/usr/lib/python2.7/dist-packages/ffc/analysis.py is in python-ffc 2016.2.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | # -*- coding: utf-8 -*-
# Copyright (C) 2007-2016 Anders Logg and Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes, 2010
# Modified by Martin Sandve Alnæs, 2013-2014
"""
Compiler stage 1: Analysis
--------------------------
This module implements the analysis/preprocessing of variational
forms, including automatic selection of elements, degrees and
form representation type.
"""
import os
import copy
from itertools import chain
# UFL modules
from ufl.finiteelement import MixedElement, EnrichedElement
from ufl.algorithms import estimate_total_polynomial_degree
from ufl.algorithms import sort_elements
from ufl.algorithms import compute_form_data
from ufl.algorithms.analysis import extract_sub_elements
# FFC modules
from ffc.log import log, info, begin, end, warning, debug, error, warning_blue
from ffc.quadratureelement import default_quadrature_degree
from ffc.utils import all_equal
from ffc.tensor import estimate_cost
def analyze_forms(forms, parameters):
"""
Analyze form(s), returning
form_datas - a tuple of form_data objects
unique_elements - a tuple of unique elements across all forms
element_numbers - a mapping to unique numbers for all elements
"""
return analyze_ufl_objects(forms, "form", parameters)
def analyze_elements(elements, parameters):
return analyze_ufl_objects(elements, "element", parameters)
def analyze_coordinate_mappings(coordinate_elements, parameters):
return analyze_ufl_objects(coordinate_elements, "coordinate_mapping", parameters)
def analyze_ufl_objects(ufl_objects, kind, parameters):
"""
Analyze ufl object(s), either forms, elements, or coordinate mappings, returning:
form_datas - a tuple of form_data objects
unique_elements - a tuple of unique elements across all forms
element_numbers - a mapping to unique numbers for all elements
"""
begin("Compiler stage 1: Analyzing %s(s)" % (kind,))
form_datas = ()
unique_elements = set()
unique_coordinate_elements = set()
if kind == "form":
forms = ufl_objects
# Analyze forms
form_datas = tuple(_analyze_form(form, parameters)
for form in forms)
# Extract unique elements accross all forms
for form_data in form_datas:
unique_elements.update(form_data.unique_sub_elements)
# Extract coordinate elements across all forms
for form_data in form_datas:
unique_coordinate_elements.update(form_data.coordinate_elements)
elif kind == "element":
elements = ufl_objects
# Extract unique (sub)elements
unique_elements.update(extract_sub_elements(elements))
elif kind == "coordinate_mapping":
meshes = ufl_objects
# Extract unique (sub)elements
unique_coordinate_elements = [mesh.ufl_coordinate_element() for mesh in meshes]
# Make sure coordinate elements and their subelements are included
unique_elements.update(extract_sub_elements(unique_coordinate_elements))
# Sort elements
unique_elements = sort_elements(unique_elements)
# Check for schemes for QuadratureElements
for element in unique_elements:
if element.family() == "Quadrature":
qs = element.quadrature_scheme()
if qs is None:
error("Missing quad_scheme in quadrature element.")
# Compute element numbers
element_numbers = _compute_element_numbers(unique_elements)
end()
return form_datas, unique_elements, element_numbers, unique_coordinate_elements
def _compute_element_numbers(elements):
"Build map from elements to element numbers."
element_numbers = {}
for (i, element) in enumerate(elements):
element_numbers[element] = i
return element_numbers
def _analyze_form(form, parameters):
"Analyze form, returning form data."
# Check that form is not empty
if form.empty():
error("Form (%s) seems to be zero: cannot compile it." % str(form))
# Hack to override representation with environment variable
forced_r = os.environ.get("FFC_FORCE_REPRESENTATION")
if forced_r:
warning("representation: forced by $FFC_FORCE_REPRESENTATION to '%s'" % forced_r)
# Compute form metadata
if parameters["representation"] == "uflacs" or forced_r == "uflacs":
# Temporary workaround to let uflacs have a different preprocessing pipeline
# than the legacy representations quadrature and tensor. This approach imposes
# a limitation that e.g. uflacs and tensor representation cannot be mixed in the same form.
from ufl.classes import Jacobian
form_data = compute_form_data(form,
do_apply_function_pullbacks=True,
do_apply_integral_scaling=True,
do_apply_geometry_lowering=True,
preserve_geometry_types=(Jacobian,),
do_apply_restrictions=True,
)
else:
form_data = compute_form_data(form)
info("")
info(str(form_data))
# Attach integral meta data
_attach_integral_metadata(form_data, parameters)
return form_data
def _extract_common_quadrature_degree(integral_metadatas):
# Check that quadrature degree is the same
quadrature_degrees = [md["quadrature_degree"] for md in integral_metadatas]
for d in quadrature_degrees:
if not isinstance(d, int):
error("Invalid non-integer quadrature degree %s" % (str(d),))
qd = max(quadrature_degrees)
if not all_equal(quadrature_degrees):
# TODO: This may be loosened up without too much effort,
# if the form compiler handles mixed integration degree,
# something that most of the pipeline seems to be ready for.
info("Quadrature degree must be equal within each sub domain, using degree %d." % qd)
return qd
def _autoselect_quadrature_degree(integral_metadata, integral, form_data):
# Automatic selection of quadrature degree
qd = integral_metadata["quadrature_degree"]
pd = integral_metadata["estimated_polynomial_degree"]
# Special case: handling -1 as "auto" for quadrature_degree
if qd == -1:
qd = "auto"
# TODO: Add other options here
if qd == "auto":
qd = pd
info("quadrature_degree: auto --> %d" % qd)
if isinstance(qd, int):
if qd >= 0:
info("quadrature_degree: %d" % qd)
else:
error("Illegal negative quadrature degree %s " % (qd,))
else:
error("Invalid quadrature_degree %s." % (qd,))
tdim = integral.ufl_domain().topological_dimension()
_check_quadrature_degree(qd, tdim)
return qd
def _check_quadrature_degree(degree, top_dim):
"""Check that quadrature degree does not result in a unreasonable high
number of integration points."""
num_points = ((degree + 1 + 1) // 2)**top_dim
if num_points >= 100:
warning_blue("WARNING: The number of integration points for each cell will be: %d" % num_points)
warning_blue(" Consider using the option 'quadrature_degree' to reduce the number of points")
def _extract_common_quadrature_rule(integral_metadatas):
# Check that quadrature rule is the same
# (To support mixed rules would be some work since num_points is
# used to identify quadrature rules in large parts of the pipeline)
quadrature_rules = [md["quadrature_rule"] for md in integral_metadatas]
if all_equal(quadrature_rules):
qr = quadrature_rules[0]
else:
qr = "canonical"
info("Quadrature rule must be equal within each sub domain, using %s rule." % qr)
return qr
def _autoselect_quadrature_rule(integral_metadata, integral, form_data):
# Automatic selection of quadrature rule
qr = integral_metadata["quadrature_rule"]
if qr == "auto":
# Just use default for now.
qr = "default"
info("quadrature_rule: auto --> %s" % qr)
elif qr in ("default", "canonical", "vertex"):
info("quadrature_rule: %s" % qr)
else:
info("Valid choices are 'default', 'canonical', 'vertex', and 'auto'.")
error("Illegal choice of quadrature rule for integral: " + str(qr))
# Return automatically determined quadrature rule
return qr
def _determine_representation(integral_metadatas, ida, form_data, parameters):
"Determine one unique representation considering all integrals together."
# Hack because uflacs and quadrature/tensor cannot coincide in same form because of compute_form_data differences.
r = parameters["representation"]
if r == "uflacs":
warning("representation: ignoring metadata and using '%s' set by parameters" % r)
return r
# Hack to override representation with environment variable
forced_r = os.environ.get("FFC_FORCE_REPRESENTATION")
if forced_r:
r = forced_r
warning("representation: forced by $FFC_FORCE_REPRESENTATION to '%s'" % r)
return r
# Check that representations are compatible
# (Generating code with different representations within a
# single tabulate_tensor is considered not worth the effort)
representations = set()
for md in integral_metadatas:
if md["representation"] != "auto":
representations.add(md["representation"])
if len(representations) > 1:
error("Integral representation must be equal within each sub domain or 'auto', got %s." % (str(list(set(representations))),))
elif representations:
r, = representations
else:
r = "auto"
# If it's still auto, try to determine which representation is best for these integrals
if r == "auto":
rs = set()
for integral in ida.integrals:
rs.add(_auto_select_representation(integral,
form_data.unique_sub_elements,
form_data.function_replace_map))
# If any failed to work with tensor, don't use tensor
if "tensor" in rs and len(rs) > 1:
rs.remove("tensor")
# The end result must be unique
if len(rs) != 1:
error("Failed to auto-select representation, rs=%s." % (str(list(rs)),))
r, = rs
info("representation: auto --> %s" % r)
else:
info("representation: %s" % r)
return r
def _attach_integral_metadata(form_data, parameters):
"Attach integral metadata"
# TODO: A nicer data flow would avoid modifying the form_data at all.
# Recognized metadata keys
metadata_keys = ("representation", "quadrature_degree", "quadrature_rule")
metadata_parameters = {key: parameters[key] for key in metadata_keys if key in parameters}
# Iterate over integral collections
quad_schemes = []
for ida in form_data.integral_data:
# Iterate over integrals
# Start with default values of integral metadata
# (these will be either the FFC defaults, globally modified defaults,
# or overrides explicitly passed by the user to e.g. assemble())
integral_metadatas = [copy.deepcopy(metadata_parameters)
for integral in ida.integrals]
# Update with integral specific overrides
for i, integral in enumerate(ida.integrals):
integral_metadatas[i].update(integral.metadata() or {})
# Determine representation, must be equal for all integrals on same subdomain
r = _determine_representation(integral_metadatas, ida, form_data, parameters)
for i, integral in enumerate(ida.integrals):
integral_metadatas[i]["representation"] = r
ida.metadata["representation"] = r
# Determine automated updates to metadata values
for i, integral in enumerate(ida.integrals):
qr = _autoselect_quadrature_rule(integral_metadatas[i], integral, form_data)
qd = _autoselect_quadrature_degree(integral_metadatas[i], integral, form_data)
integral_metadatas[i]["quadrature_rule"] = qr
integral_metadatas[i]["quadrature_degree"] = qd
# Extract common metadata for integral collection
qr = _extract_common_quadrature_rule(integral_metadatas)
qd = _extract_common_quadrature_degree(integral_metadatas)
ida.metadata["quadrature_rule"] = qr
ida.metadata["quadrature_degree"] = qd
# Add common num_cells (I believe this must be equal but I'm not that into this work)
num_cells = set(md.get("num_cells") for md in integral_metadatas)
if len(num_cells) != 1:
error("Found integrals with different num_cells metadata on same subdomain: %s" % (str(list(num_cells)),))
num_cells, = num_cells
ida.metadata["num_cells"] = num_cells
# Reconstruct integrals to avoid modifying the input integral,
# which would affect the signature computation if the
# integral was used again in the user program.
# Modifying attributes of form_data.integral_data is less problematic
# since it's lifetime is internal to the form compiler pipeline.
for i, integral in enumerate(ida.integrals):
ida.integrals[i] = integral.reconstruct(metadata=integral_metadatas[i])
# Collect all quad schemes
quad_schemes.extend([md["quadrature_rule"] for md in integral_metadatas])
# Validate consistency of schemes for QuadratureElements
# TODO: Can loosen up this a bit, only needs to be consistent
# with the integrals that the elements are used in
_validate_quadrature_schemes_of_elements(quad_schemes, form_data.unique_sub_elements)
def _validate_quadrature_schemes_of_elements(quad_schemes, elements): # form_data):
# Update scheme for QuadratureElements
if quad_schemes and all_equal(quad_schemes):
scheme = quad_schemes[0]
else:
scheme = "canonical"
info("Quadrature rule must be equal within each sub domain, using %s rule." % scheme)
for element in elements:
if element.family() == "Quadrature":
qs = element.quadrature_scheme()
if qs != scheme:
error("Quadrature element must have specified quadrature scheme (%s) equal to the integral (%s)." % (qs, scheme))
def _get_sub_elements(element):
"Get sub elements."
sub_elements = [element]
if isinstance(element, MixedElement):
for e in element.sub_elements():
sub_elements += _get_sub_elements(e)
elif isinstance(element, EnrichedElement):
for e in element._elements:
sub_elements += _get_sub_elements(e)
return sub_elements
def _auto_select_representation(integral, elements, function_replace_map):
"""
Automatically select a suitable representation for integral.
Note that the selection is made for each integral, not for
each term. This means that terms which are grouped by UFL
into the same integral (if their measures are equal) will
necessarily get the same representation.
"""
# Skip unsupported integration domain types
if integral.integral_type() == "vertex":
return "quadrature"
# Get ALL sub elements, needed to check for restrictions of EnrichedElements.
sub_elements = []
for e in elements:
sub_elements += _get_sub_elements(e)
# Use quadrature representation if we have a quadrature element
if any(e.family() == "Quadrature" for e in sub_elements):
return "quadrature"
# Estimate cost of tensor representation
tensor_cost = estimate_cost(integral, function_replace_map)
debug("Estimated cost of tensor representation: " + str(tensor_cost))
# Use quadrature if tensor representation is not possible
if tensor_cost == -1:
return "quadrature"
# Otherwise, select quadrature when cost is high
if tensor_cost <= 3:
return "tensor"
else:
return "quadrature"
|