------------
    # Argument (basisfunction.py).
    # -------------------------------------------------------------------------
    def argument(self, o):
        # print("\nVisiting Argument:" + repr(o))

        # Create aux. info.
        components = self.component()
        derivatives = self.derivatives()

        # Check if basis is already in cache
        key = (o, components, derivatives, self.restriction, self.avg)
        basis = self.argument_cache.get(key, None)

        tdim = self.tdim

        # FIXME: Why does using a code dict from cache make the
        # expression manipulations blow (MemoryError) up later?
        if basis is None or self.optimise_parameters["optimisation"]:
            # Get auxiliary variables to generate basis
            (component, local_elem, local_comp, local_offset, ffc_element,
             transformation,
             multiindices) = self._get_auxiliary_variables(o, components,
                                                           derivatives)

            # Create mapping and code for basis function and add to
            # dict.
            basis = self.create_argument(o, derivatives, component, local_comp,
                                         local_offset, ffc_element,
                                         transformation, multiindices,
                                         tdim, self.gdim, self.avg)
            self.argument_cache[key] = basis

        return basis

    # -------------------------------------------------------------------------
    # Constant values (constantvalue.py).
    # -------------------------------------------------------------------------
    def identity(self, o):

        # Get components
        i, j = self.component()

        # Only return a value if i==j
        if i == j:
            return self._format_scalar_value(1.0)
        else:
            return self._format_scalar_value(None)

    def scalar_value(self, o):
        "ScalarValue covers IntValue and FloatValue"
        return self._format_scalar_value(o.value())

    def zero(self, o):
        return self._format_scalar_value(None)

    # -------------------------------------------------------------------------
    # Grad (differentiation.py).
    # -------------------------------------------------------------------------
    def grad(self, o):

        # Get expression
        derivative_expr, = o.ufl_operands

        # Get components
        components = self.component()

        en = len(derivative_expr.ufl_shape)
        cn = len(components)
        ffc_assert(len(o.ufl_shape) == cn,
                   "Expecting rank of grad expression to match components length.")

        # Get direction of derivative
        if cn == en + 1:
            der = components[en]
            self._components.push(components[:en])
        elif cn == en:
            # This happens in 1D, sligtly messy result of defining
            # grad(f) == f.dx(0)
            der = 0
        else:
            error("Unexpected rank %d and component length %d in grad expression." % (en, cn))

        # Add direction to list of derivatives
        self._derivatives.append(der)

        # Visit children to generate the derivative code.
        code = self.visit(derivative_expr)

        # Remove the direction from list of derivatives
        self._derivatives.pop()
        if cn == en + 1:
            self._components.pop()
        return code

    # -------------------------------------------------------------------------
    # Coefficient and Constants (function.py).
    # -------------------------------------------------------------------------
    def coefficient(self, o):
        # print("\nVisiting Coefficient: " + repr(o))

        # Map o to object with proper element and count
        o = self._function_replace_map[o]

        # Create aux. info.
        components = self.component()
        derivatives = self.derivatives()

        # Check if function is already in cache
        key = (o, components, derivatives, self.restriction, self.avg)
        function_code = self.function_cache.get(key)

        # FIXME: Why does using a code dict from cache make the
        # expression manipulations blow (MemoryError) up later?
        if function_code is None or self.optimise_parameters["optimisation"]:
            # Get auxiliary variables to generate function
            (component, local_elem, local_comp, local_offset,
             ffc_element, transformation,
             multiindices) = self._get_auxiliary_variables(o, components,
                                                           derivatives)

            # Check that we don't take derivatives of
            # QuadratureElements.
            is_quad_element = local_elem.family() == "Quadrature"
            ffc_assert(not (derivatives and is_quad_element),
                       "Derivatives of Quadrature elements are not supported: " + repr(o))

            tdim = self.tdim

            # Create code for function and add empty tuple to cache
            # dict.
            function_code = {(): self.create_function(o, derivatives, component,
                                                      local_comp, local_offset,
                                                      ffc_element,
                                                      is_quad_element,
                                                      transformation,
                                                      multiindices, tdim,
                                                      self.gdim, self.avg)}

            self.function_cache[key] = function_code

        return function_code

    # -------------------------------------------------------------------------
    # SpatialCoordinate (geometry.py).
    # -------------------------------------------------------------------------
    def spatial_coordinate(self, o):

        # Get the component.
        components = self.component()
        c, = components

        if self.vertex is not None:
            error("Spatial coordinates (x) not implemented for point measure (dP)")  # TODO: Implement this, should be just the point.
        else:
            # Generate the appropriate coordinate and update tables.
            coordinate = format["ip coordinates"](self.points, c)
            self._generate_affine_map()
            return self._create_symbol(coordinate, IP)

    # -------------------------------------------------------------------------
    # Indexed (indexed.py).
    # -------------------------------------------------------------------------
    def indexed(self, o):

        # Get indexed expression and index, map index to current value
        # and update components
        indexed_expr, index = o.ufl_operands
        self._components.push(self.visit(index))

        # Visit expression subtrees and generate code.
        code = self.visit(indexed_expr)

        # Remove component again
        self._components.pop()

        return code

    # -------------------------------------------------------------------------
    # MultiIndex (indexing.py).
    # -------------------------------------------------------------------------
    def multi_index(self, o):

        # Loop all indices in MultiIndex and get current values
        subcomp = []
        for i in o:
            if isinstance(i, FixedIndex):
                subcomp.append(i._value)
            elif isinstance(i, Index):
                subcomp.append(self._index2value[i])

        return tuple(subcomp)

    # -------------------------------------------------------------------------
    # IndexSum (indexsum.py).
    # -------------------------------------------------------------------------
    def index_sum(self, o):

        # Get expression and index that we're summing over
        summand, multiindex = o.ufl_operands
        index, = multiindex

        # Loop index range, update index/value dict and generate code
        ops = []
        for i in range(o.dimension()):
            self._index2value.push(index, i)
            ops.append(self.visit(summand))
            self._index2value.pop()

        # Call sum to generate summation
        code = self.sum(o, *ops)

        return code

    # -------------------------------------------------------------------------
    # MathFunctions (mathfunctions.py).
    # -------------------------------------------------------------------------
    def sqrt(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["sqrt"])

    def exp(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["exp"])

    def ln(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["ln"])

    def cos(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["cos"])

    def sin(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["sin"])

    def tan(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["tan"])

    def cosh(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["cosh"])

    def sinh(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["sinh"])

    def tanh(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["tanh"])

    def acos(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["acos"])

    def asin(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["asin"])

    def atan(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["atan"])

    def atan_2(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._atan_2_function(operands, format["atan_2"])

    def erf(self, o, *operands):
        self.additional_includes_set.add("#include <cmath>")
        return self._math_function(operands, format["erf"])

    def bessel_i(self, o, *operands):
        self.additional_includes_set.add("#include <boost/math/special_functions.hpp>")
        return self._bessel_function(operands, format["bessel_i"])

    def bessel_j(self, o, *operands):
        self.additional_includes_set.add("#include <boost/math/special_functions.hpp>")
        return self._bessel_function(operands, format["bessel_j"])

    def bessel_k(self, o, *operands):
        self.additional_includes_set.add("#include <boost/math/special_functions.hpp>")
        return self._bessel_function(operands, format["bessel_k"])

    def bessel_y(self, o, *operands):
        self.additional_includes_set.add("#include <boost/math/special_functions.hpp>")
        return self._bessel_function(operands, format["bessel_y"])

    # -------------------------------------------------------------------------
    # PositiveRestricted and NegativeRestricted (restriction.py).
    # -------------------------------------------------------------------------
    def positive_restricted(self, o):

        # Just get the first operand, there should only be one.
        restricted_expr = o.ufl_operands
        ffc_assert(len(restricted_expr) == 1,
                   "Only expected one operand for restriction: " + repr(restricted_expr))
        ffc_assert(self.restriction is None,
                   "Expression is restricted twice: " + repr(restricted_expr))

        # Set restriction, visit operand and reset restriction
        self.restriction = "+"
        code = self.visit(restricted_expr[0])
        self.restriction = None

        return code

    def negative_restricted(self, o):

        # Just get the first operand, there should only be one.
        restricted_expr = o.ufl_operands
        ffc_assert(len(restricted_expr) == 1,
                   "Only expected one operand for restriction: " + repr(restricted_expr))
        ffc_assert(self.restriction is None,
                   "Expression is restricted twice: " + repr(restricted_expr))

        # Set restriction, visit operand and reset restriction
        self.restriction = "-"
        code = self.visit(restricted_expr[0])
        self.restriction = None

        return code

    def cell_avg(self, o):
        ffc_assert(self.avg is None, "Not expecting nested averages.")

        # Just get the first operand, there should only be one.
        expr, = o.ufl_operands

        # Set average marker, visit operand and reset marker
        self.avg = "cell"
        code = self.visit(expr)
        self.avg = None

        return code

    def facet_avg(self, o):
        ffc_assert(self.avg is None, "Not expecting nested averages.")
        ffc_assert(self.entity_type != "cell",
                   "Cannot take facet_avg in a cell integral.")

        # Just get the first operand, there should only be one.
        expr, = o.ufl_operands

        # Set average marker, visit operand and reset marker
        self.avg = "facet"
        code = self.visit(expr)
        self.avg = None

        return code

    # -------------------------------------------------------------------------
    # ComponentTensor (tensors.py).
    # -------------------------------------------------------------------------
    def component_tensor(self, o):

        # Get expression and indices
        component_expr, indices = o.ufl_operands

        # Get current component(s)
        components = self.component()

        ffc_assert(len(components) == len(indices),
                   "The number of known components must be equal to the number of components of the ComponentTensor for this to work.")

        # Update the index dict (map index values of current known
        # indices to those of the component tensor)
        for i, v in zip(indices._indices, components):
            self._index2value.push(i, v)

        # Push an empty component tuple
        self._components.push(())

        # Visit expression subtrees and generate code.
        code = self.visit(component_expr)

        # Remove the index map from the StackDict
        for i in range(len(components)):
            self._index2value.pop()

        # Remove the empty component tuple
        self._components.pop()

        return code

    def list_tensor(self, o):

        # Get the component
        component = self.component()

        # Extract first and the rest of the components
        c0, c1 = component[0], component[1:]

        # Get first operand
        op = o.ufl_operands[c0]

        # Evaluate subtensor with this subcomponent
        self._components.push(c1)
        code = self.visit(op)
        self._components.pop()

        return code

    # -------------------------------------------------------------------------
    # Variable (variable.py).
    # -------------------------------------------------------------------------
    def variable(self, o):
        return self.visit(o.expression())

    # -------------------------------------------------------------------------
    # Generate terms for representation.
    # -------------------------------------------------------------------------
    def generate_terms(self, integrand, integral_type):
        "Generate terms for code generation."

        # Set domain type
        self.integral_type = integral_type

        # Get terms
        terms = self.visit(integrand)

        # Get formatting
        f_nzc = format["nonzero columns"](0).split("0")[0]

        # Loop code and add weight and scale factor to value and sort
        # after loop ranges.
        new_terms = {}
        for key, val in sorted(terms.items()):
            # If value was zero continue.
            if val is None:
                continue
            # Create data.
            value, ops, sets = self._create_entry_data(val, integral_type)
            # Extract nzc columns if any and add to sets.
            used_nzcs = set([int(k[1].split(f_nzc)[1].split("[")[0]) for k in key if f_nzc in k[1]])
            sets.append(used_nzcs)

            # Create loop information and entry from key info and
            # insert into dict.
            loop, entry = self._create_loop_entry(key, f_nzc)
            if loop not in new_terms:
                sets.append({})
                new_terms[loop] = [sets, [(entry, value, ops)]]
            else:
                for i, s in enumerate(sets):
                    new_terms[loop][0][i].update(s)
                new_terms[loop][1].append((entry, value, ops))

        return new_terms

    def _create_loop_entry(self, key, f_nzc):

        indices = {0: format["first free index"],
                   1: format["second free index"]}

        # Create appropriate entries.
        # FIXME: We only support rank 0, 1 and 2.
        entry = ""
        loop = ()
        if len(key) == 0:
            entry = "0"
        elif len(key) == 1:
            key = key[0]
            # Checking if the basis was a test function.
            # TODO: Make sure test function indices are always
            # rearranged to 0.
            ffc_assert(key[0] == -2 or key[0] == 0,
                       "Linear forms must be defined using test functions only: " + repr(key))
            index_j, entry, range_j, space_dim_j = key
            loop = ((indices[index_j], 0, range_j),)
            if range_j == 1 and self.optimise_parameters["ignore ones"] and not (f_nzc in entry):
                loop = ()
        elif len(key) == 2:
            # Extract test and trial loops in correct order and check
            # if for is legal.
            key0, key1 = (0, 0)
            for k in key:
                ffc_assert(k[0] in indices,
                           "Bilinear forms must be defined using test and trial functions (index -2, -1, 0, 1): " + repr(k))
                if k[0] == -2 or k[0] == 0:
                    key0 = k
                else:
                    key1 = k
            index_j, entry_j, range_j, space_dim_j = key0
            index_k, entry_k, range_k, space_dim_k = key1

            loop = []
            if not (range_j == 1 and
                    self.optimise_parameters["ignore ones"]) or f_nzc in entry_j:
                loop.append((indices[index_j], 0, range_j))
            if not (range_k == 1 and self.optimise_parameters["ignore ones"]) or f_nzc in entry_k:
                loop.append((indices[index_k], 0, range_k))
            entry = format["add"]([format["mul"]([entry_j, str(space_dim_k)]), entry_k])
            loop = tuple(loop)
        else:
            error("Only rank 0, 1 and 2 tensors are currently supported: " + repr(key))
        # Generate the code line for the entry.
        # Try to evaluate entry ("3*6 + 2" --> "20").
        try:
            entry = str(eval(entry))
        except:
            pass
        return loop, entry

    # -------------------------------------------------------------------------
    # Helper functions for transformation of UFL objects in base class
    # -------------------------------------------------------------------------
    def _create_symbol(self, symbol, domain):
        error("This function should be implemented by the child class.")

    def _create_product(self, symbols):
        error("This function should be implemented by the child class.")

    def _format_scalar_value(self, value):
        error("This function should be implemented by the child class.")

    def _math_function(self, operands, format_function):
        error("This function should be implemented by the child class.")

    def _atan_2_function(self, operands, format_function):
        error("This function should be implemented by the child class.")

    def _get_auxiliary_variables(self, ufl_function, component, derivatives):
        "Helper function for both Coefficient and Argument."

        # Get UFL element.
        ufl_element = ufl_function.ufl_element()

        # Get subelement and the relative (flattened) component (in
        # case we have mixed elements).
        local_comp, local_elem = ufl_element.extract_component(component)

        # For basic tensor elements, local_comp should be flattened
        if len(local_comp) and len(local_elem.value_shape()) > 0:
            # Map component using component map from UFL. (TODO:
            # inefficient use of this function)
            comp_map, _ = build_component_numbering(local_elem.value_shape(),
                                                    local_elem.symmetry())
            local_comp = comp_map[local_comp]

        # Set local_comp to 0 if it is ()
        if not local_comp:
            local_comp = 0

        # Check that component != not () since the UFL component map
        # will turn it into 0, and () does not mean zeroth component
        # in this context.
        if len(component):
            # Map component using component map from UFL. (TODO:
            # inefficient use of this function)
            comp_map, comp_num = build_component_numbering(ufl_element.value_shape(), ufl_element.symmetry())
            component = comp_map[component]

            # Map physical components into reference components
            component, dummy = transform_component(component, 0, ufl_element)

            # Compute the local offset (needed for non-affine mappings).
            local_offset = component - local_comp
        else:
            # Compute the local offset (needed for non-affine mappings).
            local_offset = 0

        # Create FFC element.
        ffc_element = create_element(ufl_element)

        # Assuming that mappings for all basisfunctions are equal
        ffc_sub_element = create_element(local_elem)
        transformation = ffc_sub_element.mapping()[0]
        ffc_assert(all(transformation == mapping for mapping in ffc_sub_element.mapping()),
                   "Assuming subelement mappings are equal but they differ.")

        # Generate FFC multi index for derivatives.
        tdim = self.tdim
        multiindices = FFCMultiIndex([list(range(tdim))] * len(derivatives)).indices

        return (component, local_elem, local_comp, local_offset, ffc_element,
                transformation, multiindices)

    def _get_current_entity(self):
        if self.entity_type == "cell":
            # If we add macro cell integration, I guess the 'current
            # cell number' would go here?
            return 0
        elif self.entity_type == "facet":
            # Handle restriction through facet.
            return {"+": self.facet0, "-": self.facet1,
                    None: self.facet0}[self.restriction]
        elif self.entity_type == "vertex":
            return self.vertex
        else:
            error("Unknown entity type %s." % self.entity_type)

    def _create_mapping_basis(self, component, deriv, avg, ufl_argument,
                              ffc_element):
        "Create basis name and mapping from given basis_info."

        # Get string for integration points.
        f_ip = "0" if (avg or self.points == 1) else format["integration points"]
        generate_psi_name = format["psi name"]

        # Only support test and trial functions.
        indices = {0: format["first free index"],
                   1: format["second free index"]}

        # Check that we have a basis function.
        ffc_assert(ufl_argument.number() in indices,
                   "Currently, Argument number must be either 0 or 1: " + repr(ufl_argument))
        ffc_assert(ufl_argument.part() is None,
                   "Currently, Argument part is not supporte: " + repr(ufl_argument))

        # Get element counter and loop index.
        element_counter = self.element_map[1 if avg else self.points][ufl_argument.ufl_element()]
        loop_index = indices[ufl_argument.number()]

        # Offset element space dimension in case of negative
        # restriction, need to use the complete element for offset in
        # case of mixed element.
        space_dim = ffc_element.space_dimension()
        offset = {"+": "", "-": str(space_dim), None: ""}[self.restriction]

        # If we have a restricted function multiply space_dim by two.
        if self.restriction in ("+", "-"):
            space_dim *= 2

        # Create basis access, we never need to map the entry in the
        # basis table since we will either loop the entire space
        # dimension or the non-zeros.
        if self.restriction in ("+", "-") and self.integral_type in custom_integral_types and offset != "":
            # Special case access for custom integrals (all basis
            # functions stored in flattened array)
            basis_access = format["component"]("", [f_ip, format["add"]([loop_index, offset])])
        else:
            # Normal basis function access
            basis_access = format["component"]("", [f_ip, loop_index])

        # Get current cell entity, with current restriction considered
        entity = self._get_current_entity()
        name = generate_psi_name(element_counter, self.entity_type, entity,
                                 component, deriv, avg)
        name, non_zeros, zeros, ones = self.name_map[name]
        loop_index_range = shape(self.unique_tables[name])[1]

        # If domain type is custom, then special-case set loop index
        # range since table is empty
        if self.integral_type in custom_integral_types:
            loop_index_range = ffc_element.space_dimension()  # different from `space_dimension`...

        basis = ""
        # Ignore zeros if applicable
        if zeros and (self.optimise_parameters["ignore zero tables"] or self.optimise_parameters["remove zero terms"]):
            basis = self._format_scalar_value(None)[()]
        # If the loop index range is one we can look up the first
        # component in the psi array. If we only have ones we don't
        # need the basis.
        elif self.optimise_parameters["ignore ones"] and loop_index_range == 1 and ones:
            loop_index = "0"
            basis = self._format_scalar_value(1.0)[()]
        else:
            # Add basis name to the psi tables map for later use.
            basis = self._create_symbol(name + basis_access, BASIS)[()]
            self.psi_tables_map[basis] = name

        # Create the correct mapping of the basis function into the
        # local element tensor.
        basis_map = loop_index
        if non_zeros and basis_map == "0":
            basis_map = str(non_zeros[1][0])
        elif non_zeros:
            basis_map = format["component"](format["nonzero columns"](non_zeros[0]), basis_map)
        if offset:
            basis_map = format["grouping"](format["add"]([basis_map, offset]))

        # Try to evaluate basis map ("3 + 2" --> "5").
        try:
            basis_map = str(eval(basis_map))
        except:
            pass

        # Create mapping (index, map, loop_range, space_dim).
        # Example dx and ds: (0, j, 3, 3)
        # Example dS: (0, (j + 3), 3, 6), 6=2*space_dim
        # Example dS optimised: (0, (nz2[j] + 3), 2, 6), 6=2*space_dim
        mapping = ((ufl_argument.number(), basis_map, loop_index_range,
                    space_dim),)

        return (mapping, basis)

    def _create_function_name(self, component, deriv, avg, is_quad_element,
                              ufl_function, ffc_element):
        ffc_assert(ufl_function in self._function_replace_values,
                   "Expecting ufl_function to have been mapped prior to this call.")

        # Get string for integration points.
        f_ip = "0" if (avg or self.points == 1) else format["integration points"]

        # Get the element counter.
        element_counter = self.element_map[1 if avg else self.points][ufl_function.ufl_element()]

        # Get current cell entity, with current restriction considered
        entity = self._get_current_entity()

        # Set to hold used nonzero columns
        used_nzcs = set()

        # Create basis name and map to correct basis and get info.
        generate_psi_name = format["psi name"]
        psi_name = generate_psi_name(element_counter, self.entity_type, entity,
                                     component, deriv, avg)
        psi_name, non_zeros, zeros, ones = self.name_map[psi_name]

        # If all basis are zero we just return None.
        if zeros and self.optimise_parameters["ignore zero tables"]:
            return self._format_scalar_value(None)[()]

        # Get the index range of the loop index.
        loop_index_range = shape(self.unique_tables[psi_name])[1]

        # If domain type is custom, then special-case set loop index
        # range since table is empty
        if self.integral_type in custom_integral_types:
            loop_index_range = ffc_element.space_dimension()

        # Create loop index
        if loop_index_range > 1:
            # Pick first free index of secondary type (could use
            # primary indices, but it's better to avoid confusion).
            loop_index = format["free indices"][0]

        # If we have a quadrature element we can use the ip number to look
        # up the value directly. Need to add offset in case of components.
        if is_quad_element:
            quad_offset = 0
            if component:
                # FIXME: Should we add a member function elements() to
                # FiniteElement?
                if isinstance(ffc_element, MixedElement):
                    for i in range(component):
                        quad_offset += ffc_element.elements()[i].space_dimension()
                elif component != 1:
                    error("Can't handle components different from 1 if we don't have a MixedElement.")
                else:
                    quad_offset += ffc_element.space_dimension()
            if quad_offset:
                coefficient_access = format["add"]([f_ip, str(quad_offset)])
            else:
                if non_zeros and f_ip == "0":
                    # If we have non zero column mapping but only one
                    # value just pick it.
                    # MSA: This should be an exact refactoring of the
                    #      previous logic, but I'm not sure if these
                    #      lines were originally intended here in the
                    #      quad_element section, or what this even
                    #      does:
                    coefficient_access = str(non_zeros[1][0])
                else:
                    coefficient_access = f_ip

        elif non_zeros:
            if loop_index_range == 1:
                # If we have non zero column mapping but only one
                # value just pick it.
                coefficient_access = str(non_zeros[1][0])
            else:
                used_nzcs.add(non_zeros[0])
                coefficient_access = format["component"](format["nonzero columns"](non_zeros[0]), loop_index)

        elif loop_index_range == 1:
            # If the loop index range is one we can look up the first
            # component in the coefficient array.
            coefficient_access = "0"

        else:
            # Or just set default coefficient access.
            coefficient_access = loop_index

        # Offset by element space dimension in case of negative
        # restriction.
        offset = {"+": "", "-": str(ffc_element.space_dimension()), None: ""}[self.restriction]
        if offset:
            coefficient_access = format["add"]([coefficient_access, offset])

        # Try to evaluate coefficient access ("3 + 2" --> "5").
        try:
            coefficient_access = str(eval(coefficient_access))
            C_ACCESS = GEO
        except:
            C_ACCESS = IP
        # Format coefficient access
        coefficient = format["coefficient"](str(ufl_function.count()),
                                            coefficient_access)

        # Build and cache some function data only if we need the basis
        # MSA: I don't understand the mix of loop index range check
        # and ones check here, but that's how it was.
        if is_quad_element or (loop_index_range == 1 and ones and self.optimise_parameters["ignore ones"]):
            # If we only have ones or if we have a quadrature element
            # we don't need the basis.
            function_symbol_name = coefficient
            F_ACCESS = C_ACCESS

        else:
            # Add basis name to set of used tables and add matrix
            # access.
            # TODO: We should first add this table if the function is
            # used later in the expressions. If some term is
            # multiplied by zero and it falls away there is no need to
            # compute the function value
            self.used_psi_tables.add(psi_name)

            # Create basis access, we never need to map the entry in
            # the basis table since we will either loop the entire
            # space dimension or the non-zeros.
            basis_index = "0" if loop_index_range == 1 else loop_index
            basis_access = format["component"]("", [f_ip, basis_index])
            basis_name = psi_name + basis_access
            # Try to set access to the outermost possible loop
            if f_ip == "0" and basis_access == "0":
                B_ACCESS = GEO
                F_ACCESS = C_ACCESS
            else:
                B_ACCESS = IP
                F_ACCESS = IP

            # Format expression for function
            function_expr = self._create_product([self._create_symbol(basis_name, B_ACCESS)[()],
                                                  self._create_symbol(coefficient, C_ACCESS)[()]])

            # Check if the expression to compute the function value is
            # already in the dictionary of used function. If not,
            # generate a new name and add.
            data = self.function_data.get(function_expr)
            if data is None:
                function_count = len(self.function_data)
                data = (function_count, loop_index_range,
                        self._count_operations(function_expr),
                        psi_name, used_nzcs, ufl_function.ufl_element())
                self.function_data[function_expr] = data
            function_symbol_name = format["function value"](data[0])

        # TODO: This access stuff was changed subtly during my
        # refactoring, the
        # X_ACCESS vars is an attempt at making it right, make sure it
        # is correct now!
        return self._create_symbol(function_symbol_name, F_ACCESS)[()]

    def _generate_affine_map(self):
        """Generate psi table for affine map, used by spatial coordinate to
        map integration point to physical element.

        """

        # TODO: KBO: Perhaps it is better to create a fiat element and
        # tabulate the values at the integration points?
        f_FEA = format["affine map table"]
        f_ip = format["integration points"]

        affine_map = {1: lambda x: [1.0 - x[0], x[0]],
                      2: lambda x: [1.0 - x[0] - x[1], x[0], x[1]],
                      3: lambda x: [1.0 - x[0] - x[1] - x[2], x[0], x[1], x[2]]}

        num_ip = self.points
        w, points = self.quad_weights[num_ip]

        if self.facet0 is not None:
            points = map_facet_points(points, self.facet0)
            name = f_FEA(num_ip, self.facet0)
        elif self.vertex is not None:
            error("Spatial coordinates (x) not implemented for point measure (dP)")  # TODO: Implement this, should be just the point.
        else:
            name = f_FEA(num_ip, 0)

        if name not in self.unique_tables:
            self.unique_tables[name] = array([affine_map[len(p)](p) for p in points])

        if self.coordinate is None:
            ip = f_ip if num_ip > 1 else 0
            r = None if self.facet1 is None else "+"
            self.coordinate = [name, self.gdim, ip, r]

    # -------------------------------------------------------------------------
    # Helper functions for code_generation()
    # -------------------------------------------------------------------------
    def _count_operations(self, expression):
        error("This function should be implemented by the child class.")

    def _create_entry_data(self, val):
        error("This function should be implemented by the child class.")