/usr/lib/python2.7/dist-packages/bitstring.py is in python-bitstring 3.1.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 | #!/usr/bin/env python
"""
This package defines classes that simplify bit-wise creation, manipulation and
interpretation of data.
Classes:
Bits -- An immutable container for binary data.
BitArray -- A mutable container for binary data.
ConstBitStream -- An immutable container with streaming methods.
BitStream -- A mutable container with streaming methods.
Bits (base class)
/ \
+ mutating methods / \ + streaming methods
/ \
BitArray ConstBitStream
\ /
\ /
\ /
BitStream
Functions:
pack -- Create a BitStream from a format string.
Exceptions:
Error -- Module exception base class.
CreationError -- Error during creation.
InterpretError -- Inappropriate interpretation of binary data.
ByteAlignError -- Whole byte position or length needed.
ReadError -- Reading or peeking past the end of a bitstring.
https://github.com/scott-griffiths/bitstring
"""
__licence__ = """
The MIT License
Copyright (c) 2006-2016 Scott Griffiths (dr.scottgriffiths@gmail.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
__version__ = "3.1.5"
__author__ = "Scott Griffiths"
import numbers
import copy
import sys
import re
import binascii
import mmap
import os
import struct
import operator
import collections
import array
byteorder = sys.byteorder
bytealigned = False
"""Determines whether a number of methods default to working only on byte boundaries."""
# Maximum number of digits to use in __str__ and __repr__.
MAX_CHARS = 250
# Maximum size of caches used for speed optimisations.
CACHE_SIZE = 1000
class Error(Exception):
"""Base class for errors in the bitstring module."""
def __init__(self, *params):
self.msg = params[0] if params else ''
self.params = params[1:]
def __str__(self):
if self.params:
return self.msg.format(*self.params)
return self.msg
class ReadError(Error, IndexError):
"""Reading or peeking past the end of a bitstring."""
def __init__(self, *params):
Error.__init__(self, *params)
class InterpretError(Error, ValueError):
"""Inappropriate interpretation of binary data."""
def __init__(self, *params):
Error.__init__(self, *params)
class ByteAlignError(Error):
"""Whole-byte position or length needed."""
def __init__(self, *params):
Error.__init__(self, *params)
class CreationError(Error, ValueError):
"""Inappropriate argument during bitstring creation."""
def __init__(self, *params):
Error.__init__(self, *params)
class ConstByteStore(object):
"""Stores raw bytes together with a bit offset and length.
Used internally - not part of public interface.
"""
__slots__ = ('offset', '_rawarray', 'bitlength')
def __init__(self, data, bitlength=None, offset=None):
"""data is either a bytearray or a MmapByteArray"""
self._rawarray = data
if offset is None:
offset = 0
if bitlength is None:
bitlength = 8 * len(data) - offset
self.offset = offset
self.bitlength = bitlength
def getbit(self, pos):
assert 0 <= pos < self.bitlength
byte, bit = divmod(self.offset + pos, 8)
return bool(self._rawarray[byte] & (128 >> bit))
def getbyte(self, pos):
"""Direct access to byte data."""
return self._rawarray[pos]
def getbyteslice(self, start, end):
"""Direct access to byte data."""
c = self._rawarray[start:end]
return c
@property
def bytelength(self):
if not self.bitlength:
return 0
sb = self.offset // 8
eb = (self.offset + self.bitlength - 1) // 8
return eb - sb + 1
def __copy__(self):
return ByteStore(self._rawarray[:], self.bitlength, self.offset)
def _appendstore(self, store):
"""Join another store on to the end of this one."""
if not store.bitlength:
return
# Set new array offset to the number of bits in the final byte of current array.
store = offsetcopy(store, (self.offset + self.bitlength) % 8)
if store.offset:
# first do the byte with the join.
joinval = (self._rawarray.pop() & (255 ^ (255 >> store.offset)) |
(store.getbyte(0) & (255 >> store.offset)))
self._rawarray.append(joinval)
self._rawarray.extend(store._rawarray[1:])
else:
self._rawarray.extend(store._rawarray)
self.bitlength += store.bitlength
def _prependstore(self, store):
"""Join another store on to the start of this one."""
if not store.bitlength:
return
# Set the offset of copy of store so that it's final byte
# ends in a position that matches the offset of self,
# then join self on to the end of it.
store = offsetcopy(store, (self.offset - store.bitlength) % 8)
assert (store.offset + store.bitlength) % 8 == self.offset % 8
bit_offset = self.offset % 8
if bit_offset:
# first do the byte with the join.
store.setbyte(-1, (store.getbyte(-1) & (255 ^ (255 >> bit_offset)) | \
(self._rawarray[self.byteoffset] & (255 >> bit_offset))))
store._rawarray.extend(self._rawarray[self.byteoffset + 1: self.byteoffset + self.bytelength])
else:
store._rawarray.extend(self._rawarray[self.byteoffset: self.byteoffset + self.bytelength])
self._rawarray = store._rawarray
self.offset = store.offset
self.bitlength += store.bitlength
@property
def byteoffset(self):
return self.offset // 8
@property
def rawbytes(self):
return self._rawarray
class ByteStore(ConstByteStore):
"""Adding mutating methods to ConstByteStore
Used internally - not part of public interface.
"""
__slots__ = ()
def setbit(self, pos):
assert 0 <= pos < self.bitlength
byte, bit = divmod(self.offset + pos, 8)
self._rawarray[byte] |= (128 >> bit)
def unsetbit(self, pos):
assert 0 <= pos < self.bitlength
byte, bit = divmod(self.offset + pos, 8)
self._rawarray[byte] &= ~(128 >> bit)
def invertbit(self, pos):
assert 0 <= pos < self.bitlength
byte, bit = divmod(self.offset + pos, 8)
self._rawarray[byte] ^= (128 >> bit)
def setbyte(self, pos, value):
self._rawarray[pos] = value
def setbyteslice(self, start, end, value):
self._rawarray[start:end] = value
def offsetcopy(s, newoffset):
"""Return a copy of a ByteStore with the newoffset.
Not part of public interface.
"""
assert 0 <= newoffset < 8
if not s.bitlength:
return copy.copy(s)
else:
if newoffset == s.offset % 8:
return ByteStore(s.getbyteslice(s.byteoffset, s.byteoffset + s.bytelength), s.bitlength, newoffset)
newdata = []
d = s._rawarray
assert newoffset != s.offset % 8
if newoffset < s.offset % 8:
# We need to shift everything left
shiftleft = s.offset % 8 - newoffset
# First deal with everything except for the final byte
for x in range(s.byteoffset, s.byteoffset + s.bytelength - 1):
newdata.append(((d[x] << shiftleft) & 0xff) +\
(d[x + 1] >> (8 - shiftleft)))
bits_in_last_byte = (s.offset + s.bitlength) % 8
if not bits_in_last_byte:
bits_in_last_byte = 8
if bits_in_last_byte > shiftleft:
newdata.append((d[s.byteoffset + s.bytelength - 1] << shiftleft) & 0xff)
else: # newoffset > s._offset % 8
shiftright = newoffset - s.offset % 8
newdata.append(s.getbyte(0) >> shiftright)
for x in range(s.byteoffset + 1, s.byteoffset + s.bytelength):
newdata.append(((d[x - 1] << (8 - shiftright)) & 0xff) +\
(d[x] >> shiftright))
bits_in_last_byte = (s.offset + s.bitlength) % 8
if not bits_in_last_byte:
bits_in_last_byte = 8
if bits_in_last_byte + shiftright > 8:
newdata.append((d[s.byteoffset + s.bytelength - 1] << (8 - shiftright)) & 0xff)
new_s = ByteStore(bytearray(newdata), s.bitlength, newoffset)
assert new_s.offset == newoffset
return new_s
def equal(a, b):
"""Return True if ByteStores a == b.
Not part of public interface.
"""
# We want to return False for inequality as soon as possible, which
# means we get lots of special cases.
# First the easy one - compare lengths:
a_bitlength = a.bitlength
b_bitlength = b.bitlength
if a_bitlength != b_bitlength:
return False
if not a_bitlength:
assert b_bitlength == 0
return True
# Make 'a' the one with the smaller offset
if (a.offset % 8) > (b.offset % 8):
a, b = b, a
# and create some aliases
a_bitoff = a.offset % 8
b_bitoff = b.offset % 8
a_byteoffset = a.byteoffset
b_byteoffset = b.byteoffset
a_bytelength = a.bytelength
b_bytelength = b.bytelength
da = a._rawarray
db = b._rawarray
# If they are pointing to the same data, they must be equal
if da is db and a.offset == b.offset:
return True
if a_bitoff == b_bitoff:
bits_spare_in_last_byte = 8 - (a_bitoff + a_bitlength) % 8
if bits_spare_in_last_byte == 8:
bits_spare_in_last_byte = 0
# Special case for a, b contained in a single byte
if a_bytelength == 1:
a_val = ((da[a_byteoffset] << a_bitoff) & 0xff) >> (8 - a_bitlength)
b_val = ((db[b_byteoffset] << b_bitoff) & 0xff) >> (8 - b_bitlength)
return a_val == b_val
# Otherwise check first byte
if da[a_byteoffset] & (0xff >> a_bitoff) != db[b_byteoffset] & (0xff >> b_bitoff):
return False
# then everything up to the last
b_a_offset = b_byteoffset - a_byteoffset
for x in range(1 + a_byteoffset, a_byteoffset + a_bytelength - 1):
if da[x] != db[b_a_offset + x]:
return False
# and finally the last byte
return (da[a_byteoffset + a_bytelength - 1] >> bits_spare_in_last_byte ==
db[b_byteoffset + b_bytelength - 1] >> bits_spare_in_last_byte)
assert a_bitoff != b_bitoff
# This is how much we need to shift a to the right to compare with b:
shift = b_bitoff - a_bitoff
# Special case for b only one byte long
if b_bytelength == 1:
assert a_bytelength == 1
a_val = ((da[a_byteoffset] << a_bitoff) & 0xff) >> (8 - a_bitlength)
b_val = ((db[b_byteoffset] << b_bitoff) & 0xff) >> (8 - b_bitlength)
return a_val == b_val
# Special case for a only one byte long
if a_bytelength == 1:
assert b_bytelength == 2
a_val = ((da[a_byteoffset] << a_bitoff) & 0xff) >> (8 - a_bitlength)
b_val = ((db[b_byteoffset] << 8) + db[b_byteoffset + 1]) << b_bitoff
b_val &= 0xffff
b_val >>= 16 - b_bitlength
return a_val == b_val
# Compare first byte of b with bits from first byte of a
if (da[a_byteoffset] & (0xff >> a_bitoff)) >> shift != db[b_byteoffset] & (0xff >> b_bitoff):
return False
# Now compare every full byte of b with bits from 2 bytes of a
for x in range(1, b_bytelength - 1):
# Construct byte from 2 bytes in a to compare to byte in b
b_val = db[b_byteoffset + x]
a_val = ((da[a_byteoffset + x - 1] << 8) + da[a_byteoffset + x]) >> shift
a_val &= 0xff
if a_val != b_val:
return False
# Now check bits in final byte of b
final_b_bits = (b.offset + b_bitlength) % 8
if not final_b_bits:
final_b_bits = 8
b_val = db[b_byteoffset + b_bytelength - 1] >> (8 - final_b_bits)
final_a_bits = (a.offset + a_bitlength) % 8
if not final_a_bits:
final_a_bits = 8
if b.bytelength > a_bytelength:
assert b_bytelength == a_bytelength + 1
a_val = da[a_byteoffset + a_bytelength - 1] >> (8 - final_a_bits)
a_val &= 0xff >> (8 - final_b_bits)
return a_val == b_val
assert a_bytelength == b_bytelength
a_val = da[a_byteoffset + a_bytelength - 2] << 8
a_val += da[a_byteoffset + a_bytelength - 1]
a_val >>= (8 - final_a_bits)
a_val &= 0xff >> (8 - final_b_bits)
return a_val == b_val
class MmapByteArray(object):
"""Looks like a bytearray, but from an mmap.
Not part of public interface.
"""
__slots__ = ('filemap', 'filelength', 'source', 'byteoffset', 'bytelength')
def __init__(self, source, bytelength=None, byteoffset=None):
self.source = source
source.seek(0, os.SEEK_END)
self.filelength = source.tell()
if byteoffset is None:
byteoffset = 0
if bytelength is None:
bytelength = self.filelength - byteoffset
self.byteoffset = byteoffset
self.bytelength = bytelength
self.filemap = mmap.mmap(source.fileno(), 0, access=mmap.ACCESS_READ)
def __getitem__(self, key):
try:
start = key.start
stop = key.stop
except AttributeError:
try:
assert 0 <= key < self.bytelength
return ord(self.filemap[key + self.byteoffset])
except TypeError:
# for Python 3
return self.filemap[key + self.byteoffset]
else:
if start is None:
start = 0
if stop is None:
stop = self.bytelength
assert key.step is None
assert 0 <= start < self.bytelength
assert 0 <= stop <= self.bytelength
s = slice(start + self.byteoffset, stop + self.byteoffset)
return bytearray(self.filemap.__getitem__(s))
def __len__(self):
return self.bytelength
# This creates a dictionary for every possible byte with the value being
# the key with its bits reversed.
BYTE_REVERSAL_DICT = dict()
# For Python 2.x/ 3.x coexistence
# Yes this is very very hacky.
try:
xrange
for i in range(256):
BYTE_REVERSAL_DICT[i] = chr(int("{0:08b}".format(i)[::-1], 2))
except NameError:
for i in range(256):
BYTE_REVERSAL_DICT[i] = bytes([int("{0:08b}".format(i)[::-1], 2)])
from io import IOBase as file
xrange = range
basestring = str
# Python 2.x octals start with '0', in Python 3 it's '0o'
LEADING_OCT_CHARS = len(oct(1)) - 1
def tidy_input_string(s):
"""Return string made lowercase and with all whitespace removed."""
s = ''.join(s.split()).lower()
return s
INIT_NAMES = ('uint', 'int', 'ue', 'se', 'sie', 'uie', 'hex', 'oct', 'bin', 'bits',
'uintbe', 'intbe', 'uintle', 'intle', 'uintne', 'intne',
'float', 'floatbe', 'floatle', 'floatne', 'bytes', 'bool', 'pad')
TOKEN_RE = re.compile(r'(?P<name>' + '|'.join(INIT_NAMES) +
r')((:(?P<len>[^=]+)))?(=(?P<value>.*))?$', re.IGNORECASE)
DEFAULT_UINT = re.compile(r'(?P<len>[^=]+)?(=(?P<value>.*))?$', re.IGNORECASE)
MULTIPLICATIVE_RE = re.compile(r'(?P<factor>.*)\*(?P<token>.+)')
# Hex, oct or binary literals
LITERAL_RE = re.compile(r'(?P<name>0(x|o|b))(?P<value>.+)', re.IGNORECASE)
# An endianness indicator followed by one or more struct.pack codes
STRUCT_PACK_RE = re.compile(r'(?P<endian><|>|@)?(?P<fmt>(?:\d*[bBhHlLqQfd])+)$')
# A number followed by a single character struct.pack code
STRUCT_SPLIT_RE = re.compile(r'\d*[bBhHlLqQfd]')
# These replicate the struct.pack codes
# Big-endian
REPLACEMENTS_BE = {'b': 'intbe:8', 'B': 'uintbe:8',
'h': 'intbe:16', 'H': 'uintbe:16',
'l': 'intbe:32', 'L': 'uintbe:32',
'q': 'intbe:64', 'Q': 'uintbe:64',
'f': 'floatbe:32', 'd': 'floatbe:64'}
# Little-endian
REPLACEMENTS_LE = {'b': 'intle:8', 'B': 'uintle:8',
'h': 'intle:16', 'H': 'uintle:16',
'l': 'intle:32', 'L': 'uintle:32',
'q': 'intle:64', 'Q': 'uintle:64',
'f': 'floatle:32', 'd': 'floatle:64'}
# Size in bytes of all the pack codes.
PACK_CODE_SIZE = {'b': 1, 'B': 1, 'h': 2, 'H': 2, 'l': 4, 'L': 4,
'q': 8, 'Q': 8, 'f': 4, 'd': 8}
_tokenname_to_initialiser = {'hex': 'hex', '0x': 'hex', '0X': 'hex', 'oct': 'oct',
'0o': 'oct', '0O': 'oct', 'bin': 'bin', '0b': 'bin',
'0B': 'bin', 'bits': 'auto', 'bytes': 'bytes', 'pad': 'pad'}
def structparser(token):
"""Parse struct-like format string token into sub-token list."""
m = STRUCT_PACK_RE.match(token)
if not m:
return [token]
else:
endian = m.group('endian')
if endian is None:
return [token]
# Split the format string into a list of 'q', '4h' etc.
formatlist = re.findall(STRUCT_SPLIT_RE, m.group('fmt'))
# Now deal with mulitiplicative factors, 4h -> hhhh etc.
fmt = ''.join([f[-1] * int(f[:-1]) if len(f) != 1 else
f for f in formatlist])
if endian == '@':
# Native endianness
if byteorder == 'little':
endian = '<'
else:
assert byteorder == 'big'
endian = '>'
if endian == '<':
tokens = [REPLACEMENTS_LE[c] for c in fmt]
else:
assert endian == '>'
tokens = [REPLACEMENTS_BE[c] for c in fmt]
return tokens
def tokenparser(fmt, keys=None, token_cache={}):
"""Divide the format string into tokens and parse them.
Return stretchy token and list of [initialiser, length, value]
initialiser is one of: hex, oct, bin, uint, int, se, ue, 0x, 0o, 0b etc.
length is None if not known, as is value.
If the token is in the keyword dictionary (keys) then it counts as a
special case and isn't messed with.
tokens must be of the form: [factor*][initialiser][:][length][=value]
"""
try:
return token_cache[(fmt, keys)]
except KeyError:
token_key = (fmt, keys)
# Very inefficient expanding of brackets.
fmt = expand_brackets(fmt)
# Split tokens by ',' and remove whitespace
# The meta_tokens can either be ordinary single tokens or multiple
# struct-format token strings.
meta_tokens = (''.join(f.split()) for f in fmt.split(','))
return_values = []
stretchy_token = False
for meta_token in meta_tokens:
# See if it has a multiplicative factor
m = MULTIPLICATIVE_RE.match(meta_token)
if not m:
factor = 1
else:
factor = int(m.group('factor'))
meta_token = m.group('token')
# See if it's a struct-like format
tokens = structparser(meta_token)
ret_vals = []
for token in tokens:
if keys and token in keys:
# Don't bother parsing it, it's a keyword argument
ret_vals.append([token, None, None])
continue
value = length = None
if token == '':
continue
# Match literal tokens of the form 0x... 0o... and 0b...
m = LITERAL_RE.match(token)
if m:
name = m.group('name')
value = m.group('value')
ret_vals.append([name, length, value])
continue
# Match everything else:
m1 = TOKEN_RE.match(token)
if not m1:
# and if you don't specify a 'name' then the default is 'uint':
m2 = DEFAULT_UINT.match(token)
if not m2:
raise ValueError("Don't understand token '{0}'.".format(token))
if m1:
name = m1.group('name')
length = m1.group('len')
if m1.group('value'):
value = m1.group('value')
else:
assert m2
name = 'uint'
length = m2.group('len')
if m2.group('value'):
value = m2.group('value')
if name == 'bool':
if length is not None:
raise ValueError("You can't specify a length with bool tokens - they are always one bit.")
length = 1
if length is None and name not in ('se', 'ue', 'sie', 'uie'):
stretchy_token = True
if length is not None:
# Try converting length to int, otherwise check it's a key.
try:
length = int(length)
if length < 0:
raise Error
# For the 'bytes' token convert length to bits.
if name == 'bytes':
length *= 8
except Error:
raise ValueError("Can't read a token with a negative length.")
except ValueError:
if not keys or length not in keys:
raise ValueError("Don't understand length '{0}' of token.".format(length))
ret_vals.append([name, length, value])
# This multiplies by the multiplicative factor, but this means that
# we can't allow keyword values as multipliers (e.g. n*uint:8).
# The only way to do this would be to return the factor in some fashion
# (we can't use the key's value here as it would mean that we couldn't
# sensibly continue to cache the function's results. (TODO).
return_values.extend(ret_vals * factor)
return_values = [tuple(x) for x in return_values]
if len(token_cache) < CACHE_SIZE:
token_cache[token_key] = stretchy_token, return_values
return stretchy_token, return_values
# Looks for first number*(
BRACKET_RE = re.compile(r'(?P<factor>\d+)\*\(')
def expand_brackets(s):
"""Remove whitespace and expand all brackets."""
s = ''.join(s.split())
while True:
start = s.find('(')
if start == -1:
break
count = 1 # Number of hanging open brackets
p = start + 1
while p < len(s):
if s[p] == '(':
count += 1
if s[p] == ')':
count -= 1
if not count:
break
p += 1
if count:
raise ValueError("Unbalanced parenthesis in '{0}'.".format(s))
if start == 0 or s[start - 1] != '*':
s = s[0:start] + s[start + 1:p] + s[p + 1:]
else:
m = BRACKET_RE.search(s)
if m:
factor = int(m.group('factor'))
matchstart = m.start('factor')
s = s[0:matchstart] + (factor - 1) * (s[start + 1:p] + ',') + s[start + 1:p] + s[p + 1:]
else:
raise ValueError("Failed to parse '{0}'.".format(s))
return s
# This converts a single octal digit to 3 bits.
OCT_TO_BITS = ['{0:03b}'.format(i) for i in xrange(8)]
# A dictionary of number of 1 bits contained in binary representation of any byte
BIT_COUNT = dict(zip(xrange(256), [bin(i).count('1') for i in xrange(256)]))
class Bits(object):
"""A container holding an immutable sequence of bits.
For a mutable container use the BitArray class instead.
Methods:
all() -- Check if all specified bits are set to 1 or 0.
any() -- Check if any of specified bits are set to 1 or 0.
count() -- Count the number of bits set to 1 or 0.
cut() -- Create generator of constant sized chunks.
endswith() -- Return whether the bitstring ends with a sub-string.
find() -- Find a sub-bitstring in the current bitstring.
findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
join() -- Join bitstrings together using current bitstring.
rfind() -- Seek backwards to find a sub-bitstring.
split() -- Create generator of chunks split by a delimiter.
startswith() -- Return whether the bitstring starts with a sub-bitstring.
tobytes() -- Return bitstring as bytes, padding if needed.
tofile() -- Write bitstring to file, padding if needed.
unpack() -- Interpret bits using format string.
Special methods:
Also available are the operators [], ==, !=, +, *, ~, <<, >>, &, |, ^.
Properties:
bin -- The bitstring as a binary string.
bool -- For single bit bitstrings, interpret as True or False.
bytes -- The bitstring as a bytes object.
float -- Interpret as a floating point number.
floatbe -- Interpret as a big-endian floating point number.
floatle -- Interpret as a little-endian floating point number.
floatne -- Interpret as a native-endian floating point number.
hex -- The bitstring as a hexadecimal string.
int -- Interpret as a two's complement signed integer.
intbe -- Interpret as a big-endian signed integer.
intle -- Interpret as a little-endian signed integer.
intne -- Interpret as a native-endian signed integer.
len -- Length of the bitstring in bits.
oct -- The bitstring as an octal string.
se -- Interpret as a signed exponential-Golomb code.
ue -- Interpret as an unsigned exponential-Golomb code.
sie -- Interpret as a signed interleaved exponential-Golomb code.
uie -- Interpret as an unsigned interleaved exponential-Golomb code.
uint -- Interpret as a two's complement unsigned integer.
uintbe -- Interpret as a big-endian unsigned integer.
uintle -- Interpret as a little-endian unsigned integer.
uintne -- Interpret as a native-endian unsigned integer.
"""
__slots__ = ('_datastore')
def __init__(self, auto=None, length=None, offset=None, **kwargs):
"""Either specify an 'auto' initialiser:
auto -- a string of comma separated tokens, an integer, a file object,
a bytearray, a boolean iterable, an array or another bitstring.
Or initialise via **kwargs with one (and only one) of:
bytes -- raw data as a string, for example read from a binary file.
bin -- binary string representation, e.g. '0b001010'.
hex -- hexadecimal string representation, e.g. '0x2ef'
oct -- octal string representation, e.g. '0o777'.
uint -- an unsigned integer.
int -- a signed integer.
float -- a floating point number.
uintbe -- an unsigned big-endian whole byte integer.
intbe -- a signed big-endian whole byte integer.
floatbe - a big-endian floating point number.
uintle -- an unsigned little-endian whole byte integer.
intle -- a signed little-endian whole byte integer.
floatle -- a little-endian floating point number.
uintne -- an unsigned native-endian whole byte integer.
intne -- a signed native-endian whole byte integer.
floatne -- a native-endian floating point number.
se -- a signed exponential-Golomb code.
ue -- an unsigned exponential-Golomb code.
sie -- a signed interleaved exponential-Golomb code.
uie -- an unsigned interleaved exponential-Golomb code.
bool -- a boolean (True or False).
filename -- a file which will be opened in binary read-only mode.
Other keyword arguments:
length -- length of the bitstring in bits, if needed and appropriate.
It must be supplied for all integer and float initialisers.
offset -- bit offset to the data. These offset bits are
ignored and this is mainly intended for use when
initialising using 'bytes' or 'filename'.
"""
pass
def __new__(cls, auto=None, length=None, offset=None, _cache={}, **kwargs):
# For instances auto-initialised with a string we intern the
# instance for re-use.
try:
if isinstance(auto, basestring):
try:
return _cache[auto]
except KeyError:
x = object.__new__(Bits)
try:
_, tokens = tokenparser(auto)
except ValueError as e:
raise CreationError(*e.args)
x._datastore = ConstByteStore(bytearray(0), 0, 0)
for token in tokens:
x._datastore._appendstore(Bits._init_with_token(*token)._datastore)
assert x._assertsanity()
if len(_cache) < CACHE_SIZE:
_cache[auto] = x
return x
if type(auto) == Bits:
return auto
except TypeError:
pass
x = super(Bits, cls).__new__(cls)
x._initialise(auto, length, offset, **kwargs)
return x
def _initialise(self, auto, length, offset, **kwargs):
if length is not None and length < 0:
raise CreationError("bitstring length cannot be negative.")
if offset is not None and offset < 0:
raise CreationError("offset must be >= 0.")
if auto is not None:
self._initialise_from_auto(auto, length, offset)
return
if not kwargs:
# No initialisers, so initialise with nothing or zero bits
if length is not None and length != 0:
data = bytearray((length + 7) // 8)
self._setbytes_unsafe(data, length, 0)
return
self._setbytes_unsafe(bytearray(0), 0, 0)
return
k, v = kwargs.popitem()
try:
init_without_length_or_offset[k](self, v)
if length is not None or offset is not None:
raise CreationError("Cannot use length or offset with this initialiser.")
except KeyError:
try:
init_with_length_only[k](self, v, length)
if offset is not None:
raise CreationError("Cannot use offset with this initialiser.")
except KeyError:
if offset is None:
offset = 0
try:
init_with_length_and_offset[k](self, v, length, offset)
except KeyError:
raise CreationError("Unrecognised keyword '{0}' used to initialise.", k)
def _initialise_from_auto(self, auto, length, offset):
if offset is None:
offset = 0
self._setauto(auto, length, offset)
return
def __copy__(self):
"""Return a new copy of the Bits for the copy module."""
# Note that if you want a new copy (different ID), use _copy instead.
# The copy can return self as it's immutable.
return self
def __lt__(self, other):
raise TypeError("unorderable type: {0}".format(type(self).__name__))
def __gt__(self, other):
raise TypeError("unorderable type: {0}".format(type(self).__name__))
def __le__(self, other):
raise TypeError("unorderable type: {0}".format(type(self).__name__))
def __ge__(self, other):
raise TypeError("unorderable type: {0}".format(type(self).__name__))
def __add__(self, bs):
"""Concatenate bitstrings and return new bitstring.
bs -- the bitstring to append.
"""
bs = Bits(bs)
if bs.len <= self.len:
s = self._copy()
s._append(bs)
else:
s = bs._copy()
s = self.__class__(s)
s._prepend(self)
return s
def __radd__(self, bs):
"""Append current bitstring to bs and return new bitstring.
bs -- the string for the 'auto' initialiser that will be appended to.
"""
bs = self._converttobitstring(bs)
return bs.__add__(self)
def __getitem__(self, key):
"""Return a new bitstring representing a slice of the current bitstring.
Indices are in units of the step parameter (default 1 bit).
Stepping is used to specify the number of bits in each item.
>>> print BitArray('0b00110')[1:4]
'0b011'
>>> print BitArray('0x00112233')[1:3:8]
'0x1122'
"""
length = self.len
try:
step = key.step if key.step is not None else 1
except AttributeError:
# single element
if key < 0:
key += length
if not 0 <= key < length:
raise IndexError("Slice index out of range.")
# Single bit, return True or False
return self._datastore.getbit(key)
else:
if step != 1:
# convert to binary string and use string slicing
bs = self.__class__()
bs._setbin_unsafe(self._getbin().__getitem__(key))
return bs
start, stop = 0, length
if key.start is not None:
start = key.start
if key.start < 0:
start += stop
if key.stop is not None:
stop = key.stop
if key.stop < 0:
stop += length
start = max(start, 0)
stop = min(stop, length)
if start < stop:
return self._slice(start, stop)
else:
return self.__class__()
def __len__(self):
"""Return the length of the bitstring in bits."""
return self._getlength()
def __str__(self):
"""Return approximate string representation of bitstring for printing.
Short strings will be given wholly in hexadecimal or binary. Longer
strings may be part hexadecimal and part binary. Very long strings will
be truncated with '...'.
"""
length = self.len
if not length:
return ''
if length > MAX_CHARS * 4:
# Too long for hex. Truncate...
return ''.join(('0x', self._readhex(MAX_CHARS * 4, 0), '...'))
# If it's quite short and we can't do hex then use bin
if length < 32 and length % 4 != 0:
return '0b' + self.bin
# If we can use hex then do so
if not length % 4:
return '0x' + self.hex
# Otherwise first we do as much as we can in hex
# then add on 1, 2 or 3 bits on at the end
bits_at_end = length % 4
return ''.join(('0x', self._readhex(length - bits_at_end, 0),
', ', '0b',
self._readbin(bits_at_end, length - bits_at_end)))
def __repr__(self):
"""Return representation that could be used to recreate the bitstring.
If the returned string is too long it will be truncated. See __str__().
"""
length = self.len
if isinstance(self._datastore._rawarray, MmapByteArray):
offsetstring = ''
if self._datastore.byteoffset or self._offset:
offsetstring = ", offset=%d" % (self._datastore._rawarray.byteoffset * 8 + self._offset)
lengthstring = ", length=%d" % length
return "{0}(filename='{1}'{2}{3})".format(self.__class__.__name__,
self._datastore._rawarray.source.name, lengthstring, offsetstring)
else:
s = self.__str__()
lengthstring = ''
if s.endswith('...'):
lengthstring = " # length={0}".format(length)
return "{0}('{1}'){2}".format(self.__class__.__name__, s, lengthstring)
def __eq__(self, bs):
"""Return True if two bitstrings have the same binary representation.
>>> BitArray('0b1110') == '0xe'
True
"""
try:
bs = Bits(bs)
except TypeError:
return False
return equal(self._datastore, bs._datastore)
def __ne__(self, bs):
"""Return False if two bitstrings have the same binary representation.
>>> BitArray('0b111') == '0x7'
False
"""
return not self.__eq__(bs)
def __invert__(self):
"""Return bitstring with every bit inverted.
Raises Error if the bitstring is empty.
"""
if not self.len:
raise Error("Cannot invert empty bitstring.")
s = self._copy()
s._invert_all()
return s
def __lshift__(self, n):
"""Return bitstring with bits shifted by n to the left.
n -- the number of bits to shift. Must be >= 0.
"""
if n < 0:
raise ValueError("Cannot shift by a negative amount.")
if not self.len:
raise ValueError("Cannot shift an empty bitstring.")
n = min(n, self.len)
s = self._slice(n, self.len)
s._append(Bits(n))
return s
def __rshift__(self, n):
"""Return bitstring with bits shifted by n to the right.
n -- the number of bits to shift. Must be >= 0.
"""
if n < 0:
raise ValueError("Cannot shift by a negative amount.")
if not self.len:
raise ValueError("Cannot shift an empty bitstring.")
if not n:
return self._copy()
s = self.__class__(length=min(n, self.len))
s._append(self[:-n])
return s
def __mul__(self, n):
"""Return bitstring consisting of n concatenations of self.
Called for expression of the form 'a = b*3'.
n -- The number of concatenations. Must be >= 0.
"""
if n < 0:
raise ValueError("Cannot multiply by a negative integer.")
if not n:
return self.__class__()
s = self._copy()
s._imul(n)
return s
def __rmul__(self, n):
"""Return bitstring consisting of n concatenations of self.
Called for expressions of the form 'a = 3*b'.
n -- The number of concatenations. Must be >= 0.
"""
return self.__mul__(n)
def __and__(self, bs):
"""Bit-wise 'and' between two bitstrings. Returns new bitstring.
bs -- The bitstring to '&' with.
Raises ValueError if the two bitstrings have differing lengths.
"""
bs = Bits(bs)
if self.len != bs.len:
raise ValueError("Bitstrings must have the same length "
"for & operator.")
s = self._copy()
s._iand(bs)
return s
def __rand__(self, bs):
"""Bit-wise 'and' between two bitstrings. Returns new bitstring.
bs -- the bitstring to '&' with.
Raises ValueError if the two bitstrings have differing lengths.
"""
return self.__and__(bs)
def __or__(self, bs):
"""Bit-wise 'or' between two bitstrings. Returns new bitstring.
bs -- The bitstring to '|' with.
Raises ValueError if the two bitstrings have differing lengths.
"""
bs = Bits(bs)
if self.len != bs.len:
raise ValueError("Bitstrings must have the same length "
"for | operator.")
s = self._copy()
s._ior(bs)
return s
def __ror__(self, bs):
"""Bit-wise 'or' between two bitstrings. Returns new bitstring.
bs -- The bitstring to '|' with.
Raises ValueError if the two bitstrings have differing lengths.
"""
return self.__or__(bs)
def __xor__(self, bs):
"""Bit-wise 'xor' between two bitstrings. Returns new bitstring.
bs -- The bitstring to '^' with.
Raises ValueError if the two bitstrings have differing lengths.
"""
bs = Bits(bs)
if self.len != bs.len:
raise ValueError("Bitstrings must have the same length "
"for ^ operator.")
s = self._copy()
s._ixor(bs)
return s
def __rxor__(self, bs):
"""Bit-wise 'xor' between two bitstrings. Returns new bitstring.
bs -- The bitstring to '^' with.
Raises ValueError if the two bitstrings have differing lengths.
"""
return self.__xor__(bs)
def __contains__(self, bs):
"""Return whether bs is contained in the current bitstring.
bs -- The bitstring to search for.
"""
# Don't want to change pos
try:
pos = self._pos
except AttributeError:
pass
found = Bits.find(self, bs, bytealigned=False)
try:
self._pos = pos
except AttributeError:
pass
return bool(found)
def __hash__(self):
"""Return an integer hash of the object."""
# We can't in general hash the whole bitstring (it could take hours!)
# So instead take some bits from the start and end.
if self.len <= 160:
# Use the whole bitstring.
shorter = self
else:
# Take 10 bytes from start and end
shorter = self[:80] + self[-80:]
h = 0
for byte in shorter.tobytes():
try:
h = (h << 4) + ord(byte)
except TypeError:
# Python 3
h = (h << 4) + byte
g = h & 0xf0000000
if g & (1 << 31):
h ^= (g >> 24)
h ^= g
return h % 1442968193
# This is only used in Python 2.x...
def __nonzero__(self):
"""Return True if any bits are set to 1, otherwise return False."""
return self.any(True)
# ...whereas this is used in Python 3.x
__bool__ = __nonzero__
def _assertsanity(self):
"""Check internal self consistency as a debugging aid."""
assert self.len >= 0
assert 0 <= self._offset, "offset={0}".format(self._offset)
assert (self.len + self._offset + 7) // 8 == self._datastore.bytelength + self._datastore.byteoffset
return True
@classmethod
def _init_with_token(cls, name, token_length, value):
if token_length is not None:
token_length = int(token_length)
if token_length == 0:
return cls()
# For pad token just return the length in zero bits
if name == 'pad':
return cls(token_length)
if value is None:
if token_length is None:
error = "Token has no value ({0}=???).".format(name)
else:
error = "Token has no value ({0}:{1}=???).".format(name, token_length)
raise ValueError(error)
try:
b = cls(**{_tokenname_to_initialiser[name]: value})
except KeyError:
if name in ('se', 'ue', 'sie', 'uie'):
b = cls(**{name: int(value)})
elif name in ('uint', 'int', 'uintbe', 'intbe', 'uintle', 'intle', 'uintne', 'intne'):
b = cls(**{name: int(value), 'length': token_length})
elif name in ('float', 'floatbe', 'floatle', 'floatne'):
b = cls(**{name: float(value), 'length': token_length})
elif name == 'bool':
if value in (1, 'True', '1'):
b = cls(bool=True)
elif value in (0, 'False', '0'):
b = cls(bool=False)
else:
raise CreationError("bool token can only be 'True' or 'False'.")
else:
raise CreationError("Can't parse token name {0}.", name)
if token_length is not None and b.len != token_length:
msg = "Token with length {0} packed with value of length {1} ({2}:{3}={4})."
raise CreationError(msg, token_length, b.len, name, token_length, value)
return b
def _clear(self):
"""Reset the bitstring to an empty state."""
self._datastore = ByteStore(bytearray(0))
def _setauto(self, s, length, offset):
"""Set bitstring from a bitstring, file, bool, integer, array, iterable or string."""
# As s can be so many different things it's important to do the checks
# in the correct order, as some types are also other allowed types.
# So basestring must be checked before Iterable
# and bytes/bytearray before Iterable but after basestring!
if isinstance(s, Bits):
if length is None:
length = s.len - offset
self._setbytes_unsafe(s._datastore.rawbytes, length, s._offset + offset)
return
if isinstance(s, file):
if offset is None:
offset = 0
if length is None:
length = os.path.getsize(s.name) * 8 - offset
byteoffset, offset = divmod(offset, 8)
bytelength = (length + byteoffset * 8 + offset + 7) // 8 - byteoffset
m = MmapByteArray(s, bytelength, byteoffset)
if length + byteoffset * 8 + offset > m.filelength * 8:
raise CreationError("File is not long enough for specified "
"length and offset.")
self._datastore = ConstByteStore(m, length, offset)
return
if length is not None:
raise CreationError("The length keyword isn't applicable to this initialiser.")
if offset:
raise CreationError("The offset keyword isn't applicable to this initialiser.")
if isinstance(s, basestring):
bs = self._converttobitstring(s)
assert bs._offset == 0
self._setbytes_unsafe(bs._datastore.rawbytes, bs.length, 0)
return
if isinstance(s, (bytes, bytearray)):
self._setbytes_unsafe(bytearray(s), len(s) * 8, 0)
return
if isinstance(s, array.array):
b = s.tostring()
self._setbytes_unsafe(bytearray(b), len(b) * 8, 0)
return
if isinstance(s, numbers.Integral):
# Initialise with s zero bits.
if s < 0:
msg = "Can't create bitstring of negative length {0}."
raise CreationError(msg, s)
data = bytearray((s + 7) // 8)
self._datastore = ByteStore(data, s, 0)
return
if isinstance(s, collections.Iterable):
# Evaluate each item as True or False and set bits to 1 or 0.
self._setbin_unsafe(''.join(str(int(bool(x))) for x in s))
return
raise TypeError("Cannot initialise bitstring from {0}.".format(type(s)))
def _setfile(self, filename, length, offset):
"""Use file as source of bits."""
source = open(filename, 'rb')
if offset is None:
offset = 0
if length is None:
length = os.path.getsize(source.name) * 8 - offset
byteoffset, offset = divmod(offset, 8)
bytelength = (length + byteoffset * 8 + offset + 7) // 8 - byteoffset
m = MmapByteArray(source, bytelength, byteoffset)
if length + byteoffset * 8 + offset > m.filelength * 8:
raise CreationError("File is not long enough for specified "
"length and offset.")
self._datastore = ConstByteStore(m, length, offset)
def _setbytes_safe(self, data, length=None, offset=0):
"""Set the data from a string."""
data = bytearray(data)
if length is None:
# Use to the end of the data
length = len(data)*8 - offset
self._datastore = ByteStore(data, length, offset)
else:
if length + offset > len(data) * 8:
msg = "Not enough data present. Need {0} bits, have {1}."
raise CreationError(msg, length + offset, len(data) * 8)
if length == 0:
self._datastore = ByteStore(bytearray(0))
else:
self._datastore = ByteStore(data, length, offset)
def _setbytes_unsafe(self, data, length, offset):
"""Unchecked version of _setbytes_safe."""
self._datastore = ByteStore(data[:], length, offset)
assert self._assertsanity()
def _readbytes(self, length, start):
"""Read bytes and return them. Note that length is in bits."""
assert length % 8 == 0
assert start + length <= self.len
if not (start + self._offset) % 8:
return bytes(self._datastore.getbyteslice((start + self._offset) // 8,
(start + self._offset + length) // 8))
return self._slice(start, start + length).tobytes()
def _getbytes(self):
"""Return the data as an ordinary string."""
if self.len % 8:
raise InterpretError("Cannot interpret as bytes unambiguously - "
"not multiple of 8 bits.")
return self._readbytes(self.len, 0)
def _setuint(self, uint, length=None):
"""Reset the bitstring to have given unsigned int interpretation."""
try:
if length is None:
# Use the whole length. Deliberately not using .len here.
length = self._datastore.bitlength
except AttributeError:
# bitstring doesn't have a _datastore as it hasn't been created!
pass
# TODO: All this checking code should be hoisted out of here!
if length is None or length == 0:
raise CreationError("A non-zero length must be specified with a "
"uint initialiser.")
if uint >= (1 << length):
msg = "{0} is too large an unsigned integer for a bitstring of length {1}. "\
"The allowed range is [0, {2}]."
raise CreationError(msg, uint, length, (1 << length) - 1)
if uint < 0:
raise CreationError("uint cannot be initialsed by a negative number.")
s = hex(uint)[2:]
s = s.rstrip('L')
if len(s) & 1:
s = '0' + s
try:
data = bytes.fromhex(s)
except AttributeError:
# the Python 2.x way
data = binascii.unhexlify(s)
# Now add bytes as needed to get the right length.
extrabytes = ((length + 7) // 8) - len(data)
if extrabytes > 0:
data = b'\x00' * extrabytes + data
offset = 8 - (length % 8)
if offset == 8:
offset = 0
self._setbytes_unsafe(bytearray(data), length, offset)
def _readuint(self, length, start):
"""Read bits and interpret as an unsigned int."""
if not length:
raise InterpretError("Cannot interpret a zero length bitstring "
"as an integer.")
offset = self._offset
startbyte = (start + offset) // 8
endbyte = (start + offset + length - 1) // 8
b = binascii.hexlify(bytes(self._datastore.getbyteslice(startbyte, endbyte + 1)))
assert b
i = int(b, 16)
final_bits = 8 - ((start + offset + length) % 8)
if final_bits != 8:
i >>= final_bits
i &= (1 << length) - 1
return i
def _getuint(self):
"""Return data as an unsigned int."""
return self._readuint(self.len, 0)
def _setint(self, int_, length=None):
"""Reset the bitstring to have given signed int interpretation."""
# If no length given, and we've previously been given a length, use it.
if length is None and hasattr(self, 'len') and self.len != 0:
length = self.len
if length is None or length == 0:
raise CreationError("A non-zero length must be specified with an int initialiser.")
if int_ >= (1 << (length - 1)) or int_ < -(1 << (length - 1)):
raise CreationError("{0} is too large a signed integer for a bitstring of length {1}. "
"The allowed range is [{2}, {3}].", int_, length, -(1 << (length - 1)),
(1 << (length - 1)) - 1)
if int_ >= 0:
self._setuint(int_, length)
return
# TODO: We should decide whether to just use the _setuint, or to do the bit flipping,
# based upon which will be quicker. If the -ive number is less than half the maximum
# possible then it's probably quicker to do the bit flipping...
# Do the 2's complement thing. Add one, set to minus number, then flip bits.
int_ += 1
self._setuint(-int_, length)
self._invert_all()
def _readint(self, length, start):
"""Read bits and interpret as a signed int"""
ui = self._readuint(length, start)
if not ui >> (length - 1):
# Top bit not set, number is positive
return ui
# Top bit is set, so number is negative
tmp = (~(ui - 1)) & ((1 << length) - 1)
return -tmp
def _getint(self):
"""Return data as a two's complement signed int."""
return self._readint(self.len, 0)
def _setuintbe(self, uintbe, length=None):
"""Set the bitstring to a big-endian unsigned int interpretation."""
if length is not None and length % 8 != 0:
raise CreationError("Big-endian integers must be whole-byte. "
"Length = {0} bits.", length)
self._setuint(uintbe, length)
def _readuintbe(self, length, start):
"""Read bits and interpret as a big-endian unsigned int."""
if length % 8:
raise InterpretError("Big-endian integers must be whole-byte. "
"Length = {0} bits.", length)
return self._readuint(length, start)
def _getuintbe(self):
"""Return data as a big-endian two's complement unsigned int."""
return self._readuintbe(self.len, 0)
def _setintbe(self, intbe, length=None):
"""Set bitstring to a big-endian signed int interpretation."""
if length is not None and length % 8 != 0:
raise CreationError("Big-endian integers must be whole-byte. "
"Length = {0} bits.", length)
self._setint(intbe, length)
def _readintbe(self, length, start):
"""Read bits and interpret as a big-endian signed int."""
if length % 8:
raise InterpretError("Big-endian integers must be whole-byte. "
"Length = {0} bits.", length)
return self._readint(length, start)
def _getintbe(self):
"""Return data as a big-endian two's complement signed int."""
return self._readintbe(self.len, 0)
def _setuintle(self, uintle, length=None):
if length is not None and length % 8 != 0:
raise CreationError("Little-endian integers must be whole-byte. "
"Length = {0} bits.", length)
self._setuint(uintle, length)
self._reversebytes(0, self.len)
def _readuintle(self, length, start):
"""Read bits and interpret as a little-endian unsigned int."""
if length % 8:
raise InterpretError("Little-endian integers must be whole-byte. "
"Length = {0} bits.", length)
assert start + length <= self.len
absolute_pos = start + self._offset
startbyte, offset = divmod(absolute_pos, 8)
val = 0
if not offset:
endbyte = (absolute_pos + length - 1) // 8
chunksize = 4 # for 'L' format
while endbyte - chunksize + 1 >= startbyte:
val <<= 8 * chunksize
val += struct.unpack('<L', bytes(self._datastore.getbyteslice(endbyte + 1 - chunksize, endbyte + 1)))[0]
endbyte -= chunksize
for b in xrange(endbyte, startbyte - 1, -1):
val <<= 8
val += self._datastore.getbyte(b)
else:
data = self._slice(start, start + length)
assert data.len % 8 == 0
data._reversebytes(0, self.len)
for b in bytearray(data.bytes):
val <<= 8
val += b
return val
def _getuintle(self):
return self._readuintle(self.len, 0)
def _setintle(self, intle, length=None):
if length is not None and length % 8 != 0:
raise CreationError("Little-endian integers must be whole-byte. "
"Length = {0} bits.", length)
self._setint(intle, length)
self._reversebytes(0, self.len)
def _readintle(self, length, start):
"""Read bits and interpret as a little-endian signed int."""
ui = self._readuintle(length, start)
if not ui >> (length - 1):
# Top bit not set, number is positive
return ui
# Top bit is set, so number is negative
tmp = (~(ui - 1)) & ((1 << length) - 1)
return -tmp
def _getintle(self):
return self._readintle(self.len, 0)
def _setfloat(self, f, length=None):
# If no length given, and we've previously been given a length, use it.
if length is None and hasattr(self, 'len') and self.len != 0:
length = self.len
if length is None or length == 0:
raise CreationError("A non-zero length must be specified with a "
"float initialiser.")
if length == 32:
b = struct.pack('>f', f)
elif length == 64:
b = struct.pack('>d', f)
else:
raise CreationError("floats can only be 32 or 64 bits long, "
"not {0} bits", length)
self._setbytes_unsafe(bytearray(b), length, 0)
def _readfloat(self, length, start):
"""Read bits and interpret as a float."""
if not (start + self._offset) % 8:
startbyte = (start + self._offset) // 8
if length == 32:
f, = struct.unpack('>f', bytes(self._datastore.getbyteslice(startbyte, startbyte + 4)))
elif length == 64:
f, = struct.unpack('>d', bytes(self._datastore.getbyteslice(startbyte, startbyte + 8)))
else:
if length == 32:
f, = struct.unpack('>f', self._readbytes(32, start))
elif length == 64:
f, = struct.unpack('>d', self._readbytes(64, start))
try:
return f
except NameError:
raise InterpretError("floats can only be 32 or 64 bits long, not {0} bits", length)
def _getfloat(self):
"""Interpret the whole bitstring as a float."""
return self._readfloat(self.len, 0)
def _setfloatle(self, f, length=None):
# If no length given, and we've previously been given a length, use it.
if length is None and hasattr(self, 'len') and self.len != 0:
length = self.len
if length is None or length == 0:
raise CreationError("A non-zero length must be specified with a "
"float initialiser.")
if length == 32:
b = struct.pack('<f', f)
elif length == 64:
b = struct.pack('<d', f)
else:
raise CreationError("floats can only be 32 or 64 bits long, "
"not {0} bits", length)
self._setbytes_unsafe(bytearray(b), length, 0)
def _readfloatle(self, length, start):
"""Read bits and interpret as a little-endian float."""
startbyte, offset = divmod(start + self._offset, 8)
if not offset:
if length == 32:
f, = struct.unpack('<f', bytes(self._datastore.getbyteslice(startbyte, startbyte + 4)))
elif length == 64:
f, = struct.unpack('<d', bytes(self._datastore.getbyteslice(startbyte, startbyte + 8)))
else:
if length == 32:
f, = struct.unpack('<f', self._readbytes(32, start))
elif length == 64:
f, = struct.unpack('<d', self._readbytes(64, start))
try:
return f
except NameError:
raise InterpretError("floats can only be 32 or 64 bits long, "
"not {0} bits", length)
def _getfloatle(self):
"""Interpret the whole bitstring as a little-endian float."""
return self._readfloatle(self.len, 0)
def _setue(self, i):
"""Initialise bitstring with unsigned exponential-Golomb code for integer i.
Raises CreationError if i < 0.
"""
if i < 0:
raise CreationError("Cannot use negative initialiser for unsigned "
"exponential-Golomb.")
if not i:
self._setbin_unsafe('1')
return
tmp = i + 1
leadingzeros = -1
while tmp > 0:
tmp >>= 1
leadingzeros += 1
remainingpart = i + 1 - (1 << leadingzeros)
binstring = '0' * leadingzeros + '1' + Bits(uint=remainingpart,
length=leadingzeros).bin
self._setbin_unsafe(binstring)
def _readue(self, pos):
"""Return interpretation of next bits as unsigned exponential-Golomb code.
Raises ReadError if the end of the bitstring is encountered while
reading the code.
"""
oldpos = pos
try:
while not self[pos]:
pos += 1
except IndexError:
raise ReadError("Read off end of bitstring trying to read code.")
leadingzeros = pos - oldpos
codenum = (1 << leadingzeros) - 1
if leadingzeros > 0:
if pos + leadingzeros + 1 > self.len:
raise ReadError("Read off end of bitstring trying to read code.")
codenum += self._readuint(leadingzeros, pos + 1)
pos += leadingzeros + 1
else:
assert codenum == 0
pos += 1
return codenum, pos
def _getue(self):
"""Return data as unsigned exponential-Golomb code.
Raises InterpretError if bitstring is not a single exponential-Golomb code.
"""
try:
value, newpos = self._readue(0)
if value is None or newpos != self.len:
raise ReadError
except ReadError:
raise InterpretError("Bitstring is not a single exponential-Golomb code.")
return value
def _setse(self, i):
"""Initialise bitstring with signed exponential-Golomb code for integer i."""
if i > 0:
u = (i * 2) - 1
else:
u = -2 * i
self._setue(u)
def _getse(self):
"""Return data as signed exponential-Golomb code.
Raises InterpretError if bitstring is not a single exponential-Golomb code.
"""
try:
value, newpos = self._readse(0)
if value is None or newpos != self.len:
raise ReadError
except ReadError:
raise InterpretError("Bitstring is not a single exponential-Golomb code.")
return value
def _readse(self, pos):
"""Return interpretation of next bits as a signed exponential-Golomb code.
Advances position to after the read code.
Raises ReadError if the end of the bitstring is encountered while
reading the code.
"""
codenum, pos = self._readue(pos)
m = (codenum + 1) // 2
if not codenum % 2:
return -m, pos
else:
return m, pos
def _setuie(self, i):
"""Initialise bitstring with unsigned interleaved exponential-Golomb code for integer i.
Raises CreationError if i < 0.
"""
if i < 0:
raise CreationError("Cannot use negative initialiser for unsigned "
"interleaved exponential-Golomb.")
self._setbin_unsafe('1' if i == 0 else '0' + '0'.join(bin(i + 1)[3:]) + '1')
def _readuie(self, pos):
"""Return interpretation of next bits as unsigned interleaved exponential-Golomb code.
Raises ReadError if the end of the bitstring is encountered while
reading the code.
"""
try:
codenum = 1
while not self[pos]:
pos += 1
codenum <<= 1
codenum += self[pos]
pos += 1
pos += 1
except IndexError:
raise ReadError("Read off end of bitstring trying to read code.")
codenum -= 1
return codenum, pos
def _getuie(self):
"""Return data as unsigned interleaved exponential-Golomb code.
Raises InterpretError if bitstring is not a single exponential-Golomb code.
"""
try:
value, newpos = self._readuie(0)
if value is None or newpos != self.len:
raise ReadError
except ReadError:
raise InterpretError("Bitstring is not a single interleaved exponential-Golomb code.")
return value
def _setsie(self, i):
"""Initialise bitstring with signed interleaved exponential-Golomb code for integer i."""
if not i:
self._setbin_unsafe('1')
else:
self._setuie(abs(i))
self._append(Bits([i < 0]))
def _getsie(self):
"""Return data as signed interleaved exponential-Golomb code.
Raises InterpretError if bitstring is not a single exponential-Golomb code.
"""
try:
value, newpos = self._readsie(0)
if value is None or newpos != self.len:
raise ReadError
except ReadError:
raise InterpretError("Bitstring is not a single interleaved exponential-Golomb code.")
return value
def _readsie(self, pos):
"""Return interpretation of next bits as a signed interleaved exponential-Golomb code.
Advances position to after the read code.
Raises ReadError if the end of the bitstring is encountered while
reading the code.
"""
codenum, pos = self._readuie(pos)
if not codenum:
return 0, pos
try:
if self[pos]:
return -codenum, pos + 1
else:
return codenum, pos + 1
except IndexError:
raise ReadError("Read off end of bitstring trying to read code.")
def _setbool(self, value):
# We deliberately don't want to have implicit conversions to bool here.
# If we did then it would be difficult to deal with the 'False' string.
if value in (1, 'True'):
self._setbytes_unsafe(bytearray(b'\x80'), 1, 0)
elif value in (0, 'False'):
self._setbytes_unsafe(bytearray(b'\x00'), 1, 0)
else:
raise CreationError('Cannot initialise boolean with {0}.', value)
def _getbool(self):
if self.length != 1:
msg = "For a bool interpretation a bitstring must be 1 bit long, not {0} bits."
raise InterpretError(msg, self.length)
return self[0]
def _readbool(self, pos):
return self[pos], pos + 1
def _setbin_safe(self, binstring):
"""Reset the bitstring to the value given in binstring."""
binstring = tidy_input_string(binstring)
# remove any 0b if present
binstring = binstring.replace('0b', '')
self._setbin_unsafe(binstring)
def _setbin_unsafe(self, binstring):
"""Same as _setbin_safe, but input isn't sanity checked. binstring mustn't start with '0b'."""
length = len(binstring)
# pad with zeros up to byte boundary if needed
boundary = ((length + 7) // 8) * 8
padded_binstring = binstring + '0' * (boundary - length)\
if len(binstring) < boundary else binstring
try:
bytelist = [int(padded_binstring[x:x + 8], 2)
for x in xrange(0, len(padded_binstring), 8)]
except ValueError:
raise CreationError("Invalid character in bin initialiser {0}.", binstring)
self._setbytes_unsafe(bytearray(bytelist), length, 0)
def _readbin(self, length, start):
"""Read bits and interpret as a binary string."""
if not length:
return ''
# Get the byte slice containing our bit slice
startbyte, startoffset = divmod(start + self._offset, 8)
endbyte = (start + self._offset + length - 1) // 8
b = self._datastore.getbyteslice(startbyte, endbyte + 1)
# Convert to a string of '0' and '1's (via a hex string an and int!)
try:
c = "{:0{}b}".format(int(binascii.hexlify(b), 16), 8*len(b))
except TypeError:
# Hack to get Python 2.6 working
c = "{0:0{1}b}".format(int(binascii.hexlify(str(b)), 16), 8*len(b))
# Finally chop off any extra bits.
return c[startoffset:startoffset + length]
def _getbin(self):
"""Return interpretation as a binary string."""
return self._readbin(self.len, 0)
def _setoct(self, octstring):
"""Reset the bitstring to have the value given in octstring."""
octstring = tidy_input_string(octstring)
# remove any 0o if present
octstring = octstring.replace('0o', '')
binlist = []
for i in octstring:
try:
if not 0 <= int(i) < 8:
raise ValueError
binlist.append(OCT_TO_BITS[int(i)])
except ValueError:
raise CreationError("Invalid symbol '{0}' in oct initialiser.", i)
self._setbin_unsafe(''.join(binlist))
def _readoct(self, length, start):
"""Read bits and interpret as an octal string."""
if length % 3:
raise InterpretError("Cannot convert to octal unambiguously - "
"not multiple of 3 bits.")
if not length:
return ''
# Get main octal bit by converting from int.
# Strip starting 0 or 0o depending on Python version.
end = oct(self._readuint(length, start))[LEADING_OCT_CHARS:]
if end.endswith('L'):
end = end[:-1]
middle = '0' * (length // 3 - len(end))
return middle + end
def _getoct(self):
"""Return interpretation as an octal string."""
return self._readoct(self.len, 0)
def _sethex(self, hexstring):
"""Reset the bitstring to have the value given in hexstring."""
hexstring = tidy_input_string(hexstring)
# remove any 0x if present
hexstring = hexstring.replace('0x', '')
length = len(hexstring)
if length % 2:
hexstring += '0'
try:
try:
data = bytearray.fromhex(hexstring)
except TypeError:
# Python 2.6 needs a unicode string (a bug). 2.7 and 3.x work fine.
data = bytearray.fromhex(unicode(hexstring))
except ValueError:
raise CreationError("Invalid symbol in hex initialiser.")
self._setbytes_unsafe(data, length * 4, 0)
def _readhex(self, length, start):
"""Read bits and interpret as a hex string."""
if length % 4:
raise InterpretError("Cannot convert to hex unambiguously - "
"not multiple of 4 bits.")
if not length:
return ''
s = self._slice(start, start + length).tobytes()
try:
s = s.hex() # Available in Python 3.5
except AttributeError:
# This monstrosity is the only thing I could get to work for both 2.6 and 3.1.
# TODO: Is utf-8 really what we mean here?
s = str(binascii.hexlify(s).decode('utf-8'))
# If there's one nibble too many then cut it off
return s[:-1] if (length // 4) % 2 else s
def _gethex(self):
"""Return the hexadecimal representation as a string prefixed with '0x'.
Raises an InterpretError if the bitstring's length is not a multiple of 4.
"""
return self._readhex(self.len, 0)
def _getoffset(self):
return self._datastore.offset
def _getlength(self):
"""Return the length of the bitstring in bits."""
return self._datastore.bitlength
def _ensureinmemory(self):
"""Ensure the data is held in memory, not in a file."""
self._setbytes_unsafe(self._datastore.getbyteslice(0, self._datastore.bytelength),
self.len, self._offset)
@classmethod
def _converttobitstring(cls, bs, offset=0, cache={}):
"""Convert bs to a bitstring and return it.
offset gives the suggested bit offset of first significant
bit, to optimise append etc.
"""
if isinstance(bs, Bits):
return bs
try:
return cache[(bs, offset)]
except KeyError:
if isinstance(bs, basestring):
b = cls()
try:
_, tokens = tokenparser(bs)
except ValueError as e:
raise CreationError(*e.args)
if tokens:
b._append(Bits._init_with_token(*tokens[0]))
b._datastore = offsetcopy(b._datastore, offset)
for token in tokens[1:]:
b._append(Bits._init_with_token(*token))
assert b._assertsanity()
assert b.len == 0 or b._offset == offset
if len(cache) < CACHE_SIZE:
cache[(bs, offset)] = b
return b
except TypeError:
# Unhashable type
pass
return cls(bs)
def _copy(self):
"""Create and return a new copy of the Bits (always in memory)."""
s_copy = self.__class__()
s_copy._setbytes_unsafe(self._datastore.getbyteslice(0, self._datastore.bytelength),
self.len, self._offset)
return s_copy
def _slice(self, start, end):
"""Used internally to get a slice, without error checking."""
if end == start:
return self.__class__()
offset = self._offset
startbyte, newoffset = divmod(start + offset, 8)
endbyte = (end + offset - 1) // 8
bs = self.__class__()
bs._setbytes_unsafe(self._datastore.getbyteslice(startbyte, endbyte + 1), end - start, newoffset)
return bs
def _readtoken(self, name, pos, length):
"""Reads a token from the bitstring and returns the result."""
if length is not None and int(length) > self.length - pos:
raise ReadError("Reading off the end of the data. "
"Tried to read {0} bits when only {1} available.".format(int(length), self.length - pos))
try:
val = name_to_read[name](self, length, pos)
return val, pos + length
except KeyError:
if name == 'pad':
return None, pos + length
raise ValueError("Can't parse token {0}:{1}".format(name, length))
except TypeError:
# This is for the 'ue', 'se' and 'bool' tokens. They will also return the new pos.
return name_to_read[name](self, pos)
def _append(self, bs):
"""Append a bitstring to the current bitstring."""
self._datastore._appendstore(bs._datastore)
def _prepend(self, bs):
"""Prepend a bitstring to the current bitstring."""
self._datastore._prependstore(bs._datastore)
def _reverse(self):
"""Reverse all bits in-place."""
# Reverse the contents of each byte
n = [BYTE_REVERSAL_DICT[b] for b in self._datastore.rawbytes]
# Then reverse the order of the bytes
n.reverse()
# The new offset is the number of bits that were unused at the end.
newoffset = 8 - (self._offset + self.len) % 8
if newoffset == 8:
newoffset = 0
self._setbytes_unsafe(bytearray().join(n), self.length, newoffset)
def _truncatestart(self, bits):
"""Truncate bits from the start of the bitstring."""
assert 0 <= bits <= self.len
if not bits:
return
if bits == self.len:
self._clear()
return
bytepos, offset = divmod(self._offset + bits, 8)
self._setbytes_unsafe(self._datastore.getbyteslice(bytepos, self._datastore.bytelength), self.len - bits,
offset)
assert self._assertsanity()
def _truncateend(self, bits):
"""Truncate bits from the end of the bitstring."""
assert 0 <= bits <= self.len
if not bits:
return
if bits == self.len:
self._clear()
return
newlength_in_bytes = (self._offset + self.len - bits + 7) // 8
self._setbytes_unsafe(self._datastore.getbyteslice(0, newlength_in_bytes), self.len - bits,
self._offset)
assert self._assertsanity()
def _insert(self, bs, pos):
"""Insert bs at pos."""
assert 0 <= pos <= self.len
if pos > self.len // 2:
# Inserting nearer end, so cut off end.
end = self._slice(pos, self.len)
self._truncateend(self.len - pos)
self._append(bs)
self._append(end)
else:
# Inserting nearer start, so cut off start.
start = self._slice(0, pos)
self._truncatestart(pos)
self._prepend(bs)
self._prepend(start)
try:
self._pos = pos + bs.len
except AttributeError:
pass
assert self._assertsanity()
def _overwrite(self, bs, pos):
"""Overwrite with bs at pos."""
assert 0 <= pos < self.len
if bs is self:
# Just overwriting with self, so do nothing.
assert pos == 0
return
firstbytepos = (self._offset + pos) // 8
lastbytepos = (self._offset + pos + bs.len - 1) // 8
bytepos, bitoffset = divmod(self._offset + pos, 8)
if firstbytepos == lastbytepos:
mask = ((1 << bs.len) - 1) << (8 - bs.len - bitoffset)
self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) & (~mask))
d = offsetcopy(bs._datastore, bitoffset)
self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) | (d.getbyte(0) & mask))
else:
# Do first byte
mask = (1 << (8 - bitoffset)) - 1
self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) & (~mask))
d = offsetcopy(bs._datastore, bitoffset)
self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) | (d.getbyte(0) & mask))
# Now do all the full bytes
self._datastore.setbyteslice(firstbytepos + 1, lastbytepos, d.getbyteslice(1, lastbytepos - firstbytepos))
# and finally the last byte
bitsleft = (self._offset + pos + bs.len) % 8
if not bitsleft:
bitsleft = 8
mask = (1 << (8 - bitsleft)) - 1
self._datastore.setbyte(lastbytepos, self._datastore.getbyte(lastbytepos) & mask)
self._datastore.setbyte(lastbytepos,
self._datastore.getbyte(lastbytepos) | (d.getbyte(d.bytelength - 1) & ~mask))
assert self._assertsanity()
def _delete(self, bits, pos):
"""Delete bits at pos."""
assert 0 <= pos <= self.len
assert pos + bits <= self.len
if not pos:
# Cutting bits off at the start.
self._truncatestart(bits)
return
if pos + bits == self.len:
# Cutting bits off at the end.
self._truncateend(bits)
return
if pos > self.len - pos - bits:
# More bits before cut point than after it, so do bit shifting
# on the final bits.
end = self._slice(pos + bits, self.len)
assert self.len - pos > 0
self._truncateend(self.len - pos)
self._append(end)
return
# More bits after the cut point than before it.
start = self._slice(0, pos)
self._truncatestart(pos + bits)
self._prepend(start)
return
def _reversebytes(self, start, end):
"""Reverse bytes in-place."""
# Make the start occur on a byte boundary
# TODO: We could be cleverer here to avoid changing the offset.
newoffset = 8 - (start % 8)
if newoffset == 8:
newoffset = 0
self._datastore = offsetcopy(self._datastore, newoffset)
# Now just reverse the byte data
toreverse = bytearray(self._datastore.getbyteslice((newoffset + start) // 8, (newoffset + end) // 8))
toreverse.reverse()
self._datastore.setbyteslice((newoffset + start) // 8, (newoffset + end) // 8, toreverse)
def _set(self, pos):
"""Set bit at pos to 1."""
assert 0 <= pos < self.len
self._datastore.setbit(pos)
def _unset(self, pos):
"""Set bit at pos to 0."""
assert 0 <= pos < self.len
self._datastore.unsetbit(pos)
def _invert(self, pos):
"""Flip bit at pos 1<->0."""
assert 0 <= pos < self.len
self._datastore.invertbit(pos)
def _invert_all(self):
"""Invert every bit."""
set = self._datastore.setbyte
get = self._datastore.getbyte
for p in xrange(self._datastore.byteoffset, self._datastore.byteoffset + self._datastore.bytelength):
set(p, 256 + ~get(p))
def _ilshift(self, n):
"""Shift bits by n to the left in place. Return self."""
assert 0 < n <= self.len
self._append(Bits(n))
self._truncatestart(n)
return self
def _irshift(self, n):
"""Shift bits by n to the right in place. Return self."""
assert 0 < n <= self.len
self._prepend(Bits(n))
self._truncateend(n)
return self
def _imul(self, n):
"""Concatenate n copies of self in place. Return self."""
assert n >= 0
if not n:
self._clear()
return self
m = 1
old_len = self.len
while m * 2 < n:
self._append(self)
m *= 2
self._append(self[0:(n - m) * old_len])
return self
def _inplace_logical_helper(self, bs, f):
"""Helper function containing most of the __ior__, __iand__, __ixor__ code."""
# Give the two bitstrings the same offset (modulo 8)
self_byteoffset, self_bitoffset = divmod(self._offset, 8)
bs_byteoffset, bs_bitoffset = divmod(bs._offset, 8)
if bs_bitoffset != self_bitoffset:
if not self_bitoffset:
bs._datastore = offsetcopy(bs._datastore, 0)
else:
self._datastore = offsetcopy(self._datastore, bs_bitoffset)
a = self._datastore.rawbytes
b = bs._datastore.rawbytes
for i in xrange(len(a)):
a[i] = f(a[i + self_byteoffset], b[i + bs_byteoffset])
return self
def _ior(self, bs):
return self._inplace_logical_helper(bs, operator.ior)
def _iand(self, bs):
return self._inplace_logical_helper(bs, operator.iand)
def _ixor(self, bs):
return self._inplace_logical_helper(bs, operator.xor)
def _readbits(self, length, start):
"""Read some bits from the bitstring and return newly constructed bitstring."""
return self._slice(start, start + length)
def _validate_slice(self, start, end):
"""Validate start and end and return them as positive bit positions."""
if start is None:
start = 0
elif start < 0:
start += self.len
if end is None:
end = self.len
elif end < 0:
end += self.len
if not 0 <= end <= self.len:
raise ValueError("end is not a valid position in the bitstring.")
if not 0 <= start <= self.len:
raise ValueError("start is not a valid position in the bitstring.")
if end < start:
raise ValueError("end must not be less than start.")
return start, end
def unpack(self, fmt, **kwargs):
"""Interpret the whole bitstring using fmt and return list.
fmt -- A single string or a list of strings with comma separated tokens
describing how to interpret the bits in the bitstring. Items
can also be integers, for reading new bitstring of the given length.
kwargs -- A dictionary or keyword-value pairs - the keywords used in the
format string will be replaced with their given value.
Raises ValueError if the format is not understood. If not enough bits
are available then all bits to the end of the bitstring will be used.
See the docstring for 'read' for token examples.
"""
return self._readlist(fmt, 0, **kwargs)[0]
def _readlist(self, fmt, pos, **kwargs):
tokens = []
stretchy_token = None
if isinstance(fmt, basestring):
fmt = [fmt]
# Not very optimal this, but replace integers with 'bits' tokens
# TODO: optimise
for i, f in enumerate(fmt):
if isinstance(f, numbers.Integral):
fmt[i] = "bits:{0}".format(f)
for f_item in fmt:
stretchy, tkns = tokenparser(f_item, tuple(sorted(kwargs.keys())))
if stretchy:
if stretchy_token:
raise Error("It's not possible to have more than one 'filler' token.")
stretchy_token = stretchy
tokens.extend(tkns)
if not stretchy_token:
lst = []
for name, length, _ in tokens:
if length in kwargs:
length = kwargs[length]
if name == 'bytes':
length *= 8
if name in kwargs and length is None:
# Using default 'uint' - the name is really the length.
value, pos = self._readtoken('uint', pos, kwargs[name])
lst.append(value)
continue
value, pos = self._readtoken(name, pos, length)
if value is not None: # Don't append pad tokens
lst.append(value)
return lst, pos
stretchy_token = False
bits_after_stretchy_token = 0
for token in tokens:
name, length, _ = token
if length in kwargs:
length = kwargs[length]
if name == 'bytes':
length *= 8
if name in kwargs and length is None:
# Default 'uint'.
length = kwargs[name]
if stretchy_token:
if name in ('se', 'ue', 'sie', 'uie'):
raise Error("It's not possible to parse a variable"
"length token after a 'filler' token.")
else:
if length is None:
raise Error("It's not possible to have more than "
"one 'filler' token.")
bits_after_stretchy_token += length
if length is None and name not in ('se', 'ue', 'sie', 'uie'):
assert not stretchy_token
stretchy_token = token
bits_left = self.len - pos
return_values = []
for token in tokens:
name, length, _ = token
if token is stretchy_token:
# Set length to the remaining bits
length = max(bits_left - bits_after_stretchy_token, 0)
if length in kwargs:
length = kwargs[length]
if name == 'bytes':
length *= 8
if name in kwargs and length is None:
# Default 'uint'
length = kwargs[name]
if length is not None:
bits_left -= length
value, pos = self._readtoken(name, pos, length)
if value is not None:
return_values.append(value)
return return_values, pos
def _findbytes(self, bytes_, start, end, bytealigned):
"""Quicker version of find when everything's whole byte
and byte aligned.
"""
assert self._datastore.offset == 0
assert bytealigned is True
# Extract data bytes from bitstring to be found.
bytepos = (start + 7) // 8
found = False
p = bytepos
finalpos = end // 8
increment = max(1024, len(bytes_) * 10)
buffersize = increment + len(bytes_)
while p < finalpos:
# Read in file or from memory in overlapping chunks and search the chunks.
buf = bytearray(self._datastore.getbyteslice(p, min(p + buffersize, finalpos)))
pos = buf.find(bytes_)
if pos != -1:
found = True
p += pos
break
p += increment
if not found:
return ()
return (p * 8,)
def _findregex(self, reg_ex, start, end, bytealigned):
"""Find first occurrence of a compiled regular expression.
Note that this doesn't support arbitrary regexes, in particular they
must match a known length.
"""
p = start
length = len(reg_ex.pattern)
# We grab overlapping chunks of the binary representation and
# do an ordinary string search within that.
increment = max(4096, length * 10)
buffersize = increment + length
while p < end:
buf = self._readbin(min(buffersize, end - p), p)
# Test using regular expressions...
m = reg_ex.search(buf)
if m:
pos = m.start()
# pos = buf.find(targetbin)
# if pos != -1:
# if bytealigned then we only accept byte aligned positions.
if not bytealigned or (p + pos) % 8 == 0:
return (p + pos,)
if bytealigned:
# Advance to just beyond the non-byte-aligned match and try again...
p += pos + 1
continue
p += increment
# Not found, return empty tuple
return ()
def find(self, bs, start=None, end=None, bytealigned=None):
"""Find first occurrence of substring bs.
Returns a single item tuple with the bit position if found, or an
empty tuple if not found. The bit position (pos property) will
also be set to the start of the substring if it is found.
bs -- The bitstring to find.
start -- The bit position to start the search. Defaults to 0.
end -- The bit position one past the last bit to search.
Defaults to self.len.
bytealigned -- If True the bitstring will only be
found on byte boundaries.
Raises ValueError if bs is empty, if start < 0, if end > self.len or
if end < start.
>>> BitArray('0xc3e').find('0b1111')
(6,)
"""
bs = Bits(bs)
if not bs.len:
raise ValueError("Cannot find an empty bitstring.")
start, end = self._validate_slice(start, end)
if bytealigned is None:
bytealigned = globals()['bytealigned']
if bytealigned and not bs.len % 8 and not self._datastore.offset:
p = self._findbytes(bs.bytes, start, end, bytealigned)
else:
p = self._findregex(re.compile(bs._getbin()), start, end, bytealigned)
# If called from a class that has a pos, set it
try:
self._pos = p[0]
except (AttributeError, IndexError):
pass
return p
def findall(self, bs, start=None, end=None, count=None, bytealigned=None):
"""Find all occurrences of bs. Return generator of bit positions.
bs -- The bitstring to find.
start -- The bit position to start the search. Defaults to 0.
end -- The bit position one past the last bit to search.
Defaults to self.len.
count -- The maximum number of occurrences to find.
bytealigned -- If True the bitstring will only be found on
byte boundaries.
Raises ValueError if bs is empty, if start < 0, if end > self.len or
if end < start.
Note that all occurrences of bs are found, even if they overlap.
"""
if count is not None and count < 0:
raise ValueError("In findall, count must be >= 0.")
bs = Bits(bs)
start, end = self._validate_slice(start, end)
if bytealigned is None:
bytealigned = globals()['bytealigned']
c = 0
if bytealigned and not bs.len % 8 and not self._datastore.offset:
# Use the quick find method
f = self._findbytes
x = bs._getbytes()
else:
f = self._findregex
x = re.compile(bs._getbin())
while True:
p = f(x, start, end, bytealigned)
if not p:
break
if count is not None and c >= count:
return
c += 1
try:
self._pos = p[0]
except AttributeError:
pass
yield p[0]
if bytealigned:
start = p[0] + 8
else:
start = p[0] + 1
if start >= end:
break
return
def rfind(self, bs, start=None, end=None, bytealigned=None):
"""Find final occurrence of substring bs.
Returns a single item tuple with the bit position if found, or an
empty tuple if not found. The bit position (pos property) will
also be set to the start of the substring if it is found.
bs -- The bitstring to find.
start -- The bit position to end the reverse search. Defaults to 0.
end -- The bit position one past the first bit to reverse search.
Defaults to self.len.
bytealigned -- If True the bitstring will only be found on byte
boundaries.
Raises ValueError if bs is empty, if start < 0, if end > self.len or
if end < start.
"""
bs = Bits(bs)
start, end = self._validate_slice(start, end)
if bytealigned is None:
bytealigned = globals()['bytealigned']
if not bs.len:
raise ValueError("Cannot find an empty bitstring.")
# Search chunks starting near the end and then moving back
# until we find bs.
increment = max(8192, bs.len * 80)
buffersize = min(increment + bs.len, end - start)
pos = max(start, end - buffersize)
while True:
found = list(self.findall(bs, start=pos, end=pos + buffersize,
bytealigned=bytealigned))
if not found:
if pos == start:
return ()
pos = max(start, pos - increment)
continue
return (found[-1],)
def cut(self, bits, start=None, end=None, count=None):
"""Return bitstring generator by cutting into bits sized chunks.
bits -- The size in bits of the bitstring chunks to generate.
start -- The bit position to start the first cut. Defaults to 0.
end -- The bit position one past the last bit to use in the cut.
Defaults to self.len.
count -- If specified then at most count items are generated.
Default is to cut as many times as possible.
"""
start, end = self._validate_slice(start, end)
if count is not None and count < 0:
raise ValueError("Cannot cut - count must be >= 0.")
if bits <= 0:
raise ValueError("Cannot cut - bits must be >= 0.")
c = 0
while count is None or c < count:
c += 1
nextchunk = self._slice(start, min(start + bits, end))
if nextchunk.len != bits:
return
assert nextchunk._assertsanity()
yield nextchunk
start += bits
return
def split(self, delimiter, start=None, end=None, count=None,
bytealigned=None):
"""Return bitstring generator by splittling using a delimiter.
The first item returned is the initial bitstring before the delimiter,
which may be an empty bitstring.
delimiter -- The bitstring used as the divider.
start -- The bit position to start the split. Defaults to 0.
end -- The bit position one past the last bit to use in the split.
Defaults to self.len.
count -- If specified then at most count items are generated.
Default is to split as many times as possible.
bytealigned -- If True splits will only occur on byte boundaries.
Raises ValueError if the delimiter is empty.
"""
delimiter = Bits(delimiter)
if not delimiter.len:
raise ValueError("split delimiter cannot be empty.")
start, end = self._validate_slice(start, end)
if bytealigned is None:
bytealigned = globals()['bytealigned']
if count is not None and count < 0:
raise ValueError("Cannot split - count must be >= 0.")
if count == 0:
return
if bytealigned and not delimiter.len % 8 and not self._datastore.offset:
# Use the quick find method
f = self._findbytes
x = delimiter._getbytes()
else:
f = self._findregex
x = re.compile(delimiter._getbin())
found = f(x, start, end, bytealigned)
if not found:
# Initial bits are the whole bitstring being searched
yield self._slice(start, end)
return
# yield the bytes before the first occurrence of the delimiter, even if empty
yield self._slice(start, found[0])
startpos = pos = found[0]
c = 1
while count is None or c < count:
pos += delimiter.len
found = f(x, pos, end, bytealigned)
if not found:
# No more occurrences, so return the rest of the bitstring
yield self._slice(startpos, end)
return
c += 1
yield self._slice(startpos, found[0])
startpos = pos = found[0]
# Have generated count bitstrings, so time to quit.
return
def join(self, sequence):
"""Return concatenation of bitstrings joined by self.
sequence -- A sequence of bitstrings.
"""
s = self.__class__()
i = iter(sequence)
try:
s._append(Bits(next(i)))
while True:
n = next(i)
s._append(self)
s._append(Bits(n))
except StopIteration:
pass
return s
def tobytes(self):
"""Return the bitstring as bytes, padding with zero bits if needed.
Up to seven zero bits will be added at the end to byte align.
"""
d = offsetcopy(self._datastore, 0).rawbytes
# Need to ensure that unused bits at end are set to zero
unusedbits = 8 - self.len % 8
if unusedbits != 8:
d[-1] &= (0xff << unusedbits)
return bytes(d)
def tofile(self, f):
"""Write the bitstring to a file object, padding with zero bits if needed.
Up to seven zero bits will be added at the end to byte align.
"""
# If the bitstring is file based then we don't want to read it all
# in to memory.
chunksize = 1024 * 1024 # 1 MB chunks
if not self._offset:
a = 0
bytelen = self._datastore.bytelength
p = self._datastore.getbyteslice(a, min(a + chunksize, bytelen - 1))
while len(p) == chunksize:
f.write(p)
a += chunksize
p = self._datastore.getbyteslice(a, min(a + chunksize, bytelen - 1))
f.write(p)
# Now the final byte, ensuring that unused bits at end are set to 0.
bits_in_final_byte = self.len % 8
if not bits_in_final_byte:
bits_in_final_byte = 8
f.write(self[-bits_in_final_byte:].tobytes())
else:
# Really quite inefficient...
a = 0
b = a + chunksize * 8
while b <= self.len:
f.write(self._slice(a, b)._getbytes())
a += chunksize * 8
b += chunksize * 8
if a != self.len:
f.write(self._slice(a, self.len).tobytes())
def startswith(self, prefix, start=None, end=None):
"""Return whether the current bitstring starts with prefix.
prefix -- The bitstring to search for.
start -- The bit position to start from. Defaults to 0.
end -- The bit position to end at. Defaults to self.len.
"""
prefix = Bits(prefix)
start, end = self._validate_slice(start, end)
if end < start + prefix.len:
return False
end = start + prefix.len
return self._slice(start, end) == prefix
def endswith(self, suffix, start=None, end=None):
"""Return whether the current bitstring ends with suffix.
suffix -- The bitstring to search for.
start -- The bit position to start from. Defaults to 0.
end -- The bit position to end at. Defaults to self.len.
"""
suffix = Bits(suffix)
start, end = self._validate_slice(start, end)
if start + suffix.len > end:
return False
start = end - suffix.len
return self._slice(start, end) == suffix
def all(self, value, pos=None):
"""Return True if one or many bits are all set to value.
value -- If value is True then checks for bits set to 1, otherwise
checks for bits set to 0.
pos -- An iterable of bit positions. Negative numbers are treated in
the same way as slice indices. Defaults to the whole bitstring.
"""
value = bool(value)
length = self.len
if pos is None:
pos = xrange(self.len)
for p in pos:
if p < 0:
p += length
if not 0 <= p < length:
raise IndexError("Bit position {0} out of range.".format(p))
if not self._datastore.getbit(p) is value:
return False
return True
def any(self, value, pos=None):
"""Return True if any of one or many bits are set to value.
value -- If value is True then checks for bits set to 1, otherwise
checks for bits set to 0.
pos -- An iterable of bit positions. Negative numbers are treated in
the same way as slice indices. Defaults to the whole bitstring.
"""
value = bool(value)
length = self.len
if pos is None:
pos = xrange(self.len)
for p in pos:
if p < 0:
p += length
if not 0 <= p < length:
raise IndexError("Bit position {0} out of range.".format(p))
if self._datastore.getbit(p) is value:
return True
return False
def count(self, value):
"""Return count of total number of either zero or one bits.
value -- If True then bits set to 1 are counted, otherwise bits set
to 0 are counted.
>>> Bits('0xef').count(1)
7
"""
if not self.len:
return 0
# count the number of 1s (from which it's easy to work out the 0s).
# Don't count the final byte yet.
count = sum(BIT_COUNT[self._datastore.getbyte(i)] for i in xrange(self._datastore.bytelength - 1))
# adjust for bits at start that aren't part of the bitstring
if self._offset:
count -= BIT_COUNT[self._datastore.getbyte(0) >> (8 - self._offset)]
# and count the last 1 - 8 bits at the end.
endbits = self._datastore.bytelength * 8 - (self._offset + self.len)
count += BIT_COUNT[self._datastore.getbyte(self._datastore.bytelength - 1) >> endbits]
return count if value else self.len - count
# Create native-endian functions as aliases depending on the byteorder
if byteorder == 'little':
_setfloatne = _setfloatle
_readfloatne = _readfloatle
_getfloatne = _getfloatle
_setuintne = _setuintle
_readuintne = _readuintle
_getuintne = _getuintle
_setintne = _setintle
_readintne = _readintle
_getintne = _getintle
else:
_setfloatne = _setfloat
_readfloatne = _readfloat
_getfloatne = _getfloat
_setuintne = _setuintbe
_readuintne = _readuintbe
_getuintne = _getuintbe
_setintne = _setintbe
_readintne = _readintbe
_getintne = _getintbe
_offset = property(_getoffset)
len = property(_getlength,
doc="""The length of the bitstring in bits. Read only.
""")
length = property(_getlength,
doc="""The length of the bitstring in bits. Read only.
""")
bool = property(_getbool,
doc="""The bitstring as a bool (True or False). Read only.
""")
hex = property(_gethex,
doc="""The bitstring as a hexadecimal string. Read only.
""")
bin = property(_getbin,
doc="""The bitstring as a binary string. Read only.
""")
oct = property(_getoct,
doc="""The bitstring as an octal string. Read only.
""")
bytes = property(_getbytes,
doc="""The bitstring as a bytes object. Read only.
""")
int = property(_getint,
doc="""The bitstring as a two's complement signed int. Read only.
""")
uint = property(_getuint,
doc="""The bitstring as a two's complement unsigned int. Read only.
""")
float = property(_getfloat,
doc="""The bitstring as a floating point number. Read only.
""")
intbe = property(_getintbe,
doc="""The bitstring as a two's complement big-endian signed int. Read only.
""")
uintbe = property(_getuintbe,
doc="""The bitstring as a two's complement big-endian unsigned int. Read only.
""")
floatbe = property(_getfloat,
doc="""The bitstring as a big-endian floating point number. Read only.
""")
intle = property(_getintle,
doc="""The bitstring as a two's complement little-endian signed int. Read only.
""")
uintle = property(_getuintle,
doc="""The bitstring as a two's complement little-endian unsigned int. Read only.
""")
floatle = property(_getfloatle,
doc="""The bitstring as a little-endian floating point number. Read only.
""")
intne = property(_getintne,
doc="""The bitstring as a two's complement native-endian signed int. Read only.
""")
uintne = property(_getuintne,
doc="""The bitstring as a two's complement native-endian unsigned int. Read only.
""")
floatne = property(_getfloatne,
doc="""The bitstring as a native-endian floating point number. Read only.
""")
ue = property(_getue,
doc="""The bitstring as an unsigned exponential-Golomb code. Read only.
""")
se = property(_getse,
doc="""The bitstring as a signed exponential-Golomb code. Read only.
""")
uie = property(_getuie,
doc="""The bitstring as an unsigned interleaved exponential-Golomb code. Read only.
""")
sie = property(_getsie,
doc="""The bitstring as a signed interleaved exponential-Golomb code. Read only.
""")
# Dictionary that maps token names to the function that reads them.
name_to_read = {'uint': Bits._readuint,
'uintle': Bits._readuintle,
'uintbe': Bits._readuintbe,
'uintne': Bits._readuintne,
'int': Bits._readint,
'intle': Bits._readintle,
'intbe': Bits._readintbe,
'intne': Bits._readintne,
'float': Bits._readfloat,
'floatbe': Bits._readfloat, # floatbe is a synonym for float
'floatle': Bits._readfloatle,
'floatne': Bits._readfloatne,
'hex': Bits._readhex,
'oct': Bits._readoct,
'bin': Bits._readbin,
'bits': Bits._readbits,
'bytes': Bits._readbytes,
'ue': Bits._readue,
'se': Bits._readse,
'uie': Bits._readuie,
'sie': Bits._readsie,
'bool': Bits._readbool,
}
# Dictionaries for mapping init keywords with init functions.
init_with_length_and_offset = {'bytes': Bits._setbytes_safe,
'filename': Bits._setfile,
}
init_with_length_only = {'uint': Bits._setuint,
'int': Bits._setint,
'float': Bits._setfloat,
'uintbe': Bits._setuintbe,
'intbe': Bits._setintbe,
'floatbe': Bits._setfloat,
'uintle': Bits._setuintle,
'intle': Bits._setintle,
'floatle': Bits._setfloatle,
'uintne': Bits._setuintne,
'intne': Bits._setintne,
'floatne': Bits._setfloatne,
}
init_without_length_or_offset = {'bin': Bits._setbin_safe,
'hex': Bits._sethex,
'oct': Bits._setoct,
'ue': Bits._setue,
'se': Bits._setse,
'uie': Bits._setuie,
'sie': Bits._setsie,
'bool': Bits._setbool,
}
class BitArray(Bits):
"""A container holding a mutable sequence of bits.
Subclass of the immutable Bits class. Inherits all of its
methods (except __hash__) and adds mutating methods.
Mutating methods:
append() -- Append a bitstring.
byteswap() -- Change byte endianness in-place.
insert() -- Insert a bitstring.
invert() -- Flip bit(s) between one and zero.
overwrite() -- Overwrite a section with a new bitstring.
prepend() -- Prepend a bitstring.
replace() -- Replace occurrences of one bitstring with another.
reverse() -- Reverse bits in-place.
rol() -- Rotate bits to the left.
ror() -- Rotate bits to the right.
set() -- Set bit(s) to 1 or 0.
Methods inherited from Bits:
all() -- Check if all specified bits are set to 1 or 0.
any() -- Check if any of specified bits are set to 1 or 0.
count() -- Count the number of bits set to 1 or 0.
cut() -- Create generator of constant sized chunks.
endswith() -- Return whether the bitstring ends with a sub-string.
find() -- Find a sub-bitstring in the current bitstring.
findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
join() -- Join bitstrings together using current bitstring.
rfind() -- Seek backwards to find a sub-bitstring.
split() -- Create generator of chunks split by a delimiter.
startswith() -- Return whether the bitstring starts with a sub-bitstring.
tobytes() -- Return bitstring as bytes, padding if needed.
tofile() -- Write bitstring to file, padding if needed.
unpack() -- Interpret bits using format string.
Special methods:
Mutating operators are available: [], <<=, >>=, +=, *=, &=, |= and ^=
in addition to the inherited [], ==, !=, +, *, ~, <<, >>, &, | and ^.
Properties:
bin -- The bitstring as a binary string.
bool -- For single bit bitstrings, interpret as True or False.
bytepos -- The current byte position in the bitstring.
bytes -- The bitstring as a bytes object.
float -- Interpret as a floating point number.
floatbe -- Interpret as a big-endian floating point number.
floatle -- Interpret as a little-endian floating point number.
floatne -- Interpret as a native-endian floating point number.
hex -- The bitstring as a hexadecimal string.
int -- Interpret as a two's complement signed integer.
intbe -- Interpret as a big-endian signed integer.
intle -- Interpret as a little-endian signed integer.
intne -- Interpret as a native-endian signed integer.
len -- Length of the bitstring in bits.
oct -- The bitstring as an octal string.
pos -- The current bit position in the bitstring.
se -- Interpret as a signed exponential-Golomb code.
ue -- Interpret as an unsigned exponential-Golomb code.
sie -- Interpret as a signed interleaved exponential-Golomb code.
uie -- Interpret as an unsigned interleaved exponential-Golomb code.
uint -- Interpret as a two's complement unsigned integer.
uintbe -- Interpret as a big-endian unsigned integer.
uintle -- Interpret as a little-endian unsigned integer.
uintne -- Interpret as a native-endian unsigned integer.
"""
__slots__ = ()
# As BitArray objects are mutable, we shouldn't allow them to be hashed.
__hash__ = None
def __init__(self, auto=None, length=None, offset=None, **kwargs):
"""Either specify an 'auto' initialiser:
auto -- a string of comma separated tokens, an integer, a file object,
a bytearray, a boolean iterable or another bitstring.
Or initialise via **kwargs with one (and only one) of:
bytes -- raw data as a string, for example read from a binary file.
bin -- binary string representation, e.g. '0b001010'.
hex -- hexadecimal string representation, e.g. '0x2ef'
oct -- octal string representation, e.g. '0o777'.
uint -- an unsigned integer.
int -- a signed integer.
float -- a floating point number.
uintbe -- an unsigned big-endian whole byte integer.
intbe -- a signed big-endian whole byte integer.
floatbe - a big-endian floating point number.
uintle -- an unsigned little-endian whole byte integer.
intle -- a signed little-endian whole byte integer.
floatle -- a little-endian floating point number.
uintne -- an unsigned native-endian whole byte integer.
intne -- a signed native-endian whole byte integer.
floatne -- a native-endian floating point number.
se -- a signed exponential-Golomb code.
ue -- an unsigned exponential-Golomb code.
sie -- a signed interleaved exponential-Golomb code.
uie -- an unsigned interleaved exponential-Golomb code.
bool -- a boolean (True or False).
filename -- a file which will be opened in binary read-only mode.
Other keyword arguments:
length -- length of the bitstring in bits, if needed and appropriate.
It must be supplied for all integer and float initialisers.
offset -- bit offset to the data. These offset bits are
ignored and this is intended for use when
initialising using 'bytes' or 'filename'.
"""
# For mutable BitArrays we always read in files to memory:
if not isinstance(self._datastore, ByteStore):
self._ensureinmemory()
def __new__(cls, auto=None, length=None, offset=None, **kwargs):
x = super(BitArray, cls).__new__(cls)
y = Bits.__new__(BitArray, auto, length, offset, **kwargs)
x._datastore = y._datastore
return x
def __iadd__(self, bs):
"""Append bs to current bitstring. Return self.
bs -- the bitstring to append.
"""
self.append(bs)
return self
def __copy__(self):
"""Return a new copy of the BitArray."""
s_copy = BitArray()
if not isinstance(self._datastore, ByteStore):
# Let them both point to the same (invariant) array.
# If either gets modified then at that point they'll be read into memory.
s_copy._datastore = self._datastore
else:
s_copy._datastore = copy.copy(self._datastore)
return s_copy
def __setitem__(self, key, value):
"""Set item or range to new value.
Indices are in units of the step parameter (default 1 bit).
Stepping is used to specify the number of bits in each item.
If the length of the bitstring is changed then pos will be moved
to after the inserted section, otherwise it will remain unchanged.
>>> s = BitArray('0xff')
>>> s[0:1:4] = '0xe'
>>> print s
'0xef'
>>> s[4:4] = '0x00'
>>> print s
'0xe00f'
"""
try:
# A slice
start, step = 0, 1
if key.step is not None:
step = key.step
except AttributeError:
# single element
if key < 0:
key += self.len
if not 0 <= key < self.len:
raise IndexError("Slice index out of range.")
if isinstance(value, numbers.Integral):
if not value:
self._unset(key)
return
if value in (1, -1):
self._set(key)
return
raise ValueError("Cannot set a single bit with integer {0}.".format(value))
value = Bits(value)
if value.len == 1:
# TODO: this can't be optimal
if value[0]:
self._set(key)
else:
self._unset(key)
else:
self._delete(1, key)
self._insert(value, key)
return
else:
if step != 1:
# convert to binary string and use string slicing
# TODO: Horribly inefficent
temp = list(self._getbin())
v = list(Bits(value)._getbin())
temp.__setitem__(key, v)
self._setbin_unsafe(''.join(temp))
return
# If value is an integer then we want to set the slice to that
# value rather than initialise a new bitstring of that length.
if not isinstance(value, numbers.Integral):
try:
# TODO: Better way than calling constructor here?
value = Bits(value)
except TypeError:
raise TypeError("Bitstring, integer or string expected. "
"Got {0}.".format(type(value)))
if key.start is not None:
start = key.start
if key.start < 0:
start += self.len
if start < 0:
start = 0
stop = self.len
if key.stop is not None:
stop = key.stop
if key.stop < 0:
stop += self.len
if start > stop:
# The standard behaviour for lists is to just insert at the
# start position if stop < start and step == 1.
stop = start
if isinstance(value, numbers.Integral):
if value >= 0:
value = self.__class__(uint=value, length=stop - start)
else:
value = self.__class__(int=value, length=stop - start)
stop = min(stop, self.len)
start = max(start, 0)
start = min(start, stop)
if (stop - start) == value.len:
if not value.len:
return
if step >= 0:
self._overwrite(value, start)
else:
self._overwrite(value.__getitem__(slice(None, None, 1)), start)
else:
# TODO: A delete then insert is wasteful - it could do unneeded shifts.
# Could be either overwrite + insert or overwrite + delete.
self._delete(stop - start, start)
if step >= 0:
self._insert(value, start)
else:
self._insert(value.__getitem__(slice(None, None, 1)), start)
# pos is now after the inserted piece.
return
def __delitem__(self, key):
"""Delete item or range.
Indices are in units of the step parameter (default 1 bit).
Stepping is used to specify the number of bits in each item.
>>> a = BitArray('0x001122')
>>> del a[1:2:8]
>>> print a
0x0022
"""
try:
# A slice
start = 0
step = key.step if key.step is not None else 1
except AttributeError:
# single element
if key < 0:
key += self.len
if not 0 <= key < self.len:
raise IndexError("Slice index out of range.")
self._delete(1, key)
return
else:
if step != 1:
# convert to binary string and use string slicing
# TODO: Horribly inefficent
temp = list(self._getbin())
temp.__delitem__(key)
self._setbin_unsafe(''.join(temp))
return
stop = key.stop
if key.start is not None:
start = key.start
if key.start < 0 and stop is None:
start += self.len
if start < 0:
start = 0
if stop is None:
stop = self.len
if start > stop:
return
stop = min(stop, self.len)
start = max(start, 0)
start = min(start, stop)
self._delete(stop - start, start)
return
def __ilshift__(self, n):
"""Shift bits by n to the left in place. Return self.
n -- the number of bits to shift. Must be >= 0.
"""
if n < 0:
raise ValueError("Cannot shift by a negative amount.")
if not self.len:
raise ValueError("Cannot shift an empty bitstring.")
if not n:
return self
n = min(n, self.len)
return self._ilshift(n)
def __irshift__(self, n):
"""Shift bits by n to the right in place. Return self.
n -- the number of bits to shift. Must be >= 0.
"""
if n < 0:
raise ValueError("Cannot shift by a negative amount.")
if not self.len:
raise ValueError("Cannot shift an empty bitstring.")
if not n:
return self
n = min(n, self.len)
return self._irshift(n)
def __imul__(self, n):
"""Concatenate n copies of self in place. Return self.
Called for expressions of the form 'a *= 3'.
n -- The number of concatenations. Must be >= 0.
"""
if n < 0:
raise ValueError("Cannot multiply by a negative integer.")
return self._imul(n)
def __ior__(self, bs):
bs = Bits(bs)
if self.len != bs.len:
raise ValueError("Bitstrings must have the same length "
"for |= operator.")
return self._ior(bs)
def __iand__(self, bs):
bs = Bits(bs)
if self.len != bs.len:
raise ValueError("Bitstrings must have the same length "
"for &= operator.")
return self._iand(bs)
def __ixor__(self, bs):
bs = Bits(bs)
if self.len != bs.len:
raise ValueError("Bitstrings must have the same length "
"for ^= operator.")
return self._ixor(bs)
def replace(self, old, new, start=None, end=None, count=None,
bytealigned=None):
"""Replace all occurrences of old with new in place.
Returns number of replacements made.
old -- The bitstring to replace.
new -- The replacement bitstring.
start -- Any occurrences that start before this will not be replaced.
Defaults to 0.
end -- Any occurrences that finish after this will not be replaced.
Defaults to self.len.
count -- The maximum number of replacements to make. Defaults to
replace all occurrences.
bytealigned -- If True replacements will only be made on byte
boundaries.
Raises ValueError if old is empty or if start or end are
out of range.
"""
old = Bits(old)
new = Bits(new)
if not old.len:
raise ValueError("Empty bitstring cannot be replaced.")
start, end = self._validate_slice(start, end)
if bytealigned is None:
bytealigned = globals()['bytealigned']
# Adjust count for use in split()
if count is not None:
count += 1
sections = self.split(old, start, end, count, bytealigned)
lengths = [s.len for s in sections]
if len(lengths) == 1:
# Didn't find anything to replace.
return 0 # no replacements done
if new is self:
# Prevent self assignment woes
new = copy.copy(self)
positions = [lengths[0] + start]
for l in lengths[1:-1]:
# Next position is the previous one plus the length of the next section.
positions.append(positions[-1] + l)
# We have all the positions that need replacements. We do them
# in reverse order so that they won't move around as we replace.
positions.reverse()
try:
# Need to calculate new pos, if this is a bitstream
newpos = self._pos
for p in positions:
self[p:p + old.len] = new
if old.len != new.len:
diff = new.len - old.len
for p in positions:
if p >= newpos:
continue
if p + old.len <= newpos:
newpos += diff
else:
newpos = p
self._pos = newpos
except AttributeError:
for p in positions:
self[p:p + old.len] = new
assert self._assertsanity()
return len(lengths) - 1
def insert(self, bs, pos=None):
"""Insert bs at bit position pos.
bs -- The bitstring to insert.
pos -- The bit position to insert at.
Raises ValueError if pos < 0 or pos > self.len.
"""
bs = Bits(bs)
if not bs.len:
return self
if bs is self:
bs = self.__copy__()
if pos is None:
try:
pos = self._pos
except AttributeError:
raise TypeError("insert require a bit position for this type.")
if pos < 0:
pos += self.len
if not 0 <= pos <= self.len:
raise ValueError("Invalid insert position.")
self._insert(bs, pos)
def overwrite(self, bs, pos=None):
"""Overwrite with bs at bit position pos.
bs -- The bitstring to overwrite with.
pos -- The bit position to begin overwriting from.
Raises ValueError if pos < 0 or pos + bs.len > self.len
"""
bs = Bits(bs)
if not bs.len:
return
if pos is None:
try:
pos = self._pos
except AttributeError:
raise TypeError("overwrite require a bit position for this type.")
if pos < 0:
pos += self.len
if pos < 0 or pos + bs.len > self.len:
raise ValueError("Overwrite exceeds boundary of bitstring.")
self._overwrite(bs, pos)
try:
self._pos = pos + bs.len
except AttributeError:
pass
def append(self, bs):
"""Append a bitstring to the current bitstring.
bs -- The bitstring to append.
"""
# The offset is a hint to make bs easily appendable.
bs = self._converttobitstring(bs, offset=(self.len + self._offset) % 8)
self._append(bs)
def prepend(self, bs):
"""Prepend a bitstring to the current bitstring.
bs -- The bitstring to prepend.
"""
bs = Bits(bs)
self._prepend(bs)
def reverse(self, start=None, end=None):
"""Reverse bits in-place.
start -- Position of first bit to reverse. Defaults to 0.
end -- One past the position of the last bit to reverse.
Defaults to self.len.
Using on an empty bitstring will have no effect.
Raises ValueError if start < 0, end > self.len or end < start.
"""
start, end = self._validate_slice(start, end)
if start == 0 and end == self.len:
self._reverse()
return
s = self._slice(start, end)
s._reverse()
self[start:end] = s
def set(self, value, pos=None):
"""Set one or many bits to 1 or 0.
value -- If True bits are set to 1, otherwise they are set to 0.
pos -- Either a single bit position or an iterable of bit positions.
Negative numbers are treated in the same way as slice indices.
Defaults to the entire bitstring.
Raises IndexError if pos < -self.len or pos >= self.len.
"""
f = self._set if value else self._unset
if pos is None:
pos = xrange(self.len)
try:
length = self.len
for p in pos:
if p < 0:
p += length
if not 0 <= p < length:
raise IndexError("Bit position {0} out of range.".format(p))
f(p)
except TypeError:
# Single pos
if pos < 0:
pos += self.len
if not 0 <= pos < length:
raise IndexError("Bit position {0} out of range.".format(pos))
f(pos)
def invert(self, pos=None):
"""Invert one or many bits from 0 to 1 or vice versa.
pos -- Either a single bit position or an iterable of bit positions.
Negative numbers are treated in the same way as slice indices.
Raises IndexError if pos < -self.len or pos >= self.len.
"""
if pos is None:
self._invert_all()
return
if not isinstance(pos, collections.Iterable):
pos = (pos,)
length = self.len
for p in pos:
if p < 0:
p += length
if not 0 <= p < length:
raise IndexError("Bit position {0} out of range.".format(p))
self._invert(p)
def ror(self, bits, start=None, end=None):
"""Rotate bits to the right in-place.
bits -- The number of bits to rotate by.
start -- Start of slice to rotate. Defaults to 0.
end -- End of slice to rotate. Defaults to self.len.
Raises ValueError if bits < 0.
"""
if not self.len:
raise Error("Cannot rotate an empty bitstring.")
if bits < 0:
raise ValueError("Cannot rotate right by negative amount.")
start, end = self._validate_slice(start, end)
bits %= (end - start)
if not bits:
return
rhs = self._slice(end - bits, end)
self._delete(bits, end - bits)
self._insert(rhs, start)
def rol(self, bits, start=None, end=None):
"""Rotate bits to the left in-place.
bits -- The number of bits to rotate by.
start -- Start of slice to rotate. Defaults to 0.
end -- End of slice to rotate. Defaults to self.len.
Raises ValueError if bits < 0.
"""
if not self.len:
raise Error("Cannot rotate an empty bitstring.")
if bits < 0:
raise ValueError("Cannot rotate left by negative amount.")
start, end = self._validate_slice(start, end)
bits %= (end - start)
if not bits:
return
lhs = self._slice(start, start + bits)
self._delete(bits, start)
self._insert(lhs, end - bits)
def byteswap(self, fmt=None, start=None, end=None, repeat=True):
"""Change the endianness in-place. Return number of repeats of fmt done.
fmt -- A compact structure string, an integer number of bytes or
an iterable of integers. Defaults to 0, which byte reverses the
whole bitstring.
start -- Start bit position, defaults to 0.
end -- End bit position, defaults to self.len.
repeat -- If True (the default) the byte swapping pattern is repeated
as much as possible.
"""
start, end = self._validate_slice(start, end)
if fmt is None or fmt == 0:
# reverse all of the whole bytes.
bytesizes = [(end - start) // 8]
elif isinstance(fmt, numbers.Integral):
if fmt < 0:
raise ValueError("Improper byte length {0}.".format(fmt))
bytesizes = [fmt]
elif isinstance(fmt, basestring):
m = STRUCT_PACK_RE.match(fmt)
if not m:
raise ValueError("Cannot parse format string {0}.".format(fmt))
# Split the format string into a list of 'q', '4h' etc.
formatlist = re.findall(STRUCT_SPLIT_RE, m.group('fmt'))
# Now deal with multiplicative factors, 4h -> hhhh etc.
bytesizes = []
for f in formatlist:
if len(f) == 1:
bytesizes.append(PACK_CODE_SIZE[f])
else:
bytesizes.extend([PACK_CODE_SIZE[f[-1]]] * int(f[:-1]))
elif isinstance(fmt, collections.Iterable):
bytesizes = fmt
for bytesize in bytesizes:
if not isinstance(bytesize, numbers.Integral) or bytesize < 0:
raise ValueError("Improper byte length {0}.".format(bytesize))
else:
raise TypeError("Format must be an integer, string or iterable.")
repeats = 0
totalbitsize = 8 * sum(bytesizes)
if not totalbitsize:
return 0
if repeat:
# Try to repeat up to the end of the bitstring.
finalbit = end
else:
# Just try one (set of) byteswap(s).
finalbit = start + totalbitsize
for patternend in xrange(start + totalbitsize, finalbit + 1, totalbitsize):
bytestart = patternend - totalbitsize
for bytesize in bytesizes:
byteend = bytestart + bytesize * 8
self._reversebytes(bytestart, byteend)
bytestart += bytesize * 8
repeats += 1
return repeats
def clear(self):
"""Remove all bits, reset to zero length."""
self._clear()
def copy(self):
"""Return a copy of the bitstring."""
return self._copy()
int = property(Bits._getint, Bits._setint,
doc="""The bitstring as a two's complement signed int. Read and write.
""")
uint = property(Bits._getuint, Bits._setuint,
doc="""The bitstring as a two's complement unsigned int. Read and write.
""")
float = property(Bits._getfloat, Bits._setfloat,
doc="""The bitstring as a floating point number. Read and write.
""")
intbe = property(Bits._getintbe, Bits._setintbe,
doc="""The bitstring as a two's complement big-endian signed int. Read and write.
""")
uintbe = property(Bits._getuintbe, Bits._setuintbe,
doc="""The bitstring as a two's complement big-endian unsigned int. Read and write.
""")
floatbe = property(Bits._getfloat, Bits._setfloat,
doc="""The bitstring as a big-endian floating point number. Read and write.
""")
intle = property(Bits._getintle, Bits._setintle,
doc="""The bitstring as a two's complement little-endian signed int. Read and write.
""")
uintle = property(Bits._getuintle, Bits._setuintle,
doc="""The bitstring as a two's complement little-endian unsigned int. Read and write.
""")
floatle = property(Bits._getfloatle, Bits._setfloatle,
doc="""The bitstring as a little-endian floating point number. Read and write.
""")
intne = property(Bits._getintne, Bits._setintne,
doc="""The bitstring as a two's complement native-endian signed int. Read and write.
""")
uintne = property(Bits._getuintne, Bits._setuintne,
doc="""The bitstring as a two's complement native-endian unsigned int. Read and write.
""")
floatne = property(Bits._getfloatne, Bits._setfloatne,
doc="""The bitstring as a native-endian floating point number. Read and write.
""")
ue = property(Bits._getue, Bits._setue,
doc="""The bitstring as an unsigned exponential-Golomb code. Read and write.
""")
se = property(Bits._getse, Bits._setse,
doc="""The bitstring as a signed exponential-Golomb code. Read and write.
""")
uie = property(Bits._getuie, Bits._setuie,
doc="""The bitstring as an unsigned interleaved exponential-Golomb code. Read and write.
""")
sie = property(Bits._getsie, Bits._setsie,
doc="""The bitstring as a signed interleaved exponential-Golomb code. Read and write.
""")
hex = property(Bits._gethex, Bits._sethex,
doc="""The bitstring as a hexadecimal string. Read and write.
""")
bin = property(Bits._getbin, Bits._setbin_safe,
doc="""The bitstring as a binary string. Read and write.
""")
oct = property(Bits._getoct, Bits._setoct,
doc="""The bitstring as an octal string. Read and write.
""")
bool = property(Bits._getbool, Bits._setbool,
doc="""The bitstring as a bool (True or False). Read and write.
""")
bytes = property(Bits._getbytes, Bits._setbytes_safe,
doc="""The bitstring as a ordinary string. Read and write.
""")
class ConstBitStream(Bits):
"""A container or stream holding an immutable sequence of bits.
For a mutable container use the BitStream class instead.
Methods inherited from Bits:
all() -- Check if all specified bits are set to 1 or 0.
any() -- Check if any of specified bits are set to 1 or 0.
count() -- Count the number of bits set to 1 or 0.
cut() -- Create generator of constant sized chunks.
endswith() -- Return whether the bitstring ends with a sub-string.
find() -- Find a sub-bitstring in the current bitstring.
findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
join() -- Join bitstrings together using current bitstring.
rfind() -- Seek backwards to find a sub-bitstring.
split() -- Create generator of chunks split by a delimiter.
startswith() -- Return whether the bitstring starts with a sub-bitstring.
tobytes() -- Return bitstring as bytes, padding if needed.
tofile() -- Write bitstring to file, padding if needed.
unpack() -- Interpret bits using format string.
Other methods:
bytealign() -- Align to next byte boundary.
peek() -- Peek at and interpret next bits as a single item.
peeklist() -- Peek at and interpret next bits as a list of items.
read() -- Read and interpret next bits as a single item.
readlist() -- Read and interpret next bits as a list of items.
Special methods:
Also available are the operators [], ==, !=, +, *, ~, <<, >>, &, |, ^.
Properties:
bin -- The bitstring as a binary string.
bool -- For single bit bitstrings, interpret as True or False.
bytepos -- The current byte position in the bitstring.
bytes -- The bitstring as a bytes object.
float -- Interpret as a floating point number.
floatbe -- Interpret as a big-endian floating point number.
floatle -- Interpret as a little-endian floating point number.
floatne -- Interpret as a native-endian floating point number.
hex -- The bitstring as a hexadecimal string.
int -- Interpret as a two's complement signed integer.
intbe -- Interpret as a big-endian signed integer.
intle -- Interpret as a little-endian signed integer.
intne -- Interpret as a native-endian signed integer.
len -- Length of the bitstring in bits.
oct -- The bitstring as an octal string.
pos -- The current bit position in the bitstring.
se -- Interpret as a signed exponential-Golomb code.
ue -- Interpret as an unsigned exponential-Golomb code.
sie -- Interpret as a signed interleaved exponential-Golomb code.
uie -- Interpret as an unsigned interleaved exponential-Golomb code.
uint -- Interpret as a two's complement unsigned integer.
uintbe -- Interpret as a big-endian unsigned integer.
uintle -- Interpret as a little-endian unsigned integer.
uintne -- Interpret as a native-endian unsigned integer.
"""
__slots__ = ('_pos')
def __init__(self, auto=None, length=None, offset=None, **kwargs):
"""Either specify an 'auto' initialiser:
auto -- a string of comma separated tokens, an integer, a file object,
a bytearray, a boolean iterable or another bitstring.
Or initialise via **kwargs with one (and only one) of:
bytes -- raw data as a string, for example read from a binary file.
bin -- binary string representation, e.g. '0b001010'.
hex -- hexadecimal string representation, e.g. '0x2ef'
oct -- octal string representation, e.g. '0o777'.
uint -- an unsigned integer.
int -- a signed integer.
float -- a floating point number.
uintbe -- an unsigned big-endian whole byte integer.
intbe -- a signed big-endian whole byte integer.
floatbe - a big-endian floating point number.
uintle -- an unsigned little-endian whole byte integer.
intle -- a signed little-endian whole byte integer.
floatle -- a little-endian floating point number.
uintne -- an unsigned native-endian whole byte integer.
intne -- a signed native-endian whole byte integer.
floatne -- a native-endian floating point number.
se -- a signed exponential-Golomb code.
ue -- an unsigned exponential-Golomb code.
sie -- a signed interleaved exponential-Golomb code.
uie -- an unsigned interleaved exponential-Golomb code.
bool -- a boolean (True or False).
filename -- a file which will be opened in binary read-only mode.
Other keyword arguments:
length -- length of the bitstring in bits, if needed and appropriate.
It must be supplied for all integer and float initialisers.
offset -- bit offset to the data. These offset bits are
ignored and this is intended for use when
initialising using 'bytes' or 'filename'.
"""
self._pos = 0
def __new__(cls, auto=None, length=None, offset=None, **kwargs):
x = super(ConstBitStream, cls).__new__(cls)
x._initialise(auto, length, offset, **kwargs)
return x
def _setbytepos(self, bytepos):
"""Move to absolute byte-aligned position in stream."""
self._setbitpos(bytepos * 8)
def _getbytepos(self):
"""Return the current position in the stream in bytes. Must be byte aligned."""
if self._pos % 8:
raise ByteAlignError("Not byte aligned in _getbytepos().")
return self._pos // 8
def _setbitpos(self, pos):
"""Move to absolute postion bit in bitstream."""
if pos < 0:
raise ValueError("Bit position cannot be negative.")
if pos > self.len:
raise ValueError("Cannot seek past the end of the data.")
self._pos = pos
def _getbitpos(self):
"""Return the current position in the stream in bits."""
return self._pos
def _clear(self):
Bits._clear(self)
self._pos = 0
def __copy__(self):
"""Return a new copy of the ConstBitStream for the copy module."""
# Note that if you want a new copy (different ID), use _copy instead.
# The copy can use the same datastore as it's immutable.
s = ConstBitStream()
s._datastore = self._datastore
# Reset the bit position, don't copy it.
s._pos = 0
return s
def __add__(self, bs):
"""Concatenate bitstrings and return new bitstring.
bs -- the bitstring to append.
"""
s = Bits.__add__(self, bs)
s._pos = 0
return s
def read(self, fmt):
"""Interpret next bits according to the format string and return result.
fmt -- Token string describing how to interpret the next bits.
Token examples: 'int:12' : 12 bits as a signed integer
'uint:8' : 8 bits as an unsigned integer
'float:64' : 8 bytes as a big-endian float
'intbe:16' : 2 bytes as a big-endian signed integer
'uintbe:16' : 2 bytes as a big-endian unsigned integer
'intle:32' : 4 bytes as a little-endian signed integer
'uintle:32' : 4 bytes as a little-endian unsigned integer
'floatle:64': 8 bytes as a little-endian float
'intne:24' : 3 bytes as a native-endian signed integer
'uintne:24' : 3 bytes as a native-endian unsigned integer
'floatne:32': 4 bytes as a native-endian float
'hex:80' : 80 bits as a hex string
'oct:9' : 9 bits as an octal string
'bin:1' : single bit binary string
'ue' : next bits as unsigned exp-Golomb code
'se' : next bits as signed exp-Golomb code
'uie' : next bits as unsigned interleaved exp-Golomb code
'sie' : next bits as signed interleaved exp-Golomb code
'bits:5' : 5 bits as a bitstring
'bytes:10' : 10 bytes as a bytes object
'bool' : 1 bit as a bool
'pad:3' : 3 bits of padding to ignore - returns None
fmt may also be an integer, which will be treated like the 'bits' token.
The position in the bitstring is advanced to after the read items.
Raises ReadError if not enough bits are available.
Raises ValueError if the format is not understood.
"""
if isinstance(fmt, numbers.Integral):
if fmt < 0:
raise ValueError("Cannot read negative amount.")
if fmt > self.len - self._pos:
raise ReadError("Cannot read {0} bits, only {1} available.",
fmt, self.len - self._pos)
bs = self._slice(self._pos, self._pos + fmt)
self._pos += fmt
return bs
p = self._pos
_, token = tokenparser(fmt)
if len(token) != 1:
self._pos = p
raise ValueError("Format string should be a single token, not {0} "
"tokens - use readlist() instead.".format(len(token)))
name, length, _ = token[0]
if length is None:
length = self.len - self._pos
value, self._pos = self._readtoken(name, self._pos, length)
return value
def readlist(self, fmt, **kwargs):
"""Interpret next bits according to format string(s) and return list.
fmt -- A single string or list of strings with comma separated tokens
describing how to interpret the next bits in the bitstring. Items
can also be integers, for reading new bitstring of the given length.
kwargs -- A dictionary or keyword-value pairs - the keywords used in the
format string will be replaced with their given value.
The position in the bitstring is advanced to after the read items.
Raises ReadError is not enough bits are available.
Raises ValueError if the format is not understood.
See the docstring for 'read' for token examples. 'pad' tokens are skipped
and not added to the returned list.
>>> h, b1, b2 = s.readlist('hex:20, bin:5, bin:3')
>>> i, bs1, bs2 = s.readlist(['uint:12', 10, 10])
"""
value, self._pos = self._readlist(fmt, self._pos, **kwargs)
return value
def readto(self, bs, bytealigned=None):
"""Read up to and including next occurrence of bs and return result.
bs -- The bitstring to find. An integer is not permitted.
bytealigned -- If True the bitstring will only be
found on byte boundaries.
Raises ValueError if bs is empty.
Raises ReadError if bs is not found.
"""
if isinstance(bs, numbers.Integral):
raise ValueError("Integers cannot be searched for")
bs = Bits(bs)
oldpos = self._pos
p = self.find(bs, self._pos, bytealigned=bytealigned)
if not p:
raise ReadError("Substring not found")
self._pos += bs.len
return self._slice(oldpos, self._pos)
def peek(self, fmt):
"""Interpret next bits according to format string and return result.
fmt -- Token string describing how to interpret the next bits.
The position in the bitstring is not changed. If not enough bits are
available then all bits to the end of the bitstring will be used.
Raises ReadError if not enough bits are available.
Raises ValueError if the format is not understood.
See the docstring for 'read' for token examples.
"""
pos_before = self._pos
value = self.read(fmt)
self._pos = pos_before
return value
def peeklist(self, fmt, **kwargs):
"""Interpret next bits according to format string(s) and return list.
fmt -- One or more strings with comma separated tokens describing
how to interpret the next bits in the bitstring.
kwargs -- A dictionary or keyword-value pairs - the keywords used in the
format string will be replaced with their given value.
The position in the bitstring is not changed. If not enough bits are
available then all bits to the end of the bitstring will be used.
Raises ReadError if not enough bits are available.
Raises ValueError if the format is not understood.
See the docstring for 'read' for token examples.
"""
pos = self._pos
return_values = self.readlist(fmt, **kwargs)
self._pos = pos
return return_values
def bytealign(self):
"""Align to next byte and return number of skipped bits.
Raises ValueError if the end of the bitstring is reached before
aligning to the next byte.
"""
skipped = (8 - (self._pos % 8)) % 8
self.pos += self._offset + skipped
assert self._assertsanity()
return skipped
pos = property(_getbitpos, _setbitpos,
doc="""The position in the bitstring in bits. Read and write.
""")
bitpos = property(_getbitpos, _setbitpos,
doc="""The position in the bitstring in bits. Read and write.
""")
bytepos = property(_getbytepos, _setbytepos,
doc="""The position in the bitstring in bytes. Read and write.
""")
class BitStream(ConstBitStream, BitArray):
"""A container or stream holding a mutable sequence of bits
Subclass of the ConstBitStream and BitArray classes. Inherits all of
their methods.
Methods:
all() -- Check if all specified bits are set to 1 or 0.
any() -- Check if any of specified bits are set to 1 or 0.
append() -- Append a bitstring.
bytealign() -- Align to next byte boundary.
byteswap() -- Change byte endianness in-place.
count() -- Count the number of bits set to 1 or 0.
cut() -- Create generator of constant sized chunks.
endswith() -- Return whether the bitstring ends with a sub-string.
find() -- Find a sub-bitstring in the current bitstring.
findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
insert() -- Insert a bitstring.
invert() -- Flip bit(s) between one and zero.
join() -- Join bitstrings together using current bitstring.
overwrite() -- Overwrite a section with a new bitstring.
peek() -- Peek at and interpret next bits as a single item.
peeklist() -- Peek at and interpret next bits as a list of items.
prepend() -- Prepend a bitstring.
read() -- Read and interpret next bits as a single item.
readlist() -- Read and interpret next bits as a list of items.
replace() -- Replace occurrences of one bitstring with another.
reverse() -- Reverse bits in-place.
rfind() -- Seek backwards to find a sub-bitstring.
rol() -- Rotate bits to the left.
ror() -- Rotate bits to the right.
set() -- Set bit(s) to 1 or 0.
split() -- Create generator of chunks split by a delimiter.
startswith() -- Return whether the bitstring starts with a sub-bitstring.
tobytes() -- Return bitstring as bytes, padding if needed.
tofile() -- Write bitstring to file, padding if needed.
unpack() -- Interpret bits using format string.
Special methods:
Mutating operators are available: [], <<=, >>=, +=, *=, &=, |= and ^=
in addition to [], ==, !=, +, *, ~, <<, >>, &, | and ^.
Properties:
bin -- The bitstring as a binary string.
bool -- For single bit bitstrings, interpret as True or False.
bytepos -- The current byte position in the bitstring.
bytes -- The bitstring as a bytes object.
float -- Interpret as a floating point number.
floatbe -- Interpret as a big-endian floating point number.
floatle -- Interpret as a little-endian floating point number.
floatne -- Interpret as a native-endian floating point number.
hex -- The bitstring as a hexadecimal string.
int -- Interpret as a two's complement signed integer.
intbe -- Interpret as a big-endian signed integer.
intle -- Interpret as a little-endian signed integer.
intne -- Interpret as a native-endian signed integer.
len -- Length of the bitstring in bits.
oct -- The bitstring as an octal string.
pos -- The current bit position in the bitstring.
se -- Interpret as a signed exponential-Golomb code.
ue -- Interpret as an unsigned exponential-Golomb code.
sie -- Interpret as a signed interleaved exponential-Golomb code.
uie -- Interpret as an unsigned interleaved exponential-Golomb code.
uint -- Interpret as a two's complement unsigned integer.
uintbe -- Interpret as a big-endian unsigned integer.
uintle -- Interpret as a little-endian unsigned integer.
uintne -- Interpret as a native-endian unsigned integer.
"""
__slots__ = ()
# As BitStream objects are mutable, we shouldn't allow them to be hashed.
__hash__ = None
def __init__(self, auto=None, length=None, offset=None, **kwargs):
"""Either specify an 'auto' initialiser:
auto -- a string of comma separated tokens, an integer, a file object,
a bytearray, a boolean iterable or another bitstring.
Or initialise via **kwargs with one (and only one) of:
bytes -- raw data as a string, for example read from a binary file.
bin -- binary string representation, e.g. '0b001010'.
hex -- hexadecimal string representation, e.g. '0x2ef'
oct -- octal string representation, e.g. '0o777'.
uint -- an unsigned integer.
int -- a signed integer.
float -- a floating point number.
uintbe -- an unsigned big-endian whole byte integer.
intbe -- a signed big-endian whole byte integer.
floatbe - a big-endian floating point number.
uintle -- an unsigned little-endian whole byte integer.
intle -- a signed little-endian whole byte integer.
floatle -- a little-endian floating point number.
uintne -- an unsigned native-endian whole byte integer.
intne -- a signed native-endian whole byte integer.
floatne -- a native-endian floating point number.
se -- a signed exponential-Golomb code.
ue -- an unsigned exponential-Golomb code.
sie -- a signed interleaved exponential-Golomb code.
uie -- an unsigned interleaved exponential-Golomb code.
bool -- a boolean (True or False).
filename -- a file which will be opened in binary read-only mode.
Other keyword arguments:
length -- length of the bitstring in bits, if needed and appropriate.
It must be supplied for all integer and float initialisers.
offset -- bit offset to the data. These offset bits are
ignored and this is intended for use when
initialising using 'bytes' or 'filename'.
"""
self._pos = 0
# For mutable BitStreams we always read in files to memory:
if not isinstance(self._datastore, ByteStore):
self._ensureinmemory()
def __new__(cls, auto=None, length=None, offset=None, **kwargs):
x = super(BitStream, cls).__new__(cls)
x._initialise(auto, length, offset, **kwargs)
return x
def __copy__(self):
"""Return a new copy of the BitStream."""
s_copy = BitStream()
s_copy._pos = 0
if not isinstance(self._datastore, ByteStore):
# Let them both point to the same (invariant) array.
# If either gets modified then at that point they'll be read into memory.
s_copy._datastore = self._datastore
else:
s_copy._datastore = ByteStore(self._datastore._rawarray[:],
self._datastore.bitlength,
self._datastore.offset)
return s_copy
def prepend(self, bs):
"""Prepend a bitstring to the current bitstring.
bs -- The bitstring to prepend.
"""
bs = self._converttobitstring(bs)
self._prepend(bs)
self._pos += bs.len
def pack(fmt, *values, **kwargs):
"""Pack the values according to the format string and return a new BitStream.
fmt -- A single string or a list of strings with comma separated tokens
describing how to create the BitStream.
values -- Zero or more values to pack according to the format.
kwargs -- A dictionary or keyword-value pairs - the keywords used in the
format string will be replaced with their given value.
Token examples: 'int:12' : 12 bits as a signed integer
'uint:8' : 8 bits as an unsigned integer
'float:64' : 8 bytes as a big-endian float
'intbe:16' : 2 bytes as a big-endian signed integer
'uintbe:16' : 2 bytes as a big-endian unsigned integer
'intle:32' : 4 bytes as a little-endian signed integer
'uintle:32' : 4 bytes as a little-endian unsigned integer
'floatle:64': 8 bytes as a little-endian float
'intne:24' : 3 bytes as a native-endian signed integer
'uintne:24' : 3 bytes as a native-endian unsigned integer
'floatne:32': 4 bytes as a native-endian float
'hex:80' : 80 bits as a hex string
'oct:9' : 9 bits as an octal string
'bin:1' : single bit binary string
'ue' / 'uie': next bits as unsigned exp-Golomb code
'se' / 'sie': next bits as signed exp-Golomb code
'bits:5' : 5 bits as a bitstring object
'bytes:10' : 10 bytes as a bytes object
'bool' : 1 bit as a bool
'pad:3' : 3 zero bits as padding
>>> s = pack('uint:12, bits', 100, '0xffe')
>>> t = pack(['bits', 'bin:3'], s, '111')
>>> u = pack('uint:8=a, uint:8=b, uint:55=a', a=6, b=44)
"""
tokens = []
if isinstance(fmt, basestring):
fmt = [fmt]
try:
for f_item in fmt:
_, tkns = tokenparser(f_item, tuple(sorted(kwargs.keys())))
tokens.extend(tkns)
except ValueError as e:
raise CreationError(*e.args)
value_iter = iter(values)
s = BitStream()
try:
for name, length, value in tokens:
# If the value is in the kwd dictionary then it takes precedence.
if value in kwargs:
value = kwargs[value]
# If the length is in the kwd dictionary then use that too.
if length in kwargs:
length = kwargs[length]
# Also if we just have a dictionary name then we want to use it
if name in kwargs and length is None and value is None:
s.append(kwargs[name])
continue
if length is not None:
length = int(length)
if value is None and name != 'pad':
# Take the next value from the ones provided
value = next(value_iter)
s._append(BitStream._init_with_token(name, length, value))
except StopIteration:
raise CreationError("Not enough parameters present to pack according to the "
"format. {0} values are needed.", len(tokens))
try:
next(value_iter)
except StopIteration:
# Good, we've used up all the *values.
return s
raise CreationError("Too many parameters present to pack according to the format.")
# Aliases for backward compatibility
ConstBitArray = Bits
BitString = BitStream
__all__ = ['ConstBitArray', 'ConstBitStream', 'BitStream', 'BitArray',
'Bits', 'BitString', 'pack', 'Error', 'ReadError',
'InterpretError', 'ByteAlignError', 'CreationError', 'bytealigned']
|