This file is indexed.

/usr/share/pari/doc/usersch3.tex is in pari-doc 2.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
% Copyright (c) 2000  The PARI Group
%
% This file is part of the PARI/GP documentation
%
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
\chapter{Functions and Operations Available in PARI and GP}
\label{se:functions}

The functions and operators available in PARI and in the GP/PARI calculator
are numerous and ever-expanding. Here is a description of the ones available
in version \vers. It should be noted that many of these functions accept
quite different types as arguments, but others are more restricted. The list
of acceptable types will be given for each function or class of functions.
Except when stated otherwise, it is understood that a function or operation
which should make natural sense is legal.

On the other hand, many routines list explicit preconditions for some of their
argument, e.g. $p$ is a prime number, or $q$ is a positive definite quadratic
form. For reasons of efficiency, all trust the user input and only perform
minimal sanity checks. When a precondition is not satisfied, any of the
following may occur: a regular exception is raised, the PARI stack overflows, a
\kbd{SIGSEGV} or \kbd{SIGBUS} signal is generated, or we enter an infinite
loop. The function can also quietly return a mathematically meaningless
result: junk in, junk out.

In this chapter, we will describe the functions according to a rough
classification. The general entry looks something like:

\key{foo}$(x,\{\fl=0\})$: short description.

The library syntax is \kbd{GEN foo(GEN x, long fl = 0)}.

\noindent
This means that the GP function \kbd{foo} has one mandatory argument $x$, and
an optional one, $\fl$, whose default value is 0. (The $\{\}$ should not be
typed, it is just a convenient notation we will use throughout to denote
optional arguments.) That is, you can type \kbd{foo(x,2)}, or \kbd{foo(x)},
which is then understood to mean \kbd{foo(x,0)}. As well, a comma or closing
parenthesis, where an optional argument should have been, signals to GP it
should use the default. Thus, the syntax \kbd{foo(x,)} is also accepted as a
synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order.
When none are left, the defaults are used instead. Thus, assuming that
\kbd{foo}'s prototype had been
$$\hbox{%
\key{foo}$(\{x=1\},\{y=2\},\{z=3\})$,%
}$$
typing in \kbd{foo(6,4)} would give
you \kbd{foo(6,4,3)}. In the rare case when you want to set some far away
argument, and leave the defaults in between as they stand, you can use the
``empty arg'' trick alluded to above: \kbd{foo(6,,1)} would yield
\kbd{foo(6,2,1)}. By the way, \kbd{foo()} by itself yields
\kbd{foo(1,2,3)} as was to be expected.

In this rather special case of a function having no mandatory argument, you
can even omit the $()$: a standalone \kbd{foo} would be enough (though we
do not recommend it for your scripts, for the sake of clarity). In defining
GP syntax, we strove to put optional arguments at the end of the argument
list (of course, since they would not make sense otherwise), and in order of
decreasing usefulness so that, most of the time, you will be able to ignore
them.

Finally, an optional argument (between braces) followed by a star, like
$\{\var{x}\}*$, means that any number of such arguments (possibly none) can
be given. This is in particular used by the various \kbd{print} routines.

\misctitle{Flags} A \tev{flag} is an argument which, rather than conveying
actual information to the routine, instructs it to change its default
behavior, e.g.~return more or less information. All such
flags are optional, and will be called \fl\ in the function descriptions to
follow. There are two different kind of flags

\item generic: all valid values for the flag are individually
described (``If \fl\ is equal to $1$, then\dots'').

\item binary:\sidx{binary flag} use customary binary notation as a
compact way to represent many toggles with just one integer. Let
$(p_0,\dots,p_n)$ be a list of switches (i.e.~of properties which take either
the value $0$ or~$1$), the number $2^3 + 2^5 = 40$ means that $p_3$ and $p_5$
are set (that is, set to $1$), and none of the others are (that is, they
are set to $0$). This is announced as ``The binary digits of $\fl$ mean 1:
$p_0$, 2: $p_1$, 4: $p_2$'', and so on, using the available consecutive
powers of~$2$.

\misctitle{Mnemonics for flags} Numeric flags as mentioned above are
obscure, error-prone, and quite rigid: should the authors
want to adopt a new flag numbering scheme (for instance when noticing
flags with the same meaning but different numeric values across a set of
routines), it would break backward compatibility. The only advantage of
explicit numeric values is that they are fast to type, so their use is only
advised when using the calculator \kbd{gp}.

As an alternative, one can replace a numeric flag by a character string
containing symbolic identifiers. For a generic flag, the mnemonic
corresponding to the numeric identifier is given after it as in

\bprog
fun(x, {flag = 0} ):

  If flag is equal to 1 = AGM, use an agm formula ...
@eprog\noindent
which means that one can use indifferently \kbd{fun($x$, 1)} or
\kbd{fun($x$, "AGM")}.

For a binary flag, mnemonics corresponding to the various toggles are given
after each of them. They can be negated by prepending \kbd{no\_} to the
mnemonic, or by removing such a prefix. These toggles are grouped together
using any punctuation character (such as ',' or ';'). For instance (taken
from description of $\tet{ploth}(X=a,b,\var{expr},\{\fl=0\},\{n=0\})$)

\centerline{Binary digits of flags mean: $1=\kbd{Parametric}$,
$2=\kbd{Recursive}$, \dots}

\noindent so that, instead of $1$, one could use the mnemonic
\kbd{"Parametric; no\_Recursive"}, or simply \kbd{"Parametric"} since
\kbd{Recursive} is unset by default (default value of $\fl$ is $0$,
i.e.~everything unset). People used to the bit-or notation in languages like
C may also use the form \kbd{"Parametric | no\_Recursive"}.

\misctitle{Pointers} \varsidx{pointer} If a parameter in the function
prototype is prefixed with a \& sign, as in

\key{foo}$(x,\&e)$

\noindent it means that, besides the normal return value, the function may
assign a value to $e$ as a side effect. When passing the argument, the \&
sign has to be typed in explicitly. As of version \vers, this \tev{pointer}
argument is optional for all documented functions, hence the \& will always
appear between brackets as in \kbd{Z\_issquare}$(x,\{\&e\})$.

\misctitle{About library programming}
The \var{library} function \kbd{foo}, as defined at the beginning of this
section, is seen to have two mandatory arguments, $x$ and \fl: no function
seen in the present chapter has been implemented so as to accept a variable
number of arguments, so all arguments are mandatory when programming with the
library (usually, variants are provided corresponding to the various flag values).
We include an \kbd{= default value} token in the prototype to signal how a missing
argument should be encoded. Most of the time, it will be a \kbd{NULL} pointer, or
-1 for a variable number. Refer to the \emph{User's Guide to the PARI library}
for general background and details.

\section{Standard monadic or dyadic operators}

\subseckbd{+$/$-} The expressions \kbd{+}$x$ and \kbd{-}$x$ refer
to monadic operators (the first does nothing, the second negates $x$).

The library syntax is \fun{GEN}{gneg}{GEN x} for \kbd{-}$x$.

\subseckbd{+} The expression $x$ \kbd{+} $y$ is the \idx{sum} of $x$ and $y$.
Addition between a scalar type $x$ and a \typ{COL} or \typ{MAT} $y$ returns
respectively $[y[1] + x, y[2],\dots]$ and $y + x \text{Id}$. Other additions
between a scalar type and a vector or a matrix, or between vector/matrices of
incompatible sizes are forbidden.

The library syntax is \fun{GEN}{gadd}{GEN x, GEN y}.

\subseckbd{-} The expression $x$ \kbd{-} $y$ is the \idx{difference} of $x$
and $y$. Subtraction between a scalar type $x$ and a \typ{COL} or \typ{MAT}
$y$ returns respectively $[y[1] - x, y[2],\dots]$ and $y - x \text{Id}$.
Other subtractions between a scalar type and a vector or a matrix, or
between vector/matrices of incompatible sizes are forbidden.

The library syntax is \fun{GEN}{gsub}{GEN x, GEN y} for $x$ \kbd{-} $y$.

\subseckbd{*} The expression $x$ \kbd{*} $y$ is the \idx{product} of $x$
and $y$. Among the prominent impossibilities are multiplication between
vector/matrices of incompatible sizes, between a \typ{INTMOD} or \typ{PADIC}
Restricted to scalars, \kbd{*} is commutative; because of vector and matrix
operations, it is not commutative in general.

Multiplication between two \typ{VEC}s or two \typ{COL}s is not
allowed; to take the \idx{scalar product} of two vectors of the same length,
transpose one of the vectors (using the operator \kbd{\til} or the function
\kbd{mattranspose}, see \secref{se:linear_algebra}) and multiply a line vector
by a column vector:
\bprog
? a = [1,2,3];
? a * a
  ***   at top-level: a*a
  ***                  ^--
  *** _*_: forbidden multiplication t_VEC * t_VEC.
? a * a~
%2 = 14
@eprog

If $x,y$ are binary quadratic forms, compose them; see also
\kbd{qfbnucomp} and \kbd{qfbnupow}. If $x,y$ are \typ{VECSMALL} of the same
length, understand them as permutations and compose them.

The library syntax is \fun{GEN}{gmul}{GEN x, GEN y} for $x$ \kbd{*} $y$.
Also available is \fun{GEN}{gsqr}{GEN x} for $x$ \kbd{*} $x$.

\subseckbd{/} The expression $x$ \kbd{/} $y$ is the \idx{quotient} of $x$
and $y$. In addition to the impossibilities for multiplication, note that if
the divisor is a matrix, it must be an invertible square matrix, and in that
case the result is $x*y^{-1}$. Furthermore note that the result is as exact
as possible: in particular, division of two integers always gives a rational
number (which may be an integer if the quotient is exact) and \emph{not} the
Euclidean quotient (see $x$ \kbd{\bs} $y$ for that), and similarly the
quotient of two polynomials is a rational function in general. To obtain the
approximate real value of the quotient of two integers, add \kbd{0.} to the
result; to obtain the approximate $p$-adic value of the quotient of two
integers, add \kbd{O(p\pow k)} to the result; finally, to obtain the
\idx{Taylor series} expansion of the quotient of two polynomials, add
\kbd{O(X\pow k)} to the result or use the \kbd{taylor} function
(see \secref{se:taylor}). \label{se:gdiv}

The library syntax is \fun{GEN}{gdiv}{GEN x, GEN y} for $x$ \kbd{/} $y$.

\subseckbd{\bs} The expression \kbd{$x$ \bs\ $y$} is the
\idx{Euclidean quotient} of $x$ and $y$. If $y$ is a real scalar, this is
defined as \kbd{floor($x$/$y$)} if $y > 0$, and \kbd{ceil($x$/$y$)} if
$y < 0$ and the division is not exact. Hence the remainder
\kbd{$x$ - ($x$\bs$y$)*$y$} is in $[0, |y|[$.

Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
is applied componentwise.

The library syntax is \fun{GEN}{gdivent}{GEN x, GEN y}
for $x$ \kbd{\bs} $y$.

\subseckbd{\bs/} The expression $x$ \b{/} $y$ evaluates to the rounded
\idx{Euclidean quotient} of $x$ and $y$. This is the same as \kbd{$x$ \bs\ $y$}
except for scalar division: the quotient is such that the corresponding
remainder is smallest in absolute value and in case of a tie the quotient
closest to $+\infty$ is chosen (hence the remainder would belong to
$]{-}|y|/2, |y|/2]$).

When $x$ is a vector or matrix, the operator is applied componentwise.

The library syntax is \fun{GEN}{gdivround}{GEN x, GEN y}
for $x$ \b{/} $y$.

\subseckbd{\%} The expression \kbd{$x$ \% $y$} evaluates to the modular
\idx{Euclidean remainder} of $x$ and $y$, which we now define. When $x$ or $y$
is a non-integral real number, \kbd{$x$\%$y$} is defined as
\kbd{$x$ - ($x$\bs$y$)*$y$}. Otherwise, if $y$ is an integer, this is
the smallest
non-negative integer congruent to $x$ modulo $y$. (This actually coincides
with the previous definition if and only if $x$ is an integer.) If $y$ is a
polynomial, this is the polynomial of smallest degree congruent to
$x$ modulo $y$. For instance:
\bprog
? (1/2) % 3
%1 = 2
? 0.5 % 3
%2 = 0.5000000000000000000000000000
? (1/2) % 3.0
%3 = 1/2
@eprog
Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
is applied componentwise.

The library syntax is \fun{GEN}{gmod}{GEN x, GEN y}
for $x$ \kbd{\%} $y$.

\subseckbd{\pow} The expression $x\hbox{\kbd{\pow}}n$ is \idx{powering}.

\item If the exponent $n$ is an integer, then exact operations are performed
using binary (left-shift) powering techniques. If $x$ is a $p$-adic number, its
precision will increase if $v_p(n) > 0$. Powering a binary quadratic form
(types \typ{QFI} and \typ{QFR}) returns a representative of the class, which is
always reduced if the input was. (In particular, \kbd{x \pow 1} returns $x$
itself, whether it is reduced or not.)

PARI is able to rewrite the multiplication $x * x$ of two \emph{identical}
objects as $x^2$, or $\kbd{sqr}(x)$. Here, identical means the operands are
two different labels referencing the same chunk of memory; no equality test
is performed. This is no longer true when more than two arguments are
involved.

\item If the exponent $n$ is not an integer, powering is treated as the
transcendental function $\exp(n\log x)$, and in particular acts
componentwise on vector or matrices, even square matrices ! (See
\secref{se:trans}.)

\item As an exception, if the exponent is a rational number $p/q$ and $x$ an
integer modulo a prime or a $p$-adic number, return a solution $y$ of
$y^q=x^p$ if it exists. Currently, $q$ must not have large prime factors.
Beware that
\bprog
? Mod(7,19)^(1/2)
%1 = Mod(11, 19) /* is any square root */
? sqrt(Mod(7,19))
%2 = Mod(8, 19)  /* is the smallest square root */
? Mod(7,19)^(3/5)
%3 = Mod(1, 19)
? %3^(5/3)
%4 = Mod(1, 19)  /* Mod(7,19) is just another cubic root */
@eprog

\item If the exponent is a negative integer, an \idx{inverse} must be computed.
For non-invertible \typ{INTMOD} $x$, this will fail and implicitly exhibit a
non trivial factor of the modulus:
\bprog
? Mod(4,6)^(-1)
  ***   at top-level: Mod(4,6)^(-1)
  ***                         ^-----
  *** _^_: impossible inverse modulo: Mod(2, 6).
@eprog\noindent
(Here, a factor 2 is obtained directly. In general, take the gcd of the
representative and the modulus.) This is most useful when performing
complicated operations modulo an integer $N$ whose factorization is
unknown. Either the computation succeeds and all is well, or a factor $d$
is discovered and the computation may be restarted modulo $d$ or $N/d$.

For non-invertible \typ{POLMOD} $x$, the behaviour is the same:
\bprog
? Mod(x^2, x^3-x)^(-1)
  ***   at top-level: Mod(x^2,x^3-x)^(-1)
  ***                               ^-----
  *** _^_: impossible inverse in RgXQ_inv: Mod(x^2, x^3 - x).
@eprog\noindent Note that the underlying algorihm (subresultant) assumes
the base ring is a domain:
\bprog
? a = Mod(3*y^3+1, 4); b = y^6+y^5+y^4+y^3+y^2+y+1; c = Mod(a,b);
? c^(-1)
  ***   at top-level: Mod(a,b)^(-1)
  ***                         ^-----
  *** _^_: impossible inverse modulo: Mod(2, 4).
@eprog\noindent
In fact $c$ is invertible, but $\Z/4\Z$ is not a domain and the algorithm
fails. It is possible for the algorithm to succeed in such situations
and any returned result will be correct, but chances are an error
will occur first. In this specific case, one should work with $2$-adics.
In general, one can also try the following approach
\bprog
? inversemod(a, b) =
{ my(m, v = variable(b));
  m = polsylvestermatrix(polrecip(a), polrecip(b));
  m = matinverseimage(m, matid(#m)[,1]);
  Polrev(m[1..poldegree(b)], v);
}
? inversemod(a,b)
%2 = Mod(2,4)*y^5 + Mod(3,4)*y^3 + Mod(1,4)*y^2 + Mod(3,4)*y + Mod(2,4)
@eprog\noindent
This is not guaranteed to work either since \kbd{matinverseimage} must also
invert pivots. See \secref{se:linear_algebra}.

For a \typ{MAT} $x$, the matrix is expected to be square and invertible, except
in the special case \kbd{x\pow(-1)} which returns a left inverse if one exists
(rectangular $x$ with full column rank).
\bprog
? x = Mat([1;2])
%1 =
[1]

[2]

? x^(-1)
%2 =
[1 0]
@eprog

The library syntax is \fun{GEN}{gpow}{GEN x, GEN n, long prec}
for $x\hbox{\kbd{\pow}}n$.


\subsec{cmp$(x,y)$}\kbdsidx{cmp}\label{se:cmp}
Gives the result of a comparison between arbitrary objects $x$ and $y$
(as $-1$, $0$ or $1$). The underlying order relation is transitive,
the function returns $0$ if and only if $x~\kbd{===}~y$, and its
restriction to integers coincides with the customary one. Besides that,
it has no useful mathematical meaning.

In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? cmp(1, 2)
%1 = -1
? cmp(2, 1)
%2 = 1
? cmp(1, 1.0)   \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1
? cmp(x + Pi, [])
%4 = -1
@eprog\noindent This function is mostly useful to handle sorted lists or
vectors of arbitrary objects. For instance, if $v$ is a vector, the
construction \kbd{vecsort(v, cmp)} is equivalent to \kbd{Set(v)}.

The library syntax is \fun{GEN}{cmp_universal}{GEN x, GEN y}.

\subsec{divrem$(x,y,\{v\})$}\kbdsidx{divrem}\label{se:divrem}
Creates a column vector with two components, the first being the Euclidean
quotient (\kbd{$x$ \bs\ $y$}), the second the Euclidean remainder
(\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by $y$. This avoids the
need to do two divisions if one needs both the quotient and the remainder.
If $v$ is present, and $x$, $y$ are multivariate
polynomials, divide with respect to the variable $v$.

Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
\kbd{$x$ \% $y$}; no GP operator corresponds to it:
\bprog
? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
 ***   at top-level: divrem(Mod(2,9),3)[2
 ***                 ^--------------------
 ***   forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)
@eprog

The library syntax is \fun{GEN}{divrem}{GEN x, GEN y, long v = -1} where \kbd{v} is a variable number.
Also available is \fun{GEN}{gdiventres}{GEN x, GEN y} when $v$ is
not needed.

\subsec{lex$(x,y)$}\kbdsidx{lex}\label{se:lex}
Gives the result of a lexicographic comparison
between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
a wide sense: It is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well
as vectors/matrices of different lengths. The comparison is recursive.

In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
@eprog

The library syntax is \fun{GEN}{lexcmp}{GEN x, GEN y}.

\subsec{max$(x,y)$}\kbdsidx{max}\label{se:max}
Creates the maximum of $x$ and $y$ when they can be compared.

The library syntax is \fun{GEN}{gmax}{GEN x, GEN y}.

\subsec{min$(x,y)$}\kbdsidx{min}\label{se:min}
Creates the minimum of $x$ and $y$ when they can be compared.

The library syntax is \fun{GEN}{gmin}{GEN x, GEN y}.

\subsec{powers$(x,n,\{\var{x0}\})$}\kbdsidx{powers}\label{se:powers}
For non-negative $n$, return the vector with $n+1$ components
$[1,x,\dots,x^n]$ if \kbd{x0} is omitted, and $[x_0, x_0*x, ..., x_0*x^n]$
otherwise.
\bprog
? powers(Mod(3,17), 4)
%1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]
? powers(Mat([1,2;3,4]), 3)
%2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]
? powers(3, 5, 2)
%3 = [2, 6, 18, 54, 162, 486]
@eprog\noindent When $n < 0$, the function returns the empty vector \kbd{[]}.

The library syntax is \fun{GEN}{gpowers0}{GEN x, long n, GEN x0 = NULL}.
Also available is
\fun{GEN}{gpowers}{GEN x, long n} when \kbd{x0} is \kbd{NULL}.

\subsec{shift$(x,n)$}\kbdsidx{shift}\label{se:shift}
Shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$
bits if $n<0$. May be abbreviated as $x$ \kbd{<<} $n$ or $x$ \kbd{>>} $(-n)$.
A left shift by $n$ corresponds to multiplication by $2^n$. A right shift of an
integer $x$ by $|n|$ corresponds to a Euclidean division of $x$ by $2^{|n|}$
with a remainder of the same sign as $x$, hence is not the same (in general) as
$x \kbd{\bs} 2^n$.

The library syntax is \fun{GEN}{gshift}{GEN x, long n}.

\subsec{shiftmul$(x,n)$}\kbdsidx{shiftmul}\label{se:shiftmul}
Multiplies $x$ by $2^n$. The difference with
\kbd{shift} is that when $n<0$, ordinary division takes place, hence for
example if $x$ is an integer the result may be a fraction, while for shifts
Euclidean division takes place when $n<0$ hence if $x$ is an integer the result
is still an integer.

The library syntax is \fun{GEN}{gmul2n}{GEN x, long n}.

\subsec{sign$(x)$}\kbdsidx{sign}\label{se:sign}
\idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
type integer, real or fraction; \typ{QUAD} with positive discriminants and
\typ{INFINITY} are also supported.

The library syntax is \fun{GEN}{gsigne}{GEN x}.

\subsec{vecmax$(x,\{\&v\})$}\kbdsidx{vecmax}\label{se:vecmax}
If $x$ is a vector or a matrix, returns the largest entry of $x$,
otherwise returns a copy of $x$. Error if $x$ is empty.

If $v$ is given, set it to the index of a largest entry (indirect maximum),
when $x$ is a vector. If $x$ is a matrix, set $v$ to coordinates $[i,j]$
such that $x[i,j]$ is a largest entry. This flag is ignored if $x$ is not a
vector or matrix.

\bprog
? vecmax([10, 20, -30, 40])
%1 = 40
? vecmax([10, 20, -30, 40], &v); v
%2 = 4
? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]
@eprog

The library syntax is \fun{GEN}{vecmax0}{GEN x, GEN *v = NULL}.
When $v$ is not needed, the function \fun{GEN}{vecmax}{GEN x} is
also available.

\subsec{vecmin$(x,\{\&v\})$}\kbdsidx{vecmin}\label{se:vecmin}
If $x$ is a vector or a matrix, returns the smallest entry of $x$,
otherwise returns a copy of $x$. Error if $x$ is empty.

If $v$ is given, set it to the index of a smallest entry (indirect minimum),
when $x$ is a vector. If $x$ is a matrix, set $v$ to coordinates $[i,j]$ such
that $x[i,j]$ is a smallest entry. This is ignored if $x$ is not a vector or
matrix.

\bprog
? vecmin([10, 20, -30, 40])
%1 = -30
? vecmin([10, 20, -30, 40], &v); v
%2 = 3
? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]
@eprog

The library syntax is \fun{GEN}{vecmin0}{GEN x, GEN *v = NULL}.
When $v$ is not needed, the function \fun{GEN}{vecmin}{GEN x} is also
available.
%SECTION: operators

\subsec{Comparison and Boolean operators}\sidx{Boolean operators} The six
standard \idx{comparison operators} \kbd{<=}, \kbd{<}, \kbd{>=}, \kbd{>},
\kbd{==}, \kbd{!=} are available in GP. The result is 1 if the comparison is
true, 0 if it is false. The operator \kbd{==} is quite liberal : for
instance, the integer 0, a 0 polynomial, and a vector with 0 entries are all
tested equal.

The extra operator \kbd{===} tests whether two objects are identical and is
much stricter than \kbd{==} : objects of different type or length are never
identical.

For the purpose of comparison, \typ{STR} objects are compared using
the standard lexicographic order, and comparing them to objects
of a different type raises an exception.

GP accepts \kbd{<>} as a synonym for \kbd{!=}. On the other hand, \kbd{=} is
definitely \emph{not} a synonym for \kbd{==}: it is the assignment statement.

The standard boolean operators \kbd{||} (\idx{inclusive or}), \kbd{\&\&}
(\idx{and})\sidx{or} and \kbd{!} (\idx{not}) are also available.

\section{Conversions and similar elementary functions or commands}
\label{se:conversion}

\noindent
Many of the conversion functions are rounding or truncating operations. In
this case, if the argument is a rational function, the result is the
Euclidean quotient of the numerator by the denominator, and if the argument
is a vector or a matrix, the operation is done componentwise. This will not
be restated for every function.


\subsec{Col$(x, \{n\})$}\kbdsidx{Col}\label{se:Col}
Transforms the object $x$ into a column vector. The dimension of the
resulting vector can be optionally specified via the extra parameter $n$.

If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
vector has a single component, except when $x$ is

\item a vector or a quadratic form (in which case the resulting vector
is simply the initial object considered as a row vector),

\item a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the
polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree.
In this last case, \kbd{Vec} is the reciprocal function of \kbd{Pol} and
\kbd{Ser} respectively,

\item a matrix (the column of row vector comprising the matrix is returned),

\item a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), $n$ is meaningless and
must be omitted or an error is raised. Otherwise, if $n$ is given, $0$
entries are appended at the end of the vector if $n > 0$, and prepended at
the beginning if $n < 0$. The dimension of the resulting vector is $|n|$.

Note that the function \kbd{Colrev} does not exist, use \kbd{Vecrev}.

The library syntax is \fun{GEN}{gtocol0}{GEN x, long n}.
\fun{GEN}{gtocol}{GEN x} is also available.

\subsec{Colrev$(x, \{n\})$}\kbdsidx{Colrev}\label{se:Colrev}
As $\kbd{Col}(x, -n)$, then reverse the result. In particular,
\kbd{Colrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.

The library syntax is \fun{GEN}{gtocolrev0}{GEN x, long n}.
\fun{GEN}{gtocolrev}{GEN x} is also available.

\subsec{List$(\{x=[\,]\})$}\kbdsidx{List}\label{se:List}
Transforms a (row or column) vector $x$ into a list, whose components are
the entries of $x$. Similarly for a list, but rather useless in this case.
For other types, creates a list with the single element $x$. Note that,
except when $x$ is omitted, this function creates a small memory leak; so,
either initialize all lists to the empty list, or use them sparingly.

The library syntax is \fun{GEN}{gtolist}{GEN x = NULL}.
The variant \fun{GEN}{mklist}{void} creates an empty list.

\subsec{Map$(\{x\})$}\kbdsidx{Map}\label{se:Map}
A ``Map'' is an associative array, or dictionary: a data
type composed of a collection of (\emph{key}, \emph{value}) pairs, such that
each key appears just once in the collection. This function
converts the matrix $[a_1,b_1;a_2,b_2;\dots;a_n,b_n]$ to the map $a_i\mapsto
b_i$.
\bprog
? M = Map(factor(13!));
? mapget(M,3)
%2 = 5
@eprog\noindent If the argument $x$ is omitted, creates an empty map, which
may be filled later via \tet{mapput}.

The library syntax is \fun{GEN}{gtomap}{GEN x = NULL}.

\subsec{Mat$(\{x=[\,]\})$}\kbdsidx{Mat}\label{se:Mat}
Transforms the object $x$ into a matrix.
If $x$ is already a matrix, a copy of $x$ is created.
If $x$ is a row (resp. column) vector, this creates a 1-row (resp.
1-column) matrix, \emph{unless} all elements are column (resp.~row) vectors
of the same length, in which case the vectors are concatenated sideways
and the attached big matrix is returned.
If $x$ is a binary quadratic form, creates the attached $2\times 2$
matrix. Otherwise, this creates a $1\times 1$ matrix containing $x$.

\bprog
? Mat(x + 1)
%1 =
[x + 1]
? Vec( matid(3) )
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[1 0 0]

[0 1 0]

[0 0 1]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)
%5 =
[1 2]

[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]

[1 3]
@eprog

The library syntax is \fun{GEN}{gtomat}{GEN x = NULL}.

\subsec{Mod$(a,b)$}\kbdsidx{Mod}\label{se:Mod}
In its basic form, creates an intmod or a polmod $(a \mod b)$; $b$ must
be an integer or a polynomial. We then obtain a \typ{INTMOD} and a
\typ{POLMOD} respectively:
\bprog
? t = Mod(2,17); t^8
%1 = Mod(1, 17)
? t = Mod(x,x^2+1); t^2
%2 = Mod(-1, x^2+1)
@eprog\noindent If $a \% b$ makes sense and yields a result of the
appropriate type (\typ{INT} or scalar/\typ{POL}), the operation succeeds as
well:
\bprog
? Mod(1/2, 5)
%3 = Mod(3, 5)
? Mod(7 + O(3^6), 3)
%4 = Mod(1, 3)
? Mod(Mod(1,12), 9)
%5 = Mod(1, 3)
? Mod(1/x, x^2+1)
%6 = Mod(-1, x^2+1)
? Mod(exp(x), x^4)
%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)
@eprog
If $a$ is a complex object, ``base change'' it to $\Z/b\Z$ or $K[x]/(b)$,
which is equivalent to, but faster than, multiplying it by \kbd{Mod(1,b)}:
\bprog
? Mod([1,2;3,4], 2)
%8 =
[Mod(1, 2) Mod(0, 2)]

[Mod(1, 2) Mod(0, 2)]
? Mod(3*x+5, 2)
%9 = Mod(1, 2)*x + Mod(1, 2)
? Mod(x^2 + y*x + y^3, y^2+1)
%10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)
@eprog

This function is not the same as $x$ \kbd{\%} $y$, the result of which
has no knowledge of the intended modulus $y$. Compare
\bprog
? x = 4 % 5; x + 1
%1 = 5
? x = Mod(4,5); x + 1
%2 = Mod(0,5)
@eprog Note that such ``modular'' objects can be lifted via \tet{lift} or
\tet{centerlift}. The modulus of a \typ{INTMOD} or \typ{POLMOD} $z$ can
be recovered via \kbd{$z$.mod}.

The library syntax is \fun{GEN}{gmodulo}{GEN a, GEN b}.

\subsec{Pol$(t,\{v='x\})$}\kbdsidx{Pol}\label{se:Pol}
Transforms the object $t$ into a polynomial with main variable $v$. If $t$
is a scalar, this gives a constant polynomial. If $t$ is a power series with
non-negative valuation or a rational function, the effect is similar to
\kbd{truncate}, i.e.~we chop off the $O(X^k)$ or compute the Euclidean
quotient of the numerator by the denominator, then change the main variable
of the result to $v$.

The main use of this function is when $t$ is a vector: it creates the
polynomial whose coefficients are given by $t$, with $t[1]$ being the leading
coefficient (which can be zero). It is much faster to evaluate
\kbd{Pol} on a vector of coefficients in this way, than the corresponding
formal expression $a_n X^n + \dots + a_0$, which is evaluated naively exactly
as written (linear versus quadratic time in $n$). \tet{Polrev} can be used if
one wants $x[1]$ to be the constant coefficient:
\bprog
? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1
@eprog\noindent
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
\bprog
? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev( Polrev([1,2,3]) )
%2 = [1, 2, 3]
@eprog\noindent

\misctitle{Warning} This is \emph{not} a substitution function. It will not
transform an object containing variables of higher priority than~$v$.
\bprog
? Pol(x + y, y)
  ***   at top-level: Pol(x+y,y)
  ***                 ^----------
  *** Pol: variable must have higher priority in gtopoly.
@eprog

The library syntax is \fun{GEN}{gtopoly}{GEN t, long v = -1} where \kbd{v} is a variable number.

\subsec{Polrev$(t,\{v='x\})$}\kbdsidx{Polrev}\label{se:Polrev}
Transform the object $t$ into a polynomial
with main variable $v$. If $t$ is a scalar, this gives a constant polynomial.
If $t$ is a power series, the effect is identical to \kbd{truncate}, i.e.~it
chops off the $O(X^k)$.

The main use of this function is when $t$ is a vector: it creates the
polynomial whose coefficients are given by $t$, with $t[1]$ being the
constant term. \tet{Pol} can be used if one wants $t[1]$ to be the leading
coefficient:
\bprog
? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3
@eprog
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).

The library syntax is \fun{GEN}{gtopolyrev}{GEN t, long v = -1} where \kbd{v} is a variable number.

\subsec{Qfb$(a,b,c,\{D=0.\})$}\kbdsidx{Qfb}\label{se:Qfb}
Creates the binary quadratic form\sidx{binary quadratic form}
$ax^2+bxy+cy^2$. If $b^2-4ac>0$, initialize \idx{Shanks}' distance
function to $D$. Negative definite forms are not implemented,
use their positive definite counterpart instead.

The library syntax is \fun{GEN}{Qfb0}{GEN a, GEN b, GEN c, GEN D = NULL, long prec}.
Also available are
\fun{GEN}{qfi}{GEN a, GEN b, GEN c} (assumes $b^2-4ac<0$) and
\fun{GEN}{qfr}{GEN a, GEN b, GEN c, GEN D} (assumes $b^2-4ac>0$).

\subsec{Ser$(s,\{v='x\},\{d=\var{seriesprecision}\})$}\kbdsidx{Ser}\label{se:Ser}
Transforms the object $s$ into a power series with main variable $v$
($x$ by default) and precision (number of significant terms) equal to
$d \geq 0$ ($d = \kbd{seriesprecision}$ by default). If $s$ is a
scalar, this gives a constant power series in $v$ with precision \kbd{d}.
If $s$ is a polynomial, the polynomial is truncated to $d$ terms if needed
\bprog
? Ser(1, 'y, 5)
%1 = 1 + O(y^5)
? Ser(x^2,, 5)
%2 = x^2 + O(x^7)
? T = polcyclo(100)
%3 = x^40 - x^30 + x^20 - x^10 + 1
? Ser(T, 'x, 11)
%4 = 1 - x^10 + O(x^11)
@eprog\noindent The function is more or less equivalent with multiplication by
$1 + O(v^d)$ in theses cases, only faster.

If $s$ is a vector, on the other hand, the coefficients of the vector are
understood to be the coefficients of the power series starting from the
constant term (as in \tet{Polrev}$(x)$), and the precision $d$ is ignored:
in other words, in this case, we convert \typ{VEC} / \typ{COL} to the power
series whose significant terms are exactly given by the vector entries.
Finally, if $s$ is already a power series in $v$, we return it verbatim,
ignoring $d$ again. If $d$ significant terms are desired in the last two
cases, convert/truncate to \typ{POL} first.
\bprog
? v = [1,2,3]; Ser(v, t, 7)
%5 = 1 + 2*t + 3*t^2 + O(t^3)  \\ 3 terms: 7 is ignored!
? Ser(Polrev(v,t), t, 7)
%6 = 1 + 2*t + 3*t^2 + O(t^7)
? s = 1+x+O(x^2); Ser(s, x, 7)
%7 = 1 + x + O(x^2)  \\ 2 terms: 7 ignored
? Ser(truncate(s), x, 7)
%8 = 1 + x + O(x^7)
@eprog\noindent
The warning given for \kbd{Pol} also applies here: this is not a substitution
function.

The library syntax is \fun{GEN}{gtoser}{GEN s, long v = -1, long precdl} where \kbd{v} is a variable number.

\subsec{Set$(\{x=[\,]\})$}\kbdsidx{Set}\label{se:Set}
Converts $x$ into a set, i.e.~into a row vector, with strictly increasing
entries with respect to the (somewhat arbitrary) universal comparison function
\tet{cmp}. Standard container types \typ{VEC}, \typ{COL}, \typ{LIST} and
\typ{VECSMALL} are converted to the set with corresponding elements. All
others are converted to a set with one element.
\bprog
? Set([1,2,4,2,1,3])
%1 = [1, 2, 3, 4]
? Set(x)
%2 = [x]
? Set(Vecsmall([1,3,2,1,3]))
%3 = [1, 2, 3]
@eprog

The library syntax is \fun{GEN}{gtoset}{GEN x = NULL}.

\subsec{Str$(\{x\}*)$}\kbdsidx{Str}\label{se:Str}
Converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
To recover an ordinary \kbd{GEN} from a string, apply \kbd{eval} to it. The
arguments of \kbd{Str} are evaluated in string context, see \secref{se:strings}.

\bprog
? x2 = 0; i = 2; Str(x, i)
%1 = "x2"
? eval(%)
%2 = 0
@eprog\noindent
This function is mostly useless in library mode. Use the pair
\tet{strtoGEN}/\tet{GENtostr} to convert between \kbd{GEN} and \kbd{char*}.
The latter returns a malloced string, which should be freed after usage.
%\syn{NO}

\subsec{Strchr$(x)$}\kbdsidx{Strchr}\label{se:Strchr}
Converts $x$ to a string, translating each integer
into a character.
\bprog
? Strchr(97)
%1 = "a"
? Vecsmall("hello world")
%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? Strchr(%)
%3 = "hello world"
@eprog

The library syntax is \fun{GEN}{Strchr}{GEN x}.

\subsec{Strexpand$(\{x\}*)$}\kbdsidx{Strexpand}\label{se:Strexpand}
Converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
Then perform \idx{environment expansion}, see \secref{se:envir}.
This feature can be used to read \idx{environment variable} values.
\bprog
? Strexpand("$HOME/doc")
%1 = "/home/pari/doc"
@eprog

The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}

\subsec{Strtex$(\{x\}*)$}\kbdsidx{Strtex}\label{se:Strtex}
Translates its arguments to TeX
format, and concatenates the results into a single character string (type
\typ{STR}, the empty string if $x$ is omitted).

The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}

\subsec{Vec$(x, \{n\})$}\kbdsidx{Vec}\label{se:Vec}
Transforms the object $x$ into a row vector. The dimension of the
resulting vector can be optionally specified via the extra parameter $n$.

If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
vector has a single component, except when $x$ is

\item a vector or a quadratic form: returns the initial object considered as a
row vector,

\item a polynomial or a power series: returns a vector consisting of the coefficients.
In the case of a polynomial, the coefficients of the vector start with the leading
coefficient of the polynomial, while for power series only the significant coefficients
are taken into account, but this time by increasing order of degree.
\kbd{Vec} is the reciprocal function of \kbd{Pol} for a polynomial and of
\kbd{Ser} for a power series,

\item a matrix: returns the vector of columns comprising the matrix,

\item a character string: returns the vector of individual characters,

\item a map: returns the vector of the domain of the map,

\item an error context (\typ{ERROR}): returns the error components, see
\tet{iferr}.

In the last four cases (matrix, character string, map, error), $n$ is
meaningless and must be omitted or an error is raised. Otherwise, if $n$ is
given, $0$ entries are appended at the end of the vector if $n > 0$, and
prepended at the beginning if $n < 0$. The dimension of the resulting vector
is $|n|$. Variant: \fun{GEN}{gtovec}{GEN x} is also available.

The library syntax is \fun{GEN}{gtovec0}{GEN x, long n}.

\subsec{Vecrev$(x, \{n\})$}\kbdsidx{Vecrev}\label{se:Vecrev}
As $\kbd{Vec}(x, -n)$, then reverse the result. In particular,
\kbd{Vecrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.

The library syntax is \fun{GEN}{gtovecrev0}{GEN x, long n}.
\fun{GEN}{gtovecrev}{GEN x} is also available.

\subsec{Vecsmall$(x, \{n\})$}\kbdsidx{Vecsmall}\label{se:Vecsmall}
Transforms the object $x$ into a row vector of type \typ{VECSMALL}. The
dimension of the resulting vector can be optionally specified via the extra
parameter $n$.

This acts as \kbd{Vec}$(x,n)$, but only on a limited set of objects:
the result must be representable as a vector of small integers.
If $x$ is a character string, a vector of individual characters in ASCII
encoding is returned (\tet{Strchr} yields back the character string).

The library syntax is \fun{GEN}{gtovecsmall0}{GEN x, long n}.
\fun{GEN}{gtovecsmall}{GEN x} is also available.

\subsec{binary$(x)$}\kbdsidx{binary}\label{se:binary}
Outputs the vector of the binary digits of $|x|$. Here $x$ can be an
integer, a real number (in which case the result has two components, one for
the integer part, one for the fractional part) or a vector/matrix.
\bprog
? binary(10)
%1 = [1, 0, 1, 0]

? binary(3.14)
%2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]

? binary([1,2])
%3 = [[1], [1, 0]]
@eprog\noindent By convention, $0$ has no digits:
\bprog
? binary(0)
%4 = []
@eprog

The library syntax is \fun{GEN}{binaire}{GEN x}.

\subsec{bitand$(x,y)$}\kbdsidx{bitand}\label{se:bitand}
Bitwise \tet{and}
\sidx{bitwise and}of two integers $x$ and $y$, that is the integer
$$\sum_i (x_i~\kbd{and}~y_i) 2^i$$

Negative numbers behave $2$-adically, i.e.~the result is the $2$-adic limit
of \kbd{bitand}$(x_n,y_n)$, where $x_n$ and $y_n$ are non-negative integers
tending to $x$ and $y$ respectively. (The result is an ordinary integer,
possibly negative.)

\bprog
? bitand(5, 3)
%1 = 1
? bitand(-5, 3)
%2 = 3
? bitand(-5, -3)
%3 = -7
@eprog

The library syntax is \fun{GEN}{gbitand}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitand}{GEN x, GEN y}, which returns the bitwise \emph{and}
of $|x|$ and $|y|$, two integers.

\subsec{bitneg$(x,\{n=-1\})$}\kbdsidx{bitneg}\label{se:bitneg}
\idx{bitwise negation} of an integer $x$,
truncated to $n$ bits, $n\geq 0$, that is the integer
$$\sum_{i=0}^{n-1} \kbd{not}(x_i) 2^i.$$
The special case $n=-1$ means no truncation: an infinite sequence of
leading $1$ is then represented as a negative number.

See \secref{se:bitand} for the behavior for negative arguments.

The library syntax is \fun{GEN}{gbitneg}{GEN x, long n}.

\subsec{bitnegimply$(x,y)$}\kbdsidx{bitnegimply}\label{se:bitnegimply}
Bitwise negated imply of two integers $x$ and
$y$ (or \kbd{not} $(x \Rightarrow y)$), that is the integer $$\sum
(x_i~\kbd{and not}(y_i)) 2^i$$

See \secref{se:bitand} for the behavior for negative arguments.

The library syntax is \fun{GEN}{gbitnegimply}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitnegimply}{GEN x, GEN y}, which returns the bitwise negated
imply of $|x|$ and $|y|$, two integers.

\subsec{bitor$(x,y)$}\kbdsidx{bitor}\label{se:bitor}
\sidx{bitwise inclusive or}bitwise (inclusive)
\tet{or} of two integers $x$ and $y$, that is the integer $$\sum
(x_i~\kbd{or}~y_i) 2^i$$

See \secref{se:bitand} for the behavior for negative arguments.

The library syntax is \fun{GEN}{gbitor}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitor}{GEN x, GEN y}, which returns the bitwise \emph{ir}
of $|x|$ and $|y|$, two integers.

\subsec{bitprecision$(x,\{n\})$}\kbdsidx{bitprecision}\label{se:bitprecision}
The function behaves differently according to whether $n$ is
present and positive or not. If $n$ is missing, the function returns the
(floating point) precision in bits of the PARI object $x$. If $x$ is an
exact object, the function returns \kbd{+oo}.
\bprog
? bitprecision(exp(1e-100))
%1 = 512                 \\ 512 bits
? bitprecision( [ exp(1e-100), 0.5 ] )
%2 = 128                 \\ minimal accuracy among components
? bitprecision(2 + x)
%3 = +oo                  \\ exact object
@eprog

If $n$ is present and positive, the function creates a new object equal to $x$
with the new bit-precision roughly $n$. In fact, the smallest multiple of 64
(resp.~32 on a 32-bit machine) larger than or equal to $n$.

For $x$ a vector or a matrix, the operation is
done componentwise; for series and polynomials, the operation is done
coefficientwise. For real $x$, $n$ is the number of desired significant
\emph{bits}. If $n$ is smaller than the precision of $x$, $x$ is truncated,
otherwise $x$ is extended with zeros. For exact or non-floating point types,
no change.
\bprog
? bitprecision(Pi, 10)    \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239
? bitprecision(1, 10)
%2 = 1
? bitprecision(1 + O(x), 10)
%3 = 1 + O(x)
? bitprecision(2 + O(3^5), 10)
%4 = 2 + O(3^5)
@eprog\noindent

The library syntax is \fun{GEN}{bitprecision0}{GEN x, long n}.

\subsec{bittest$(x,n)$}\kbdsidx{bittest}\label{se:bittest}
Outputs the $n^{\text{th}}$ bit of $x$ starting
from the right (i.e.~the coefficient of $2^n$ in the binary expansion of $x$).
The result is 0 or 1.
\bprog
? bittest(7, 0)
%1 = 1 \\ the bit 0 is 1
? bittest(7, 2)
%2 = 1 \\ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \\ the bit 3 is 0
@eprog\noindent
See \secref{se:bitand} for the behavior at negative arguments.

The library syntax is \fun{GEN}{gbittest}{GEN x, long n}.
For a \typ{INT} $x$, the variant \fun{long}{bittest}{GEN x, long n} is
generally easier to use, and if furthermore $n\ge 0$ the low-level function
\fun{ulong}{int_bit}{GEN x, long n} returns \kbd{bittest(abs(x),n)}.

\subsec{bitxor$(x,y)$}\kbdsidx{bitxor}\label{se:bitxor}
Bitwise (exclusive) \tet{or}
\sidx{bitwise exclusive or}of two integers $x$ and $y$, that is the integer
$$\sum (x_i~\kbd{xor}~y_i) 2^i$$

See \secref{se:bitand} for the behavior for negative arguments.

The library syntax is \fun{GEN}{gbitxor}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitxor}{GEN x, GEN y}, which returns the bitwise \emph{xor}
of $|x|$ and $|y|$, two integers.

\subsec{ceil$(x)$}\kbdsidx{ceil}\label{se:ceil}
Ceiling of $x$. When $x$ is in $\R$, the result is the
smallest integer greater than or equal to $x$. Applied to a rational
function, $\kbd{ceil}(x)$ returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is \fun{GEN}{gceil}{GEN x}.

\subsec{centerlift$(x,\{v\})$}\kbdsidx{centerlift}\label{se:centerlift}
Same as \tet{lift}, except that \typ{INTMOD} and \typ{PADIC} components
are lifted using centered residues:

\item for a \typ{INTMOD} $x\in \Z/n\Z$, the lift $y$ is such that
$-n/2<y\le n/2$.

\item  a \typ{PADIC} $x$ is lifted in the same way as above (modulo
$p^\kbd{padicprec(x)}$) if its valuation $v$ is non-negative; if not, returns
the fraction $p^v$ \kbd{centerlift}$(x p^{-v})$; in particular, rational
reconstruction is not attempted. Use \tet{bestappr} for this.

For backward compatibility, \kbd{centerlift(x,'v)} is allowed as an alias
for \kbd{lift(x,'v)}.

\synt{centerlift}{GEN x}.

\subsec{characteristic$(x)$}\kbdsidx{characteristic}\label{se:characteristic}
Returns the characteristic of the base ring over which $x$ is defined (as
defined by \typ{INTMOD} and \typ{FFELT} components). The function raises an
exception if incompatible primes arise from \typ{FFELT} and \typ{PADIC}
components.
\bprog
? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 = 6
@eprog

The library syntax is \fun{GEN}{characteristic}{GEN x}.

\subsec{component$(x,n)$}\kbdsidx{component}\label{se:component}
Extracts the $n^{\text{th}}$-component of $x$. This is to be understood
as follows: every PARI type has one or two initial \idx{code words}. The
components are counted, starting at 1, after these code words. In particular
if $x$ is a vector, this is indeed the $n^{\text{th}}$-component of $x$, if
$x$ is a matrix, the $n^{\text{th}}$ column, if $x$ is a polynomial, the
$n^{\text{th}}$ coefficient (i.e.~of degree $n-1$), and for power series,
the $n^{\text{th}}$ significant coefficient.

For polynomials and power series, one should rather use \tet{polcoeff}, and
for vectors and matrices, the \kbd{[$\,$]} operator. Namely, if $x$ is a
vector, then \tet{x[n]} represents the $n^{\text{th}}$ component of $x$. If
$x$ is a matrix, \tet{x[m,n]} represents the coefficient of row \kbd{m} and
column \kbd{n} of the matrix, \tet{x[m,]} represents the $m^{\text{th}}$
\emph{row} of $x$, and \tet{x[,n]} represents the $n^{\text{th}}$
\emph{column} of $x$.

Using of this function requires detailed knowledge of the structure of the
different PARI types, and thus it should almost never be used directly.
Some useful exceptions:
\bprog
    ? x = 3 + O(3^5);
    ? component(x, 2)
    %2 = 81   \\ p^(p-adic accuracy)
    ? component(x, 1)
    %3 = 3    \\ p
    ? q = Qfb(1,2,3);
    ? component(q, 1)
    %5 = 1
@eprog

The library syntax is \fun{GEN}{compo}{GEN x, long n}.

\subsec{conj$(x)$}\kbdsidx{conj}\label{se:conj}
Conjugate of $x$. The meaning of this
is clear, except that for real quadratic numbers, it means conjugation in the
real quadratic field. This function has no effect on integers, reals,
intmods, fractions or $p$-adics. The only forbidden type is polmod
(see \kbd{conjvec} for this).

The library syntax is \fun{GEN}{gconj}{GEN x}.

\subsec{conjvec$(z)$}\kbdsidx{conjvec}\label{se:conjvec}
Conjugate vector representation of $z$. If $z$ is a
polmod, equal to \kbd{Mod}$(a,T)$, this gives a vector of length
$\text{degree}(T)$ containing:

\item the complex embeddings of $z$ if $T$ has rational coefficients,
i.e.~the $a(r[i])$ where $r = \kbd{polroots}(T)$;

\item the conjugates of $z$ if $T$ has some intmod coefficients;

\noindent if $z$ is a finite field element, the result is the vector of
conjugates $[z,z^p,z^{p^2},\ldots,z^{p^{n-1}}]$ where $n=\text{degree}(T)$.

\noindent If $z$ is an integer or a rational number, the result is~$z$. If
$z$ is a (row or column) vector, the result is a matrix whose columns are
the conjugate vectors of the individual elements of $z$.

The library syntax is \fun{GEN}{conjvec}{GEN z, long prec}.

\subsec{denominator$(x)$}\kbdsidx{denominator}\label{se:denominator}
Denominator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to $1$. For polynomials, you
probably want to use
\bprog
denominator( content(x) )
@eprog\noindent
instead. As for modular objects, \typ{INTMOD} and \typ{PADIC} have
denominator $1$, and the denominator of a \typ{POLMOD} is the denominator
of its (minimal degree) polynomial representative.

If $x$ is a recursive structure, for instance a vector or matrix, the lcm
of the denominators of its components (a common denominator) is computed.
This also applies for \typ{COMPLEX}s and \typ{QUAD}s.

\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.

The library syntax is \fun{GEN}{denom}{GEN x}.

\subsec{digits$(x,\{b={10}\})$}\kbdsidx{digits}\label{se:digits}
Outputs the vector of the digits of $|x|$ in base $b$, where $x$ and $b$ are
integers ($b = 10$ by default). See \kbd{fromdigits} for the reverse
operation.

\bprog
? digits(123)
%1 = [1, 2, 3, 0]

? digits(10, 2) \\ base 2
%2 = [1, 0, 1, 0]
@eprog\noindent By convention, $0$ has no digits:
\bprog
? digits(0)
%3 = []
@eprog

The library syntax is \fun{GEN}{digits}{GEN x, GEN b = NULL}.

\subsec{floor$(x)$}\kbdsidx{floor}\label{se:floor}
Floor of $x$. When $x$ is in $\R$, the result is the
largest integer smaller than or equal to $x$. Applied to a rational function,
$\kbd{floor}(x)$ returns the Euclidean quotient of the numerator by the
denominator.

The library syntax is \fun{GEN}{gfloor}{GEN x}.

\subsec{frac$(x)$}\kbdsidx{frac}\label{se:frac}
Fractional part of $x$. Identical to
$x-\text{floor}(x)$. If $x$ is real, the result is in $[0,1[$.

The library syntax is \fun{GEN}{gfrac}{GEN x}.

\subsec{fromdigits$(x,\{b={10}\})$}\kbdsidx{fromdigits}\label{se:fromdigits}
Gives the integer formed by the elements of $x$ seen as the digits of a
number in base $b$ ($b = 10$ by default).  This is the reverse of \kbd{digits}:
\bprog
? digits(1234,5)
%1 = [1,4,4,1,4]
? fromdigits([1,4,4,1,4],5)
%2 = 1234
@eprog\noindent By convention, $0$ has no digits:
\bprog
? fromdigits([])
%3 = 0
@eprog

The library syntax is \fun{GEN}{fromdigits}{GEN x, GEN b = NULL}.

\subsec{hammingweight$(x)$}\kbdsidx{hammingweight}\label{se:hammingweight}
If $x$ is a \typ{INT}, return the binary Hamming weight of $|x|$. Otherwise
$x$ must be of type \typ{POL}, \typ{VEC}, \typ{COL}, \typ{VECSMALL}, or
\typ{MAT} and the function returns the number of non-zero coefficients of
$x$.
\bprog
? hammingweight(15)
%1 = 4
? hammingweight(x^100 + 2*x + 1)
%2 = 3
? hammingweight([Mod(1,2), 2, Mod(0,3)])
%3 = 2
? hammingweight(matid(100))
%4 = 100
@eprog

The library syntax is \fun{long}{hammingweight}{GEN x}.

\subsec{imag$(x)$}\kbdsidx{imag}\label{se:imag}
Imaginary part of $x$. When $x$ is a quadratic number, this is the
coefficient of $\omega$ in the ``canonical'' integral basis $(1,\omega)$.

The library syntax is \fun{GEN}{gimag}{GEN x}.

\subsec{length$(x)$}\kbdsidx{length}\label{se:length}
Length of $x$; \kbd{\#}$x$ is a shortcut for \kbd{length}$(x)$.
This is mostly useful for

\item vectors: dimension (0 for empty vectors),

\item lists: number of entries (0 for empty lists),

\item matrices: number of columns,

\item character strings: number of actual characters (without
trailing \kbd{\bs 0}, should you expect it from $C$ \kbd{char*}).
\bprog
 ? #"a string"
 %1 = 8
 ? #[3,2,1]
 %2 = 3
 ? #[]
 %3 = 0
 ? #matrix(2,5)
 %4 = 5
 ? L = List([1,2,3,4]); #L
 %5 = 4
@eprog

The routine is in fact defined for arbitrary GP types, but is awkward and
useless in other cases: it returns the number of non-code words in $x$, e.g.
the effective length minus 2 for integers since the \typ{INT} type has two code
words.

The library syntax is \fun{long}{glength}{GEN x}.

\subsec{lift$(x,\{v\})$}\kbdsidx{lift}\label{se:lift}
If $v$ is omitted, lifts intmods from $\Z/n\Z$ in $\Z$,
$p$-adics from $\Q_p$ to $\Q$ (as \tet{truncate}), and polmods to
polynomials. Otherwise, lifts only polmods whose modulus has main
variable~$v$. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(lift,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(Mod(x,x^2+1))
%4 = x
@eprog
Lifts are performed recursively on an object components, but only
by \emph{one level}: once a \typ{POLMOD} is lifted, the components of
the result are \emph{not} lifted further.
\bprog
? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y*x + Mod(2, 3)   \\@com do you understand this one?
? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)
%6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)
? lift(%, y)
%7 = y*x + Mod(2, 3)
@eprog\noindent To recursively lift all components not only by one level,
but as long as possible, use \kbd{liftall}. To lift only \typ{INTMOD}s and
\typ{PADIC}s components, use \tet{liftint}. To lift only \typ{POLMOD}s
components, use \tet{liftpol}. Finally, \tet{centerlift} allows to lift
\typ{INTMOD}s and \typ{PADIC}s using centered residues (lift of smallest
absolute value).

The library syntax is \fun{GEN}{lift0}{GEN x, long v = -1} where \kbd{v} is a variable number.
Also available is \fun{GEN}{lift}{GEN x} corresponding to
\kbd{lift0(x,-1)}.

\subsec{liftall$(x)$}\kbdsidx{liftall}\label{se:liftall}
Recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$,
from $\Q_p$ to $\Q$ (as \tet{truncate}), and polmods to
polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftall,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftall(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + 2*z
@eprog

The library syntax is \fun{GEN}{liftall}{GEN x}.

\subsec{liftint$(x)$}\kbdsidx{liftint}\label{se:liftint}
Recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$ and
from $\Q_p$ to $\Q$ (as \tet{truncate}).
\typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftint,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftint(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)
@eprog

The library syntax is \fun{GEN}{liftint}{GEN x}.

\subsec{liftpol$(x)$}\kbdsidx{liftpol}\label{se:liftpol}
Recursively lift all components of $x$ which are polmods to
polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftpol,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftpol(x * (1 + O(3)) + Mod(2,3))
%1 = (1 + O(3))*x + Mod(2, 3)
? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + Mod(2, 3)*z
@eprog

The library syntax is \fun{GEN}{liftpol}{GEN x}.

\subsec{norm$(x)$}\kbdsidx{norm}\label{se:norm}
Algebraic norm of $x$, i.e.~the product of $x$ with
its conjugate (no square roots are taken), or conjugates for polmods. For
vectors and matrices, the norm is taken componentwise and hence is not the
$L^2$-norm (see \kbd{norml2}). Note that the norm of an element of
$\R$ is its square, so as to be compatible with the complex norm.

The library syntax is \fun{GEN}{gnorm}{GEN x}.

\subsec{numerator$(x)$}\kbdsidx{numerator}\label{se:numerator}
Numerator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is $x$ itself. For polynomials, you
probably want to use
\bprog
numerator( content(x) )
@eprog\noindent
instead.

In other cases, \kbd{numerator(x)} is defined to be
\kbd{denominator(x)*x}. This is the case when $x$ is a vector or a
matrix, but also for \typ{COMPLEX} or \typ{QUAD}. In particular since a
\typ{PADIC} or \typ{INTMOD} has  denominator $1$, its numerator is
itself.

\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.

The library syntax is \fun{GEN}{numer}{GEN x}.

\subsec{numtoperm$(n,k)$}\kbdsidx{numtoperm}\label{se:numtoperm}
Generates the $k$-th permutation (as a row vector of length $n$) of the
numbers $1$ to $n$. The number $k$ is taken modulo $n!\,$, i.e.~inverse
function of \tet{permtonum}. The numbering used is the standard lexicographic
ordering, starting at $0$.

The library syntax is \fun{GEN}{numtoperm}{long n, GEN k}.

\subsec{oo}\kbdsidx{oo}\label{se:oo}
Returns an object meaning $+\infty$, for use in functions such as
\kbd{intnum}. It can be negated (\kbd{-oo} represents $-\infty$), and
compared to real numbers (\typ{INT}, \typ{FRAC}, \typ{REAL}), with the
expected meaning: $+\infty$ is greater than any real number and $-\infty$ is
smaller.

The library syntax is \fun{GEN}{mkoo}{}.

\subsec{padicprec$(x,p)$}\kbdsidx{padicprec}\label{se:padicprec}
Returns the absolute $p$-adic precision of the object $x$; this is the
minimum precision of the components of $x$. The result is \tet{+oo} if $x$
is an exact object (as a $p$-adic):
\bprog
? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)
%1 = 4
? padicprec(x + 2, 2)
%2 = +oo
? padicprec(2 + x + O(x^2), 2)
%3 = +oo
@eprog\noindent The function raises an exception if it encounters
an object incompatible with $p$-adic computations:
\bprog
? padicprec(O(3), 2)
 ***   at top-level: padicprec(O(3),2)
 ***                 ^-----------------
 *** padicprec: inconsistent moduli in padicprec: 3 != 2

? padicprec(1.0, 2)
 ***   at top-level: padicprec(1.0,2)
 ***                 ^----------------
 *** padicprec: incorrect type in padicprec (t_REAL).
@eprog

The library syntax is \fun{GEN}{gppadicprec}{GEN x, GEN p}.
Also available is the function \fun{long}{padicprec}{GEN x, GEN p},
which returns \tet{LONG_MAX} if $x = 0$ and the $p$-adic precision as a
\kbd{long} integer.

\subsec{permtonum$(x)$}\kbdsidx{permtonum}\label{se:permtonum}
Given a permutation $x$ on $n$ elements, gives the number $k$ such that
$x=\kbd{numtoperm(n,k)}$, i.e.~inverse function of \tet{numtoperm}.
The numbering used is the standard lexicographic ordering, starting at $0$.

The library syntax is \fun{GEN}{permtonum}{GEN x}.

\subsec{precision$(x,\{n\})$}\kbdsidx{precision}\label{se:precision}
The function behaves differently according to whether $n$ is
present and positive or not. If $n$ is missing, the function returns the
precision in decimal digits of the PARI object $x$. If $x$ is an exact
object, the function returns \kbd{+oo}.

\bprog
? precision(exp(1e-100))
%1 = 154                \\ 154 significant decimal digits
? precision(2 + x)
%2 = +oo                \\ exact object
? precision(0.5 + O(x))
%3 = 38                 \\ floating point accuracy, NOT series precision
? precision( [ exp(1e-100), 0.5 ] )
%4 = 38                 \\ minimal accuracy among components
@eprog

If $n$ is present, the function creates a new object equal to $x$ with a new
floating point precision $n$: $n$ is the number of desired significant
\emph{decimal} digits. If $n$ is smaller than the precision of a \typ{REAL}
component of $x$, it is truncated, otherwise it is extended with zeros.
For exact or non-floating point types, no change.

The library syntax is \fun{GEN}{precision0}{GEN x, long n}.
Also available are \fun{GEN}{gprec}{GEN x, long n} and
\fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
\emph{words} (32-bit or 64-bit depending on the architecture).

\subsec{random$(\{N=2^{{31}}\})$}\kbdsidx{random}\label{se:random}
Returns a random element in various natural sets depending on the
argument $N$.

\item \typ{INT}: returns an integer
uniformly distributed between $0$ and $N-1$. Omitting the argument
is equivalent to \kbd{random(2\pow31)}.

\item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
$N$ (whose mantissa has the same number of significant words).

\item \typ{INTMOD}: returns a random intmod for the same modulus.

\item \typ{FFELT}: returns a random element in the same finite field.

\item \typ{VEC} of length $2$, $N = [a,b]$: returns an integer uniformly
distributed between $a$ and $b$.

\item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
(coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
``random'' $k$-rational \emph{affine} point on the curve. More precisely
if the curve has a single point (at infinity!) we return it; otherwise
we return an affine point by drawing an abscissa uniformly at
random until \tet{ellordinate} succeeds. Note that this is definitely not a
uniform distribution over $E(k)$, but it should be good enough for
applications.

\item \typ{POL} return a random polynomial of degree at most the degree of $N$.
The coefficients are drawn by applying \kbd{random} to the leading
coefficient of $N$.

\bprog
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)

@eprog
These variants all depend on a single internal generator, and are
independent from your operating system's random number generators.
A random seed may be obtained via \tet{getrand}, and reset
using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
the exact same values will be generated. The same seed is used at each
startup, reseed the generator yourself if this is a problem. Note that
internal functions also call the random number generator; adding such a
function call in the middle of your code will change the numbers produced.

\misctitle{Technical note}
Up to
version 2.4 included, the internal generator produced pseudo-random numbers
by means of linear congruences, which were not well distributed in arithmetic
progressions. We now
use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
\url{http://wwwmaths.anu.edu.au/~brent/random.html}. The generator has period
$2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
Simard, but is not suitable for cryptographic purposes: one can reconstruct
the state vector from a small sample of consecutive values, thus predicting
the entire sequence.

The library syntax is \fun{GEN}{genrand}{GEN N = NULL}.

 Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.

\subsec{real$(x)$}\kbdsidx{real}\label{se:real}
Real part of $x$. In the case where $x$ is a quadratic number, this is the
coefficient of $1$ in the ``canonical'' integral basis $(1,\omega)$.

The library syntax is \fun{GEN}{greal}{GEN x}.

\subsec{round$(x,\{\&e\})$}\kbdsidx{round}\label{se:round}
If $x$ is in $\R$, rounds $x$ to the nearest integer (rounding to
$+\infty$ in case of ties), then and sets $e$ to the number of error bits,
that is the binary exponent of the difference between the original and the
rounded value (the ``fractional part''). If the exponent of $x$ is too large
compared to its precision (i.e.~$e>0$), the result is undefined and an error
occurs if $e$ was not given.

\misctitle{Important remark} Contrary to the other truncation functions,
this function operates on every coefficient at every level of a PARI object.
For example
$$\text{truncate}\left(\dfrac{2.4*X^2-1.7}{X}\right)=2.4*X,$$
whereas
$$\text{round}\left(\dfrac{2.4*X^2-1.7}{X}\right)=\dfrac{2*X^2-2}{X}.$$
An important use of \kbd{round} is to get exact results after an approximate
computation, when theory tells you that the coefficients must be integers.

The library syntax is \fun{GEN}{round0}{GEN x, GEN *e = NULL}.
Also available are \fun{GEN}{grndtoi}{GEN x, long *e} and
\fun{GEN}{ground}{GEN x}.

\subsec{serprec$(x,v)$}\kbdsidx{serprec}\label{se:serprec}
Returns the absolute precision of $x$ with respec to power series
in the variable $v$; this is the
minimum precision of the components of $x$. The result is \tet{+oo} if $x$
is an exact object (as a series in $v$):
\bprog
? serprec(x + O(y^2), y)
%1 = 2
? serprec(x + 2, x)
%2 = +oo
? serprec(2 + x + O(x^2), y)
%3 = +oo
@eprog

The library syntax is \fun{GEN}{gpserprec}{GEN x, long v} where \kbd{v} is a variable number.
Also available is \fun{long}{serprec}{GEN x, GEN p}, which returns
\tet{LONG_MAX} if $x = 0$ and the series precision as a \kbd{long} integer.

\subsec{simplify$(x)$}\kbdsidx{simplify}\label{se:simplify}
This function simplifies $x$ as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e.~not \kbd{Mod(0,2)}
or \kbd{0.E-28}) is converted to its real part, and a polynomial of degree $0$
is converted to its constant term. Simplifications occur recursively.

This function is especially useful before using arithmetic functions,
which expect integer arguments:
\bprog
? x = 2 + y - y
%1 = 2
? isprime(x)
  ***   at top-level: isprime(x)
  ***                 ^----------
  *** isprime: not an integer argument in an arithmetic function
? type(x)
%2 = "t_POL"
? type(simplify(x))
%3 = "t_INT"
@eprog
Note that GP results are simplified as above before they are stored in the
history. (Unless you disable automatic simplification with \b{y}, that is.)
In particular
\bprog
? type(%1)
%4 = "t_INT"
@eprog

The library syntax is \fun{GEN}{simplify}{GEN x}.

\subsec{sizebyte$(x)$}\kbdsidx{sizebyte}\label{se:sizebyte}
Outputs the total number of bytes occupied by the tree representing the
PARI object $x$.

The library syntax is \fun{long}{gsizebyte}{GEN x}.
Also available is \fun{long}{gsizeword}{GEN x} returning a
number of \emph{words}.

\subsec{sizedigit$(x)$}\kbdsidx{sizedigit}\label{se:sizedigit}
This function is DEPRECATED, essentially meaningless, and provided for
backwards compatibility only. Don't use it!

outputs a quick upper bound for the number of decimal digits of (the
components of) $x$, off by at most $1$. More precisely, for a positive
integer $x$, it computes (approximately) the ceiling of
$$\kbd{floor}(1 + \log_2 x) \log_{10}2,$$

To count the number of decimal digits of a positive integer $x$, use
\kbd{\#digits(x)}. To estimate (recursively) the size of $x$, use
\kbd{normlp(x)}.

The library syntax is \fun{long}{sizedigit}{GEN x}.

\subsec{truncate$(x,\{\&e\})$}\kbdsidx{truncate}\label{se:truncate}
Truncates $x$ and sets $e$ to the number of
error bits. When $x$ is in $\R$, this means that the part after the decimal
point is chopped away, $e$ is the binary exponent of the difference between
the original and the truncated value (the ``fractional part''). If the
exponent of $x$ is too large compared to its precision (i.e.~$e>0$), the
result is undefined and an error occurs if $e$ was not given. The function
applies componentwise on vector / matrices; $e$ is then the maximal number of
error bits. If $x$ is a rational function, the result is the ``integer part''
(Euclidean quotient of numerator by denominator) and $e$ is not set.

Note a very special use of \kbd{truncate}: when applied to a power series, it
transforms it into a polynomial or a rational function with denominator
a power of $X$, by chopping away the $O(X^k)$. Similarly, when applied to
a $p$-adic number, it transforms it into an integer or a rational number
by chopping away the $O(p^k)$.

The library syntax is \fun{GEN}{trunc0}{GEN x, GEN *e = NULL}.
The following functions are also available: \fun{GEN}{gtrunc}{GEN x}
and \fun{GEN}{gcvtoi}{GEN x, long *e}.

\subsec{valuation$(x,p)$}\kbdsidx{valuation}\label{se:valuation}
Computes the highest
exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an
integer, an intmod whose modulus is divisible by $p$, a fraction, a
$q$-adic number with $q=p$, or a polynomial or power series in which case the
valuation is the minimum of the valuation of the coefficients.

If $p$ is of type polynomial, $x$ must be of type polynomial or rational
function, and also a power series if $x$ is a monomial. Finally, the
valuation of a vector, complex or quadratic number is the minimum of the
component valuations.

If $x=0$, the result is \kbd{+oo} if $x$ is an exact object. If $x$ is a
$p$-adic numbers or power series, the result is the exponent of the zero.
Any other type combinations gives an error.

The library syntax is \fun{GEN}{gpvaluation}{GEN x, GEN p}.
Also available is
\fun{long}{gvaluation}{GEN x, GEN p}, which returns \tet{LONG_MAX} if $x = 0$
and the valuation as a \kbd{long} integer.

\subsec{varhigher$(\var{name},\{v\})$}\kbdsidx{varhigher}\label{se:varhigher}
Return a variable \emph{name} whose priority is higher
than the priority of $v$ (of all existing variables if $v$ is omitted).
This is a counterpart to \tet{varlower}.
\bprog
? Pol([x,x], t)
 ***   at top-level: Pol([x,x],t)
 ***                 ^------------
 *** Pol: incorrect priority in gtopoly: variable x <= t
? t = varhigher("t", x);
? Pol([x,x], t)
%3 = x*t + x
@eprog\noindent This routine is useful since new GP variables directly
created by the interpreter always have lower priority than existing
GP variables. When some basic objects already exist in a variable
that is incompatible with some function requirement, you can now
create a new variable with a suitable priority instead of changing variables
in existing objects:
\bprog
? K = nfinit(x^2+1);
? rnfequation(K,y^2-2)
 ***   at top-level: rnfequation(K,y^2-2)
 ***                 ^--------------------
 *** rnfequation: incorrect priority in rnfequation: variable y >= x
? y = varhigher("y", x);
? rnfequation(K, y^2-2)
%3 = y^4 - 2*y^2 + 9
@eprog\noindent
\misctitle{Caution 1}
The \emph{name} is an arbitrary character string, only used for display
purposes and need not be related to the GP variable holding the result, nor
to be a valid variable name. In particular the \emph{name} can
not be used to retrieve the variable, it is not even present in the parser's
hash tables.
\bprog
? x = varhigher("#");
? x^2
%2 = #^2
@eprog
\misctitle{Caution 2} There are a limited number of variables and if no
existing variable with the given display name has the requested
priority, the call to \kbd{varhigher} uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary,
reuse existing names instead and choose sensible priority requirements:
if you only need a variable with higher priority than $x$, state so
rather than creating a new variable with highest priority.
\bprog
\\ quickly use up all variables
? n = 0; while(1,varhigher("tmp"); n++)
 ***   at top-level: n=0;while(1,varhigher("tmp");n++)
 ***                             ^-------------------
 *** varhigher: no more variables available.
 ***   Break loop: type 'break' to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varhigher("tmp", x); n++)
@eprog

The library syntax is \fun{GEN}{varhigher}{const char *name, long v = -1} where \kbd{v} is a variable number.

\subsec{variable$(\{x\})$}\kbdsidx{variable}\label{se:variable}
Gives the main variable of the object $x$ (the variable with the highest
priority used in $x$), and $p$ if $x$ is a $p$-adic number. Return $0$ if
$x$ has no variable attached to it.
\bprog
? variable(x^2 + y)
%1 = x
? variable(1 + O(5^2))
%2 = 5
? variable([x,y,z,t])
%3 = x
? variable(1)
%4 = 0
@eprog\noindent The construction
\bprog
   if (!variable(x),...)
@eprog\noindent can be used to test whether a variable is attached to $x$.

If $x$ is omitted, returns the list of user variables known to the
interpreter, by order of decreasing priority. (Highest priority is initially
$x$, which come first until \tet{varhigher} is used.) If \kbd{varhigher}
or \kbd{varlower} are used, it is quite possible to end up with different
variables (with different priorities) printed in the same way: they
will then appear multiple times in the output:
\bprog
? varhigher("y");
? varlower("y");
? variable()
%4 = [y, x, y]
@eprog\noindent Using \kbd{v = variable()} then \kbd{v[1]}, \kbd{v[2]},
etc.~allows to recover and use existing variables.

The library syntax is \fun{GEN}{gpolvar}{GEN x = NULL}.
However, in library mode, this function should not be used for $x$
non-\kbd{NULL}, since \tet{gvar} is more appropriate. Instead, for
$x$ a $p$-adic (type \typ{PADIC}), $p$ is $gel(x,2)$; otherwise, use
\fun{long}{gvar}{GEN x} which returns the variable number of $x$ if
it exists, \kbd{NO\_VARIABLE} otherwise, which satisfies the property
$\kbd{varncmp}(\kbd{NO\_VARIABLE}, v) > 0$ for all valid variable number
$v$, i.e. it has lower priority than any variable.

\subsec{variables$(\{x\})$}\kbdsidx{variables}\label{se:variables}
Returns the list of all variables occuring in object $x$ (all user
variables known to the interpreter if $x$ is omitted), sorted by
decreasing priority.
\bprog
? variables([x^2 + y*z + O(t), a+x])
%1 = [x, y, z, t, a]
@eprog\noindent The construction
\bprog
   if (!variables(x),...)
@eprog\noindent can be used to test whether a variable is attached to $x$.

If \kbd{varhigher} or \kbd{varlower} are used, it is quite possible to end up
with different variables (with different priorities) printed in the same
way: they will then appear multiple times in the output:
\bprog
? y1 = varhigher("y");
? y2 = varlower("y");
? variables(y*y1*y2)
%4 = [y, y, y]
@eprog

The library syntax is \fun{GEN}{variables_vec}{GEN x = NULL}.

Also available is \fun{GEN}{variables_vecsmall}{GEN x} which returns
the (sorted) variable numbers instead of the attached monomials of degree 1.

\subsec{varlower$(\var{name},\{v\})$}\kbdsidx{varlower}\label{se:varlower}
Return a variable \emph{name} whose priority is lower
than the priority of $v$ (of all existing variables if $v$ is omitted).
This is a counterpart to \tet{varhigher}.

New GP variables directly created by the interpreter always
have lower priority than existing GP variables, but it is not easy
to check whether an identifier is currently unused, so that the
corresponding variable has the expected priority when it's created!
Thus, depending on the session history, the same command may fail or succeed:
\bprog
? t; z;  \\ now t > z
? rnfequation(t^2+1,z^2-t)
 ***   at top-level: rnfequation(t^2+1,z^
 ***                 ^--------------------
 *** rnfequation: incorrect priority in rnfequation: variable t >= t
@eprog\noindent Restart and retry:
\bprog
? z; t;  \\ now z > t
? rnfequation(t^2+1,z^2-t)
%2 = z^4 + 1
@eprog\noindent It is quite annoying for package authors, when trying to
define a base ring, to notice that the package may fail for some users
depending on their session history. The safe way to do this is as follows:
\bprog
? z; t;  \\ In new session: now z > t
...
? t = varlower("t", 'z);
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, z, t]
@eprog
\bprog
? t; z;  \\ In new session: now t > z
...
? t = varlower("t", 'z); \\ create a new variable, still printed "t"
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, t, z, t]
@eprog\noindent Now both constructions succeed. Note that in the
first case, \kbd{varlower} is essentially a no-op, the existing variable $t$
has correct priority. While in the second case, two different variables are
displayed as \kbd{t}, one with higher priority than $z$ (created in the first
 line) and another one with lower priority (created by \kbd{varlower}).

\misctitle{Caution 1}
The \emph{name} is an arbitrary character string, only used for display
purposes and need not be related to the GP variable holding the result, nor
to be a valid variable name. In particular the \emph{name} can
not be used to retrieve the variable, it is not even present in the parser's
hash tables.
\bprog
? x = varlower("#");
? x^2
%2 = #^2
@eprog
\misctitle{Caution 2} There are a limited number of variables and if no
existing variable with the given display name has the requested
priority, the call to \kbd{varlower} uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary,
reuse existing names instead and choose sensible priority requirements:
if you only need a variable with higher priority than $x$, state so
rather than creating a new variable with highest priority.
\bprog
\\ quickly use up all variables
? n = 0; while(1,varlower("x"); n++)
 ***   at top-level: n=0;while(1,varlower("x");n++)
 ***                             ^-------------------
 *** varlower: no more variables available.
 ***   Break loop: type 'break' to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varlower("tmp", x); n++)
@eprog

The library syntax is \fun{GEN}{varlower}{const char *name, long v = -1} where \kbd{v} is a variable number.
%SECTION: conversions

\section{Transcendental functions}\label{se:trans}

Since the values of transcendental functions cannot be exactly represented,
these functions will always return an inexact object: a real number,
a complex number, a $p$-adic number or a power series.  All these objects
have a certain finite precision.

As a general rule, which of course in some cases may have exceptions,
transcendental functions operate in the following way:

\item If the argument is either a real number or an inexact complex number
(like \kbd{1.0 + I} or \kbd{Pi*I} but not \kbd{2 - 3*I}), then the
computation is done with the precision of the argument.
In the example below, we see that changing the precision to $50$ digits does
not matter, because $x$ only had a precision of $19$ digits.
\bprog
? \p 15
   realprecision = 19 significant digits (15 digits displayed)
? x = Pi/4
%1 = 0.785398163397448
? \p 50
   realprecision = 57 significant digits (50 digits displayed)
? sin(x)
%2 = 0.7071067811865475244
@eprog

Note that even if the argument is real, the result may be complex
(e.g.~$\text{acos}(2.0)$ or $\text{acosh}(0.0)$). See each individual
function help for the definition of the branch cuts and choice of principal
value.

\item If the argument is either an integer, a rational, an exact complex
number or a quadratic number, it is first converted to a real
or complex number using the current \idx{precision}, which can be
view and manipulated using the defaults \tet{realprecision} (in decimal
digits) or \tet{realbitprecision} (in bits). This precision can be changed
indifferently

\item in decimal digits: use \b{p} or \kbd{default(realprecision,...)}.

\item in bits: use \b{pb} or \kbd{default(realbitprecision,...)}.

After this conversion, the computation proceeds as above for real or complex
arguments.

In library mode, the \kbd{realprecision} does not matter; instead the
precision is taken from the \kbd{prec} parameter which every transcendental
function has. As in \kbd{gp}, this \kbd{prec} is not used when the argument
to a function is already inexact. Note that the argument \var{prec} stands
for the length in words of a real number, including codewords. Hence we must
have $\var{prec} \geq 3$. (Some functions allow a \kbd{bitprec} argument
instead which allow finer granularity.)

Some accuracies attainable on 32-bit machines cannot be attained
on 64-bit machines for parity reasons. For example the default \kbd{gp} accuracy
is 28 decimal digits on 32-bit machines, corresponding to \var{prec} having
the value 5, but this cannot be attained on 64-bit machines.

\item If the argument is a polmod (representing an algebraic number),
then the function is evaluated for every possible complex embedding of that
algebraic number.  A column vector of results is returned, with one component
for each complex embedding.  Therefore, the number of components equals
the degree of the \typ{POLMOD} modulus.

\item If the argument is an intmod or a $p$-adic, at present only a
few functions like \kbd{sqrt} (square root), \kbd{sqr} (square), \kbd{log},
\kbd{exp}, powering, \kbd{teichmuller} (Teichm\"uller character) and
\kbd{agm} (arithmetic-geometric mean) are implemented.

Note that in the case of a $2$-adic number, $\kbd{sqr}(x)$ may not be
identical to $x*x$: for example if $x = 1+O(2^5)$ and $y = 1+O(2^5)$ then
$x*y = 1+O(2^5)$ while $\kbd{sqr}(x) = 1+O(2^6)$. Here, $x * x$ yields the
same result as $\kbd{sqr}(x)$ since the two operands are known to be
\emph{identical}. The same statement holds true for $p$-adics raised to the
power $n$, where $v_p(n) > 0$.

\misctitle{Remark} If we wanted to be strictly consistent with
the PARI philosophy, we should have $x*y = (4 \mod 8)$ and $\kbd{sqr}(x) =
(4 \mod 32)$ when both $x$ and $y$ are congruent to $2$ modulo $4$.
However, since intmod is an exact object, PARI assumes that the modulus
must not change, and the result is hence $(0\, \mod\, 4)$ in both cases. On
the other hand, $p$-adics are not exact objects, hence are treated
differently.

\item If the argument is a polynomial, a power series or a rational function,
it is, if necessary, first converted to a power series using the current
series precision, held in the default \tet{seriesprecision}. This precision
(the number of significant terms) can be changed using \b{ps} or
\kbd{default(seriesprecision,...)}. Then the Taylor series expansion of the
function around $X=0$ (where $X$ is the main variable) is computed to a
number of terms depending on the number of terms of the argument and the
function being computed.

Under \kbd{gp} this again is transparent to the user. When programming in
library mode, however, it is \emph{strongly} advised to perform an explicit
conversion to a power series first, as in \kbd{x = gtoser(x, seriesprec)},
where the number of significant terms \kbd{seriesprec} can be specified
explicitly. If you do not do this, a global variable \kbd{precdl} is used
instead, to convert polynomials and rational functions to a power series with
a reasonable number of terms; tampering with the value of this global
variable is \emph{deprecated} and strongly discouraged.


\item If the argument is a vector or a matrix, the result is the
componentwise evaluation of the function. In particular, transcendental
functions on square matrices, which are not implemented in the present
version \vers, will have a different name if they are implemented some day.

\subseckbd{\pow} If $y$ is not of type integer, \kbd{x\pow y} has the same
effect as \kbd{exp(y*log(x))}. It can be applied to $p$-adic numbers as well
as to the more usual types.\sidx{powering}

The library syntax is \fun{GEN}{gpow}{GEN x, GEN n, long prec}
for $x\hbox{\kbd{\pow}}n$.


\subsec{Catalan}\kbdsidx{Catalan}\label{se:Catalan}
Catalan's constant $G = \sum_{n>=0}\dfrac{(-1)^n}{(2n+1)^2}=0.91596\cdots$.
Note that \kbd{Catalan} is one of the few reserved names which cannot be
used for user variables.

The library syntax is \fun{GEN}{mpcatalan}{long prec}.

\subsec{Euler}\kbdsidx{Euler}\label{se:Euler}
Euler's constant $\gamma=0.57721\cdots$. Note that
\kbd{Euler} is one of the few reserved names which cannot be used for
user variables.

The library syntax is \fun{GEN}{mpeuler}{long prec}.

\subsec{I}\kbdsidx{I}\label{se:I}
The complex number $\sqrt{-1}$.

The library syntax is \fun{GEN}{gen_I}{}.

\subsec{Pi}\kbdsidx{Pi}\label{se:Pi}
The constant $\pi$ ($3.14159\cdots$). Note that \kbd{Pi} is one of the few
reserved names which cannot be used for user variables.

The library syntax is \fun{GEN}{mppi}{long prec}.

\subsec{abs$(x)$}\kbdsidx{abs}\label{se:abs}
Absolute value of $x$ (modulus if $x$ is complex).
Rational functions are not allowed. Contrary to most transcendental
functions, an exact argument is \emph{not} converted to a real number before
applying \kbd{abs} and an exact result is returned if possible.
\bprog
? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724
@eprog\noindent
If $x$ is a polynomial, returns $-x$ if the leading coefficient is
real and negative else returns $x$. For a power series, the constant
coefficient is considered instead.

The library syntax is \fun{GEN}{gabs}{GEN x, long prec}.

\subsec{acos$(x)$}\kbdsidx{acos}\label{se:acos}
Principal branch of $\cos^{-1}(x) = -i \log (x + i\sqrt{1-x^2})$.
In particular, $\Re(\text{acos}(x))\in [0,\pi]$ and if $x\in \R$ and $|x|>1$,
then $\text{acos}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$ , continuous with quadrant II, and $[1,+\infty[$, continuous
with quadrant IV. We have $\text{acos}(x) = \pi/2 - \text{asin}(x)$ for all
$x$.

The library syntax is \fun{GEN}{gacos}{GEN x, long prec}.

\subsec{acosh$(x)$}\kbdsidx{acosh}\label{se:acosh}
Principal branch of $\cosh^{-1}(x) = 2
 \log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2})$. In particular,
$\Re(\text{acosh}(x))\geq 0$ and
$\Im(\text{acosh}(x))\in ]-\pi,\pi]$; if $x\in \R$ and $x<1$, then
$\text{acosh}(x)$ is complex.

The library syntax is \fun{GEN}{gacosh}{GEN x, long prec}.

\subsec{agm$(x,y)$}\kbdsidx{agm}\label{se:agm}
Arithmetic-geometric mean of $x$ and $y$. In the
case of complex or negative numbers, the optimal AGM is returned
(the largest in absolute value over all choices of the signs of the square
roots).  $p$-adic or power series arguments are also allowed. Note that
a $p$-adic agm exists only if $x/y$ is congruent to 1 modulo $p$ (modulo
16 for $p=2$). $x$ and $y$ cannot both be vectors or matrices.

The library syntax is \fun{GEN}{agm}{GEN x, GEN y, long prec}.

\subsec{arg$(x)$}\kbdsidx{arg}\label{se:arg}
Argument of the complex number $x$, such that $-\pi < \arg(x) \le \pi$.

The library syntax is \fun{GEN}{garg}{GEN x, long prec}.

\subsec{asin$(x)$}\kbdsidx{asin}\label{se:asin}
Principal branch of $\sin^{-1}(x) = -i \log(ix + \sqrt{1 - x^2})$.
In particular, $\Re(\text{asin}(x))\in [-\pi/2,\pi/2]$ and if $x\in \R$ and
$|x|>1$ then $\text{asin}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$, continuous with quadrant II, and $[1,+\infty[$ continuous
with quadrant IV. The function satisfies $i \text{asin}(x) =
\text{asinh}(ix)$.

The library syntax is \fun{GEN}{gasin}{GEN x, long prec}.

\subsec{asinh$(x)$}\kbdsidx{asinh}\label{se:asinh}
Principal branch of $\sinh^{-1}(x) = \log(x + \sqrt{1+x^2})$. In
particular $\Im(\text{asinh}(x))\in [-\pi/2,\pi/2]$.
The branch cut is in two pieces: $]-i \infty ,-i]$, continuous with quadrant
III and $[+i,+i \infty[$, continuous with quadrant I.

The library syntax is \fun{GEN}{gasinh}{GEN x, long prec}.

\subsec{atan$(x)$}\kbdsidx{atan}\label{se:atan}
Principal branch of $\text{tan}^{-1}(x) = \log ((1+ix)/(1-ix)) /
2i$. In particular the real part of $\text{atan}(x)$ belongs to
$]-\pi/2,\pi/2[$.
The branch cut is in two pieces:
$]-i\infty,-i[$, continuous with quadrant IV, and $]i,+i \infty[$ continuous
with quadrant II. The function satisfies $\text{atan}(x) =
-i\text{atanh}(ix)$ for all $x\neq \pm i$.

The library syntax is \fun{GEN}{gatan}{GEN x, long prec}.

\subsec{atanh$(x)$}\kbdsidx{atanh}\label{se:atanh}
Principal branch of $\text{tanh}^{-1}(x) = \log ((1+x)/(1-x)) / 2$. In
particular the imaginary part of $\text{atanh}(x)$ belongs to
$[-\pi/2,\pi/2]$; if $x\in \R$ and $|x|>1$ then $\text{atanh}(x)$ is complex.

The library syntax is \fun{GEN}{gatanh}{GEN x, long prec}.

\subsec{bernfrac$(x)$}\kbdsidx{bernfrac}\label{se:bernfrac}
Bernoulli number\sidx{Bernoulli numbers} $B_x$,
where $B_0=1$, $B_1=-1/2$, $B_2=1/6$,\dots, expressed as a rational number.
The argument $x$ should be of type integer.

The library syntax is \fun{GEN}{bernfrac}{long x}.

\subsec{bernpol$(n, \{v = 'x\})$}\kbdsidx{bernpol}\label{se:bernpol}
\idx{Bernoulli polynomial} $B_n$ in variable $v$.
\bprog
? bernpol(1)
%1 = x - 1/2
? bernpol(3)
%2 = x^3 - 3/2*x^2 + 1/2*x
@eprog

The library syntax is \fun{GEN}{bernpol}{long n, long v = -1} where \kbd{v} is a variable number.

\subsec{bernreal$(x)$}\kbdsidx{bernreal}\label{se:bernreal}
Bernoulli number\sidx{Bernoulli numbers}
$B_x$, as \kbd{bernfrac}, but $B_x$ is returned as a real number
(with the current precision).

The library syntax is \fun{GEN}{bernreal}{long x, long prec}.

\subsec{bernvec$(x)$}\kbdsidx{bernvec}\label{se:bernvec}
This routine is obsolete, kept for backward compatibility only.

The library syntax is \fun{GEN}{bernvec}{long x}.

\subsec{besselh1$(\var{nu},x)$}\kbdsidx{besselh1}\label{se:besselh1}
$H^1$-Bessel function of index \var{nu} and argument $x$.

The library syntax is \fun{GEN}{hbessel1}{GEN nu, GEN x, long prec}.

\subsec{besselh2$(\var{nu},x)$}\kbdsidx{besselh2}\label{se:besselh2}
$H^2$-Bessel function of index \var{nu} and argument $x$.

The library syntax is \fun{GEN}{hbessel2}{GEN nu, GEN x, long prec}.

\subsec{besseli$(\var{nu},x)$}\kbdsidx{besseli}\label{se:besseli}
$I$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).

The library syntax is \fun{GEN}{ibessel}{GEN nu, GEN x, long prec}.

\subsec{besselj$(\var{nu},x)$}\kbdsidx{besselj}\label{se:besselj}
$J$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).

The library syntax is \fun{GEN}{jbessel}{GEN nu, GEN x, long prec}.

\subsec{besseljh$(n,x)$}\kbdsidx{besseljh}\label{se:besseljh}
$J$-Bessel function of half integral index.
More precisely, $\kbd{besseljh}(n,x)$ computes $J_{n+1/2}(x)$ where $n$
must be of type integer, and $x$ is any element of $\C$. In the
present version \vers, this function is not very accurate when $x$ is small.

The library syntax is \fun{GEN}{jbesselh}{GEN n, GEN x, long prec}.

\subsec{besselk$(\var{nu},x)$}\kbdsidx{besselk}\label{se:besselk}
$K$-Bessel function of index \var{nu} and argument $x$.

The library syntax is \fun{GEN}{kbessel}{GEN nu, GEN x, long prec}.

\subsec{besseln$(\var{nu},x)$}\kbdsidx{besseln}\label{se:besseln}
$N$-Bessel function of index \var{nu} and argument $x$.

The library syntax is \fun{GEN}{nbessel}{GEN nu, GEN x, long prec}.

\subsec{cos$(x)$}\kbdsidx{cos}\label{se:cos}
Cosine of $x$.

The library syntax is \fun{GEN}{gcos}{GEN x, long prec}.

\subsec{cosh$(x)$}\kbdsidx{cosh}\label{se:cosh}
Hyperbolic cosine of $x$.

The library syntax is \fun{GEN}{gcosh}{GEN x, long prec}.

\subsec{cotan$(x)$}\kbdsidx{cotan}\label{se:cotan}
Cotangent of $x$.

The library syntax is \fun{GEN}{gcotan}{GEN x, long prec}.

\subsec{cotanh$(x)$}\kbdsidx{cotanh}\label{se:cotanh}
Hyperbolic cotangent of $x$.

The library syntax is \fun{GEN}{gcotanh}{GEN x, long prec}.

\subsec{dilog$(x)$}\kbdsidx{dilog}\label{se:dilog}
Principal branch of the dilogarithm of $x$,
i.e.~analytic continuation of the power series $\log_2(x)=\sum_{n\ge1}x^n/n^2$.

The library syntax is \fun{GEN}{dilog}{GEN x, long prec}.

\subsec{eint1$(x,\{n\})$}\kbdsidx{eint1}\label{se:eint1}
Exponential integral $\int_x^\infty \dfrac{e^{-t}}{t}\,dt =
\kbd{incgam}(0, x)$, where the latter expression extends the function
definition from real $x > 0$ to all complex $x \neq 0$.

If $n$ is present, we must have $x > 0$; the function returns the
$n$-dimensional vector $[\kbd{eint1}(x),\dots,\kbd{eint1}(nx)]$. Contrary to
other transcendental functions, and to the default case ($n$ omitted), the
values are correct up to a bounded \emph{absolute}, rather than relative,
error $10^{-n}$, where $n$ is \kbd{precision}$(x)$ if $x$ is a \typ{REAL}
and defaults to \kbd{realprecision} otherwise. (In the most important
application, to the computation of $L$-functions via approximate functional
equations, those values appear as weights in long sums and small individual
relative errors are less useful than controlling the absolute error.) This is
faster than repeatedly calling \kbd{eint1($i$ * x)}, but less precise.

The library syntax is \fun{GEN}{veceint1}{GEN x, GEN n = NULL, long prec}.
Also available is \fun{GEN}{eint1}{GEN x, long prec}.

\subsec{erfc$(x)$}\kbdsidx{erfc}\label{se:erfc}
Complementary error function, analytic continuation of
$(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt = \kbd{incgam}(1/2,x^2)/\sqrt\pi$,
where the latter expression extends the function definition from real $x$ to
all complex $x \neq 0$.

The library syntax is \fun{GEN}{gerfc}{GEN x, long prec}.

\subsec{eta$(z,\{\fl=0\})$}\kbdsidx{eta}\label{se:eta}
Variants of \idx{Dedekind}'s $\eta$ function.
If $\fl = 0$, return $\prod_{n=1}^\infty(1-q^n)$, where $q$ depends on $x$
in the following way:

\item $q = e^{2i\pi x}$ if $x$ is a \emph{complex number} (which must then
have positive imaginary part); notice that the factor $q^{1/24}$ is
missing!

\item $q = x$ if $x$ is a \typ{PADIC}, or can be converted to a
\emph{power series} (which must then have positive valuation).

If $\fl$ is non-zero, $x$ is converted to a complex number and we return the
true $\eta$ function, $q^{1/24}\prod_{n=1}^\infty(1-q^n)$,
where $q = e^{2i\pi x}$.

The library syntax is \fun{GEN}{eta0}{GEN z, long flag, long prec}.

Also available is \fun{GEN}{trueeta}{GEN x, long prec} ($\fl=1$).

\subsec{exp$(x)$}\kbdsidx{exp}\label{se:exp}
Exponential of $x$.
$p$-adic arguments with positive valuation are accepted.

The library syntax is \fun{GEN}{gexp}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_exp}{GEN x} is also available.

\subsec{expm1$(x)$}\kbdsidx{expm1}\label{se:expm1}
Return $\exp(x)-1$, computed in a way that is also accurate
when the real part of $x$ is near $0$.
A naive direct computation would suffer from catastrophic cancellation;
PARI's direct computation of $\exp(x)$ alleviates this well known problem at
the expense of computing $\exp(x)$ to a higher accuracy when $x$ is small.
Using \kbd{expm1} is recommended instead:
\bprog
? default(realprecision, 10000); x = 1e-100;
? a = expm1(x);
time = 4 ms.
? b = exp(x)-1;
time = 28 ms.
? default(realprecision, 10040); x = 1e-100;
? c = expm1(x);  \\ reference point
? abs(a-c)/c  \\ relative error in expm1(x)
%7 = 0.E-10017
? abs(b-c)/c  \\ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919
@eprog\noindent As the example above shows, when $x$ is near $0$,
\kbd{expm1} is both faster and more accurate than \kbd{exp(x)-1}.

The library syntax is \fun{GEN}{gexpm1}{GEN x, long prec}.

\subsec{gamma$(s)$}\kbdsidx{gamma}\label{se:gamma}
For $s$ a complex number, evaluates Euler's gamma
function \sidx{gamma-function}
$$\Gamma(s)=\int_0^\infty t^{s-1}\exp(-t)\,dt.$$
Error if $s$ is a non-positive integer, where $\Gamma$ has a pole.

For $s$ a \typ{PADIC}, evaluates the Morita gamma function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
extending $\Gamma_p(k)=(-1)^k \prod_{j<k}'j$, where the prime means that $p$
does not divide $j$.
\bprog
? gamma(1/4 + O(5^10))
%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%,4)
%2 = x^4 + 4*x^2 + 5
@eprog

The library syntax is \fun{GEN}{ggamma}{GEN s, long prec}.
For a \typ{PADIC} $x$, the function \fun{GEN}{Qp_gamma}{GEN x} is
also available.

\subsec{gammah$(x)$}\kbdsidx{gammah}\label{se:gammah}
Gamma function evaluated at the argument $x+1/2$.

The library syntax is \fun{GEN}{ggammah}{GEN x, long prec}.

\subsec{gammamellininv$(G,t,\{m=0\})$}\kbdsidx{gammamellininv}\label{se:gammamellininv}
Returns the value at $t$ of the inverse Mellin transform
$G$ initialized by \tet{gammamellininvinit}.
\bprog
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
@eprog

The alternative shortcut
\bprog
  gammamellininv(A,t,m)
@eprog\noindent for
\bprog
  gammamellininv(gammamellininvinit(A,m), t)
@eprog\noindent is available.

The library syntax is \fun{GEN}{gammamellininv}{GEN G, GEN t, long m, long bitprec}.

\subsec{gammamellininvasymp$(A,n,\{m=0\})$}\kbdsidx{gammamellininvasymp}\label{se:gammamellininvasymp}
Return the first $n$ terms of the asymptotic expansion at infinity
of the $m$-th derivative $K^{(m)}(t)$ of the inverse Mellin transform of the
function
$$f(s) = \Gamma_\R(s+a_1)\*\ldots\*\Gamma_\R(s+a_d)\;,$$
where \kbd{A} is the vector $[a_1,\ldots,a_d]$ and
$\Gamma_\R(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}).
The result is a vector
$[M[1]...M[n]]$ with M[1]=1, such that
$$K^{(m)}(t)=\sqrt{2^{d+1}/d}t^{a+m(2/d-1)}e^{-d\pi t^{2/d}}
   \sum_{n\ge0} M[n+1] (\pi t^{2/d})^{-n} $$
with $a=(1-d+\sum_{1\le j\le d}a_j)/d$.

The library syntax is \fun{GEN}{gammamellininvasymp}{GEN A, long precdl, long n}.

\subsec{gammamellininvinit$(A,\{m=0\})$}\kbdsidx{gammamellininvinit}\label{se:gammamellininvinit}
Initialize data for the computation by \tet{gammamellininv} of
the $m$-th derivative of the inverse Mellin transform of the function
$$f(s) = \Gamma_\R(s+a_1)\*\ldots\*\Gamma_\R(s+a_d)$$
where \kbd{A} is the vector $[a_1,\ldots,a_d]$ and
$\Gamma_\R(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}). This is the
special case of Meijer's $G$ functions used to compute $L$-values via the
approximate functional equation.

\misctitle{Caveat} Contrary to the PARI convention, this function
guarantees an \emph{absolute} (rather than relative) error bound.

For instance, the inverse Mellin transform of $\Gamma_\R(s)$ is
$2\exp(-\pi z^2)$:
\bprog
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
@eprog
The inverse Mellin transform of $\Gamma_\R(s+1)$ is
$2 z\exp(-\pi z^2)$, and its second derivative is
$ 4\pi z \exp(-\pi z^2)(2\pi z^2 - 3)$:
\bprog
? G = gammamellininvinit([1], 2);
? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);
? b(z) = gammamellininv(G,z);
? t(z) = b(z) - a(z);
? t(3/2)
%3 = -1.4693679385278593850 E-39
@eprog

The library syntax is \fun{GEN}{gammamellininvinit}{GEN A, long m, long bitprec}.

\subsec{hyperu$(a,b,x)$}\kbdsidx{hyperu}\label{se:hyperu}
$U$-confluent hypergeometric function with
parameters $a$ and $b$. The parameters $a$ and $b$ can be complex but
the present implementation requires $x$ to be positive.

The library syntax is \fun{GEN}{hyperu}{GEN a, GEN b, GEN x, long prec}.

\subsec{incgam$(s,x,\{g\})$}\kbdsidx{incgam}\label{se:incgam}
Incomplete gamma function $\int_x^\infty e^{-t}t^{s-1}\,dt$, extended by
analytic continuation to all complex $x, s$ not both $0$. The relative error
is bounded in terms of the precision of $s$ (the accuracy of $x$ is ignored
when determining the output precision). When $g$ is given, assume that
$g=\Gamma(s)$. For small $|x|$, this will speed up the computation.

The library syntax is \fun{GEN}{incgam0}{GEN s, GEN x, GEN g = NULL, long prec}.
Also available is \fun{GEN}{incgam}{GEN s, GEN x, long prec}.

\subsec{incgamc$(s,x)$}\kbdsidx{incgamc}\label{se:incgamc}
Complementary incomplete gamma function.
The arguments $x$ and $s$ are complex numbers such that $s$ is not a pole of
$\Gamma$ and $|x|/(|s|+1)$ is not much larger than 1 (otherwise the
convergence is very slow). The result returned is $\int_0^x
e^{-t}t^{s-1}\,dt$.

The library syntax is \fun{GEN}{incgamc}{GEN s, GEN x, long prec}.

\subsec{lambertw$(y)$}\kbdsidx{lambertw}\label{se:lambertw}
Lambert $W$ function, solution of the implicit equation $xe^x=y$,
for $y > 0$.

The library syntax is \fun{GEN}{glambertW}{GEN y, long prec}.

\subsec{lngamma$(x)$}\kbdsidx{lngamma}\label{se:lngamma}
Principal branch of the logarithm of the gamma function of $x$. This
function is analytic on the complex plane with non-positive integers
removed, and can have much larger arguments than \kbd{gamma} itself.

For $x$ a power series such that $x(0)$ is not a pole of \kbd{gamma},
compute the Taylor expansion. (PARI only knows about regular power series
and can't include logarithmic terms.)
\bprog
? lngamma(1+x+O(x^2))
%1 = -0.57721566490153286060651209008240243104*x + O(x^2)
? lngamma(x+O(x^2))
 ***   at top-level: lngamma(x+O(x^2))
 ***                 ^-----------------
 *** lngamma: domain error in lngamma: valuation != 0
? lngamma(-1+x+O(x^2))
 *** lngamma: Warning: normalizing a series with 0 leading term.
 ***   at top-level: lngamma(-1+x+O(x^2))
 ***                 ^--------------------
 *** lngamma: domain error in intformal: residue(series, pole) != 0
@eprog

The library syntax is \fun{GEN}{glngamma}{GEN x, long prec}.

\subsec{log$(x)$}\kbdsidx{log}\label{se:log}
Principal branch of the natural logarithm of
$x \in \C^*$, i.e.~such that $\Im(\log(x))\in{} ]-\pi,\pi]$.
The branch cut lies
along the negative real axis, continuous with quadrant 2, i.e.~such that
$\lim_{b\to 0^+} \log (a+bi) = \log a$ for $a \in\R^*$. The result is complex
(with imaginary part equal to $\pi$) if $x\in \R$ and $x < 0$. In general,
the algorithm uses the formula
$$\log(x) \approx {\pi\over 2\text{agm}(1, 4/s)} - m \log 2, $$
if $s = x 2^m$ is large enough. (The result is exact to $B$ bits provided
$s > 2^{B/2}$.) At low accuracies, the series expansion near $1$ is used.

$p$-adic arguments are also accepted for $x$, with the convention that
$\log(p)=0$. Hence in particular $\exp(\log(x))/x$ is not in general equal to
1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$) times a power of $p$.

The library syntax is \fun{GEN}{glog}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_log}{GEN x} is also available.

\subsec{polylog$(m,x,\{\fl=0\})$}\kbdsidx{polylog}\label{se:polylog}
One of the different polylogarithms, depending on \fl:

If $\fl=0$ or is omitted: $m^\text{th}$ polylogarithm of $x$, i.e.~analytic
continuation of the power series $\text{Li}_m(x)=\sum_{n\ge1}x^n/n^m$
($x < 1$). Uses the functional equation linking the values at $x$ and $1/x$
to restrict to the case $|x|\leq 1$, then the power series when
$|x|^2\le1/2$, and the power series expansion in $\log(x)$ otherwise.

Using $\fl$, computes a modified $m^\text{th}$ polylogarithm of $x$.
We use Zagier's notations; let $\Re_m$ denote $\Re$ or $\Im$ depending
on whether $m$ is odd or even:

If $\fl=1$: compute $\tilde D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1} \dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
+\dfrac{(-\log|x|)^{m-1}}{m!}\log|1-x|\right).$$

If $\fl=2$: compute $D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
-\dfrac{1}{2}\dfrac{(-\log|x|)^m}{m!}\right).$$

If $\fl=3$: compute $P_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{2^kB_k}{k!}(\log|x|)^k\text{Li}_{m-k}(x)
-\dfrac{2^{m-1}B_m}{m!}(\log|x|)^m\right).$$

These three functions satisfy the functional equation
$f_m(1/x) = (-1)^{m-1}f_m(x)$.

The library syntax is \fun{GEN}{polylog0}{long m, GEN x, long flag, long prec}.
Also available is
\fun{GEN}{gpolylog}{long m, GEN x, long prec} (\fl = 0).

\subsec{psi$(x)$}\kbdsidx{psi}\label{se:psi}
The $\psi$-function of $x$, i.e.~the logarithmic derivative
$\Gamma'(x)/\Gamma(x)$.

The library syntax is \fun{GEN}{gpsi}{GEN x, long prec}.

\subsec{sin$(x)$}\kbdsidx{sin}\label{se:sin}
Sine of $x$.

The library syntax is \fun{GEN}{gsin}{GEN x, long prec}.

\subsec{sinc$(x)$}\kbdsidx{sinc}\label{se:sinc}
Cardinal sine of $x$, i.e. $\sin(x)/x$ if $x\neq 0$, $1$ otherwise.
Note that this function also allows to compute
$$(1-\cos(x)) / x^2 = \kbd{sinc}(x/2)^2 / 2$$
accurately near $x = 0$.

The library syntax is \fun{GEN}{gsinc}{GEN x, long prec}.

\subsec{sinh$(x)$}\kbdsidx{sinh}\label{se:sinh}
Hyperbolic sine of $x$.

The library syntax is \fun{GEN}{gsinh}{GEN x, long prec}.

\subsec{sqr$(x)$}\kbdsidx{sqr}\label{se:sqr}
Square of $x$. This operation is not completely
straightforward, i.e.~identical to $x * x$, since it can usually be
computed more efficiently (roughly one-half of the elementary
multiplications can be saved). Also, squaring a $2$-adic number increases
its precision. For example,
\bprog
? (1 + O(2^4))^2
%1 = 1 + O(2^5)
? (1 + O(2^4)) * (1 + O(2^4))
%2 = 1 + O(2^4)
@eprog\noindent
Note that this function is also called whenever one multiplies two objects
which are known to be \emph{identical}, e.g.~they are the value of the same
variable, or we are computing a power.
\bprog
? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)
? (1 + O(2^4))^4
%4 = 1 + O(2^6)
@eprog\noindent
(note the difference between \kbd{\%2} and \kbd{\%3} above).

The library syntax is \fun{GEN}{gsqr}{GEN x}.

\subsec{sqrt$(x)$}\kbdsidx{sqrt}\label{se:sqrt}
Principal branch of the square root of $x$, defined as $\sqrt{x} =
\exp(\log x / 2)$. In particular, we have
$\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/2, \pi/2]$, and if $x\in \R$ and $x<0$,
then the result is complex with positive imaginary part.

Intmod a prime $p$, \typ{PADIC} and \typ{FFELT} are allowed as arguments. In
the first 2 cases (\typ{INTMOD}, \typ{PADIC}), the square root (if it
exists) which is returned is the one whose first $p$-adic digit is in the
interval $[0,p/2]$. For other arguments, the result is undefined.

The library syntax is \fun{GEN}{gsqrt}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_sqrt}{GEN x} is also available.

\subsec{sqrtn$(x,n,\{\&z\})$}\kbdsidx{sqrtn}\label{se:sqrtn}
Principal branch of the $n$th root of $x$,
i.e.~such that $\text{Arg}(\text{sqrtn}(x))\in{} ]-\pi/n, \pi/n]$. Intmod
a prime and $p$-adics are allowed as arguments.

If $z$ is present, it is set to a suitable root of unity allowing to
recover all the other roots. If it was not possible, z is
set to zero. In the case this argument is present and no $n$th root exist,
$0$ is returned instead of raising an error.
\bprog
? sqrtn(Mod(2,7), 2)
%1 = Mod(3, 7)
? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
  ***   at top-level: sqrtn(Mod(2,7),3)
  ***                 ^-----------------
  *** sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3,  &z)
%2 = 0
? z
%3 = 0
@eprog

The following script computes all roots in all possible cases:
\bprog
sqrtnall(x,n)=
{ my(V,r,z,r2);
  r = sqrtn(x,n, &z);
  if (!z, error("Impossible case in sqrtn"));
  if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
    r2 = r*z; n = 1;
    while (r2!=r, r2*=z;n++));
  V = vector(n); V[1] = r;
  for(i=2, n, V[i] = V[i-1]*z);
  V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
@eprog\noindent

The library syntax is \fun{GEN}{gsqrtn}{GEN x, GEN n, GEN *z = NULL, long prec}.
If $x$ is a \typ{PADIC}, the function
\fun{GEN}{Qp_sqrtn}{GEN x, GEN n, GEN *z} is also available.

\subsec{tan$(x)$}\kbdsidx{tan}\label{se:tan}
Tangent of $x$.

The library syntax is \fun{GEN}{gtan}{GEN x, long prec}.

\subsec{tanh$(x)$}\kbdsidx{tanh}\label{se:tanh}
Hyperbolic tangent of $x$.

The library syntax is \fun{GEN}{gtanh}{GEN x, long prec}.

\subsec{teichmuller$(x,\{\var{tab}\})$}\kbdsidx{teichmuller}\label{se:teichmuller}
Teichm\"uller character of the $p$-adic number $x$, i.e. the unique
$(p-1)$-th root of unity congruent to $x / p^{v_p(x)}$ modulo $p$.
If $x$ is of the form $[p,n]$, for a prime $p$ and integer $n$,
return the lifts to $\Z$ of the images of $i + O(p^n)$ for
$i = 1, \dots, p-1$, i.e. all roots of $1$ ordered  by residue class modulo
$p$. Such a vector can be fed back to \kbd{teichmuller}, as the
optional argument \kbd{tab}, to speed up later computations.

\bprog
? z = teichmuller(2 + O(101^5))
%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
? z^100
%2 = 1 + O(101^5)
? T = teichmuller([101, 5]);
? teichmuller(2 + O(101^5), T)
%4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
@eprog\noindent As a rule of thumb, if more than
$$p \,/\, 2(\log_2(p) + \kbd{hammingweight}(p))$$
values of \kbd{teichmuller} are to be computed, then it is worthwile to
initialize:
\bprog
? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
time = 60 ms.
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))
time = 1,293 ms.
? 1 + 2*(log(p)/log(2) + hammingweight(p))
%8 = 22.316[...]
@eprog\noindent Here the precompuation induces a speedup by a factor
$1293/ 60 \approx 21.5$.

\misctitle{Caveat}
If the accuracy of \kbd{tab} (the argument $n$ above) is lower than the
precision of $x$, the \emph{former} is used, i.e. the cached value is not
refined to higher accuracy. It the accuracy of \kbd{tab} is larger, then
the precision of $x$ is used:
\bprog
? Tlow = teichmuller([101, 2]); \\ lower accuracy !
? teichmuller(2 + O(101^5), Tlow)
%10 = 2 + 83*101 + O(101^5)  \\ no longer a root of 1

? Thigh = teichmuller([101, 10]); \\ higher accuracy
? teichmuller(2 + O(101^5), Thigh)
%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
@eprog

The library syntax is \fun{GEN}{teichmuller}{GEN x, GEN tab = NULL}.

Also available are the functions \fun{GEN}{teich}{GEN x} (\kbd{tab} is
\kbd{NULL}) as well as
\fun{GEN}{teichmullerinit}{long p, long n}.

\subsec{theta$(q,z)$}\kbdsidx{theta}\label{se:theta}
Jacobi sine theta-function
$$ \theta_1(z, q) = 2q^{1/4} \sum_{n\geq 0} (-1)^n q^{n(n+1)} \sin((2n+1)z).$$

The library syntax is \fun{GEN}{theta}{GEN q, GEN z, long prec}.

\subsec{thetanullk$(q,k)$}\kbdsidx{thetanullk}\label{se:thetanullk}
$k$-th derivative at $z=0$ of $\kbd{theta}(q,z)$.

The library syntax is \fun{GEN}{thetanullk}{GEN q, long k, long prec}.

\fun{GEN}{vecthetanullk}{GEN q, long k, long prec} returns the vector
of all $\dfrac{d^i\theta}{dz^i}(q,0)$ for all odd $i = 1, 3, \dots, 2k-1$.
\fun{GEN}{vecthetanullk_tau}{GEN tau, long k, long prec} returns
\kbd{vecthetanullk\_tau} at $q = \exp(2i\pi \kbd{tau})$.

\subsec{weber$(x,\{\fl=0\})$}\kbdsidx{weber}\label{se:weber}
One of Weber's three $f$ functions.
If $\fl=0$, returns
$$f(x)=\exp(-i\pi/24)\cdot\eta((x+1)/2)\,/\,\eta(x) \quad\hbox{such that}\quad
j=(f^{24}-16)^3/f^{24}\,,$$
where $j$ is the elliptic $j$-invariant  (see the function \kbd{ellj}).
If $\fl=1$, returns
$$f_1(x)=\eta(x/2)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_1^{24}+16)^3/f_1^{24}\,.$$
Finally, if $\fl=2$, returns
$$f_2(x)=\sqrt{2}\eta(2x)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_2^{24}+16)^3/f_2^{24}.$$
Note the identities $f^8=f_1^8+f_2^8$ and $ff_1f_2=\sqrt2$.

The library syntax is \fun{GEN}{weber0}{GEN x, long flag, long prec}.
Also available are \fun{GEN}{weberf}{GEN x, long prec},
\fun{GEN}{weberf1}{GEN x, long prec} and \fun{GEN}{weberf2}{GEN x, long prec}.

\subsec{zeta$(s)$}\kbdsidx{zeta}\label{se:zeta}
For $s$ a complex number, Riemann's zeta
function \sidx{Riemann zeta-function} $\zeta(s)=\sum_{n\ge1}n^{-s}$,
computed using the \idx{Euler-Maclaurin} summation formula, except
when $s$ is of type integer, in which case it is computed using
Bernoulli numbers\sidx{Bernoulli numbers} for $s\le0$ or $s>0$ and
even, and using modular forms for $s>0$ and odd.

For $s$ a $p$-adic number, Kubota-Leopoldt zeta function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative
integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if
$p$ is odd (resp. $p = 2$).

The library syntax is \fun{GEN}{gzeta}{GEN s, long prec}.

\subsec{zetamult$(s)$}\kbdsidx{zetamult}\label{se:zetamult}
For $s$ a vector of positive integers such that $s[1] \geq 2$,
returns the multiple zeta value (MZV)
$$\zeta(s_1,\dots, s_k) = \sum_{n_1>\dots>n_k>0} n_1^{-s_1}\dots n_k^{-s_k}.$$
\bprog
? zetamult([2,1]) - zeta(3) \\ Euler's identity
%1 = 0.E-38
@eprog

The library syntax is \fun{GEN}{zetamult}{GEN s, long prec}.
%SECTION: transcendental

\section{Arithmetic functions}\label{se:arithmetic}

These functions are by definition functions whose natural domain of
definition is either $\Z$ (or $\Z_{>0}$). The way these functions are used is
completely different from transcendental functions in that there are no
automatic type conversions: in general only integers are accepted as
arguments. An integer argument $N$ can be given in the following alternate
formats:

\item \typ{MAT}: its factorization \kbd{fa = factor($N$)},

\item \typ{VEC}: a pair \kbd{[$N$, fa]} giving both the integer and
  its factorization.

This allows to compute different arithmetic functions at a given $N$
while factoring the latter only once.

\bprog
  ? N = 10!; faN = factor(N);
  ? eulerphi(N)
  %2 = 829440
  ? eulerphi(faN)
  %3 = 829440
  ? eulerphi(S = [N, faN])
  %4 = 829440
  ? sigma(S)
  %5 = 15334088
@eprog

\subsec{Arithmetic functions and the factoring engine}
All arithmetic functions in the narrow sense of the word~--- Euler's
totient\sidx{Euler totient function} function, the \idx{Moebius} function,
the sums over divisors or powers of divisors etc.--- call, after trial
division by small primes, the same versatile factoring machinery described
under \kbd{factorint}. It includes \idx{Shanks SQUFOF}, \idx{Pollard Rho},
\idx{ECM} and \idx{MPQS} stages, and has an early exit option for the
functions \teb{moebius} and (the integer function underlying)
\teb{issquarefree}. This machinery relies on a fairly strong
probabilistic primality test, see \kbd{ispseudoprime}, but you may also set
\bprog
  default(factor_proven, 1)
@eprog\noindent to ensure that all tentative factorizations are fully proven.
This should not slow down PARI too much, unless prime numbers with
hundreds of decimal digits occur frequently in your application.

\subsec{Orders in finite groups and Discrete Logarithm functions}
\label{se:DLfun}

The following functions compute the order of an element in a finite group:
\kbd{ellorder} (the rational points on an elliptic curve defined over a
finite field), \kbd{fforder} (the multiplicative group of a finite field),
\kbd{znorder} (the invertible elements in $\Z/n\Z$). The following functions
compute discrete logarithms in the same groups (whenever this is meaningful)
\kbd{elllog}, \kbd{fflog}, \kbd{znlog}.

All such functions allow an optional argument specifying an integer
$N$, representing the order of the group. (The \emph{order} functions also
allows any non-zero multiple of the order, with a minor loss of efficiency.)
That optional argument follows the same format as given above:

\item \typ{INT}: the integer $N$,

\item \typ{MAT}: the factorization \kbd{fa = factor($N$)},

\item \typ{VEC}: this is the preferred format and provides both the
integer $N$ and its factorization in a two-component vector
\kbd{[$N$, fa]}.

When the group is fixed and many orders or discrete logarithms will be
computed, it is much more efficient to initialize this data once and for all
and pass it to the relevant functions, as in
\bprog
? p = nextprime(10^40);
? v = [p-1, factor(p-1)]; \\ data for discrete log & order computations
? znorder(Mod(2,p), v)
%3 = 500000000000000000000000000028
? g = znprimroot(p);
? znlog(2, g, v)
%5 = 543038070904014908801878611374
@eprog

\subsec{Dirichlet characters}\label{se:dirichletchar}

The finite abelian group $G = (\Z/N\Z)^*$ can be written $G = \oplus_{i\leq
n} (\Z/d_i\Z) g_i$, with $d_n \mid \dots \mid d_2 \mid d_1$ (SNF condition),
all $d_i > 0$, and $\prod_i d_i = \phi(N)$.

The SNF condition makes the $d_i$ unique, but the generators $g_i$, of
respective order $d_i$, are definitely not unique. The $\oplus$ notation
means that all elements of $G$ can be written uniquely as $\prod_i g_i^{n_i}$
where $n_i \in \Z/d_i\Z$. The $g_i$ are the so-called \tev{SNF generators}
of $G$.

\item a \tev{character} on the abelian group
$\oplus (\Z/d_j\Z) g_j$
is given by a row vector $\chi = [a_1,\ldots,a_n]$ of integers $0\leq a_i  <
d_i$ such that $\chi(g_j) = e(a_j / d_j)$ for all $j$, with the standard
notation $e(x) := \exp(2i\pi x)$.
In other words,
$\chi(\prod g_j^{n_j}) = e(\sum a_j n_j / d_j)$.

This will be generalized to more general abelian groups in later sections
(Hecke characters), but in the present case of $(\Z/N\Z)^*$, there is a useful
alternate convention : namely, it is not necessary to impose the SNF
condition and we can use Chinese reminders instead. If $N = \prod p^{e_p}$ is
the factorization of $N$ into primes, the so-called \tev{Conrey generators}
of $G$ are the generators of the $(\Z/p^{e_p}\Z)^*$ lifted to $(\Z/N\Z)^*$ by
requesting that they be congruent to $1$ modulo $N/p^{e_p}$ (for $p$ odd we
take the smallest positive primitive root, and for $p = 2$ we take $-1$ if
$e_2 > 1$ and additionally $5$ if $e_2 > 2$). We can again write $G =
\oplus_{i\leq n} (\Z/D_i\Z) G_i$, where again $\prod_i D_i = \phi(N)$. These
generators don't satisfy the SNF condition in general since their orders are
now $(p-1)p^{e_p-1}$ for $p$ odd; for $p = 2$, the generator $-1$ has order
$2$ and $5$ has order $2^{e_2-2}$ $(e_2 > 2)$. Nevertheless, any $m\in
(\Z/N\Z)^*$ can be uniquely decomposed as $\prod G_i^{m_i}$ for some $m_i$
modulo $D_i$ and we can define a character by $\chi(G_j) = e(m_j / D_j)$ for
all $j$.

\item The \emph{column vector} of the $m_j$, $0 \leq m_j < D_j$ is called the
\tev{Conrey logarithm} of $m$ (discrete logarithm in terms of the Conrey
generators). Note that discrete logarithms in PARI/GP are always expressed as
\typ{COL}s.

\item The attached character is called the \tev{Conrey character}
attached to $m$.

To sum up a Dirichlet character can be defined by a \typ{INT} (the Conrey
label $m$), a \typ{COL} (the Conrey logarithm of $m$, in terms of the Conrey
generators) or a \typ{VEC} (in  terms of the SNF generators). The \typ{COL}
format, i.e. Conrey logarithms, is the preferred (fastest) representation.

Concretely, this works as follows:

\kbd{G = idealstar(,N)} initializes $(\Z/N\Z)^*$, which must be given as
first arguments to all functions handling Dirichlet characters.

\kbd{znconreychar} transforms \typ{INT} and \typ{COL} to a SNF character.

\kbd{znconreylog} transforms \typ{INT} and \typ{VEC} to a Conrey logarithm.

\kbd{znconreyexp} transforms \typ{VEC} and \typ{COL} to a Conrey label.

Also available are \kbd{charconj},  \kbd{chardiv}, \kbd{charmul},
\kbd{charker}, \kbd{chareval}, \kbd{charorder}, \kbd{zncharinduce},
\kbd{znconreyconductor} (also computes the primitive character attached to
the input character). The prefix \kbd{char} indicates that the function
applies to all characters, the prefix \kbd{znchar} that it is specific to
Dirichlet characters (on $(\Z/N\Z)^*$) and the prefix \kbd{znconrey} that it
is specific to Conrey representation.

\bigskip


\subsec{addprimes$(\{x=[\,]\})$}\kbdsidx{addprimes}\label{se:addprimes}
Adds the integers contained in the
vector $x$ (or the single integer $x$) to a special table of
``user-defined primes'', and returns that table. Whenever \kbd{factor} is
subsequently called, it will trial divide by the elements in this table.
If $x$ is empty or omitted, just returns the current list of extra
primes.

The entries in $x$ must be primes: there is no internal check, even if
the \tet{factor_proven} default is set. To remove primes from the list use
\kbd{removeprimes}.

The library syntax is \fun{GEN}{addprimes}{GEN x = NULL}.

\subsec{bestappr$(x, \{B\})$}\kbdsidx{bestappr}\label{se:bestappr}
Using variants of the extended Euclidean algorithm, returns a rational
approximation $a/b$ to $x$, whose denominator is limited
by $B$, if present. If $B$ is omitted, return the best approximation
affordable given the input accuracy; if you are looking for true rational
numbers, presumably approximated to sufficient accuracy, you should first
try that option. Otherwise, $B$ must be a positive real scalar (impose
$0 < b \leq B$).

\item If $x$ is a \typ{REAL} or a \typ{FRAC}, this function uses continued
fractions.
\bprog
? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]
@eprog
By definition, $a/b$ is the best rational approximation to $x$ if
$|b x - a| < |v x - u|$ for all integers $(u,v)$ with $0 < v \leq B$.
(Which implies that $n/d$ is a convergent of the continued fraction of $x$.)

\item If $x$ is a \typ{INTMOD} modulo $N$ or a \typ{PADIC} of precision $N =
p^k$, this function performs rational modular reconstruction modulo $N$. The
routine then returns the unique rational number $a/b$ in coprime integers
$|a| < N/2B$ and $b\leq B$ which is congruent to $x$ modulo $N$. Omitting
$B$ amounts to choosing it of the order of $\sqrt{N/2}$. If rational
reconstruction is not possible (no suitable $a/b$ exists), returns $[]$.
\bprog
? bestappr(Mod(18526731858, 11^10))
%1 = 1/7
? bestappr(Mod(18526731858, 11^20))
%2 = []
? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))
%2 = -1/3
@eprog\noindent In most concrete uses, $B$ is a prime power and we performed
Hensel lifting to obtain $x$.

The function applies recursively to components of complex objects
(polynomials, vectors, \dots). If rational reconstruction fails for even a
single entry, return $[]$.

The library syntax is \fun{GEN}{bestappr}{GEN x, GEN B = NULL}.

\subsec{bestapprPade$(x, \{B\})$}\kbdsidx{bestapprPade}\label{se:bestapprPade}
Using variants of the extended Euclidean algorithm, returns a rational
function approximation $a/b$ to $x$, whose denominator is limited
by $B$, if present. If $B$ is omitted, return the best approximation
affordable given the input accuracy; if you are looking for true rational
functions, presumably approximated to sufficient accuracy, you should first
try that option. Otherwise, $B$ must be a non-negative real (impose
$0 \leq \text{degree}(b) \leq B$).

\item If $x$ is a \typ{RFRAC} or \typ{SER}, this function uses continued
fractions.
\bprog
? bestapprPade((1-x^11)/(1-x)+O(x^11))
%1 = 1/(-x + 1)
? bestapprPade([1/(1+x+O(x^10)), (x^3-2)/(x^3+1)], 1)
%2 =  [1/(x + 1), -2]
@eprog

\item If $x$ is a \typ{POLMOD} modulo $N$ or a \typ{SER} of precision $N =
t^k$, this function performs rational modular reconstruction modulo $N$. The
routine then returns the unique rational function $a/b$ in coprime
polynomials, with $\text{degree}(b)\leq B$ which is congruent to $x$ modulo
$N$. Omitting $B$ amounts to choosing it of the order of $N/2$. If rational
reconstruction is not possible (no suitable $a/b$ exists), returns $[]$.
\bprog
? bestapprPade(Mod(1+x+x^2+x^3+x^4, x^4-2))
%1 = (2*x - 1)/(x - 1)
? % * Mod(1,x^4-2)
%2 = Mod(x^3 + x^2 + x + 3, x^4 - 2)
? bestapprPade(Mod(1+x+x^2+x^3+x^5, x^9))
%2 = []
? bestapprPade(Mod(1+x+x^2+x^3+x^5, x^10))
%3 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)
@eprog\noindent
The function applies recursively to components of complex objects
(polynomials, vectors, \dots). If rational reconstruction fails for even a
single entry, return $[]$.

The library syntax is \fun{GEN}{bestapprPade}{GEN x, long B}.

\subsec{bezout$(x,y)$}\kbdsidx{bezout}\label{se:bezout}
Deprecated alias for \kbd{gcdext}

The library syntax is \fun{GEN}{gcdext0}{GEN x, GEN y}.

\subsec{bigomega$(x)$}\kbdsidx{bigomega}\label{se:bigomega}
Number of prime divisors of the integer $|x|$ counted with
multiplicity:
\bprog
? factor(392)
%1 =
[2 3]

[7 2]

? bigomega(392)
%2 = 5;  \\ = 3+2
? omega(392)
%3 = 2;  \\ without multiplicity
@eprog

The library syntax is \fun{long}{bigomega}{GEN x}.

\subsec{binomial$(x,y)$}\kbdsidx{binomial}\label{se:binomial}
\idx{binomial coefficient} $\binom{x}{y}$.
Here $y$ must be an integer, but $x$ can be any PARI object.

The library syntax is \fun{GEN}{binomial}{GEN x, long y}.
The function
\fun{GEN}{binomialuu}{ulong n, ulong k} is also available, and so is
\fun{GEN}{vecbinome}{long n}, which returns a vector $v$
with $n+1$ components such that $v[k+1] = \kbd{binomial}(n,k)$ for $k$ from
$0$ up to $n$.

\subsec{charconj$(\var{cyc},\var{chi})$}\kbdsidx{charconj}\label{se:charconj}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.

This function returns the conjugate character.
\bprog
? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)
%2 = [14, 4]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charconj(bnf, [1])
%5 = [2]
@eprog\noindent For Dirichlet characters (when \kbd{cyc} is
\kbd{idealstar(,q)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}:
\bprog
? G = idealstar(,8);  \\ (Z/8Z)^*
? charorder(G, 3)  \\ Conrey label
%2 = 2
? chi = znconreylog(G, 3);
? charorder(G, chi)  \\ Conrey logarithm
%4 = 2
@eprog

The library syntax is \fun{GEN}{charconj0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charconj}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).

\subsec{chardiv$(\var{cyc}, a,b)$}\kbdsidx{chardiv}\label{se:chardiv}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $a = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.

Given two characters $a$ and $b$, return the character
$a / b = a \overline{b}$.
\bprog
? cyc = [15,5]; a = [1,1]; b =  [2,4];
? chardiv(cyc, a,b)
%2 = [14, 2]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? chardiv(bnf, [1], [2])
%5 = [2]
@eprog\noindent For Dirichlet characters on  $(\Z/N\Z)^*$, additional
representations are available (Conrey labels, Conrey logarithm),
see \secref{se:dirichletchar} or \kbd{??character}.
If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.
\bprog
? G = idealstar(,100);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? chardiv(G, b,b)
%6 = 1   \\ Conrey label
? chardiv(G, a,b)
%7 = [0, 5]~  \\ Conrey log
? chardiv(G, a,c)
%7 = [0, 14]~   \\ Conrey log
@eprog

The library syntax is \fun{GEN}{chardiv0}{GEN cyc, GEN a, GEN b}.
Also available is
\fun{GEN}{chardiv}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
be a vector of elementary divisors and $a, b$ are compatible characters
(no checks).

\subsec{chareval$(G, \var{chi}, x, \{z\}))$}\kbdsidx{chareval}\label{se:chareval}
Let $G$ be an abelian group structure affording a discrete logarithm
method, e.g $G = \kbd{idealstar}(,N)$ for $(\Z/N\Z)^*$ or a \kbd{bnr}
structure, let $x$ be an element of $G$ and let \var{chi} be a character of
$G$ (see the note below for details). This function returns the value of
\var{chi} at $x$.

\misctitle{Note on characters}
Let $K$ be some field. If $G$ is an abelian group,
let $\chi: G \to K^*$ be a character of finite order and let $o$ be a
multiple of the character order such that $\chi(n) = \zeta^{c(n)}$ for some
fixed $\zeta\in K^*$ of multiplicative order $o$ and a unique morphism $c: G
\to (\Z/o\Z,+)$. Our usual convention is to write
$$G = (\Z/o_1\Z) g_1 \oplus \cdots \oplus (\Z/o_d\Z) g_d$$
for some generators $(g_i)$ of respective order $d_i$, where the group has
exponent $o := \text{lcm}_i o_i$. Since $\zeta^o = 1$, the vector $(c_i)$ in
$\prod (\Z/o_i\Z)$ defines a character $\chi$ on $G$ via $\chi(g_i) =
\zeta^{c_i (o/o_i)}$ for all $i$. Classical Dirichlet characters have values
in $K = \C$ and we can take $\zeta = \exp(2i\pi/o)$.

\misctitle{Note on Dirichlet characters}
In the special case where \var{bid} is attached to $G = (\Z/q\Z)^*$
(as per \kbd{bid = idealstar(,q)}), the Dirichlet
character \var{chi} can be written in one of the usual 3 formats: a \typ{VEC}
in terms of \kbd{bid.gen} as above, a \typ{COL} in terms of the Conrey
generators, or a \typ{INT} (Conrey label);
see \secref{se:dirichletchar} or \kbd{??character}.

The character value is encoded as follows, depending on the optional
argument $z$:

\item If $z$ is omitted: return the rational number $c(x)/o$ for $x$ coprime
to $q$, where we normalize $0\leq c(x) < o$. If $x$ can not be mapped to the
group (e.g. $x$ is not coprime to the conductor of a Dirichlet or Hecke
character) we return the sentinel value $-1$.

\item If $z$ is an integer $o$, then we assume that $o$ is a multiple of the
character order and we return the integer $c(x)$ when $x$ belongs
to the group, and the sentinel value $-1$ otherwise.

\item $z$ can be of the form $[\var{zeta}, o]$, where \var{zeta}
is an $o$-th root of $1$ and $o$ is a multiple of the character order.
We return $\zeta^{c(x)}$ if $x$ belongs to the group, and the sentinel
value $0$ otherwise. (Note that this coincides  with the usual extension
of Dirichlet characters to $\Z$, or of Hecke characters to general ideals.)

\item Finally, $z$ can be of the form $[\var{vzeta}, o]$, where
\var{vzeta} is a vector of powers $\zeta^0, \dots, \zeta^{o-1}$
of some $o$-th root of $1$ and $o$ is a multiple of the character order.
As above, we return $\zeta^{c(x)}$ after a table lookup. Or the sentinel
value $0$.

The library syntax is \fun{GEN}{chareval}{GEN G, GEN chi, GEN x, GEN z) = NULL}.

\subsec{charker$(\var{cyc},\var{chi})$}\kbdsidx{charker}\label{se:charker}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.

This function returns the kernel of $\chi$, as a matrix $K$ in HNF which is a
left-divisor of \kbd{matdiagonal(d)}. Its columns express in terms of
the $g_j$ the generators of the subgroup. The determinant of $K$ is the
kernel index.
\bprog
? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)
%2 =
[15 12]

[ 0  1]

? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charker(bnf, [1])
%5 =
[3]
@eprog\noindent Note that for Dirichlet characters (when \kbd{cyc} is
\kbd{idealstar(,q)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}.
\bprog
? G = idealstar(,8);  \\ (Z/8Z)^*
? charker(G, 1) \\ Conrey label for trivial character
%2 =
[1 0]

[0 1]
@eprog

The library syntax is \fun{GEN}{charker0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charker}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).

\subsec{charmul$(\var{cyc}, a,b)$}\kbdsidx{charmul}\label{se:charmul}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $a = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.

Given two characters $a$ and $b$, return the product character $ab$.
\bprog
? cyc = [15,5]; a = [1,1]; b =  [2,4];
? charmul(cyc, a,b)
%2 = [3, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charmul(bnf, [1], [2])
%5 = [0]
@eprog\noindent For Dirichlet characters on  $(\Z/N\Z)^*$, additional
representations are available (Conrey labels, Conrey logarithm), see
\secref{se:dirichletchar} or \kbd{??character}. If the two characters are in
the same format, their
product is given in the same format, otherwise a Conrey logarithm is used.
\bprog
? G = idealstar(,100);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charmul(G, b,b)
%6 = 49   \\ Conrey label
? charmul(G, a,b)
%7 = [0, 15]~  \\ Conrey log
? charmul(G, a,c)
%7 = [0, 6]~   \\ Conrey log
@eprog

The library syntax is \fun{GEN}{charmul0}{GEN cyc, GEN a, GEN b}.
Also available is
\fun{GEN}{charmul}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
be a vector of elementary divisors and $a, b$ are compatible characters
(no checks).

\subsec{charorder$(\var{cyc},\var{chi})$}\kbdsidx{charorder}\label{se:charorder}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.

This function returns the order of the character \kbd{chi}.
\bprog
? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)
%2 = 15
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charorder(bnf, [1])
%5 = 3
@eprog\noindent For Dirichlet characters (when \kbd{cyc} is
\kbd{idealstar(,q)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}:
\bprog
? G = idealstar(,100); \\ (Z/100Z)^*
? charorder(G, 7)   \\ Conrey label
%2 = 4
@eprog

The library syntax is \fun{GEN}{charorder0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charorder}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).

\subsec{chinese$(x,\{y\})$}\kbdsidx{chinese}\label{se:chinese}
If $x$ and $y$ are both intmods or both polmods, creates (with the same
type) a $z$ in the same residue class as $x$ and in the same residue class as
$y$, if it is possible.
\bprog
? chinese(Mod(1,2), Mod(2,3))
%1 = Mod(5, 6)
? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))
%2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)
@eprog\noindent
This function also allows vector and matrix arguments, in which case the
operation is recursively applied to each component of the vector or matrix.
\bprog
? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]
@eprog\noindent
For polynomial arguments in the same variable, the function is applied to each
coefficient; if the polynomials have different degrees, the high degree terms
are copied verbatim in the result, as if the missing high degree terms in the
polynomial of lowest degree had been \kbd{Mod(0,1)}. Since the latter
behavior is usually \emph{not} the desired one, we propose to convert the
polynomials to vectors of the same length first:
\bprog
 ? P = x+1; Q = x^2+2*x+1;
 ? chinese(P*Mod(1,2), Q*Mod(1,3))
 %4 = Mod(1, 3)*x^2 + Mod(5, 6)*x + Mod(3, 6)
 ? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
 %5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]
 ? Pol(%)
 %6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)
@eprog

If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
to the components of $x$, yielding a residue belonging to the same class as all
components of $x$.

Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
vector arguments to contain other data, so long as they are identical in both
vectors.

The library syntax is \fun{GEN}{chinese}{GEN x, GEN y = NULL}.
\fun{GEN}{chinese1}{GEN x} is also available.

\subsec{content$(x)$}\kbdsidx{content}\label{se:content}
Computes the gcd of all the coefficients of $x$,
when this gcd makes sense. This is the natural definition
if $x$ is a polynomial (and by extension a power series) or a
vector/matrix. This is in general a weaker notion than the \emph{ideal}
generated by the coefficients:
\bprog
? content(2*x+y)
%1 = 1            \\ = gcd(2,y) over Q[y]
@eprog

If $x$ is a scalar, this simply returns the absolute value of $x$ if $x$ is
rational (\typ{INT} or \typ{FRAC}), and either $1$ (inexact input) or $x$
(exact input) otherwise; the result should be identical to \kbd{gcd(x, 0)}.

The content of a rational function is the ratio of the contents of the
numerator and the denominator. In recursive structures, if a
matrix or vector \emph{coefficient} $x$ appears, the gcd is taken
not with $x$, but with its content:
\bprog
? content([ [2], 4*matid(3) ])
%1 = 2
@eprog\noindent The content of a \typ{VECSMALL} is computed assuming the
entries are signed integers.

The library syntax is \fun{GEN}{content}{GEN x}.

\subsec{contfrac$(x,\{b\},\{\var{nmax}\})$}\kbdsidx{contfrac}\label{se:contfrac}
Returns the row vector whose components are the partial quotients of the
\idx{continued fraction} expansion of $x$. In other words, a result
$[a_0,\dots,a_n]$ means that $x \approx a_0+1/(a_1+\dots+1/a_n)$. The
output is normalized so that $a_n \neq 1$ (unless we also have $n = 0$).

The number of partial quotients $n+1$ is limited by \kbd{nmax}. If
\kbd{nmax} is omitted, the expansion stops at the last significant partial
quotient.
\bprog
? \p19
  realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3)  \\ n = 2
%2 = [3, 7, 15]
@eprog\noindent
$x$ can also be a rational function or a power series.

If a vector $b$ is supplied, the numerators are equal to the coefficients
of $b$, instead of all equal to $1$ as above; more precisely, $x \approx
(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$; for a numerical continued fraction
($x$ real), the $a_i$ are integers, as large as possible; if $x$ is a
rational function, they are polynomials with $\deg a_i = \deg b_i + 1$.
The length of the result is then equal to the length of $b$, unless the next
partial quotient cannot be reliably computed, in which case the expansion
stops. This happens when a partial remainder is equal to zero (or too small
compared to the available significant digits for $x$ a \typ{REAL}).

A direct implementation of the numerical continued fraction
\kbd{contfrac(x,b)} described above would be
\bprog
\\ "greedy" generalized continued fraction
cf(x, b) =
{ my( a= vector(#b), t );

  x *= b[1];
  for (i = 1, #b,
    a[i] = floor(x);
    t = x - a[i]; if (!t || i == #b, break);
    x = b[i+1] / t;
  ); a;
}
@eprog\noindent There is some degree of freedom when choosing the $a_i$; the
program above can easily be modified to derive variants of the standard
algorithm. In the same vein, although no builtin
function implements the related \idx{Engel expansion} (a special kind of
\idx{Egyptian fraction} decomposition: $x = 1/a_1 + 1/(a_1a_2) + \dots$ ),
it can be obtained as follows:
\bprog
\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{ my( u = x, a = vector(n) );
  for (k = 1, n,
    a[k] = ceil(1/u);
    u = u*a[k] - 1;
    if (!u, break);
  ); a
}
@eprog

\misctitle{Obsolete hack} (don't use this): if $b$ is an integer, \var{nmax}
is ignored and the command is understood as \kbd{contfrac($x,, b$)}.

The library syntax is \fun{GEN}{contfrac0}{GEN x, GEN b = NULL, long nmax}.
Also available are \fun{GEN}{gboundcf}{GEN x, long nmax},
\fun{GEN}{gcf}{GEN x} and \fun{GEN}{gcf2}{GEN b, GEN x}.

\subsec{contfracpnqn$(x, \{n=-1\})$}\kbdsidx{contfracpnqn}\label{se:contfracpnqn}
When $x$ is a vector or a one-row matrix, $x$
is considered as the list of partial quotients $[a_0,a_1,\dots,a_n]$ of a
rational number, and the result is the 2 by 2 matrix
$[p_n,p_{n-1};q_n,q_{n-1}]$ in the standard notation of continued fractions,
so $p_n/q_n=a_0+1/(a_1+\dots+1/a_n)$. If $x$ is a matrix with two rows
$[b_0,b_1,\dots,b_n]$ and $[a_0,a_1,\dots,a_n]$, this is then considered as a
generalized continued fraction and we have similarly
$p_n/q_n=(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$. Note that in this case one
usually has $b_0=1$.

If $n \geq 0$ is present, returns all convergents from $p_0/q_0$ up to
$p_n/q_n$. (All convergents if $x$ is too small to compute the $n+1$
requested convergents.)
\bprog
? a=contfrac(Pi,20)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2]
? contfracpnqn(a,3)
%2 =
[3 22 333 355]

[1  7 106 113]

? contfracpnqn(a,7)
%3 =
[3 22 333 355 103993 104348 208341 312689]

[1  7 106 113  33102  33215  66317  99532]
@eprog

The library syntax is \fun{GEN}{contfracpnqn}{GEN x, long n}.
also available is \fun{GEN}{pnqn}{GEN x} for $n = -1$.

\subsec{core$(n,\{\fl=0\})$}\kbdsidx{core}\label{se:core}
If $n$ is an integer written as
$n=df^2$ with $d$ squarefree, returns $d$. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. By convention, we write $0 = 0
\times 1^2$, so \kbd{core(0, 1)} returns $[0,1]$.

The library syntax is \fun{GEN}{core0}{GEN n, long flag}.
Also available are \fun{GEN}{core}{GEN n} ($\fl = 0$) and
\fun{GEN}{core2}{GEN n} ($\fl = 1$)

\subsec{coredisc$(n,\{\fl=0\})$}\kbdsidx{coredisc}\label{se:coredisc}
A \emph{fundamental discriminant} is an integer of the form $t\equiv 1
\mod 4$ or $4t \equiv 8,12 \mod 16$, with $t$ squarefree (i.e.~$1$ or the
discriminant of a quadratic number field). Given a non-zero integer
$n$, this routine returns the (unique) fundamental discriminant $d$
such that $n=df^2$, $f$ a positive rational number. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. If $n$ is congruent to
0 or 1 modulo 4, $f$ is an integer, and a half-integer otherwise.

By convention, \kbd{coredisc(0, 1))} returns $[0,1]$.

Note that \tet{quaddisc}$(n)$ returns the same value as \kbd{coredisc}$(n)$,
and also works with rational inputs $n\in\Q^*$.

The library syntax is \fun{GEN}{coredisc0}{GEN n, long flag}.
Also available are \fun{GEN}{coredisc}{GEN n} ($\fl = 0$) and
\fun{GEN}{coredisc2}{GEN n} ($\fl = 1$)

\subsec{dirdiv$(x,y)$}\kbdsidx{dirdiv}\label{se:dirdiv}
$x$ and $y$ being vectors of perhaps different
lengths but with $y[1]\neq 0$ considered as \idx{Dirichlet series}, computes
the quotient of $x$ by $y$, again as a vector.

The library syntax is \fun{GEN}{dirdiv}{GEN x, GEN y}.

\subsec{direuler$(p=a,b,\var{expr},\{c\})$}\kbdsidx{direuler}\label{se:direuler}
Computes the \idx{Dirichlet series} attached to the
\idx{Euler product} of expression \var{expr} as $p$ ranges through the primes
from $a$
to $b$. \var{expr} must be a polynomial or rational function in another
variable than $p$ (say $X$) and $\var{expr}(X)$ is understood as the local
factor $\var{expr}(p^{-s})$.

The series is output as a vector of coefficients. If $c$ is omitted, output
the first $b$ coefficients of the series; otherwise, output the first $c$
coefficients. The following command computes the \teb{sigma} function,
attached to $\zeta(s)\zeta(s-1)$:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
%1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]

? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 5) \\ fewer terms
%2 = [1, 3, 4, 7, 6]
@eprog\noindent Setting $c < b$ is useless (the same effect would be
achieved by setting $b = c)$. If $c > b$, the computed coefficients are
``missing'' Euler factors:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 15) \\ more terms, no longer = sigma !
%3 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 0, 28, 0, 24, 24]
@eprog

\synt{direuler}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b}

\subsec{dirmul$(x,y)$}\kbdsidx{dirmul}\label{se:dirmul}
$x$ and $y$ being vectors of perhaps different lengths representing
the \idx{Dirichlet series} $\sum_n x_n n^{-s}$ and $\sum_n y_n n^{-s}$,
computes the product of $x$ by $y$, again as a vector.
\bprog
? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
@eprog\noindent
The product
length is the minimum of $\kbd{\#}x\kbd{*}v(y)$ and $\kbd{\#}y\kbd{*}v(x)$,
where $v(x)$ is the index of the first non-zero coefficient.
\bprog
? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]
@eprog

The library syntax is \fun{GEN}{dirmul}{GEN x, GEN y}.

\subsec{divisors$(x)$}\kbdsidx{divisors}\label{se:divisors}
Creates a row vector whose components are the
divisors of $x$. The factorization of $x$ (as output by \tet{factor}) can
be used instead.

By definition, these divisors are the products of the irreducible
factors of $n$, as produced by \kbd{factor(n)}, raised to appropriate
powers (no negative exponent may occur in the factorization). If $n$ is
an integer, they are the positive divisors, in increasing order.

The library syntax is \fun{GEN}{divisors}{GEN x}.

\subsec{eulerphi$(x)$}\kbdsidx{eulerphi}\label{se:eulerphi}
Euler's $\phi$ (totient)\sidx{Euler totient function} function of the
integer $|x|$, in other words $|(\Z/x\Z)^*|$.
\bprog
? eulerphi(40)
%1 = 16
@eprog\noindent
According to this definition we let $\phi(0) := 2$, since $\Z^* = \{-1,1\}$;
this is consistent with \kbd{znstar(0)}: we have
\kbd{znstar$(n)$.no = eulerphi(n)} for all $n\in\Z$.

The library syntax is \fun{GEN}{eulerphi}{GEN x}.

\subsec{factor$(x,\{\var{lim}\})$}\kbdsidx{factor}\label{se:factor}
General factorization function, where $x$ is a
rational (including integers), a complex number with rational
real and imaginary parts, or a rational function (including polynomials).
The result is a two-column matrix: the first contains the irreducibles
dividing $x$ (rational or Gaussian primes, irreducible polynomials),
and the second the exponents. By convention, $0$ is factored as $0^1$.

\misctitle{$\Q$ and $\Q(i)$}
See \tet{factorint} for more information about the algorithms used.
The rational or Gaussian primes are in fact \var{pseudoprimes}
(see \kbd{ispseudoprime}), a priori not rigorously proven primes. In fact,
any factor which is $\leq 2^{64}$ (whose norm is $\leq 2^{64}$ for an
irrational Gaussian prime) is a genuine prime. Use \kbd{isprime} to prove
primality of other factors, as in
\bprog
? fa = factor(2^2^7 + 1)
%1 =
[59649589127497217 1]

[5704689200685129054721 1]

? isprime( fa[,1] )
%2 = [1, 1]~   \\ both entries are proven primes
@eprog\noindent
Another possibility is to set the global default \tet{factor_proven}, which
will perform a rigorous primality proof for each pseudoprime factor.

A \typ{INT} argument \var{lim} can be added, meaning that we look only for
prime factors $p < \var{lim}$. The limit \var{lim} must be non-negative.
In this case, all but the last factor are proven primes, but the remaining
factor may actually be a proven composite! If the remaining factor is less
than $\var{lim}^2$, then it is prime.
\bprog
? factor(2^2^7 +1, 10^5)
%3 =
[340282366920938463463374607431768211457 1]
@eprog\noindent
\misctitle{Deprecated feature} Setting $\var{lim}=0$ is the same
as setting it to $\kbd{primelimit} + 1$. Don't use this: it is unwise to
rely on global variables when you can specify an explicit argument.
\smallskip

This routine uses trial division and perfect power tests, and should not be
used for huge values of \var{lim} (at most $10^9$, say):
\kbd{factorint(, 1 + 8)} will in general be faster. The latter does not
guarantee that all small
prime factors are found, but it also finds larger factors, and in a much more
efficient way.
\bprog
? F = (2^2^7 + 1) * 1009 * 100003; factor(F, 10^5)  \\ fast, incomplete
time = 0 ms.
%4 =
[1009 1]

[34029257539194609161727850866999116450334371 1]

? factor(F, 10^9)    \\ very slow
time = 6,892 ms.
%6 =
[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factorint(F, 1+8)  \\ much faster, all small primes were found
time = 12 ms.
%7 =
[1009 1]

[100003 1]

[340282366920938463463374607431768211457 1]

? factor(F)   \\ complete factorisation
time = 112 ms.
%8 =
[1009 1]

[100003 1]

[59649589127497217 1]

[5704689200685129054721 1]
@eprog\noindent Over $\Q$, the prime factors are sorted in increasing order.

\misctitle{Rational functions}
The polynomials or rational functions to be factored must have scalar
coefficients. In particular PARI does not know how to factor
\emph{multivariate} polynomials. The following domains are currently
supported: $\Q$, $\R$, $\C$, $\Q_p$, finite fields and number fields.
See \tet{factormod} and \tet{factorff} for
the algorithms used over finite fields, \tet{factornf} for the algorithms
over number fields. Over $\Q$, \idx{van Hoeij}'s method is used, which is
able to cope with hundreds of modular factors.

The routine guesses a sensible ring over which to factor: the
smallest ring containing all coefficients, taking into account quotient
structures induced by \typ{INTMOD}s and \typ{POLMOD}s (e.g.~if a coefficient
in $\Z/n\Z$ is known, all rational numbers encountered are first mapped to
$\Z/n\Z$; different moduli will produce an error). Factoring modulo a
non-prime number is not supported; to factor in $\Q_p$, use \typ{PADIC}
coefficients not \typ{INTMOD} modulo $p^n$.
\bprog
? T = x^2+1;
? factor(T);                         \\ over Q
? factor(T*Mod(1,3))                 \\ over F_3
? factor(T*ffgen(ffinit(3,2,'t))^0)  \\ over F_{3^2}
? factor(T*Mod(Mod(1,3), t^2+t+2))   \\ over F_{3^2}, again
? factor(T*(1 + O(3^6))              \\ over Q_3, precision 6
? factor(T*1.)                       \\ over R, current precision
? factor(T*(1.+0.*I))                \\ over C
? factor(T*Mod(1, y^3-2))            \\ over Q(2^{1/3})
@eprog\noindent In most cases, it is clearer and simpler to call an
explicit variant than to rely on the generic \kbd{factor} function and
the above detection mechanism:
\bprog
? factormod(T, 3)           \\ over F_3
? factorff(T, 3, t^2+t+2))  \\ over F_{3^2}
? factorpadic(T, 3,6)       \\ over Q_3, precision 6
? nffactor(y^3-2, T)        \\ over Q(2^{1/3})
? polroots(T)               \\ over C
@eprog

Note that factorization of polynomials is done up to
multiplication by a constant. In particular, the factors of rational
polynomials will have integer coefficients, and the content of a polynomial
or rational function is discarded and not included in the factorization. If
needed, you can always ask for the content explicitly:
\bprog
? factor(t^2 + 5/2*t + 1)
%1 =
[2*t + 1 1]

[t + 2 1]

? content(t^2 + 5/2*t + 1)
%2 = 1/2
@eprog\noindent
The irreducible factors are sorted by increasing degree.
See also \tet{nffactor}.

The library syntax is \fun{GEN}{gp_factor0}{GEN x, GEN lim = NULL}.
This function should only be used by the \kbd{gp} interface. Use
directly \fun{GEN}{factor}{GEN x} or \fun{GEN}{boundfact}{GEN x, ulong lim}.
The obsolete function \fun{GEN}{factor0}{GEN x, long lim} is kept for
backward compatibility.

\subsec{factorback$(f,\{e\})$}\kbdsidx{factorback}\label{se:factorback}
Gives back the factored object
corresponding to a factorization. The integer $1$ corresponds to the empty
factorization.

If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.

If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced with any \kbd{factor} command. A few
examples:
\bprog
? factor(12)
%1 =
[2 2]

[3 1]

? factorback(%)
%2 = 12
? factorback([2,3], [2,1])   \\ 2^3 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30
@eprog

The library syntax is \fun{GEN}{factorback2}{GEN f, GEN e = NULL}.
Also available is \fun{GEN}{factorback}{GEN f} (case $e = \kbd{NULL}$).

\subsec{factorcantor$(x,p)$}\kbdsidx{factorcantor}\label{se:factorcantor}
Factors the polynomial $x$ modulo the
prime $p$, using distinct degree plus
\idx{Cantor-Zassenhaus}\sidx{Zassenhaus}. The coefficients of $x$ must be
operation-compatible with $\Z/p\Z$. The result is a two-column matrix, the
first column being the irreducible polynomials dividing $x$, and the second
the exponents. If you want only the \emph{degrees} of the irreducible
polynomials (for example for computing an $L$-function), use
$\kbd{factormod}(x,p,1)$. Note that the \kbd{factormod} algorithm is
usually faster than \kbd{factorcantor}.

The library syntax is \fun{GEN}{factcantor}{GEN x, GEN p}.

\subsec{factorff$(x,\{p\},\{a\})$}\kbdsidx{factorff}\label{se:factorff}
Factors the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$. The result
is a two-column matrix: the first column contains the irreducible factors of
$x$, and the second their exponents. If all the coefficients of $x$ are in
$\F_p$, a much faster algorithm is applied, using the computation of
isomorphisms between finite fields.

Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients; the function then becomes identical to \kbd{factor}:
\bprog
? factorff(x^2 + 1, 5, y^2+3)  \\ over F_5[y]/(y^2+3) ~ F_25
%1 =
[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
 + Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]

[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
 + Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? factorff(x^2 + 1)   \\ not enough information to determine the base field
 ***   at top-level: factorff(x^2+1)
 ***                 ^---------------
 *** factorff: incorrect type in factorff.
? factorff(x^2 + t^0) \\ make sure a coeff. is a t_FFELT
%3 =
[x + 2 1]

[x + 3 1]
? factorff(x^2 + t + 1)
%11 =
[x + (2*t + 1) 1]

[x + (3*t + 4) 1]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.

The library syntax is \fun{GEN}{factorff}{GEN x, GEN p = NULL, GEN a = NULL}.

\subsec{factorial$(x)$}\kbdsidx{factorial}\label{se:factorial}
Factorial of $x$. The expression $x!$ gives a result which is an integer,
while $\kbd{factorial}(x)$ gives a real number.

The library syntax is \fun{GEN}{mpfactr}{long x, long prec}.
\fun{GEN}{mpfact}{long x} returns $x!$ as a \typ{INT}.

\subsec{factorint$(x,\{\fl=0\})$}\kbdsidx{factorint}\label{se:factorint}
Factors the integer $n$ into a product of
pseudoprimes (see \kbd{ispseudoprime}), using a combination of the
\idx{Shanks SQUFOF} and \idx{Pollard Rho} method (with modifications due to
Brent), \idx{Lenstra}'s \idx{ECM} (with modifications by Montgomery), and
\idx{MPQS} (the latter adapted from the \idx{LiDIA} code with the kind
permission of the LiDIA maintainers), as well as a search for pure powers.
The output is a two-column matrix as for \kbd{factor}: the first column
contains the ``prime'' divisors of $n$, the second one contains the
(positive) exponents.

By convention $0$ is factored as $0^1$, and $1$ as the empty factorization;
also the divisors are by default not proven primes is they are larger than
$2^{64}$, they only failed the BPSW compositeness test (see
\tet{ispseudoprime}). Use \kbd{isprime} on the result if you want to
guarantee primality or set the \tet{factor_proven} default to $1$.
Entries of the private prime tables (see \tet{addprimes}) are also included
as is.

This gives direct access to the integer factoring engine called by most
arithmetical functions. \fl\ is optional; its binary digits mean 1: avoid
MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid
Rho and SQUFOF, 8: don't run final ECM (as a result, a huge composite may be
declared to be prime). Note that a (strong) probabilistic primality test is
used; thus composites might not be detected, although no example is known.

You are invited to play with the flag settings and watch the internals at
work by using \kbd{gp}'s \tet{debug} default parameter (level 3 shows
just the outline, 4 turns on time keeping, 5 and above show an increasing
amount of internal details).

The library syntax is \fun{GEN}{factorint}{GEN x, long flag}.

\subsec{factormod$(x,p,\{\fl=0\})$}\kbdsidx{factormod}\label{se:factormod}
Factors the polynomial $x$ modulo the prime integer $p$, using
\idx{Berlekamp}. The coefficients of $x$ must be operation-compatible with
$\Z/p\Z$. The result is a two-column matrix, the first column being the
irreducible polynomials dividing $x$, and the second the exponents. If $\fl$
is non-zero, outputs only the \emph{degrees} of the irreducible polynomials
(for example, for computing an $L$-function). A different algorithm for
computing the mod $p$ factorization is \kbd{factorcantor} which is sometimes
faster.

The library syntax is \fun{GEN}{factormod0}{GEN x, GEN p, long flag}.

\subsec{ffgen$(q,\{v\})$}\kbdsidx{ffgen}\label{se:ffgen}
Return a \typ{FFELT} generator for the finite field with $q$ elements;
$q = p^f$ must be a prime power. This functions computes an irreducible
monic polynomial $P\in\F_p[X]$ of degree~$f$ (via \tet{ffinit}) and
returns $g = X \pmod{P(X)}$. If \kbd{v} is given, the variable name is used
to display $g$, else the variable $x$ is used.
\bprog
? g = ffgen(8, 't);
? g.mod
%2 = t^3 + t^2 + 1
? g.p
%3 = 2
? g.f
%4 = 3
? ffgen(6)
 ***   at top-level: ffgen(6)
 ***                 ^--------
 *** ffgen: not a prime number in ffgen: 6.
@eprog\noindent Alternative syntax: instead of a prime power $q=p^f$, one may
input the pair $[p,f]$:
\bprog
? g = ffgen([2,4], 't);
? g.p
%2 = 2
? g.mod
%3 = t^4 + t^3 + t^2 + t + 1
@eprog\noindent Finally, one may input
directly the polynomial $P$ (monic, irreducible, with \typ{INTMOD}
coefficients), and the function returns the generator $g = X \pmod{P(X)}$,
inferring $p$ from the coefficients of $P$. If \kbd{v} is given, the
variable name is used to display $g$, else the variable of the polynomial
$P$ is used. If $P$ is not irreducible, we create an invalid object and
behaviour of functions dealing with the resulting \typ{FFELT}
is undefined; in fact, it is much more costly to test $P$ for
irreducibility than it would be to produce it via \kbd{ffinit}.

The library syntax is \fun{GEN}{ffgen}{GEN q, long v = -1} where \kbd{v} is a variable number.

To create a generator for a prime finite field, the function
\fun{GEN}{p_to_GEN}{GEN p, long v} returns \kbd{1+ffgen(x*Mod(1,p),v)}.

\subsec{ffinit$(p,n,\{v='x\})$}\kbdsidx{ffinit}\label{se:ffinit}
Computes a monic polynomial of degree $n$ which is irreducible over
 $\F_p$, where $p$ is assumed to be prime. This function uses a fast variant
 of Adleman and Lenstra's algorithm.

It is useful in conjunction with \tet{ffgen}; for instance if
\kbd{P = ffinit(3,2)}, you can represent elements in $\F_{3^2}$ in term of
\kbd{g = ffgen(P,'t)}. This can be abbreviated as
\kbd{g = ffgen(3\pow2, 't)}, where the defining polynomial $P$ can be later
recovered as \kbd{g.mod}.

The library syntax is \fun{GEN}{ffinit}{GEN p, long n, long v = -1} where \kbd{v} is a variable number.

\subsec{fflog$(x,g,\{o\})$}\kbdsidx{fflog}\label{se:fflog}
Discrete logarithm of the finite field element $x$ in base $g$, i.e.~
an $e$ in $\Z$ such that $g^e = o$. If
present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
order of $g$. It may be set as a side effect of calling \tet{ffprimroot}.

If no $o$ is given, assume that $g$ is a primitive root. The result is
undefined if $e$ does not exist. This function uses

\item a combination of generic discrete log algorithms (see \tet{znlog})

\item a cubic sieve index calculus algorithm for large fields of degree at
least $5$.

\item Coppersmith's algorithm for fields of characteristic at most $5$.

\bprog
? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602   \\@com \emph{not} a primitive root.
? fflog(t^10,t)
%3 = 10
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o   \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806
? fflog(g^10000, g, o)
%8 = 10000
@eprog

The library syntax is \fun{GEN}{fflog}{GEN x, GEN g, GEN o = NULL}.

\subsec{ffnbirred$(q,n\{,\var{fl}=0\})$}\kbdsidx{ffnbirred}\label{se:ffnbirred}
Computes the number of monic irreducible polynomials over $\F_q$ of degree exactly $n$,
($\fl=0$ or omitted) or at most $n$ ($\fl=1$).

The library syntax is \fun{GEN}{ffnbirred0}{GEN q, long n, long fl}.
Also available are
 \fun{GEN}{ffnbirred}{GEN q, long n} (for $\fl=0$)
 and \fun{GEN}{ffsumnbirred}{GEN q, long n} (for $\fl=1$).

\subsec{fforder$(x,\{o\})$}\kbdsidx{fforder}\label{se:fforder}
Multiplicative order of the finite field element $x$.  If $o$ is
present, it represents a multiple of the order of the element,
see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[N, factor(N)]}, where \kbd{N} is the cardinality
of the multiplicative group of the underlying finite field.
\bprog
? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o);  \\@com o will be useful!
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \\@com noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403
@eprog

The library syntax is \fun{GEN}{fforder}{GEN x, GEN o = NULL}.

\subsec{ffprimroot$(x, \{\&o\})$}\kbdsidx{ffprimroot}\label{se:ffprimroot}
Return a primitive root of the multiplicative
group of the definition field of the finite field element $x$ (not necessarily
the same as the field generated by $x$). If present, $o$ is set to
a vector \kbd{[ord, fa]}, where \kbd{ord} is the order of the group
and \kbd{fa} its factorisation \kbd{factor(ord)}. This last parameter is
useful in \tet{fflog} and \tet{fforder}, see \secref{se:DLfun}.
\bprog
? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000950003610006859006516052476098
? o[2]
%4 =
[2 1]

[7 2]

[31 1]

[41 1]

[67 1]

[1523 1]

[10498781 1]

[15992881 1]

[46858913131 1]

? fflog(g^1000000, g, o)
time = 1,312 ms.
%5 = 1000000
@eprog

The library syntax is \fun{GEN}{ffprimroot}{GEN x, GEN *o = NULL}.

\subsec{fibonacci$(x)$}\kbdsidx{fibonacci}\label{se:fibonacci}
$x^{\text{th}}$ Fibonacci number.

The library syntax is \fun{GEN}{fibo}{long x}.

\subsec{gcd$(x,\{y\})$}\kbdsidx{gcd}\label{se:gcd}
Creates the greatest common divisor of $x$ and $y$.
If you also need the $u$ and $v$ such that $x*u + y*v = \gcd(x,y)$,
use the \tet{bezout} function. $x$ and $y$ can have rather quite general
types, for instance both rational numbers. If $y$ is omitted and $x$ is a
vector, returns the $\text{gcd}$ of all components of $x$, i.e.~this is
equivalent to \kbd{content(x)}.

When $x$ and $y$ are both given and one of them is a vector/matrix type,
the GCD is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{gcd(x, y[i])}, resp.~\kbd{gcd(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{gcd} is not
commutative.

The algorithm used is a naive \idx{Euclid} except for the following inputs:

\item integers: use modified right-shift binary (``plus-minus''
variant).

\item univariate polynomials with coefficients in the same number
field (in particular rational): use modular gcd algorithm.

\item general polynomials: use the \idx{subresultant algorithm} if
coefficient explosion is likely (non modular coefficients).

If $u$ and $v$ are polynomials in the same variable with \emph{inexact}
coefficients, their gcd is defined to be scalar, so that
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%3 = 4
@eprog\noindent A good quantitative check to decide whether such a
gcd ``should be'' non-trivial, is to use \tet{polresultant}: a value
close to $0$ means that a small deformation of the inputs has non-trivial gcd.
You may also use \tet{gcdext}, which does try to compute an approximate gcd
$d$ and provides $u$, $v$ to check whether $u x + v y$ is close to $d$.

The library syntax is \fun{GEN}{ggcd0}{GEN x, GEN y = NULL}.
Also available are \fun{GEN}{ggcd}{GEN x, GEN y}, if \kbd{y} is not
\kbd{NULL}, and \fun{GEN}{content}{GEN x}, if $\kbd{y} = \kbd{NULL}$.

\subsec{gcdext$(x,y)$}\kbdsidx{gcdext}\label{se:gcdext}
Returns $[u,v,d]$ such that $d$ is the gcd of $x,y$,
$x*u+y*v=\gcd(x,y)$, and $u$ and $v$ minimal in a natural sense.
The arguments must be integers or polynomials. \sidx{extended gcd}
\sidx{Bezout relation}
\bprog
? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]
? d
%2 = 2
? gcdext(x^2-x, x^2+x-2)
%3 = [-1/2, 1/2, x - 1]
@eprog

If $x,y$ are polynomials in the same variable and \emph{inexact}
coefficients, then compute $u,v,d$ such that $x*u+y*v = d$, where $d$
approximately divides both and $x$ and $y$; in particular, we do not obtain
\kbd{gcd(x,y)} which is \emph{defined} to be a scalar in this case:
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1

? gcdext(a,a)
%2 = [0, 1, x + 0.E-28]

? gcdext(x-Pi, 6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]
@eprog\noindent For inexact inputs, the output is thus not well defined
mathematically, but you obtain explicit polynomials to check whether the
approximation is close enough for your needs.

The library syntax is \fun{GEN}{gcdext0}{GEN x, GEN y}.

\subsec{hilbert$(x,y,\{p\})$}\kbdsidx{hilbert}\label{se:hilbert}
\idx{Hilbert symbol} of $x$ and $y$ modulo the prime $p$, $p=0$ meaning
the place at infinity (the result is undefined if $p\neq 0$ is not prime).

It is possible to omit $p$, in which case we take $p = 0$ if both $x$
and $y$ are rational, or one of them is a real number. And take $p = q$
if one of $x$, $y$ is a \typ{INTMOD} modulo $q$ or a $q$-adic. (Incompatible
types will raise an error.)

The library syntax is \fun{long}{hilbert}{GEN x, GEN y, GEN p = NULL}.

\subsec{isfundamental$(x)$}\kbdsidx{isfundamental}\label{se:isfundamental}
True (1) if $x$ is equal to 1 or to the discriminant of a quadratic
field, false (0) otherwise.

The library syntax is \fun{long}{isfundamental}{GEN x}.

\subsec{ispolygonal$(x,s,\{\&N\})$}\kbdsidx{ispolygonal}\label{se:ispolygonal}
True (1) if the integer $x$ is an s-gonal number, false (0) if not.
The parameter $s > 2$ must be a \typ{INT}. If $N$ is given, set it to $n$
if $x$ is the $n$-th $s$-gonal number.
\bprog
? ispolygonal(36, 3, &N)
%1 = 1
? N
@eprog

The library syntax is \fun{long}{ispolygonal}{GEN x, GEN s, GEN *N = NULL}.

\subsec{ispower$(x,\{k\},\{\&n\})$}\kbdsidx{ispower}\label{se:ispower}
If $k$ is given, returns true (1) if $x$ is a $k$-th power, false
(0) if not. What it means to be a $k$-th power depends on the type of
$x$; see \tet{issquare} for details.

If $k$ is omitted, only integers and fractions are allowed for $x$ and the
function returns the maximal $k \geq 2$ such that $x = n^k$ is a perfect
power, or 0 if no such $k$ exist; in particular \kbd{ispower(-1)},
\kbd{ispower(0)}, and \kbd{ispower(1)} all return $0$.

If a third argument $\&n$ is given and $x$ is indeed a $k$-th power, sets
$n$ to a $k$-th root of $x$.

\noindent For a \typ{FFELT} \kbd{x}, instead of omitting \kbd{k} (which is
not allowed for this type), it may be natural to set
\bprog
k = (x.p ^ x.f - 1) / fforder(x)
@eprog

The library syntax is \fun{long}{ispower}{GEN x, GEN k = NULL, GEN *n = NULL}.
Also available is
\fun{long}{gisanypower}{GEN x, GEN *pty} ($k$ omitted).

\subsec{ispowerful$(x)$}\kbdsidx{ispowerful}\label{se:ispowerful}
True (1) if $x$ is a powerful integer, false (0) if not;
an integer is powerful if and only if its valuation at all primes dividing
$x$ is greater than 1.
\bprog
? ispowerful(50)
%1 = 0
? ispowerful(100)
%2 = 1
? ispowerful(5^3*(10^1000+1)^2)
%3 = 1
@eprog

The library syntax is \fun{long}{ispowerful}{GEN x}.

\subsec{isprime$(x,\{\fl=0\})$}\kbdsidx{isprime}\label{se:isprime}
True (1) if $x$ is a prime
number, false (0) otherwise. A prime number is a positive integer having
exactly two distinct divisors among the natural numbers, namely 1 and
itself.

This routine proves or disproves rigorously that a number is prime, which can
be very slow when $x$ is indeed prime and has more than $1000$ digits, say.
Use \tet{ispseudoprime} to quickly check for compositeness. See also
\kbd{factor}. It accepts vector/matrices arguments, and is then applied
componentwise.

If $\fl=0$, use a combination of Baillie-PSW pseudo primality test (see
\tet{ispseudoprime}), Selfridge ``$p-1$'' test if $x-1$ is smooth enough, and
Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general $x$.

If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test and output a
primality certificate as follows: return

\item 0 if $x$ is composite,

\item 1 if $x$ is small enough that passing Baillie-PSW test guarantees
its primality (currently $x < 2^{64}$, as checked by Jan Feitsma),

\item $2$ if $x$ is a large prime whose primality could only sensibly be
proven (given the algorithms implemented in PARI) using the APRCL test.

\item Otherwise ($x$ is large and $x-1$ is smooth) output a three column
matrix as a primality certificate. The first column contains prime
divisors $p$ of $x-1$ (such that $\prod p^{v_p(x-1)} > x^{1/3}$), the second
the corresponding elements $a_p$ as in Proposition~8.3.1 in GTM~138 , and the
third the output of isprime(p,1).

The algorithm fails if one of the pseudo-prime factors is not prime, which is
exceedingly unlikely and well worth a bug report. Note that if you monitor
\kbd{isprime} at a high enough debug level, you may see warnings about
untested integers being declared primes. This is normal: we ask for partial
factorisations (sufficient to prove primality if the unfactored part is not
too large), and \kbd{factor} warns us that the cofactor hasn't been tested.
It may or may not be tested later, and may or may not be prime. This does
not affect the validity of the whole \kbd{isprime} procedure.

If $\fl=2$, use APRCL.

The library syntax is \fun{GEN}{gisprime}{GEN x, long flag}.

\subsec{isprimepower$(x,\{\&n\})$}\kbdsidx{isprimepower}\label{se:isprimepower}
If $x = p^k$ is a prime power ($p$ prime, $k > 0$), return $k$, else
return 0. If a second argument $\&n$ is given and $x$ is indeed
the $k$-th power of a prime $p$, sets $n$ to $p$.

The library syntax is \fun{long}{isprimepower}{GEN x, GEN *n = NULL}.

\subsec{ispseudoprime$(x,\{\fl\})$}\kbdsidx{ispseudoprime}\label{se:ispseudoprime}
True (1) if $x$ is a strong pseudo
prime (see below), false (0) otherwise. If this function returns false, $x$
is not prime; if, on the other hand it returns true, it is only highly likely
that $x$ is a prime number. Use \tet{isprime} (which is of course much
slower) to prove that $x$ is indeed prime.
The function accepts vector/matrices arguments, and is then applied
componentwise.

If $\fl = 0$, checks whether $x$ has no small prime divisors (up to $101$
included) and is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime.
Such a pseudo prime passes a Rabin-Miller test for base $2$,
followed by a Lucas test for the sequence $(P,-1)$, $P$ smallest
positive integer such that $P^2 - 4$ is not a square mod $x$).

There are no known composite numbers passing the above test, although it is
expected that infinitely many such numbers exist. In particular, all
composites $\leq 2^{64}$ are correctly detected (checked using
\url{http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html}).

If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime  for
$\fl$ randomly chosen bases (with end-matching to catch square roots of $-1$).

The library syntax is \fun{GEN}{gispseudoprime}{GEN x, long flag}.

\subsec{ispseudoprimepower$(x,\{\&n\})$}\kbdsidx{ispseudoprimepower}\label{se:ispseudoprimepower}
If $x = p^k$ is a pseudo-prime power ($p$ pseudo-prime as per
\tet{ispseudoprime}, $k > 0$), return $k$, else
return 0. If a second argument $\&n$ is given and $x$ is indeed
the $k$-th power of a prime $p$, sets $n$ to $p$.

More precisely, $k$ is always the largest integer such that $x = n^k$ for
some integer $n$ and, when $n \leq  2^{64}$ the function returns $k > 0$ if and
only if $n$ is indeed prime. When $n > 2^{64}$ is larger than the threshold,
the function may return $1$ even though $n$ is composite: it only passed
an \kbd{ispseudoprime(n)} test.

The library syntax is \fun{long}{ispseudoprimepower}{GEN x, GEN *n = NULL}.

\subsec{issquare$(x,\{\&n\})$}\kbdsidx{issquare}\label{se:issquare}
True (1) if $x$ is a square, false (0)
if not. What ``being a square'' means depends on the type of $x$: all
\typ{COMPLEX} are squares, as well as all non-negative \typ{REAL}; for
exact types such as \typ{INT}, \typ{FRAC} and \typ{INTMOD}, squares are
numbers of the form $s^2$ with $s$ in $\Z$, $\Q$ and $\Z/N\Z$ respectively.
\bprog
? issquare(3)          \\ as an integer
%1 = 0
? issquare(3.)         \\ as a real number
%2 = 1
? issquare(Mod(7, 8))  \\ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) )  \\ in Q_13
%4 = 0
@eprog
If $n$ is given, a square root of $x$ is put into $n$.
\bprog
? issquare(4, &n)
%1 = 1
? n
%2 = 2
@eprog
For polynomials, either we detect that the characteristic is 2 (and check
directly odd and even-power monomials) or we assume that $2$ is invertible
and check whether squaring the truncated power series for the square root
yields the original input.

For \typ{POLMOD} $x$, we only support \typ{POLMOD}s of \typ{INTMOD}s
encoding finite fields, assuming without checking that the intmod modulus
$p$ is prime and that the polmod modulus is irreducible modulo $p$.
\bprog
? issquare(Mod(Mod(2,3), x^2+1), &n)
%1 = 1
? n
%2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))
@eprog

The library syntax is \fun{long}{issquareall}{GEN x, GEN *n = NULL}.
Also available is \fun{long}{issquare}{GEN x}. Deprecated
GP-specific functions \fun{GEN}{gissquare}{GEN x} and
\fun{GEN}{gissquareall}{GEN x, GEN *pt} return \kbd{gen\_0} and \kbd{gen\_1}
instead of a boolean value.

\subsec{issquarefree$(x)$}\kbdsidx{issquarefree}\label{se:issquarefree}
True (1) if $x$ is squarefree, false (0) if not. Here $x$ can be an
integer or a polynomial.

The library syntax is \fun{long}{issquarefree}{GEN x}.

\subsec{istotient$(x,\{\&N\})$}\kbdsidx{istotient}\label{se:istotient}
True (1) if $x = \phi(n)$ for some integer $n$, false (0)
if not.
\bprog
? istotient(14)
%1 = 0
? istotient(100)
%2 = 0
@eprog
If $N$ is given, set $N = n$ as well.
\bprog
? istotient(4, &n)
%1 = 1
? n
%2 = 10
@eprog

The library syntax is \fun{long}{istotient}{GEN x, GEN *N = NULL}.

\subsec{kronecker$(x,y)$}\kbdsidx{kronecker}\label{se:kronecker}
\idx{Kronecker symbol} $(x|y)$, where $x$ and $y$ must be of type integer. By
definition, this is the extension of \idx{Legendre symbol} to $\Z \times \Z$
by total multiplicativity in both arguments with the following special rules
for $y = 0, -1$ or $2$:

\item $(x|0) = 1$ if $|x| = 1$ and $0$ otherwise.

\item $(x|-1) = 1$ if $x \geq 0$ and $-1$ otherwise.

\item $(x|2) = 0$ if $x$ is even and $1$ if $x = 1,-1 \mod 8$ and $-1$
if $x=3,-3 \mod 8$.

The library syntax is \fun{long}{kronecker}{GEN x, GEN y}.

\subsec{lcm$(x,\{y\})$}\kbdsidx{lcm}\label{se:lcm}
Least common multiple of $x$ and $y$, i.e.~such
that $\lcm(x,y)*\gcd(x,y) = x*y$, up to units. If $y$ is omitted and $x$
is a vector, returns the $\text{lcm}$ of all components of $x$.
For integer arguments, return the non-negative \text{lcm}.

When $x$ and $y$ are both given and one of them is a vector/matrix type,
the LCM is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{lcm(x, y[i])}, resp.~\kbd{lcm(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{lcm} is not
commutative.

Note that \kbd{lcm(v)} is quite different from
\bprog
l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
@eprog\noindent
Indeed, \kbd{lcm(v)} is a scalar, but \kbd{l} may not be (if one of
the \kbd{v[i]} is a vector/matrix). The computation uses a divide-conquer tree
and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):
\bprog
? v = vector(10^5, i, random);
? lcm(v);
time = 546 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 4,561 ms.
@eprog

The library syntax is \fun{GEN}{glcm0}{GEN x, GEN y = NULL}.

\subsec{logint$(x,b,\{\&z\})$}\kbdsidx{logint}\label{se:logint}
Return the largest integer $e$ so that $b^e \leq x$, where the
parameters $b > 1$ and $x > 0$ are both integers. If the parameter $z$ is
present, set it to $b^e$.
\bprog
? logint(1000, 2)
%1 = 9
? 2^9
%2 = 512
? logint(1000, 2, &z)
%3 = 9
? z
%4 = 512
@eprog\noindent The number of digits used to write $b$ in base $x$ is
\kbd{1 + logint(x,b)}:
\bprog
? #digits(1000!, 10)
%5 = 2568
? logint(1000!, 10)
%6 = 2567
@eprog\noindent This function may conveniently replace
\bprog
  floor( log(x) / log(b) )
@eprog\noindent which may not give the correct answer since PARI
does not guarantee exact rounding.

The library syntax is \fun{long}{logint0}{GEN x, GEN b, GEN *z = NULL}.

\subsec{moebius$(x)$}\kbdsidx{moebius}\label{se:moebius}
\idx{Moebius} $\mu$-function of $|x|$. $x$ must be of type integer.

The library syntax is \fun{long}{moebius}{GEN x}.

\subsec{nextprime$(x)$}\kbdsidx{nextprime}\label{se:nextprime}
Finds the smallest pseudoprime (see
\tet{ispseudoprime}) greater than or equal to $x$. $x$ can be of any real
type. Note that if $x$ is a pseudoprime, this function returns $x$ and not
the smallest pseudoprime strictly larger than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.

The library syntax is \fun{GEN}{nextprime}{GEN x}.

\subsec{numbpart$(n)$}\kbdsidx{numbpart}\label{se:numbpart}
Gives the number of unrestricted partitions of
$n$, usually called $p(n)$ in the literature; in other words the number of
nonnegative integer solutions to $a+2b+3c+\cdots=n$. $n$ must be of type
integer and $n<10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and
$p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula.
To explicitly enumerate them, see \tet{partitions}.

The library syntax is \fun{GEN}{numbpart}{GEN n}.

\subsec{numdiv$(x)$}\kbdsidx{numdiv}\label{se:numdiv}
Number of divisors of $|x|$. $x$ must be of type integer.

The library syntax is \fun{GEN}{numdiv}{GEN x}.

\subsec{omega$(x)$}\kbdsidx{omega}\label{se:omega}
Number of distinct prime divisors of $|x|$. $x$ must be of type integer.
\bprog
? factor(392)
%1 =
[2 3]

[7 2]

? omega(392)
%2 = 2;  \\ without multiplicity
? bigomega(392)
%3 = 5;  \\ = 3+2, with multiplicity
@eprog

The library syntax is \fun{long}{omega}{GEN x}.

\subsec{partitions$(k,\{a=k\},\{n=k\}))$}\kbdsidx{partitions}\label{se:partitions}
Returns the vector of partitions of the integer $k$ as a sum of positive
integers (parts); for $k < 0$, it returns the empty set \kbd{[]}, and for $k
= 0$ the trivial partition (no parts). A partition is given by a
\typ{VECSMALL}, where parts are sorted in nondecreasing order:
\bprog
? partitions(3)
%1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 1])]
@eprog\noindent correspond to $3$, $1+2$ and $1+1+1$. The number
of (unrestricted) partitions of $k$ is given
by \tet{numbpart}:
\bprog
? #partitions(50)
%1 = 204226
? numbpart(50)
%2 = 204226
@eprog

\noindent Optional parameters $n$ and $a$ are as follows:

\item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
partitions to length less than $\var{nmax}$ (resp. length between
$\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
entries.

\item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
$\var{amax}$).
\bprog
? partitions(4, 2)  \\ parts bounded by 2
%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(4,, 2) \\ at most 2 parts
%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
? partitions(4,[0,3], 2) \\ at most 2 parts
%3 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
@eprog\noindent
By default, parts are positive and we remove zero entries unless
$amin\leq0$, in which case $nmin$ is ignored and $X$ is of constant length
$\var{nmax}$:
\bprog
? partitions(4, [0,3])  \\ parts between 0 and 3
%1 = [Vecsmall([0, 0, 1, 3]), Vecsmall([0, 0, 2, 2]),\
      Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1])]
@eprog

The library syntax is \fun{GEN}{partitions}{long k, GEN a = NULL, GEN n) = NULL}.

\subsec{polrootsff$(x,\{p\},\{a\})$}\kbdsidx{polrootsff}\label{se:polrootsff}
Returns the vector of distinct roots of the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$.
Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients:
\bprog
? polrootsff(x^2 + 1, 5, y^2+3)  \\ over F_5[y]/(y^2+3) ~ F_25
%1 = [Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)),
      Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5))]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? polrootsff(x^2 + 1)   \\ not enough information to determine the base field
 ***   at top-level: polrootsff(x^2+1)
 ***                 ^-----------------
 *** polrootsff: incorrect type in factorff.
? polrootsff(x^2 + t^0) \\ make sure one coeff. is a t_FFELT
%3 = [3, 2]
? polrootsff(x^2 + t + 1)
%4 = [2*t + 1, 3*t + 4]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.

The library syntax is \fun{GEN}{polrootsff}{GEN x, GEN p = NULL, GEN a = NULL}.

\subsec{precprime$(x)$}\kbdsidx{precprime}\label{se:precprime}
Finds the largest pseudoprime (see
\tet{ispseudoprime}) less than or equal to $x$. $x$ can be of any real type.
Returns 0 if $x\le1$. Note that if $x$ is a prime, this function returns $x$
and not the largest prime strictly smaller than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.

The library syntax is \fun{GEN}{precprime}{GEN x}.

\subsec{prime$(n)$}\kbdsidx{prime}\label{se:prime}
The $n^{\text{th}}$ prime number
\bprog
? prime(10^9)
%1 = 22801763489
@eprog\noindent Uses checkpointing and a naive $O(n)$ algorithm.

The library syntax is \fun{GEN}{prime}{long n}.

\subsec{primepi$(x)$}\kbdsidx{primepi}\label{se:primepi}
The prime counting function. Returns the number of
primes $p$, $p \leq x$.
\bprog
? primepi(10)
%1 = 4;
? primes(5)
%2 = [2, 3, 5, 7, 11]
? primepi(10^11)
%3 = 4118054813
@eprog\noindent Uses checkpointing and a naive $O(x)$ algorithm.

The library syntax is \fun{GEN}{primepi}{GEN x}.

\subsec{primes$(n)$}\kbdsidx{primes}\label{se:primes}
Creates a row vector whose components are the first $n$ prime numbers.
(Returns the empty vector for $n \leq 0$.) A \typ{VEC} $n = [a,b]$ is also
allowed, in which case the primes in $[a,b]$ are returned
\bprog
? primes(10)     \\ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29])  \\ the primes up to 29
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])
%3 = [17, 19, 23, 29]
@eprog

The library syntax is \fun{GEN}{primes0}{GEN n}.

\subsec{qfbclassno$(D,\{\fl=0\})$}\kbdsidx{qfbclassno}\label{se:qfbclassno}
Ordinary class number of the quadratic order of discriminant $D$, for
``small'' values of $D$.

\item if  $D > 0$ or $\fl = 1$, use a $O(|D|^{1/2})$
algorithm (compute $L(1,\chi_D)$ with the approximate functional equation).
This is slower than \tet{quadclassunit} as soon as $|D| \approx 10^2$ or
so and is not meant to be used for large $D$.

\item if $D < 0$ and $\fl = 0$ (or omitted), use a $O(|D|^{1/4})$
algorithm (Shanks's baby-step/giant-step method). It should
be faster than \tet{quadclassunit} for small values of $D$, say
$|D| < 10^{18}$.

\misctitle{Important warning} In the latter case, this function only
implements part of \idx{Shanks}'s method (which allows to speed it up
considerably). It gives unconditionnally correct results for $|D| < 2\cdot
10^{10}$, but may give incorrect results for larger values if the class
group has many cyclic factors. We thus recommend to double-check results
using the function \kbd{quadclassunit}, which is about 2 to 3 times slower in
the above range, assuming GRH. We currently have no counter-examples but
they should exist: we'd appreciate a bug report if you find one.

\misctitle{Warning} Contrary to what its name implies, this routine does not
compute the number of classes of binary primitive forms of discriminant $D$,
which is equal to the \emph{narrow} class number. The two notions are the same
when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
> 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
ordinary class number. This is a problem which we cannot fix for backward
compatibility reasons. Use the following routine if you are only interested
in the number of classes of forms:
\bprog
QFBclassno(D) =
qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
@eprog\noindent
Here are a few examples:
\bprog
? qfbclassno(400000028)
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \\@com{ much faster}
%2 = 1
? qfbclassno(-400000028)
time = 0 ms.
%3 = 7253 \\@com{ correct, and fast enough}
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253
@eprog\noindent
See also \kbd{qfbhclassno}.

The library syntax is \fun{GEN}{qfbclassno0}{GEN D, long flag}.
The following functions are also available:

\fun{GEN}{classno}{GEN D} ($\fl = 0$)

\fun{GEN}{classno2}{GEN D} ($\fl = 1$).

\noindent Finally

\fun{GEN}{hclassno}{GEN D} computes the class number of an imaginary
quadratic field by counting reduced forms, an $O(|D|)$ algorithm.

\subsec{qfbcompraw$(x,y)$}\kbdsidx{qfbcompraw}\label{se:qfbcompraw}
\idx{composition} of the binary quadratic forms $x$ and $y$, without
\idx{reduction} of the result. This is useful e.g.~to compute a generating
element of an ideal. The result is undefined if $x$ and $y$ do not have the
same discriminant.

The library syntax is \fun{GEN}{qfbcompraw}{GEN x, GEN y}.

\subsec{qfbhclassno$(x)$}\kbdsidx{qfbhclassno}\label{se:qfbhclassno}
\idx{Hurwitz class number} of $x$, where
$x$ is non-negative and congruent to 0 or 3 modulo 4. For $x > 5\cdot
10^5$, we assume the GRH, and use \kbd{quadclassunit} with default
parameters.

The library syntax is \fun{GEN}{hclassno}{GEN x}.

\subsec{qfbnucomp$(x,y,L)$}\kbdsidx{qfbnucomp}\label{se:qfbnucomp}
\idx{composition} of the primitive positive
definite binary quadratic forms $x$ and $y$ (type \typ{QFI}) using the NUCOMP
and NUDUPL algorithms of \idx{Shanks}, \`a la Atkin. $L$ is any positive
constant, but for optimal speed, one should take $L=|D/4|^{1/4}$, i.e.
\kbd{sqrtnint(abs(D)>>2,4)}, where $D$ is the common discriminant of $x$ and
$y$. When $x$ and $y$ do not have the same discriminant, the result is
undefined.

The current implementation is slower than the generic routine for small $D$,
and becomes faster when $D$ has about $45$ bits.

The library syntax is \fun{GEN}{nucomp}{GEN x, GEN y, GEN L}.
Also available is \fun{GEN}{nudupl}{GEN x, GEN L} when $x=y$.

\subsec{qfbnupow$(x,n,\{L\})$}\kbdsidx{qfbnupow}\label{se:qfbnupow}
$n$-th power of the primitive positive definite
binary quadratic form $x$ using \idx{Shanks}'s NUCOMP and NUDUPL algorithms;
if set, $L$ should be equal to \kbd{sqrtnint(abs(D)>>2,4)}, where $D < 0$ is
the discriminant of $x$.

The current implementation is slower than the generic routine for small
discriminant $D$, and becomes faster for $D \approx 2^{45}$.

The library syntax is \fun{GEN}{nupow}{GEN x, GEN n, GEN L = NULL}.

\subsec{qfbpowraw$(x,n)$}\kbdsidx{qfbpowraw}\label{se:qfbpowraw}
$n$-th power of the binary quadratic form
$x$, computed without doing any \idx{reduction} (i.e.~using \kbd{qfbcompraw}).
Here $n$ must be non-negative and $n<2^{31}$.

The library syntax is \fun{GEN}{qfbpowraw}{GEN x, long n}.

\subsec{qfbprimeform$(x,p)$}\kbdsidx{qfbprimeform}\label{se:qfbprimeform}
Prime binary quadratic form of discriminant
$x$ whose first coefficient is $p$, where $|p|$ is a prime number.
By abuse of notation,
$p = \pm 1$ is also valid and returns the unit form. Returns an
error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$.
(Negative definite \typ{QFI} are not implemented.) In the case where $x>0$,
the ``distance'' component of the form is set equal to zero according to the
current precision.

The library syntax is \fun{GEN}{primeform}{GEN x, GEN p, long prec}.

\subsec{qfbred$(x,\{\fl=0\},\{d\},\{\var{isd}\},\{\var{sd}\})$}\kbdsidx{qfbred}\label{se:qfbred}
Reduces the binary quadratic form $x$ (updating Shanks's distance function
if $x$ is indefinite). The binary digits of $\fl$ are toggles meaning

\quad 1: perform a single \idx{reduction} step

\quad 2: don't update \idx{Shanks}'s distance

The arguments $d$, \var{isd}, \var{sd}, if present, supply the values of the
discriminant, $\floor{\sqrt{d}}$, and $\sqrt{d}$ respectively
(no checking is done of these facts). If $d<0$ these values are useless,
and all references to Shanks's distance are irrelevant.

The library syntax is \fun{GEN}{qfbred0}{GEN x, long flag, GEN d = NULL, GEN isd = NULL, GEN sd = NULL}.
Also available are

\fun{GEN}{redimag}{GEN x} (for definite $x$),

\noindent and for indefinite forms:

\fun{GEN}{redreal}{GEN x}

\fun{GEN}{rhoreal}{GEN x} (= \kbd{qfbred(x,1)}),

\fun{GEN}{redrealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,2,,isd)}),

\fun{GEN}{rhorealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,3,,isd)}).

\subsec{qfbredsl2$(x,\{\var{data}\})$}\kbdsidx{qfbredsl2}\label{se:qfbredsl2}
Reduction of the (real or imaginary) binary quadratic form $x$, return
$[y,g]$ where $y$ is reduced and $g$ in $\text{SL}(2,\Z)$ is such that
 $g \cdot x = y$; \var{data}, if
present, must be equal to $[D, \kbd{sqrtint}(D)]$, where $D > 0$ is the
discriminant of $x$. In case $x$ is \typ{QFR}, the distance component is
unaffected.

The library syntax is \fun{GEN}{qfbredsl2}{GEN x, GEN data = NULL}.

\subsec{qfbsolve$(Q,p)$}\kbdsidx{qfbsolve}\label{se:qfbsolve}
Solve the equation $Q(x,y)=p$ over the integers,
where $Q$ is a binary quadratic form and $p$ a prime number.

Return $[x,y]$ as a two-components vector, or zero if there is no solution.
Note that this function returns only one solution and not all the solutions.

Let $D = \disc Q$. The algorithm used runs in probabilistic polynomial time
in $p$ (through the computation of a square root of $D$ modulo $p$); it is
polynomial time in $D$ if $Q$ is imaginary, but exponential time if $Q$ is
real (through the computation of a full cycle of reduced forms). In the
latter case, note that \tet{bnfisprincipal} provides a solution in heuristic
subexponential time in $D$ assuming the GRH.

The library syntax is \fun{GEN}{qfbsolve}{GEN Q, GEN p}.

\subsec{quadclassunit$(D,\{\fl=0\},\{\var{tech}=[\,]\})$}\kbdsidx{quadclassunit}\label{se:quadclassunit}
\idx{Buchmann-McCurley}'s sub-exponential algorithm for computing the
class group of a quadratic order of discriminant $D$.

This function should be used instead of \tet{qfbclassno} or \tet{quadregula}
when $D<-10^{25}$, $D>10^{10}$, or when the \emph{structure} is wanted. It
is a special case of \tet{bnfinit}, which is slower, but more robust.

The result is a vector $v$ whose components should be accessed using member
functions:

\item \kbd{$v$.no}: the class number

\item \kbd{$v$.cyc}: a vector giving the structure of the class group as a
product of cyclic groups;

\item \kbd{$v$.gen}: a vector giving generators of those cyclic groups (as
binary quadratic forms).

\item \kbd{$v$.reg}: the regulator, computed to an accuracy which is the
maximum of an internal accuracy determined by the program and the current
default (note that once the regulator is known to a small accuracy it is
trivial to compute it to very high accuracy, see the tutorial).

The $\fl$ is obsolete and should be left alone. In older versions,
it supposedly computed the narrow class group when $D>0$, but this did not
work at all; use the general function \tet{bnfnarrow}.

Optional parameter \var{tech} is a row vector of the form $[c_1, c_2]$,
where $c_1 \leq c_2$ are non-negative real numbers which control the execution
time and the stack size, see \ref{se:GRHbnf}. The parameter is used as a
threshold to balance the relation finding phase against the final linear
algebra. Increasing the default $c_1$ means that relations are easier
to find, but more relations are needed and the linear algebra will be
harder. The default value for $c_1$ is $0$ and means that it is taken equal
to $c_2$. The parameter $c_2$ is mostly obsolete and should not be changed,
but we still document it for completeness: we compute a tentative class
group by generators and relations using a factorbase of prime ideals
$\leq c_1 (\log |D|)^2$, then prove that ideals of norm
$\leq c_2 (\log |D|)^2$ do
not generate a larger group. By default an optimal $c_2$ is chosen, so that
the result is provably correct under the GRH --- a famous result of Bach
states that $c_2 = 6$ is fine, but it is possible to improve on this
algorithmically. You may provide a smaller $c_2$, it will be ignored
(we use the provably correct
one); you may provide a larger $c_2$ than the default value, which results
in longer computing times for equally correct outputs (under GRH).

The library syntax is \fun{GEN}{quadclassunit0}{GEN D, long flag, GEN tech = NULL, long prec}.
If you really need to experiment with the \var{tech} parameter, it is
usually more convenient to use
\fun{GEN}{Buchquad}{GEN D, double c1, double c2, long prec}

\subsec{quaddisc$(x)$}\kbdsidx{quaddisc}\label{se:quaddisc}
Discriminant of the \'etale algebra $\Q(\sqrt{x})$, where $x\in\Q^*$.
This is the same as \kbd{coredisc}$(d)$ where $d$ is the integer square-free
part of $x$, so x=$d f^2$ with $f\in \Q^*$ and $d\in\Z$.
This returns $0$ for $x = 0$, $1$ for $x$ square and the discriminant of the
quadratic field $\Q(\sqrt{x})$ otherwise.
\bprog
? quaddisc(7)
%1 = 28
? quaddisc(-7)
%2 = -7
@eprog

The library syntax is \fun{GEN}{quaddisc}{GEN x}.

\subsec{quadgen$(D)$}\kbdsidx{quadgen}\label{se:quadgen}
Creates the quadratic
number\sidx{omega} $\omega=(a+\sqrt{D})/2$ where $a=0$ if $D\equiv0\mod4$,
$a=1$ if $D\equiv1\mod4$, so that $(1,\omega)$ is an integral basis for the
quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or
1 modulo 4, which is not a square.

The library syntax is \fun{GEN}{quadgen}{GEN D}.

\subsec{quadhilbert$(D)$}\kbdsidx{quadhilbert}\label{se:quadhilbert}
Relative equation defining the
\idx{Hilbert class field} of the quadratic field of discriminant $D$.

If $D < 0$, uses complex multiplication (\idx{Schertz}'s variant).

If $D > 0$ \idx{Stark units} are used and (in rare cases) a
vector of extensions may be returned whose compositum is the requested class
field. See \kbd{bnrstark} for details.

The library syntax is \fun{GEN}{quadhilbert}{GEN D, long prec}.

\subsec{quadpoly$(D,\{v='x\})$}\kbdsidx{quadpoly}\label{se:quadpoly}
Creates the ``canonical'' quadratic
polynomial (in the variable $v$) corresponding to the discriminant $D$,
i.e.~the minimal polynomial of $\kbd{quadgen}(D)$. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square.

The library syntax is \fun{GEN}{quadpoly0}{GEN D, long v = -1} where \kbd{v} is a variable number.

\subsec{quadray$(D,f)$}\kbdsidx{quadray}\label{se:quadray}
Relative equation for the ray
class field of conductor $f$ for the quadratic field of discriminant $D$
using analytic methods. A \kbd{bnf} for $x^2 - D$ is also accepted in place
of $D$.

For $D < 0$, uses the $\sigma$ function and Schertz's method.

For $D>0$, uses Stark's conjecture, and a vector of relative equations may be
returned. See \tet{bnrstark} for more details.

The library syntax is \fun{GEN}{quadray}{GEN D, GEN f, long prec}.

\subsec{quadregulator$(x)$}\kbdsidx{quadregulator}\label{se:quadregulator}
Regulator of the quadratic field of positive discriminant $x$. Returns
an error if $x$ is not a discriminant (fundamental or not) or if $x$ is a
square. See also \kbd{quadclassunit} if $x$ is large.

The library syntax is \fun{GEN}{quadregulator}{GEN x, long prec}.

\subsec{quadunit$(D)$}\kbdsidx{quadunit}\label{se:quadunit}
Fundamental unit\sidx{fundamental units} of the
real quadratic field $\Q(\sqrt D)$ where  $D$ is the positive discriminant
of the field. If $D$ is not a fundamental discriminant, this probably gives
the fundamental unit of the corresponding order. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square; the result is a
quadratic number (see \secref{se:quadgen}).

The library syntax is \fun{GEN}{quadunit}{GEN D}.

\subsec{ramanujantau$(n)$}\kbdsidx{ramanujantau}\label{se:ramanujantau}
Compute the value of Ramanujan's tau function at an individual $n$,
assuming the truth of the GRH (to compute quickly class numbers of imaginary
quadratic fields using \tet{quadclassunit}).
Algorithm in $\tilde{O}(n^{1/2})$ using $O(\log n)$ space. If all values up
to $N$ are required, then
$$\sum \tau(n)q^n = q \prod_{n\geq 1} (1-q^n)^{24}$$
will produce them in time $\tilde{O}(N)$, against $\tilde{O}(N^{3/2})$ for
individual calls to \kbd{ramanujantau}; of course the space complexity then
becomes $\tilde{O}(N)$.
\bprog
? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
? N = 10^4; v = tauvec(N);
time = 26 ms.
? ramanujantau(N)
%3 = -482606811957501440000
? w = vector(N, n, ramanujantau(n)); \\ much slower !
time = 13,190 ms.
? v == w
%4 = 1
@eprog

The library syntax is \fun{GEN}{ramanujantau}{GEN n}.

\subsec{randomprime$(\{N = 2^{{31}}\})$}\kbdsidx{randomprime}\label{se:randomprime}
Returns a strong pseudo prime (see \tet{ispseudoprime}) in $[2,N-1]$.
A \typ{VEC} $N = [a,b]$ is also allowed, with $a \leq b$ in which case a
pseudo prime $a \leq p \leq b$ is returned; if no prime exists in the
interval, the function will run into an infinite loop. If the upper bound
is less than $2^{64}$ the pseudo prime returned is a proven prime.

The library syntax is \fun{GEN}{randomprime}{GEN N = NULL}.

\subsec{removeprimes$(\{x=[\,]\})$}\kbdsidx{removeprimes}\label{se:removeprimes}
Removes the primes listed in $x$ from
the prime number table. In particular \kbd{removeprimes(addprimes())} empties
the extra prime table. $x$ can also be a single integer. List the current
extra primes if $x$ is omitted.

The library syntax is \fun{GEN}{removeprimes}{GEN x = NULL}.

\subsec{sigma$(x,\{k=1\})$}\kbdsidx{sigma}\label{se:sigma}
Sum of the $k^{\text{th}}$ powers of the positive divisors of $|x|$. $x$
and $k$ must be of type integer.

The library syntax is \fun{GEN}{sumdivk}{GEN x, long k}.
Also available is \fun{GEN}{sumdiv}{GEN n}, for $k = 1$.

\subsec{sqrtint$(x)$}\kbdsidx{sqrtint}\label{se:sqrtint}
Returns the integer square root of $x$, i.e. the largest integer $y$
such that $y^2 \leq x$, where $x$ a non-negative integer.
\bprog
? N = 120938191237; sqrtint(N)
%1 = 347761
? sqrt(N)
%2 = 347761.68741970412747602130964414095216
@eprog

The library syntax is \fun{GEN}{sqrtint}{GEN x}.

\subsec{sqrtnint$(x,n)$}\kbdsidx{sqrtnint}\label{se:sqrtnint}
Returns the integer $n$-th root of $x$, i.e. the largest integer $y$ such
that $y^n \leq x$, where $x$ is a non-negative integer.
\bprog
? N = 120938191237; sqrtnint(N, 5)
%1 = 164
? N^(1/5)
%2 = 164.63140849829660842958614676939677391
@eprog\noindent The special case $n = 2$ is \tet{sqrtint}

The library syntax is \fun{GEN}{sqrtnint}{GEN x, long n}.

\subsec{stirling$(n,k,\{\fl=1\})$}\kbdsidx{stirling}\label{se:stirling}
\idx{Stirling number} of the first kind $s(n,k)$ ($\fl=1$, default) or
of the second kind $S(n,k)$ (\fl=2), where $n$, $k$ are non-negative
integers. The former is $(-1)^{n-k}$ times the
number of permutations of $n$ symbols with exactly $k$ cycles; the latter is
the number of ways of partitioning a set of $n$ elements into $k$ non-empty
subsets. Note that if all $s(n,k)$ are needed, it is much faster to compute
$$\sum_k s(n,k) x^k = x(x-1)\dots(x-n+1).$$
Similarly, if a large number of $S(n,k)$ are needed for the same $k$,
one should use
$$\sum_n S(n,k) x^n = \dfrac{x^k}{(1-x)\dots(1-kx)}.$$
(Should be implemented using a divide and conquer product.) Here are
simple variants for $n$ fixed:
\bprog
/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )

/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(Q = x^(n-1), t);
  vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]));
}
@eprog

The library syntax is \fun{GEN}{stirling}{long n, long k, long flag}.
Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
($\fl=1$) and \fun{GEN}{stirling2}{ulong n, ulong k} ($\fl=2$).

\subsec{sumdedekind$(h,k)$}\kbdsidx{sumdedekind}\label{se:sumdedekind}
Returns the \idx{Dedekind sum} attached to the integers $h$ and $k$,
 corresponding to a fast implementation of
 \bprog
  s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
 @eprog

The library syntax is \fun{GEN}{sumdedekind}{GEN h, GEN k}.

\subsec{sumdigits$(n,\{B={10}\})$}\kbdsidx{sumdigits}\label{se:sumdigits}
Sum of digits in the integer $n$, when written in base $B > 1$.
\bprog
? sumdigits(123456789)
%1 = 45
? sumdigits(123456789, 2)
%1 = 16
@eprog\noindent Note that the sum of bits in $n$ is also returned by
\tet{hammingweight}. This function is much faster than
\kbd{vecsum(digits(n,B))} when $B$ is $10$ or a power of $2$, and only
slightly faster in other cases.

The library syntax is \fun{GEN}{sumdigits0}{GEN n, GEN B = NULL}.
Also available is \fun{GEN}{sumdigits}{GEN n}, for $B = 10$.

\subsec{zncharinduce$(G, \var{chi}, N)$}\kbdsidx{zncharinduce}\label{se:zncharinduce}
Let $G$ be attached to $(\Z/q\Z)^*$ (as per \kbd{G = idealstar(,q)})
and let \kbd{chi} be a Dirichlet character on $(\Z/q\Z)^*$, given by

\item a \typ{VEC}: a standard character on \kbd{bid.gen},

\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.

Let $N$ be a multiple of $q$, return the character modulo $N$ induced by
\kbd{chi}. As usual for arithmetic functions, the new modulus $N$ can be
given as a \typ{INT}, via a factorization matrix or a pair
\kbd{[N, factor(N)]}, or by \kbd{idealstar(,N)}.

\bprog
? G = idealstar(,4);
? chi = znconreylog(G,1); \\ trivial character mod 4
? zncharinduce(G, chi, 80)  \\ now mod 80
%3 = [0, 0, 0]~
? zncharinduce(G, 1, 80)  \\ same using directly Conrey label
%4 = [0, 0, 0]~
? G2 = idealstar(,80);
? zncharinduce(G, 1, G2)  \\ same
%4 = [0, 0, 0]~

? chi = zncharinduce(G, 3, G2)  \\ induce the non-trivial character mod 4
%5 = [1, 0, 0]~
? znconreyconductor(G2, chi, &chi0)
%6 = [4, Mat([2, 2])]
? chi0
%7 = [1]~
@eprog\noindent Here is a larger example:
\bprog
? G = idealstar(,126000);
? label = 1009;
? chi = znconreylog(G, label)
%3 = [0, 0, 0, 14, 0]~
? N0 = znconreyconductor(G, label, &chi0)
%4 = [125, Mat([5, 3])]
? chi0 \\ primitive character mod 5^3 attached to chi
%5 = [14]~
? G0 = idealstar(,N0);
? zncharinduce(G0, chi0, G) \\ induce back
%7 = [0, 0, 0, 14, 0]~
? znconreyexp(G, %)
%8 = 1009
@eprog

The library syntax is \fun{GEN}{zncharinduce}{GEN G, GEN chi, GEN N}.

\subsec{zncharisodd$(G, \var{chi})$}\kbdsidx{zncharisodd}\label{se:zncharisodd}
Let $G$ be attached to $(\Z/N\Z)^*$ (as per \kbd{G = idealstar(,N)})
and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^*$, given by

\item a \typ{VEC}: a standard character on \kbd{bid.gen},

\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.

Return $1$ if and only if \kbd{chi}$(-1) = -1$ and $0$ otherwise.

\bprog
? G = idealstar(,8);
? zncharisodd(G, 1)  \\ trivial character
%2 = 0
? zncharisodd(G, 3)
%3 = 1
? chareval(G, 3, -1)
%4 = 1/2
@eprog

The library syntax is \fun{long}{zncharisodd}{GEN G, GEN chi}.

\subsec{znchartokronecker$(G, \var{chi}, \{\fl=0\})$}\kbdsidx{znchartokronecker}\label{se:znchartokronecker}
Let $G$ be attached to $(\Z/N\Z)^*$ (as per \kbd{G = idealstar(,N)})
and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^*$, given by

\item a \typ{VEC}: a standard character on \kbd{bid.gen},

\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.

If $\fl = 0$, return the discriminant $D$ if \kbd{chi} is real equal to the
Kronecker symbol $(D/.)$ and $0$ otherwise. The discriminant $D$ is
fundamental if and only if \kbd{chi} is primitive.

If $\fl = 1$, return the fundamental discriminant attached to the
corresponding primitive character.

\bprog
? G = idealstar(,8); CHARS = [1,3,5,7]; \\ Conrey labels
? apply(t->znchartokronecker(G,t), CHARS)
%2 = [4, -8, 8, -4]
? apply(t->znchartokronecker(G,t,1), CHARS)
%3 = [1, -8, 8, -4]
@eprog

The library syntax is \fun{GEN}{znchartokronecker}{GEN G, GEN chi, long flag}.

\subsec{znconreychar$(\var{bid},m)$}\kbdsidx{znconreychar}\label{se:znconreychar}
Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}), this function returns the Dirichlet character
attached to $m \in (\Z/q\Z)^*$ via Conrey's logarithm, which
establishes a ``canonical'' bijection between $(\Z/q\Z)^*$ and its dual.

Let $q = \prod_p p^{e_p}$ be the factorization of $q$ into distinct primes.
For all odd  $p$ with $e_p > 0$, let $g_p$ be the element in $(\Z/q\Z)^*$
which is

\item congruent to $1$ mod $q/p^{e_p}$,

\item congruent mod $p^{e_p}$ to the smallest integer whose order
is $\phi(p^{e_p})$.

For $p = 2$, we let $g_4$ (if $2^{e_2} \geq 4$) and $g_8$ (if furthermore
($2^{e_2} \geq 8$) be the elements in $(\Z/q\Z)^*$ which
are

\item congruent to $1$ mod $q/2^{e_2}$,

\item $g_4 = -1 \mod 2^{e_2}$,

\item $g_8 = 5 \mod 2^{e_2}$.

Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2}\geq 2$) are
independent
generators of $(\Z/q\Z)^*$, i.e. every $m$ in $(\Z/q\Z)^*$ can be written
uniquely as $\prod_p g_p^{m_p}$, where $m_p$ is defined modulo the order
$o_p$ of $g_p$
and $p \in S_q$, the set of prime divisors of $q$ together with $4$
if $4 \mid q$ and $8$ if $8 \mid q$. Note that the $g_p$ are in general
\emph{not} SNF
generators as produced by \kbd{znstar} or \kbd{idealstar} whenever
$\omega(q) \geq 2$, although their number is the same. They however allow
to handle the finite abelian group $(\Z/q\Z)^*$ in a fast and elegant
way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)

The Conrey logarithm of $m$ is the vector $(m_p)_{p\in S_q}$, obtained
via \tet{znconreylog}. The Conrey character $\chi_q(m,\cdot)$  attached to
$m$ mod $q$ maps
each $g_p$, $p\in S_q$ to $e(m_p / o_p)$, where $e(x) = \exp(2i\pi x)$.
This function returns the Conrey character expressed in the standard PARI
way in terms of the SNF generators \kbd{bid.gen}.

\misctitle{Note} It is useless to include the generators
in the \var{bid}, except for debugging purposes: they are well defined from
elementary matrix operations and Chinese remaindering, their explicit value
as elements in $(\Z/q\Z)^*$ is never used.

\bprog
? G = idealstar(,8,2); /*add generators for debugging:*/
? G.cyc
%2 = [2, 2]  \\ Z/2 x Z/2
? G.gen
%3 = [7, 3]
? znconreychar(G,1)  \\ 1 is always the trivial character
%4 = [0, 0]
? znconreychar(G,2)  \\ 2 is not coprime to 8 !!!
  ***   at top-level: znconreychar(G,2)
  ***                 ^-----------------
  *** znconreychar: elements not coprime in Zideallog:
    2
    8
  ***   Break loop: type 'break' to go back to GP prompt
break>

? znconreychar(G,3)
%5 = [0, 1]
? znconreychar(G,5)
%6 = [1, 1]
? znconreychar(G,7)
%7 = [1, 0]
@eprog\noindent We indeed get all 4 characters of $(\Z/8\Z)^*$.

For convenience, we allow to input the \emph{Conrey logarithm} of $m$
instead of $m$:
\bprog
? G = idealstar(,55);
? znconreychar(G,7)
%2 = [7, 0]
? znconreychar(G, znconreylog(G,7))
%3 = [7, 0]
@eprog

The library syntax is \fun{GEN}{znconreychar}{GEN bid, GEN m}.

\subsec{znconreyconductor$(\var{bid},\var{chi}, \{\&\var{chi0}\})$}\kbdsidx{znconreyconductor}\label{se:znconreyconductor}
Let \var{bid} be attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}) and \kbd{chi} be a Dirichlet character on
$(\Z/q\Z)^*$, given by

\item a \typ{VEC}: a standard character on \kbd{bid.gen},

\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.

Return the conductor of \kbd{chi}, as the \typ{INT} \kbd{bid.mod}
if \kbd{chi} is primitive, and as a pair \kbd{[N, faN]} (with \kbd{faN} the
factorization of $N$) otherwise.

If \kbd{chi0} is present, set it to the Conrey logarithm of the attached
primitive character.

\bprog
? G = idealstar(,126000);
? znconreyconductor(G,11)   \\ primitive
%2 = 126000
? znconreyconductor(G,1)    \\ trivial character, not primitive!
%3 = [1, matrix(0,2)]
? N0 = znconreyconductor(G,1009, &chi0) \\ character mod 5^3
%4 = [125, Mat([5, 3])]
? chi0
%5 = [14]~
? G0 = idealstar(,N0);      \\ format [N,factor(N)] accepted
? znconreyexp(G0, chi0)
%7 = 9
? znconreyconductor(G0, chi0) \\ now primitive, as expected
%8 = 125
@eprog\noindent The group \kbd{G0} is not computed as part of
\kbd{znconreyconductor} because it needs to be computed only once per
conductor, not once per character.

The library syntax is \fun{GEN}{znconreyconductor}{GEN bid, GEN chi, GEN *chi0 = NULL}.

\subsec{znconreyexp$(\var{bid}, \var{chi})$}\kbdsidx{znconreyexp}\label{se:znconreyexp}
Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}), this function returns the Conrey exponential of
the character \var{chi}: it returns the integer
$m \in (\Z/q\Z)^*$ such that \kbd{znconreylog(\var{bid}, $m$)} is \var{chi}.

The character \var{chi} is given either as a

\item \typ{VEC}: in terms of the generators \kbd{\var{bid}.gen};

\item \typ{COL}: a Conrey logarithm.

\bprog
? G = idealstar(,126000)
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G,%)
%3 = 1
? G.cyc \\ SNF generators
%4 = [300, 12, 2, 2, 2]
? chi = [100, 1, 0, 1, 0]; \\ some random character on SNF generators
? znconreylog(G, chi)  \\ in terms of Conrey generators
%6 = [0, 3, 3, 0, 2]~
? znconreyexp(G, %)  \\ apply to a Conrey log
%7 = 18251
? znconreyexp(G, chi) \\ ... or a char on SNF generators
%8 = 18251
? znconreychar(G,%)
%9 = [100, 1, 0, 1, 0]
@eprog

The library syntax is \fun{GEN}{znconreyexp}{GEN bid, GEN chi}.

\subsec{znconreylog$(\var{bid},m)$}\kbdsidx{znconreylog}\label{se:znconreylog}
Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}), this function returns the Conrey logarithm of
$m \in (\Z/q\Z)^*$.

Let $q = \prod_p p^{e_p}$ be the factorization of $q$ into distinct primes,
where we assume $e_2 = 0$ or $e_2 \geq 2$. (If $e_2 = 1$, we can ignore $2$
from the factorization, as if we replaced $q$ by $q/2$, since $(\Z/q\Z)^*
\sim (\Z/(q/2)\Z)^*$.)

For all odd  $p$ with $e_p > 0$, let $g_p$ be the element in $(\Z/q\Z)^*$
which is

\item congruent to $1$ mod $q/p^{e_p}$,

\item congruent mod $p^{e_p}$ to the smallest integer whose order
is $\phi(p^{e_p})$ for $p$ odd,

For $p = 2$, we let $g_4$ (if $2^{e_2} \geq 4$) and $g_8$ (if furthermore
($2^{e_2} \geq 8$) be the elements in $(\Z/q\Z)^*$ which
are

\item congruent to $1$ mod $q/2^{e_2}$,

\item $g_4 = -1 \mod 2^{e_2}$,

\item $g_8 = 5 \mod 2^{e_2}$.

Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2}\geq 2$) are
independent
generators of $\Z/q\Z^*$, i.e. every $m$ in $(\Z/q\Z)^*$ can be written
uniquely as $\prod_p g_p^{m_p}$, where $m_p$ is defined modulo the
order $o_p$ of $g_p$
and $p \in S_q$, the set of prime divisors of $q$ together with $4$
if $4 \mid q$ and $8$ if $8 \mid q$.
Note that the $g_p$ are in general \emph{not} SNF
generators as produced by \kbd{znstar} or \kbd{idealstar} whenever
$\omega(q) \geq 2$, although their number is the same. They however allow
to handle the finite abelian group $(\Z/q\Z)^*$ in a fast and elegant
way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)

The Conrey logarithm of $m$ is the vector $(m_p)_{p\in S_q}$. The inverse
function \tet{znconreyexp} recovers the Conrey label $m$ from a character.

\bprog
? G = idealstar(,126000);
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)
%3 = 1
? znconreylog(G,2)  \\ 2 is not coprime to modulus !!!
  ***   at top-level: znconreylog(G,2)
  ***                 ^-----------------
  *** znconreylog: elements not coprime in Zideallog:
    2
    126000
  ***   Break loop: type 'break' to go back to GP prompt
break>
? znconreylog(G,11) \\ wrt. Conrey generators
%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G)   \\ wrt. SNF generators
%5 = [178, 3, -75, 1, 0]~
@eprog\noindent

For convenience, we allow to input the ordinary discrete log of $m$,
$\kbd{ideallog(,m,bid)}$, which allows to convert discrete logs
from \kbd{bid.gen} generators to Conrey generators.
\bprog
? znconreylog(G, log11)
%7 = [0, 3, 1, 76, 4]~
@eprog\noindent We also allow a character (\typ{VEC}) on \kbd{bid.gen} and
return its representation on the Conrey generators.
\bprog
? G.cyc
%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];
? znconreylog(G, chi)
%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149
? znconreychar(G, n)
%12 = [10, 1, 0, 1, 1]
@eprog

The library syntax is \fun{GEN}{znconreylog}{GEN bid, GEN m}.

\subsec{zncoppersmith$(P, N, X, \{B=N\})$}\kbdsidx{zncoppersmith}\label{se:zncoppersmith}
$N$ being an integer and $P\in \Z[X]$, finds all integers $x$ with
$|x| \leq X$ such that
$$\gcd(N, P(x)) \geq B,$$
using \idx{Coppersmith}'s algorithm (a famous application of the \idx{LLL}
algorithm). $X$ must be smaller than $\exp(\log^2 B / (\deg(P) \log N))$:
for $B = N$, this means $X < N^{1/\deg(P)}$. Some $x$ larger than $X$ may
be returned if you are very lucky. The smaller $B$ (or the larger $X$), the
slower the routine will be. The strength of Coppersmith method is the
ability to find roots modulo a general \emph{composite} $N$: if $N$ is a prime
or a prime power, \tet{polrootsmod} or \tet{polrootspadic} will be much
faster.

We shall now present two simple applications. The first one is
finding non-trivial factors of $N$, given some partial information on the
factors; in that case $B$ must obviously be smaller than the largest
non-trivial divisor of $N$.
\bprog
setrand(1); \\ to make the example reproducible
interval = [10^30, 10^31];
p = randomprime(interval);
q = randomprime(interval); N = p*q;
p0 = p % 10^20; \\ assume we know 1) p > 10^29, 2) the last 19 digits of p
L = zncoppersmith(10^19*x + p0, N, 10^12, 10^29)

\\ result in 10ms.
%6 = [738281386540]
? gcd(L[1] * 10^19 + p0, N) == p
%7 = 1
@eprog\noindent and we recovered $p$, faster than by trying all
possibilities $ < 10^{12}$.

The second application is an attack on RSA with low exponent, when the
message $x$ is short and the padding $P$ is known to the attacker. We use
the same RSA modulus $N$ as in the first example:
\bprog
setrand(1);
P = random(N);    \\ known padding
e = 3;            \\ small public encryption exponent
X = floor(N^0.3); \\ N^(1/e - epsilon)
x0 = random(X);   \\ unknown short message
C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
zncoppersmith((P + x)^3 - C, N, X)

\\ result in 244ms.
%14 = [2679982004001230401]

? %[1] == x0
%15 = 1
@eprog\noindent
We guessed an integer of the order of $10^{18}$, almost instantly.

The library syntax is \fun{GEN}{zncoppersmith}{GEN P, GEN N, GEN X, GEN B = NULL}.

\subsec{znlog$(x,g,\{o\})$}\kbdsidx{znlog}\label{se:znlog}
This functions allows two distinct modes of operation depending
on $g$:

\item if $g$ is the output of \tet{znstar} (with initialization),
we compute the discrete logarithm of $x$ with respect to the generators
contained in the structure. See \tet{ideallog} for details.

\item else $g$ is an explicit element in $(\Z/N\Z)^*$, we compute the
discrete logarithm of $x$ in $(\Z/N\Z)^*$ in base $g$. The rest of this
entry describes the latter possibility.

The result is $[]$ when $x$ is not a power of $g$, though the function may
also enter an infinite loop in this case.

If present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the order of $g$.
This provides a definite speedup when the discrete log problem is simple:
\bprog
? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];
? for(i=1,10^4, znlog(i, g, o))
time = 205 ms.
? for(i=1,10^4, znlog(i, g))
time = 244 ms. \\ a little slower
@eprog

The result is undefined if $g$ is not invertible mod $N$ or if the supplied
order is incorrect.

This function uses

\item a combination of generic discrete log algorithms (see below).

\item in $(\Z/N\Z)^*$ when $N$ is prime: a linear sieve index calculus
method, suitable for $N < 10^{50}$, say, is used for large prime divisors of
the order.

The generic discrete log algorithms are:

\item Pohlig-Hellman algorithm, to reduce to groups of prime order $q$,
where $q | p-1$ and $p$ is an odd prime divisor of $N$,

\item Shanks baby-step/giant-step ($q < 2^{32}$ is small),

\item Pollard rho method ($q > 2^{32}$).

The latter two algorithms require $O(\sqrt{q})$ operations in the group on
average, hence will not be able to treat cases where $q > 10^{30}$, say.
In addition, Pollard rho is not able to handle the case where there are no
solutions: it will enter an infinite loop.
\bprog
? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)

? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1
? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)
%7 = 110
? znlog(6, Mod(2,3))  \\ no solution
%8 = []
@eprog\noindent For convenience, $g$ is also allowed to be a $p$-adic number:
\bprog
? g = 3+O(5^10); znlog(2, g)
%1 = 1015243
? g^%
%2 = 2 + O(5^10)
@eprog

The library syntax is \fun{GEN}{znlog0}{GEN x, GEN g, GEN o = NULL}.
The function
\fun{GEN}{znlog}{GEN x, GEN g, GEN o} is also available

\subsec{znorder$(x,\{o\})$}\kbdsidx{znorder}\label{se:znorder}
$x$ must be an integer mod $n$, and the
result is the order of $x$ in the multiplicative group $(\Z/n\Z)^*$. Returns
an error if $x$ is not invertible.
The parameter o, if present, represents a non-zero
multiple of the order of $x$, see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord = eulerphi(n)}
is the cardinality of the group.

The library syntax is \fun{GEN}{znorder}{GEN x, GEN o = NULL}.
Also available is \fun{GEN}{order}{GEN x}.

\subsec{znprimroot$(n)$}\kbdsidx{znprimroot}\label{se:znprimroot}
Returns a primitive root (generator) of $(\Z/n\Z)^*$, whenever this
latter group is cyclic ($n = 4$ or $n = 2p^k$ or $n = p^k$, where $p$ is an
odd prime and $k \geq 0$). If the group is not cyclic, the result is
undefined. If $n$ is a prime power, then the smallest positive primitive
root is returned. This may not be true for $n = 2p^k$, $p$ odd.

Note that this function requires factoring $p-1$ for $p$ as above,
in order to determine the exact order of elements in
$(\Z/n\Z)^*$: this is likely to be costly if $p$ is large.

The library syntax is \fun{GEN}{znprimroot}{GEN n}.

\subsec{znstar$(n,\{\fl=0\})$}\kbdsidx{znstar}\label{se:znstar}
Gives the structure of the multiplicative group $(\Z/n\Z)^*$.
The output $G$ depends on the value of \fl:

\item $\fl = 0$ (default), an abelian group structure $[h,d,g]$,
where $h = \phi(n)$ is the order (\kbd{G.no}), $d$ (\kbd{G.cyc})
is a $k$-component row-vector $d$ of integers $d_i$ such that $d_i>1$,
$d_i \mid d_{i-1}$ for $i \ge 2$ and
$$ (\Z/n\Z)^* \simeq \prod_{i=1}^k (\Z/d_i\Z), $$
and $g$ (\kbd{G.gen}) is a $k$-component row vector giving generators of
the image of the cyclic groups $\Z/d_i\Z$.

\item $\fl = 1$ the result is a \kbd{bid} structure without generators
(which are well defined but not explicitly computed, which saves time);
this allows computing discrite logarithms using \tet{znlog} (also in the
non-cyclic case!).

\item $\fl = 2$ same as $\fl = 1$ with generators.

\bprog
? G = znstar(40)
%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]
? G.no   \\ eulerphi(40)
%2 = 16
? G.cyc  \\ cycle structure
%3 = [4, 2, 2]
? G.gen  \\ generators for the cyclic components
%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]
? apply(znorder, G.gen)
%5 = [4, 2, 2]
@eprog\noindent According to the above definitions, \kbd{znstar(0)} is
\kbd{[2, [2], [-1]]}, corresponding to $\Z^*$.

The library syntax is \fun{GEN}{znstar0}{GEN n, long flag}.
Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{ZNstar}{GEN N, long flag}, where \kbd{flag} is
an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
(return a full \kbd{bid}, not a group), possibly $0$. This offers
one more combination: no gen and no init.
%SECTION: number_theoretical

\section{Elliptic curves}

\subsec{Elliptic curve structures} %GPHELPskip
An elliptic curve is given by a Weierstrass model\sidx{Weierstrass equation}
$$
  y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6,
$$
whose discriminant is non-zero. Affine points on \kbd{E} are represented as
two-component vectors \kbd{[x,y]}; the point at infinity, i.e.~the identity
element of the group law, is represented by the one-component vector
\kbd{[0]}.

Given a vector of coefficients $[a_1,a_2,a_3,a_4,a_6]$, the function
\tet{ellinit} initializes and returns an \tev{ell} structure. (An additional
optional argument allows to specify the base field in case it cannot be
inferred from the curve coefficients.) This structure contains data needed by
elliptic curve related functions, and is generally passed as a first argument.
Expensive data are skipped on initialization: they will be dynamically
computed when (and if) needed, and then inserted in the structure. The
precise layout of the \tev{ell} structure is left undefined and should never
be used directly. The following \idx{member functions} are available,
depending on the underlying domain.

\subsubsec{All domains} %GPHELPskip

\item \tet{a1}, \tet{a2}, \tet{a3}, \tet{a4}, \tet{a6}: coefficients of the
elliptic curve.

\item \tet{b2}, \tet{b4}, \tet{b6}, \tet{b8}: $b$-invariants of the curve; in
characteristic $\neq 2$, for $Y = 2y + a_1x+a3$, the curve equation becomes
$$ Y^2 = 4 x^3 + b_2 x^2 + 2b_4 x + b_6 =: g(x). $$

\item \tet{c4}, \tet{c6}: $c$-invariants of the curve; in characteristic $\neq
2,3$, for $X = x + b_2/12$ and $Y = 2y + a_1x+a3$, the curve equation becomes
$$ Y^2 = 4 X^3 - (c_4/12) X - (c_6/216). $$

\item \tet{disc}: discriminant of the curve. This is only required to be
non-zero, not necessarily a unit.

\item \tet{j}: $j$-invariant of the curve.

\noindent These are used as follows:
\bprog
? E = ellinit([0,0,0, a4,a6]);
? E.b4
%2 = 2*a4
? E.disc
%3 = -64*a4^3 - 432*a6^2
@eprog

\subsubsec{Curves over $\R$} %GPHELPskip

This in particular includes curves defined over $\Q$. All member functions in
this section return data, as it is currently stored in the structure, if
present; and otherwise compute it to the default accuracy, that was fixed
\emph{at the time of ellinit} (via a \typ{REAL} $D$ domain argument, or
\kbd{realprecision} by default). The function \tet{ellperiods} allows to
recompute (and cache) the following data to \emph{current}
\kbd{realprecision}.

\item \tet{area}: volume of the complex lattice defining $E$.

\item \tet{roots} is a vector whose three components contain the complex
roots of the right hand side $g(x)$ of the attached $b$-model $Y^2 = g(x)$.
If the roots are all real, they are ordered by decreasing value. If only one
is real, it is the first component.

\item \tet{omega}: $[\omega_1,\omega_2]$, periods forming a basis of the
complex lattice defining $E$. The first component $\omega_1$ is the
(positive) real period, in other words the integral of the N\'eron
differential $dx/(2y+a_1x+a_3)$
over the connected component of the identity component of $E(\R)$.
The second component $\omega_2$ is a complex period, such that
$\tau=\dfrac{\omega_1}{\omega_2}$ belongs to Poincar\'e's
half-plane (positive imaginary part); not necessarily to the standard
fundamental domain. It is normalized so that $\Im(\omega_2) < 0$
and either $\Re(\omega_2) = 0$, when \kbd{E.disc > 0} ($E(\R)$ has two connected
components), or $\Re(\omega_2) = \omega_1/2$

\item \tet{eta} is a row vector containing the quasi-periods $\eta_1$ and
$\eta_2$ such that $\eta_i = 2\zeta(\omega_i/2)$, where $\zeta$ is the
Weierstrass zeta function attached to the period lattice; see
\tet{ellzeta}. In particular, the Legendre relation holds: $\eta_2\omega_1 -
\eta_1\omega_2 = 2\pi i$.

\misctitle{Warning} As for the orientation of the basis of the period lattice,
beware that many sources use the inverse convention where $\omega_2/\omega_1$
has positive imaginary part and our $\omega_2$ is the negative of theirs. Our
convention $\tau = \omega_1/\omega_2$  ensures that the action of $\text{PSL}_2$ is the natural
one:
$$[a,b;c,d]\cdot\tau = (a\tau+b)/(c\tau+d)
  = (a \omega_1 + b\omega_2)/(c\omega_1 + d\omega_2),$$
instead of a twisted one. (Our $tau$ is $-1/\tau$ in the above inverse
convention.)

\subsubsec{Curves over $\Q_p$} %GPHELPskip

We advise to input a model defined over $\Q$ for such curves. In any case,
if you input an approximate model with \typ{PADIC} coefficients, it will be
replaced by a lift to $\Q$ (an exact model ``close'' to the one that was
input) and all quantities will then be computed in terms of this lifted
model.

For the time being only curves with multiplicative reduction (split or
non-split), i.e. $v_p(j) < 0$, are supported by non-trivial functions. In
this case the curve is analytically isomorphic to $\bar{\Q}_p^*/q^\Z :=
E_q(\bar{\Q}_p)$, for some $p$-adic integer $q$ (the Tate period). In
particular, we have $j(q) = j(E)$.

\item \tet{p} is the residual characteristic

\item \tet{roots} is a vector with a single component, equal to the $p$-adic
root $e_1$ of the right hand side $g(x)$ of the attached $b$-model $Y^2
= g(x)$. The point $(e_1,0)$ corresponds to $-1 \in \bar{\Q}_p^*/q^\Z$
under the Tate parametrization.

\item \tet{tate} returns $[u^2,u,q,[a,b],L, Ei]$ in the notation of Henniart-Mestre
(CRAS t. 308, p.~391--395, 1989): $q$ is as above, $u\in \Q_p(\sqrt{-c_6})$
is such that $\phi^* dx/(2y + a_1x+a3) = u dt/t$, where $\phi: E_q\to E$
is an isomorphism (well defined up to sign) and $dt/t$ is the canonical
invariant differential on the Tate curve; $u^2\in\Q_p$ does not depend on
$\phi$. (Technicality: if $u\not\in\Q_p$, it is stored as a quadratic
\typ{POLMOD}.)
The parameters $[a,b]$ satisfy $4u^2 b \cdot \text{agm}(\sqrt{a/b},1)^2 = 1$
as in Theorem~2 (\emph{loc.~cit.}).
\kbd{Ei} describes the sequence of 2-isogenous curves (with kernel generated
by $[0,0]$) $E_i: y^2=x(x+A_i)(x+A_i-B_i)$ converging quadratically towards
the singular curve $E_\infty$. Finally, $L$ is Mazur-Tate-Teitelbaum's
${\cal L}$-invariant, equal to $\log_p q / v_p(q)$.

\subsubsec{Curves over $\F_q$} %GPHELPskip

\item \tet{p} is the characteristic of $\F_q$.

\item \tet{no} is $\#E(\F_q)$.

\item \tet{cyc} gives the cycle structure of $E(\F_q)$.

\item \tet{gen} returns the generators of $E(\F_q)$.

\item \tet{group} returns $[\kbd{no},\kbd{cyc},\kbd{gen}]$, i.e. $E(\F_q)$
as an abelian group structure.

\subsubsec{Curves over $\Q$} %GPHELPskip

All functions should return a correct result, whether the model is minimal or
not, but it is a good idea to stick to minimal models whenever
$\gcd(c_4,c_6)$ is easy to factor (minor speed-up). The construction
\bprog
  E = ellminimalmodel(E0, &v)
@eprog\noindent replaces the original model $E_0$ by a minimal model $E$,
and the variable change $v$ allows to go between the two models:
\bprog
  ellchangepoint(P0, v)
  ellchangepointinv(P, v)
@eprog\noindent respectively map the point $P_0$ on $E_0$ to its image on
$E$, and the point $P$ on $E$ to its pre-image on $E_0$.

A few routines --- namely \tet{ellgenerators}, \tet{ellidentify},
\tet{ellsearch}, \tet{forell} --- require the optional package \tet{elldata}
(John Cremona's database) to be installed. In that case, the function
\tet{ellinit} will allow alternative inputs, e.g.~\kbd{ellinit("11a1")}.
Functions using this package need to load chunks of a large database in
memory and require at least 2MB stack to avoid stack overflows.

\item \tet{gen} returns the generators of $E(\Q)$, if known (from John
  Cremona's database)

\subsubsec{Curves over number fields} %GPHELPskip

\item \tet{nf} return the \var{nf} structure attached to the number field
over which $E$ is defined.

\item \tet{bnf} return the \var{bnf} structure attached to the number field
over which $E$ is defined or raise an error (if only an \var{nf} is available).


\subsec{ellL1$(e, \{r = 0\})$}\kbdsidx{ellL1}\label{se:ellL1}
Returns the value at $s=1$ of the derivative of order $r$ of the
$L$-function of the elliptic curve $e$.
\bprog
? e = ellinit("11a1"); \\ order of vanishing is 0
? ellL1(e)
%2 = 0.2538418608559106843377589233
? e = ellinit("389a1");  \\ order of vanishing is 2
? ellL1(e)
%4 = -5.384067311837218089235032414 E-29
? ellL1(e, 1)
%5 = 0
? ellL1(e, 2)
%6 = 1.518633000576853540460385214
@eprog\noindent
The main use of this function, after computing at \emph{low} accuracy the
order of vanishing using \tet{ellanalyticrank}, is to compute the
leading term at \emph{high} accuracy to check (or use) the Birch and
Swinnerton-Dyer conjecture:
\bprog
? \p18
  realprecision = 18 significant digits
? e = ellinit("5077a1"); ellanalyticrank(e)
time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
  realprecision = 202 significant digits (200 digits displayed)
? ellL1(e, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$
@eprog

The library syntax is \fun{GEN}{ellL1_bitprec}{GEN e, long r, long bitprec}.

\subsec{elladd$(E,\var{z1},\var{z2})$}\kbdsidx{elladd}\label{se:elladd}
Sum of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.

The library syntax is \fun{GEN}{elladd}{GEN E, GEN z1, GEN z2}.

\subsec{ellak$(E,n)$}\kbdsidx{ellak}\label{se:ellak}
Computes the coefficient $a_n$ of the $L$-function of the elliptic curve
$E/\Q$, i.e.~coefficients of a newform of weight 2 by the modularity theorem
(\idx{Taniyama-Shimura-Weil conjecture}). $E$ must be an \kbd{ell} structure
over $\Q$ as output by \kbd{ellinit}. $E$ must be given by an integral model,
not necessarily minimal, although a minimal model will make the function
faster.
\bprog
? E = ellinit([0,1]);
? ellak(E, 10)
%2 = 0
? e = ellinit([5^4,5^6]); \\ not minimal at 5
? ellak(e, 5) \\ wasteful but works
%3 = -3
? E = ellminimalmodel(e); \\ now minimal
? ellak(E, 5)
%5 = -3
@eprog\noindent If the model is not minimal at a number of bad primes, then
the function will be slower on those $n$ divisible by the bad primes.
The speed should be comparable for other $n$:
\bprog
? for(i=1,10^6, ellak(E,5))
time = 820 ms.
? for(i=1,10^6, ellak(e,5)) \\ 5 is bad, markedly slower
time = 1,249 ms.

? for(i=1,10^5,ellak(E,5*i))
time = 977 ms.
? for(i=1,10^5,ellak(e,5*i)) \\ still slower but not so much on average
time = 1,008 ms.
@eprog

The library syntax is \fun{GEN}{akell}{GEN E, GEN n}.

\subsec{ellan$(E,n)$}\kbdsidx{ellan}\label{se:ellan}
Computes the vector of the first $n$ Fourier coefficients $a_k$
corresponding to the elliptic curve $E$ defined over a number field.
If $E$ is defined over $\Q$, the curve may be given by an
arbitrary model, not necessarily minimal,
although a minimal model will make the function faster. Over a more general
number field, the model must be locally minimal at all primes above $2$
and $3$.

The library syntax is \fun{GEN}{ellan}{GEN E, long n}.
Also available is \fun{GEN}{ellanQ_zv}{GEN e, long n}, which
returns a \typ{VECSMALL} instead of a \typ{VEC}, saving on memory.

\subsec{ellanalyticrank$(e, \{\var{eps}\})$}\kbdsidx{ellanalyticrank}\label{se:ellanalyticrank}
Returns the order of vanishing at $s=1$ of the $L$-function of the
elliptic curve $e$ and the value of the first non-zero derivative. To
determine this order, it is assumed that any value less than \kbd{eps} is
zero. If no value of \kbd{eps} is given, a value of half the current
precision is used.
\bprog
? e = ellinit("11a1"); \\ rank 0
? ellanalyticrank(e)
%2 = [0, 0.2538418608559106843377589233]
? e = ellinit("37a1"); \\ rank 1
? ellanalyticrank(e)
%4 = [1, 0.3059997738340523018204836835]
? e = ellinit("389a1"); \\ rank 2
? ellanalyticrank(e)
%6 = [2, 1.518633000576853540460385214]
? e = ellinit("5077a1"); \\ rank 3
? ellanalyticrank(e)
%8 = [3, 10.39109940071580413875185035]
@eprog

The library syntax is \fun{GEN}{ellanalyticrank_bitprec}{GEN e, GEN eps = NULL, long bitprec}.

\subsec{ellap$(E,\{p\})$}\kbdsidx{ellap}\label{se:ellap}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
a number field or a finite field $\F_q$. The argument $p$ is best left
omitted if the curve is defined over a finite field, and must be a prime
number or a maximal ideal otherwise. This function computes the trace of
Frobenius $t$ for the elliptic curve $E$, defined by the equation $\#E(\F_q)
= q+1 - t$ (for primes of good reduction).

When the characteristic of the finite field is large, the availability of
the \kbd{seadata} package will speed the computation.

If the curve is defined over $\Q$, $p$ must be explicitly given and the
function computes the trace of the reduction over $\F_p$.
The trace of Frobenius is also the $a_p$ coefficient in the curve $L$-series
$L(E,s) = \sum_n a_n n^{-s}$, whence the function name. The equation must be
integral at $p$ but need not be minimal at $p$; of course, a minimal model
will be more efficient.
\bprog
? E = ellinit([0,1]);  \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellap(E, 7) \\ 7 necessary here
%2 = -4       \\ #E(F_7) = 7+1-(-4) = 12
? ellcard(E, 7)
%3 = 12       \\ OK

? E = ellinit([0,1], 11);  \\ defined over F_11
? ellap(E)       \\ no need to repeat 11
%4 = 0
? ellap(E, 11)   \\ ... but it also works
%5 = 0
? ellgroup(E, 13) \\ ouch, inconsistent input!
   ***   at top-level: ellap(E,13)
   ***                 ^-----------
   *** ellap: inconsistent moduli in Rg_to_Fp:
     11
     13

? Fq = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
? E = ellinit([a+1,a], Fq);  \\ y^2 = x^3 + (a+1)x + a, defined over F_q
? ellap(E)
%8 = -3
@eprog

If the curve is defined over a more general number field than $\Q$,
the maximal ideal $p$ must be explicitly given in \kbd{idealprimedec}
format. If $p$ is above $2$ or $3$, the function currently assumes (without
checking) that the given model is locally minimal at $p$. There is no
restriction at other primes.
\bprog
? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(K, E.disc)
%2 =
[  [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]

[[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
? ellap(E, fa[1,1])
%3 = -1 \\ non-split multiplicative reduction
? ellap(E, fa[2,1])
%4 = 1  \\ split multiplicative reduction
? P17 = idealprimedec(K,17)[1];
? ellap(E, P17)
%6 = 6  \\ good reduction
? E2 = ellchangecurve(E, [17,0,0,0]);
? ellap(E2, P17)
%8 = 6  \\ same, starting from a non-miminal model

? P3 = idealprimedec(K,3)[1];
? E3 = ellchangecurve(E, [3,0,0,0]);
? ellap(E, P3)  \\ OK: E is minimal at P3
%11 = -2
? ellap(E3, P3) \\ junk: E3 is not minimal at P3 | 3
%12 = 0
@eprog

\misctitle{Algorithms used} If $E/\F_q$ has CM by a principal imaginary
quadratic order we use a fast explicit formula (involving essentially
Kronecker symbols and Cornacchia's algorithm), in $O(\log q)^2$.
Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
time $\tilde{O}(q^{1/4})$ using $\tilde{O}(q^{1/4})$ storage, hence becomes
unreasonable when $q$ has about 30~digits. Above this range, the \tet{SEA}
algorithm becomes available, heuristically in $\tilde{O}(\log q)^4$, and
primes of the order of 200~digits become feasible.  In small
characteristic we use Mestre's (p=2), Kohel's (p=3,5,7,13), Satoh-Harley
(all in $\tilde{O}(p^{2}\*n^2)$) or Kedlaya's (in $\tilde{O}(p\*n^3)$)
algorithms.

The library syntax is \fun{GEN}{ellap}{GEN E, GEN p = NULL}.

\subsec{ellbil$(E,\var{z1},\var{z2})$}\kbdsidx{ellbil}\label{se:ellbil}
Deprecated alias for \kbd{ellheight(E,P,Q)}.

The library syntax is \fun{GEN}{bilhell}{GEN E, GEN z1, GEN z2, long prec}.

\subsec{ellcard$(E,\{p\})$}\kbdsidx{ellcard}\label{se:ellcard}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
$\Q$ or a finite field $\F_q$. The argument $p$ is best left omitted if the
curve is defined over a finite field, and must be a prime number otherwise.
This function computes the order of the group $E(\F_q)$ (as would be
computed by \tet{ellgroup}).

When the characteristic of the finite field is large, the availability of
the \kbd{seadata} package will speed the computation.

If the curve is defined over $\Q$, $p$ must be explicitly given and the
function computes the cardinality of the reduction over $\F_p$; the
equation need not be minimal at $p$, but a minimal model will be more
efficient. The reduction is allowed to be singular, and we return the order
of the group of non-singular points in this case.

The library syntax is \fun{GEN}{ellcard}{GEN E, GEN p = NULL}.
Also available is \fun{GEN}{ellcard}{GEN E, GEN p} where $p$ is not
\kbd{NULL}.

\subsec{ellchangecurve$(E,v)$}\kbdsidx{ellchangecurve}\label{se:ellchangecurve}
Changes the data for the elliptic curve $E$
by changing the coordinates using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$
and $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$.
$E$ must be an \kbd{ell} structure as output by \kbd{ellinit}. The special
case $v = 1$ is also used instead of $[1,0,0,0]$ to denote the
trivial coordinate change.

The library syntax is \fun{GEN}{ellchangecurve}{GEN E, GEN v}.

\subsec{ellchangepoint$(x,v)$}\kbdsidx{ellchangepoint}\label{se:ellchangepoint}
Changes the coordinates of the point or
vector of points $x$ using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$ and
$y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$ (see also
\kbd{ellchangecurve}).
\bprog
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1]
@eprog

The library syntax is \fun{GEN}{ellchangepoint}{GEN x, GEN v}.
The reciprocal function \fun{GEN}{ellchangepointinv}{GEN x, GEN ch}
inverts the coordinate change.

\subsec{ellchangepointinv$(x,v)$}\kbdsidx{ellchangepointinv}\label{se:ellchangepointinv}
Changes the coordinates of the point or vector of points $x$ using
the inverse of the isomorphism attached to \kbd{v=[u,r,s,t]},
i.e.~if $x'$ and $y'$ are the old coordinates, then $x=u^2x'+r$,
$y=u^3y'+su^2x'+t$ (inverse of \kbd{ellchangepoint}).
\bprog
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1]  \\ we get back P0
@eprog

The library syntax is \fun{GEN}{ellchangepointinv}{GEN x, GEN v}.

\subsec{ellconvertname$(\var{name})$}\kbdsidx{ellconvertname}\label{se:ellconvertname}
Converts an elliptic curve name, as found in the \tet{elldata} database,
from a string to a triplet $[\var{conductor}, \var{isogeny class},
\var{index}]$. It will also convert a triplet back to a curve name.
Examples:
\bprog
? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"
@eprog

The library syntax is \fun{GEN}{ellconvertname}{GEN name}.

\subsec{elldivpol$(E,n,\{v='x\})$}\kbdsidx{elldivpol}\label{se:elldivpol}
$n$-division polynomial $f_n$ for the curve $E$ in the
variable $v$. In standard notation, for any affine point $P = (X,Y)$ on the
curve, we have
$$[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)$$
for some polynomials $\phi_n,\omega_n,\psi_n$ in
$\Z[a_1,a_2,a_3,a_4,a_6][X,Y]$. We have $f_n(X) = \psi_n(X)$ for $n$ odd, and
$f_n(X) = \psi_n(X,Y) (2Y + a_1X+a_3)$ for $n$ even. We have
$$ f_1  = 1,\quad f_2 = 4X^3 + b_2X^2 + 2b_4 X + b_6, \quad f_3 = 3 X^4 + b_2 X^3 + 3b_4 X^2 + 3 b_6 X + b8, $$
$$ f_4 = f_2(2X^6 + b_2 X^5 + 5b_4 X^4 + 10 b_6 X^3 + 10 b_8 X^2 +
(b_2b_8-b_4b_6)X + (b_8b_4 - b_6^2)), \dots $$
For $n \geq 2$, the roots of $f_n$ are the $X$-coordinates of points in $E[n]$.

The library syntax is \fun{GEN}{elldivpol}{GEN E, long n, long v = -1} where \kbd{v} is a variable number.

\subsec{elleisnum$(w,k,\{\fl=0\})$}\kbdsidx{elleisnum}\label{se:elleisnum}
$k$ being an even positive integer, computes the numerical value of the
Eisenstein series of weight $k$ at the lattice $w$, as given by
\tet{ellperiods}, namely
$$
(2i \pi/\omega_2)^k
\Big(1 + 2/\zeta(1-k) \sum_{n\geq 1} n^{k-1}q^n / (1-q^n)\Big),
$$
where $q = \exp(2i\pi \tau)$ and $\tau:=\omega_1/\omega_2$ belongs to the
complex upper half-plane. It is also possible to directly input $w =
[\omega_1,\omega_2]$, or an elliptic curve $E$ as given by \kbd{ellinit}.
\bprog
? w = ellperiods([1,I]);
? elleisnum(w, 4)
%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)
%3 = -3.977978632282564763 E-33
? E = ellinit([1, 0]);
? elleisnum(E, 4, 1)
%5 = -47.999999999999999999999999999999999998
@eprog

When \fl\ is non-zero and $k=4$ or 6, returns the elliptic invariants $g_2$
or $g_3$, such that
$$y^2 = 4x^3 - g_2 x - g_3$$
is a Weierstrass equation for $E$.

The library syntax is \fun{GEN}{elleisnum}{GEN w, long k, long flag, long prec}.

\subsec{elleta$(w)$}\kbdsidx{elleta}\label{se:elleta}
Returns the quasi-periods $[\eta_1,\eta_2]$
attached to the lattice basis $\var{w} = [\omega_1, \omega_2]$.
Alternatively, \var{w} can be an elliptic curve $E$ as output by
\kbd{ellinit}, in which case, the quasi periods attached to the period
lattice basis \kbd{$E$.omega} (namely, \kbd{$E$.eta}) are returned.
\bprog
? elleta([1, I])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
@eprog

The library syntax is \fun{GEN}{elleta}{GEN w, long prec}.

\subsec{ellformaldifferential$(E, \{n=\var{seriesprecision}\}, \{t = 'x\})$}\kbdsidx{ellformaldifferential}\label{se:ellformaldifferential}
Let $\omega := dx / (2y+a_1x+a_3)$ be the invariant differential form
attached to the model $E$ of some elliptic curve (\kbd{ellinit} form),
and $\eta := x(t)\omega$. Return $n$ terms (\tet{seriesprecision} by default)
of $f(t),g(t)$ two power series in the formal parameter $t=-x/y$ such that
$\omega = f(t) dt$, $\eta = g(t) dt$:
 $$f(t) = 1+a_1 t + (a_1^2 + a_2) t^2 + \dots,\quad
   g(t) = t^{-2} +\dots $$
 \bprog
 ? E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);
 ? f
 %2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)
 ? g
 %3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)
@eprog

The library syntax is \fun{GEN}{ellformaldifferential}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.

\subsec{ellformalexp$(E, \{n = \var{seriesprecision}\}, \{z = 'x\})$}\kbdsidx{ellformalexp}\label{se:ellformalexp}
The elliptic formal exponential \kbd{Exp} attached to $E$ is the
isomorphism from the formal additive law to the formal group of $E$. It is
normalized so as to be the inverse of the elliptic logarithm (see
\tet{ellformallog}): $\kbd{Exp} \circ L = \Id$. Return $n$ terms of this
power series:
\bprog
? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
%1 = z + 2/5*z^5 - 3/28*z^7 + 2/15*z^9 + O(z^11)
? L = ellformallog(E,10,'t);
? subst(Exp,z,L)
%3 = t + O(t^11)
@eprog

The library syntax is \fun{GEN}{ellformalexp}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.

\subsec{ellformallog$(E, \{n = \var{seriesprecision}\}, \{v = 'x\})$}\kbdsidx{ellformallog}\label{se:ellformallog}
The formal elliptic logarithm is a series $L$ in $t K[[t]]$
such that $d L = \omega = dx / (2y + a_1x + a_3)$, the canonical invariant
differential attached to the model $E$. It gives an isomorphism
from the formal group of $E$ to the additive formal group.
\bprog
? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
%1 = t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 + O(t^10)
? [f,g] = ellformaldifferential(E,8,'t);
? L' - f
%3 = O(t^8)
@eprog

The library syntax is \fun{GEN}{ellformallog}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.

\subsec{ellformalpoint$(E, \{n = \var{seriesprecision}\}, \{v = 'x\})$}\kbdsidx{ellformalpoint}\label{se:ellformalpoint}
If $E$ is an elliptic curve, return the coordinates $x(t), y(t)$ in the
formal group of the elliptic curve $E$ in the formal parameter $t = -x/y$
at $\infty$:
$$ x = t^{-2} -a_1 t^{-1} - a_2 - a_3 t + \dots $$
$$ y = - t^{-3} -a_1 t^{-2} - a_2t^{-1} -a_3 + \dots $$
Return $n$ terms (\tet{seriesprecision} by default) of these two power
series, whose coefficients are in $\Z[a_1,a_2,a_3,a_4,a_6]$.
\bprog
? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
? x
%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
? y
%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
? E = ellinit([0,1/2]); ellformalpoint(E,7)
%4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]
@eprog

The library syntax is \fun{GEN}{ellformalpoint}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.

\subsec{ellformalw$(E, \{n = \var{seriesprecision}\}, \{t = 'x\})$}\kbdsidx{ellformalw}\label{se:ellformalw}
Return the formal power series $w$ attached to the elliptic curve $E$,
in the variable $t$:
$$ w(t) = t^3 + a_1 t^4 + (a_2 + a_1^2) t^5 + \cdots + O(t^{n+3}),$$
which is the formal expansion of $-1/y$ in the formal parameter $t := -x/y$
at $\infty$ (take $n = \tet{seriesprecision}$ if $n$ is omitted). The
coefficients of $w$ belong to $\Z[a_1,a_2,a_3,a_4,a_6]$.
\bprog
? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
%1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)
@eprog

The library syntax is \fun{GEN}{ellformalw}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.

\subsec{ellfromeqn$(P)$}\kbdsidx{ellfromeqn}\label{se:ellfromeqn}
Given a genus $1$ plane curve, defined by the affine equation $f(x,y) = 0$,
return the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of a Weierstrass equation
for its Jacobian. This allows to recover a Weierstrass model for an elliptic
curve given by a general plane cubic or by a binary quartic or biquadratic
model. The function implements the $f \mapsto f^*$ formulae of Artin, Tate
and Villegas (Advances in Math. 198 (2005), pp. 366--382).

In the example below, the function is used to convert between twisted Edwards
coordinates and Weierstrass coordinates.
\bprog
? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]
? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);
? isprime(ellcard(E) / 8)
%3 = 1
@eprog

The elliptic curve attached to the sum of two cubes is given by
\bprog
? ellfromeqn(x^3+y^3 - a)
%1 = [0, 0, -9*a, 0, -27*a^2]
@eprog

\misctitle{Congruent number problem:}
Let $n$ be an integer, if $a^2+b^2=c^2$ and $a\*b=2\*n$,
then by substituting $b$ by $2\*n/a$ in the first equation,
we get $((a^2+(2\*n/a)^2)-c^2)\*a^2 = 0$.
We set $x=a$, $y=a\*c$.
\bprog
? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
%1 = [0, 0, 0, -16*n^2, 0]
@eprog
For example $23$ is congruent since the curve has a point of infinite order,
namely:
\bprog
? ellheegner( ellinit(subst(En, n, 23)) )
%2 = [168100/289, 68053440/4913]
@eprog

The library syntax is \fun{GEN}{ellfromeqn}{GEN P}.

\subsec{ellfromj$(j)$}\kbdsidx{ellfromj}\label{se:ellfromj}
Returns the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of a fixed elliptic curve
with $j$-invariant $j$.

The library syntax is \fun{GEN}{ellfromj}{GEN j}.

\subsec{ellgenerators$(E)$}\kbdsidx{ellgenerators}\label{se:ellgenerators}
If $E$ is an elliptic curve over the rationals, return a $\Z$-basis of the
free part of the \idx{Mordell-Weil group} attached to $E$.  This relies on
the \tet{elldata} database being installed and referencing the curve, and so
is only available for curves over $\Z$ of small conductors.
If $E$ is an elliptic curve over a finite field $\F_q$ as output by
\tet{ellinit}, return a minimal set of generators for the group $E(\F_q)$.

The library syntax is \fun{GEN}{ellgenerators}{GEN E}.

\subsec{ellglobalred$(E)$}\kbdsidx{ellglobalred}\label{se:ellglobalred}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit} attached
to an elliptic curve defined over a number field. This function calculates
the arithmetic conductor and the global \idx{Tamagawa number} $c$.
The result $[N,v,c,F,L]$ is slightly different if $E$ is defined
over $\Q$ (domain $D = 1$ in \kbd{ellinit}) or over a number field
(domain $D$ is a number field structure, including \kbd{nfinit(x)}
representing $\Q$ !):

\item $N$ is the arithmetic conductor of the curve,

\item $v$ is an obsolete field, left in place for backward compatibility.
If $E$ is defined over $\Q$, $v$ gives the coordinate change for $E$ to the
standard minimal integral model (\tet{ellminimalmodel} provides it in a
cheaper way); if $E$ is defined over another number field, $v$ gives a
coordinate change to an integral model (\tet{ellintegral} model provides it
in a cheaper way).

\item $c$ is the product of the local Tamagawa numbers $c_p$, a quantity
which enters in the \idx{Birch and Swinnerton-Dyer conjecture},

\item $F$ is the factorization of $N$,

\item $L$ is a vector, whose $i$-th entry contains the local data
at the $i$-th prime ideal divisor of $N$, i.e.
\kbd{L[i] = elllocalred(E,F[i,1])}. If $E$ is defined over $\Q$, the local
coordinate change has been deleted and replaced by a 0; if $E$ is defined
over another number field the local coordinate change to a local minimal
model is given relative to the integral model afforded by $v$ (so either
start from an integral model so that $v$ be trivial, or apply $v$ first).

The library syntax is \fun{GEN}{ellglobalred}{GEN E}.

\subsec{ellgroup$(E,\{p\},\{\fl\})$}\kbdsidx{ellgroup}\label{se:ellgroup}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
$\Q$ or a finite field $\F_q$. The argument $p$ is best left omitted if the
curve is defined over a finite field, and must be a prime number otherwise.
This function computes the structure of the group $E(\F_q) \sim \Z/d_1\Z
\times \Z/d_2\Z$, with $d_2\mid d_1$.

If the curve is defined over $\Q$, $p$ must be explicitly given and the
function computes the structure of the reduction over $\F_p$; the
equation need not be minimal at $p$, but a minimal model will be more
efficient. The reduction is allowed to be singular, and we return the
structure of the (cyclic) group of non-singular points in this case.

If the flag is $0$ (default), return $[d_1]$ or $[d_1, d_2]$, if $d_2>1$.
If the flag is $1$, return a triple $[h,\var{cyc},\var{gen}]$, where
$h$ is the curve cardinality, \var{cyc} gives the group structure as a
product of cyclic groups (as per $\fl = 0$). More precisely, if $d_2 > 1$,
the output is $[d_1d_2, [d_1,d_2],[P,Q]]$ where $P$ is
of order $d_1$ and $[P,Q]$ generates the curve.
\misctitle{Caution} It is not guaranteed that $Q$ has order $d_2$, which in
the worst case requires an expensive discrete log computation. Only that
\kbd{ellweilpairing(E, P, Q, d1)} has order $d_2$.
\bprog
? E = ellinit([0,1]);  \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellgroup(E, 7)
%2 = [6, 2] \\ Z/6 x Z/2, non-cyclic
? E = ellinit([0,1] * Mod(1,11));  \\ defined over F_11
? ellgroup(E)   \\ no need to repeat 11
%4 = [12]
? ellgroup(E, 11)   \\ ... but it also works
%5 = [12]
? ellgroup(E, 13) \\ ouch, inconsistent input!
   ***   at top-level: ellgroup(E,13)
   ***                 ^--------------
   *** ellgroup: inconsistent moduli in Rg_to_Fp:
     11
     13
? ellgroup(E, 7, 1)
%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]
@eprog\noindent
If $E$ is defined over $\Q$, we allow singular reduction and in this case we
return the structure of the group of non-singular points, satisfying
$\#E_{ns}(\F_p) = p - a_p$.
\bprog
? E = ellinit([0,5]);
? ellgroup(E, 5, 1)
%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
? ellap(E, 5)
%3 = 0 \\ additive reduction at 5
? E = ellinit([0,-1,0,35,0]);
? ellgroup(E, 5, 1)
%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
? ellap(E, 5)
%6 = 1 \\ split multiplicative reduction at 5
? ellgroup(E, 7, 1)
%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
? ellap(E, 7)
%8 = -1 \\ non-split multiplicative reduction at 7
@eprog

The library syntax is \fun{GEN}{ellgroup0}{GEN E, GEN p = NULL, long flag}.
Also available is \fun{GEN}{ellgroup}{GEN E, GEN p}, corresponding
to \fl = 0.

\subsec{ellheegner$(E)$}\kbdsidx{ellheegner}\label{se:ellheegner}
Let $E$ be an elliptic curve over the rationals, assumed to be of
(analytic) rank $1$. This returns a non-torsion rational point on the curve,
whose canonical height is equal to the product of the elliptic regulator by the
analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity
is proportional to the product of the square root of the conductor and the
height of the point (thus, it is preferable to apply it to strong Weil curves).
\bprog
? E = ellinit([-157^2,0]);
? u = ellheegner(E); print(u[1], "\n", u[2])
69648970982596494254458225/166136231668185267540804
538962435089604615078004307258785218335/67716816556077455999228495435742408
? ellheegner(ellinit([0,1]))         \\ E has rank 0 !
 ***   at top-level: ellheegner(E=ellinit
 ***                 ^--------------------
 *** ellheegner: The curve has even analytic rank.
@eprog

The library syntax is \fun{GEN}{ellheegner}{GEN E}.

\subsec{ellheight$(E,P,\{Q\})$}\kbdsidx{ellheight}\label{se:ellheight}
Global N\'eron-Tate height $h(P)$ of the point $P$ on the elliptic curve
$E/\Q$, using the normalization in Cremona's \emph{Algorithms for modular
elliptic curves}. $E$ must be an \kbd{ell} as output by \kbd{ellinit}; it
needs not be given by a minimal model although the computation will be faster
if it is.

If the argument $Q$ is present, computes the value of the bilinear
form $(h(P+Q)-h(P-Q)) / 4$.

The library syntax is \fun{GEN}{ellheight0}{GEN E, GEN P, GEN Q = NULL, long prec}.
Also available is \fun{GEN}{ellheight}{GEN E, GEN P, long prec}
($Q$ omitted).

\subsec{ellheightmatrix$(E,x)$}\kbdsidx{ellheightmatrix}\label{se:ellheightmatrix}
$x$ being a vector of points, this
function outputs the Gram matrix of $x$ with respect to the N\'eron-Tate
height, in other words, the $(i,j)$ component of the matrix is equal to
\kbd{ellbil($E$,x[$i$],x[$j$])}. The rank of this matrix, at least in some
approximate sense, gives the rank of the set of points, and if $x$ is a
basis of the \idx{Mordell-Weil group} of $E$, its determinant is equal to
the regulator of $E$. Note our height normalization follows Cremona's
\emph{Algorithms for modular elliptic curves}: this matrix should be divided
by 2 to be in accordance with, e.g., Silverman's normalizations.

The library syntax is \fun{GEN}{ellheightmatrix}{GEN E, GEN x, long prec}.

\subsec{ellidentify$(E)$}\kbdsidx{ellidentify}\label{se:ellidentify}
Look up the elliptic curve $E$, defined by an arbitrary model over $\Q$,
in the \tet{elldata} database.
Return \kbd{[[N, M, G], C]}  where $N$ is the curve name in Cremona's
elliptic curve database, $M$ is the minimal model, $G$ is a $\Z$-basis of
the free part of the \idx{Mordell-Weil group} $E(\Q)$ and $C$ is the
change of coordinates change, suitable for \kbd{ellchangecurve}.

The library syntax is \fun{GEN}{ellidentify}{GEN E}.

\subsec{ellinit$(x,\{D=1\})$}\kbdsidx{ellinit}\label{se:ellinit}
Initialize an \tet{ell} structure, attached to the elliptic curve $E$.
$E$ is either

\item a $5$-component vector $[a_1,a_2,a_3,a_4,a_6]$ defining the elliptic
curve with Weierstrass equation
$$ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6, $$

\item a $2$-component vector $[a_4,a_6]$ defining the elliptic
curve with short Weierstrass equation
$$ Y^2 = X^3 + a_4 X + a_6, $$

\item a character string in Cremona's notation, e.g. \kbd{"11a1"}, in which
case the curve is retrieved from the \tet{elldata} database if available.

The optional argument $D$ describes the domain over which the curve is
defined:

\item the \typ{INT} $1$ (default): the field of rational numbers $\Q$.

\item a \typ{INT} $p$, where $p$ is a prime number: the prime finite field
$\F_p$.

\item an \typ{INTMOD} \kbd{Mod(a, p)}, where $p$ is a prime number: the
prime finite field $\F_p$.

\item a \typ{FFELT}, as returned by \tet{ffgen}: the corresponding finite
field $\F_q$.

\item a \typ{PADIC}, $O(p^n)$: the field $\Q_p$, where $p$-adic quantities
will be computed to a relative accuracy of $n$ digits. We advise to input a
model defined over $\Q$ for such curves. In any case, if you input an
approximate model with \typ{PADIC} coefficients, it will be replaced by a lift
to $\Q$ (an exact model ``close'' to the one that was input) and all quantities
will then be computed in terms of this lifted model, at the given accuracy.

\item a \typ{REAL} $x$: the field $\C$ of complex numbers, where floating
point quantities are by default computed to a relative accuracy of
\kbd{precision}$(x)$. If no such argument is given, the value of
\kbd{realprecision} at the time \kbd{ellinit} is called will be used.

\item a number field $K$, given by a \kbd{nf} or \kbd{bnf} structure; a
\kbd{bnf} is required for \kbd{ellminimalmodel}.

\item a prime ideal $\goth{p}$, given by a \kbd{prid} structure; valid if
$x$ is a curve defined over a number field $K$ and the equation is integral
and minimal at $\goth{p}$.

This argument $D$ is indicative: the curve coefficients are checked for
compatibility, possibly changing $D$; for instance if $D = 1$ and
an \typ{INTMOD} is found. If inconsistencies are detected, an error is
raised:
\bprog
? ellinit([1 + O(5), 1], O(7));
 ***   at top-level: ellinit([1+O(5),1],O
 ***                 ^--------------------
 *** ellinit: inconsistent moduli in ellinit: 7 != 5
@eprog\noindent If the curve coefficients are too general to fit any of the
above domain categories, only basic operations, such as point addition, will
be supported later.

If the curve (seen over the domain $D$) is singular, fail and return an
empty vector $[]$.
\bprog
? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1, over Q
? E = ellinit([0,1]);       \\ the same curve, short form
? E = ellinit("36a1");      \\ sill the same curve, Cremona's notations
? E = ellinit([0,1], 2)     \\ over F2: singular curve
%4 = []
? E = ellinit(['a4,'a6] * Mod(1,5));  \\ over F_5[a4,a6], basic support !
@eprog\noindent

The result of \tet{ellinit} is an \tev{ell} structure. It contains at least
the following information in its components:
%
$$ a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,\Delta,j.$$
%
All are accessible via member functions. In particular, the discriminant is
\kbd{$E$.disc}, and the $j$-invariant is \kbd{$E$.j}.
\bprog
? E = ellinit([a4, a6]);
? E.disc
%2 = -64*a4^3 - 432*a6^2
? E.j
%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)
@eprog
Further components contain domain-specific data, which are in general dynamic:
only computed when needed, and then cached in the structure.
\bprog
? E = ellinit([2,3], 10^60+7);  \\ E over F_p, p large
? ellap(E)
time = 4,440 ms.
%2 = -1376268269510579884904540406082
? ellcard(E);  \\ now instantaneous !
time = 0 ms.
? ellgenerators(E);
time = 5,965 ms.
? ellgenerators(E); \\ second time instantaneous
time = 0 ms.
@eprog
See the description of member functions related to elliptic curves at the
beginning of this section.

The library syntax is \fun{GEN}{ellinit}{GEN x, GEN D = NULL, long prec}.

\subsec{ellintegralmodel$(E,\{\&v\})$}\kbdsidx{ellintegralmodel}\label{se:ellintegralmodel}
Let $E$ be an \kbd{ell} structure over a number field $K$. This function
returns an integral model. If $v$ is present, sets $v = [u,0,0,0]$ to the
corresponding change of variable: the return value is identical to that of
\kbd{ellchangecurve(E, v)}.

The library syntax is \fun{GEN}{ellintegralmodel}{GEN E, GEN *v = NULL}.

\subsec{ellisdivisible$(E,P,n,\{\&Q\}))$}\kbdsidx{ellisdivisible}\label{se:ellisdivisible}
Given $E/K$ a number field and $P$ in $E(K)$
return $1$ if $P = [n]R$ for some $R$ in $E(K)$ and set $Q$ to one such $R$;
and return $0$ otherwise. The integer $n \geq 0$ may be given as
\kbd{ellxn(E,n)}, if many points need to be tested.
\bprog
? K = nfinit(polcyclo(11,t));
? E = ellinit([0,-1,1,0,0], K);
? P = [0,0];
? ellorder(E,P)
%4 = 5
? ellisdivisible(E,P,5, &Q)
%5 = 1
? lift(Q)
%6 = [-t^7-t^6-t^5-t^4+1, -t^9-2*t^8-2*t^7-3*t^6-3*t^5-2*t^4-2*t^3-t^2-1]
? ellorder(E, Q)
%7 = 25
@eprog\noindent The algebraic complexity of the underlying algorithm is in
$O(n^4)$, so it is advisable to first factor $n$, then use a chain of checks
attached to the prime divisors of $n$: the function will do it itself unless
$n$ is given in \kbd{ellxn} form.

The library syntax is \fun{long}{ellisdivisible}{GEN E, GEN P, GEN n, GEN *Q) = NULL}.

\subsec{ellisogeny$(E, G, \{\var{only\_image} = 0\}, \{x = 'x\}, \{y = 'y\})$}\kbdsidx{ellisogeny}\label{se:ellisogeny}
Given an elliptic curve $E$, a finite subgroup $G$ of $E$ is given either
as a generating point $P$ (for a cyclic $G$) or as a polynomial whose roots
vanish on the $x$-coordinates of the non-zero elements of $G$ (general case
and more efficient if available). This function returns the
$[a_1,a_2,a_3,a_4,a_6]$ invariants of the quotient elliptic curve $E/G$ and
(if \var{only\_image} is zero (the default)) a vector of rational
functions $[f, g, h]$ such that the isogeny $E \to E/G$ is given by $(x,y)
\mapsto (f(x)/h(x)^2, g(x,y)/h(x)^3)$.
\bprog
? E = ellinit([0,1]);
? elltors(E)
%2 = [6, [6], [[2, 3]]]
? ellisogeny(E, [2,3], 1)  \\ Weierstrass model for E/<P>
%3 = [0, 0, 0, -135, -594]
? ellisogeny(E,[-1,0])
%4 = [[0,0,0,-15,22], [x^3+2*x^2+4*x+3, y*x^3+3*y*x^2-2*y, x+1]]
@eprog

The library syntax is \fun{GEN}{ellisogeny}{GEN E, GEN G, long only_image, long x = -1, long y = -1} where \kbd{x}, \kbd{y} are variable numbers.

\subsec{ellisogenyapply$(f, g)$}\kbdsidx{ellisogenyapply}\label{se:ellisogenyapply}
Given an isogeny of elliptic curves $f:E'\to E$ (being the result of a call
to \tet{ellisogeny}), apply $f$ to $g$:

\item if $g$ is a point $P$ in the domain of $f$, return the image $f(P)$;

\item if $g:E''\to E'$ is a compatible isogeny, return the composite
isogeny $f \circ g:  E''\to E$.

\bprog
? one = ffgen(101, 't)^0;
? E = ellinit([6, 53, 85, 32, 34] * one);
? P = [84, 71] * one;
? ellorder(E, P)
%4 = 5
? [F, f] = ellisogeny(E, P);  \\ f: E->F = E/<P>
? ellisogenyapply(f, P)
%6 = [0]
? F = ellinit(F);
? Q = [89, 44] * one;
? ellorder(F, Q)
%9 = 2
? [G, g] = ellisogeny(F, Q); \\  g: F->G = F/<Q>
? gof = ellisogenyapply(g, f); \\ gof: E -> G
@eprog

The library syntax is \fun{GEN}{ellisogenyapply}{GEN f, GEN g}.

\subsec{ellisomat$(E, \{\var{fl}=0\})$}\kbdsidx{ellisomat}\label{se:ellisomat}
Given an elliptic curve $E$ defined over $\Q$, compute representatives of the
isomorphism classes of elliptic curves $\Q$-isogenous to $E$. The function
returns a vector $[L,M]$ where $L$ is a list of triples $[E_i, f_i, g_i]$,
where $E_i$ is an elliptic curve in $[a_4,a_6]$ form, $f_i: E \to E_i$
is a rational isogeny, $g_i: E_i \to E$ is the dual isogeny of $f_i$,
and $M$ is the matrix such that $M_{i,j}$ is the degree of the isogeny between
$E_i$ and $E_j$. Furthermore the first curve $E_1$ is isomorphic to $E$
by $f_1$. If the flag $\var{fl}=1$, the $f_i$ and $g_i$ are not computed,
which saves time, and $L$ is the list of the curves $E_i$.
\bprog
? E = ellinit("14a1");
? [L,M] = ellisomat(E);
? LE = apply(x->x[1], L)  \\ list of curves
%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
     [-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]]
? L[2][2]  \\ isogeny f_2
%4 = [x^3+3/4*x^2+19/2*x-311/12,
      1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
? L[2][3]  \\ dual isogeny g_2
%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
      -1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x
      +(-3601/64*y+16947/512),x-3/4]
? apply(E->ellidentify(ellinit(E))[1][1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
? M
%7 =
[1  3  3 2  6  6]

[3  1  9 6  2 18]

[3  9  1 6 18  2]

[2  6  6 1  3  3]

[6  2 18 3  1  9]

[6 18  2 3  9  1]
@eprog

The library syntax is \fun{GEN}{ellisomat}{GEN E, long fl}.

\subsec{ellisoncurve$(E,z)$}\kbdsidx{ellisoncurve}\label{se:ellisoncurve}
Gives 1 (i.e.~true) if the point $z$ is on the elliptic curve $E$, 0
otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to
take this into account, i.e.~an imprecise equality is checked, not a precise
one. It is allowed for $z$ to be a vector of points in which case a vector
(of the same type) is returned.

The library syntax is \fun{GEN}{ellisoncurve}{GEN E, GEN z}.
Also available is \fun{int}{oncurve}{GEN E, GEN z} which does not
accept vectors of points.

\subsec{ellissupersingular$(E,\{p\})$}\kbdsidx{ellissupersingular}\label{se:ellissupersingular}
Return 1 if the elliptic curve $E$ defined over a number field
or a finite field is supersingular at $p$, and $0$ otherwise.
If the curve is defined over a number field, $p$ must be explicitly given,
and must be a prime number, resp.~a maximal ideal, if the curve is defined
over $\Q$, resp.~a general number field: we return $1$ if and only if $E$
has supersingular good reduction at $p$.

Alternatively, $E$ can be given by its $j$-invariant in a finite field. In
this case $p$ must be omitted.
\bprog
? g = ffprimroot(ffgen(7^5))
%1 = x^3 + 2*x^2 + 3*x + 1
? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]
%2 = [6]

? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
? E = ellinit([y,1], K);
? ellissupersingular(E, P)
%5 = 1
@eprog

The library syntax is \fun{GEN}{ellissupersingular}{GEN E, GEN p = NULL}.
Also available is
\fun{int}{elljissupersingular}{GEN j} where $j$ is a $j$-invariant of a curve
over a finite field.

\subsec{ellj$(x)$}\kbdsidx{ellj}\label{se:ellj}
Elliptic $j$-invariant. $x$ must be a complex number
with positive imaginary part, or convertible into a power series or a
$p$-adic number with positive valuation.

The library syntax is \fun{GEN}{jell}{GEN x, long prec}.

\subsec{elllocalred$(E,p)$}\kbdsidx{elllocalred}\label{se:elllocalred}
Calculates the \idx{Kodaira} type of the local fiber of the elliptic curve
$E$ at $p$. $E$ must be an \kbd{ell} structure as output by
\kbd{ellinit}, over $\Q$ ($p$ a rational prime) or a number field $K$ ($p$
a maximal ideal given by a \kbd{prid} structure), and is assumed to have all
its coefficients $a_i$ integral.
The result is a 4-component vector $[f,kod,v,c]$. Here $f$ is the exponent of
$p$ in the arithmetic conductor of $E$, and $kod$ is the Kodaira type which
is coded as follows:

1 means good reduction (type I$_0$), 2, 3 and 4 mean types II, III and IV
respectively, $4+\nu$ with $\nu>0$ means type I$_\nu$;
finally the opposite values $-1$, $-2$, etc.~refer to the starred types
I$_0^*$, II$^*$, etc. The third component $v$ is itself a vector $[u,r,s,t]$
giving the coordinate changes done during the local reduction;
$u = 1$ if and only if the given equation was already minimal at $p$.
Finally, the last component $c$ is the local \idx{Tamagawa number} $c_p$.

The library syntax is \fun{GEN}{elllocalred}{GEN E, GEN p}.

\subsec{elllog$(E,P,G,\{o\})$}\kbdsidx{elllog}\label{se:elllog}
Given two points $P$ and $G$ on the elliptic curve $E/\F_q$, returns the
discrete logarithm of $P$ in base $G$, i.e. the smallest non-negative
integer $n$ such that $P = [n]G$.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
If present, $o$ represents the order of $G$, see \secref{se:DLfun};
the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$
is  the order of $G$.

If no $o$ is given, assume that $G$ generates the curve.
The function also assumes that $P$ is a multiple of $G$.
\bprog
? a = ffgen(ffinit(2,8),'a);
? E = ellinit([a,1,0,0,1]);  \\ over F_{2^8}
? x = a^3; y = ellordinate(E,x)[1];
? P = [x,y]; G = ellmul(E, P, 113);
? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)
%4 = 242
? e = elllog(E, P, G, ord)
%5 = 15
? ellmul(E,G,e) == P
%6 = 1
@eprog

The library syntax is \fun{GEN}{elllog}{GEN E, GEN P, GEN G, GEN o = NULL}.

\subsec{elllseries$(E,s,\{A=1\})$}\kbdsidx{elllseries}\label{se:elllseries}
This function is deprecated, use \kbd{lfun(E,s)} instead.

$E$ being an elliptic curve, given by an arbitrary model over $\Q$ as output
by \kbd{ellinit}, this function computes the value of the $L$-series of $E$ at
the (complex) point $s$. This function uses an $O(N^{1/2})$ algorithm, where
$N$ is the conductor.

The optional parameter $A$ fixes a cutoff point for the integral and is best
left omitted; the result must be independent of $A$, up to
\kbd{realprecision}, so this allows to check the function's accuracy.

The library syntax is \fun{GEN}{elllseries}{GEN E, GEN s, GEN A = NULL, long prec}.

\subsec{ellminimalmodel$(E,\{\&v\})$}\kbdsidx{ellminimalmodel}\label{se:ellminimalmodel}
Let $E$ be an \kbd{ell} structure over a number field $K$. This function
determines whether $E$ admits a global minimal integral model. If so, it
returns it and sets $v = [u,r,s,t]$ to the corresponding change of variable:
the return value is identical to that of \kbd{ellchangecurve(E, v)}.

Else return the (non-principal) Weierstrass class of $E$, i.e. the class of
$\prod \goth{p}^{(v_{\goth{p}}{\Delta} - \delta_{\goth{p}}) / 12}$ where
$\Delta = \kbd{E.disc}$ is the model's discriminant and
$\goth{p} ^ \delta_{\goth{p}}$ is the local minimal discriminant.
This function requires either that $E$ be defined
over the rational field $\Q$ (with domain $D = 1$ in \kbd{ellinit}),
in which case a global minimal model always exists, or over a number
field given by a \var{bnf} structure. The Weierstrass class is given in
\kbd{bnfisprincipal} format, i.e. in terms of the \kbd{K.gen} generators.

The resulting model has integral coefficients and is everywhere minimal, the
coefficients $a_1$ and $a_3$ are reduced modulo $2$ (in terms of the fixed
integral basis \kbd{K.zk}) and $a_2$ is reduced modulo $3$. Over $\Q$, we
further require that $a_1$ and $a_3$ be $0$ or $1$, that $a_2$ be $0$ or $\pm
1$ and that $u > 0$ in the change of variable: both the model and the change
of variable $v$ are then unique.\sidx{minimal model}

\bprog
? e = ellinit([6,6,12,55,233]);  \\ over Q
? E = ellminimalmodel(e, &v);
? E[1..5]
%3 = [0, 0, 0, 1, 1]
? v
%4 = [2, -5, -3, 9]
@eprog

\bprog
? K = bnfinit(a^2-65);  \\ over a non-principal number field
? K.cyc
%2 = [2]
? u = Mod(8+a, K.pol);
? E = ellinit([1,40*u+1,0,25*u^2,0], K);
? ellminimalmodel(E) \\ no global minimal model exists over Z_K
%6 = [1]~
@eprog

The library syntax is \fun{GEN}{ellminimalmodel}{GEN E, GEN *v = NULL}.

\subsec{ellminimaltwist$(E, \{\fl=0\})$}\kbdsidx{ellminimaltwist}\label{se:ellminimaltwist}
Let $E$ be an elliptic curve defined over $\Q$, return
a discriminant $D$ such that the twist of $E$ by $D$ is minimal among all
possible quadratic twists, i.e. if $\fl=0$, its minimal model has minimal
discriminant, or if $\fl=1$, it has minimal conductor.

In the example below, we find a curve with $j$-invariant $3$ and minimal
conductor.
\bprog
? E=ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E)[1]
%2 = 357075
? D = ellminimaltwist(E,1)
%3 = -15
? E2=ellminimalmodel(ellinit(elltwist(E,D)));
? ellglobalred(E2)[1]
%5 = 14283
@eprog

The library syntax is \fun{GEN}{ellminimaltwist0}{GEN E, long flag}.
Also available are
\fun{GEN}{ellminimaltwist}{E} for $\fl=0$, and
\fun{GEN}{ellminimaltwistcond}{E} for $\fl=1$.

\subsec{ellmoddegree$(e)$}\kbdsidx{ellmoddegree}\label{se:ellmoddegree}
$e$ being an elliptic curve defined over $\Q$ output by \kbd{ellinit},
 compute the modular degree of $e$ divided by the square of
 the Manin constant. Return $[D, err]$, where $D$ is a rational number and
 err is exponent of the truncation error.

The library syntax is \fun{GEN}{ellmoddegree}{GEN e, long bitprec}.

\subsec{ellmodulareqn$(N,\{x\},\{y\})$}\kbdsidx{ellmodulareqn}\label{se:ellmodulareqn}
Given a prime $N < 500$, return a vector $[P,t]$ where $P(x,y)$
is a modular equation of level $N$, i.e.~a bivariate polynomial with integer
coefficients; $t$ indicates the type of this equation: either
\emph{canonical} ($t = 0$) or \emph{Atkin} ($t = 1$). This function requires
the \kbd{seadata} package and its only use is to give access to the package
contents. See \tet{polmodular} for a more general and more flexible function.

Let $j$ be the $j$-invariant function. The polynomial $P$ satisfies
the functional equation,
$$ P(f,j) = P(f \mid W_N, j \mid W_N) = 0 $$
for some modular function $f = f_N$ (hand-picked for each fixed $N$ to
minimize its size, see below), where $W_N(\tau) = -1 / (N\*\tau)$ is the
Atkin-Lehner involution. These two equations allow to compute the values of
the classical modular polynomial $\Phi_N$, such that $\Phi_N(j(\tau),
j(N\tau)) = 0$, while being much smaller than the latter. More precisely, we
have $j(W_N(\tau)) = j(N\*\tau)$; the function $f$ is invariant under
$\Gamma_0(N)$ and also satisfies

\item for Atkin type: $f \mid W_N = f$;

\item for canonical type: let $s = 12/\gcd(12,N-1)$, then
$f \mid W_N = N^s / f$. In this case, $f$ has a simple definition:
$f(\tau) = N^s \* \big(\eta(N\*\tau) / \eta(\tau) \big)^{2\*s}$,
where $\eta$ is Dedekind's eta function.

The following GP function returns values of the classical modular polynomial
by eliminating $f_N(\tau)$ in the above functional equation,
for $N\leq 31$ or $N\in\{41,47,59,71\}$.

\bprog
classicaleqn(N, X='X, Y='Y)=
{
  my([P,t] = ellmodulareqn(N), Q, d);
  if (poldegree(P,'y) > 2, error("level unavailable in classicaleqn"));
  if (t == 0, \\ Canonical
    my(s = 12/gcd(12,N-1));
    Q = 'x^(N+1) * substvec(P,['x,'y],[N^s/'x,Y]);
    d = N^(s*(2*N+1)) * (-1)^(N+1);
  , \\ Atkin
    Q = subst(P,'y,Y);
    d = (X-Y)^(N+1));
  polresultant(subst(P,'y,X), Q) / d;
}
@eprog

The library syntax is \fun{GEN}{ellmodulareqn}{long N, long x = -1, long y = -1} where \kbd{x}, \kbd{y} are variable numbers.

\subsec{ellmul$(E,z,n)$}\kbdsidx{ellmul}\label{se:ellmul}
Computes $[n]z$, where $z$ is a point on the elliptic curve $E$. The
exponent $n$ is in $\Z$, or may be a complex quadratic integer if the curve $E$
has complex multiplication by $n$ (if not, an error message is issued).
\bprog
? Ei = ellinit([1,0]); z = [0,0];
? ellmul(Ei, z, 10)
%2 = [0]     \\ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0]  \\ Ei has complex multiplication by Z[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0]  \\ an alternative syntax for the same query
? Ej  = ellinit([0,1]); z = [-1,0];
? ellmul(Ej, z, I)
  ***   at top-level: ellmul(Ej,z,I)
  ***                 ^--------------
  *** ellmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]
@eprog
The simple-minded algorithm for the CM case assumes that we are in
characteristic $0$, and that the quadratic order to which $n$ belongs has
small discriminant.

The library syntax is \fun{GEN}{ellmul}{GEN E, GEN z, GEN n}.

\subsec{ellneg$(E,z)$}\kbdsidx{ellneg}\label{se:ellneg}
Opposite of the point $z$ on elliptic curve $E$.

The library syntax is \fun{GEN}{ellneg}{GEN E, GEN z}.

\subsec{ellnonsingularmultiple$(E,P)$}\kbdsidx{ellnonsingularmultiple}\label{se:ellnonsingularmultiple}
Given an elliptic curve $E/\Q$ (more precisely, a model defined over $\Q$
of a curve) and a rational point $P \in E(\Q)$, returns the pair $[R,n]$,
where $n$ is the least positive integer such that $R := [n]P$ has good
reduction at every prime. More precisely, its image in a minimal model is
everywhere non-singular.
\bprog
? e = ellinit("57a1"); P = [2,-2];
? ellnonsingularmultiple(e, P)
%2 = [[1, -1], 2]
? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnonsingularmultiple(e, P);
? n
%5 = 12
@eprog

The library syntax is \fun{GEN}{ellnonsingularmultiple}{GEN E, GEN P}.

\subsec{ellorder$(E,z,\{o\})$}\kbdsidx{ellorder}\label{se:ellorder}
Gives the order of the point $z$ on the elliptic
curve $E$, defined over a finite field or a number field.
Return (the impossible value) zero if the point has infinite order.
\bprog
? E = ellinit([-157^2,0]);  \\ the "157-is-congruent" curve
? P = [2,2]; ellorder(E, P)
%2 = 2
? P = ellheegner(E); ellorder(E, P) \\ infinite order
%3 = 0
? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])
%5 = 25
? E = ellinit(ellfromj(ffgen(5^10)));
? ellcard(E)
%7 = 9762580
? P = random(E); ellorder(E, P)
%8 = 4881290
? p = 2^160+7; E = ellinit([1,2], p);
? N = ellcard(E)
%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E)))
time = 260 ms.
@eprog
The parameter $o$, is now mostly useless, and kept for backward
compatibility. If present, it represents a non-zero multiple of the order
of $z$, see \secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the cardinality of the curve.
It is no longer needed since PARI is now able to compute it over large
finite fields (was restricted to small prime fields at the time this feature
was introduced), \emph{and} caches the result in $E$ so that it is computed
and factored only once. Modifying the last example, we see that including
this extra parameter provides no improvement:
\bprog
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.
@eprog

The library syntax is \fun{GEN}{ellorder}{GEN E, GEN z, GEN o = NULL}.
The obsolete form \fun{GEN}{orderell}{GEN e, GEN z} should no longer be
used.

\subsec{ellordinate$(E,x)$}\kbdsidx{ellordinate}\label{se:ellordinate}
Gives a 0, 1 or 2-component vector containing
the $y$-coordinates of the points of the curve $E$ having $x$ as
$x$-coordinate.

The library syntax is \fun{GEN}{ellordinate}{GEN E, GEN x, long prec}.

\subsec{ellpadicL$(E, p, n, \{s = 0\}, \{r = 0\}, \{D = 1\})$}\kbdsidx{ellpadicL}\label{se:ellpadicL}
Returns the value (or $r$-th derivative) on a character $\chi^s$ of
$\Z_p^*$ of the $p$-adic $L$-function of the elliptic curve $E/\Q$, twisted by
$D$, given modulo $p^n$.

\misctitle{Characters} The set of continuous characters of
$\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ is identified to $\Z_p^*$ via the
cyclotomic character $\chi$ with values in $\overline{\Q_p}^*$. Denote by
$\tau:\Z_p^*\to\Z_p^*$ the Teichm\"uller character, with values
in the $(p-1)$-th roots of $1$ for $p\neq 2$, and $\{-1,1\}$ for $p = 2$;
finally, let
$\langle\chi\rangle =\chi \tau^{-1}$, with values in $1 + 2p\Z_p$.
In GP, the continuous character of
$\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ given by $\langle\chi\rangle^{s_1}
\tau^{s_2}$ is represented by the pair of integers $s=(s_1,s_2)$, with $s_1
\in \Z_p$ and $s_2 \bmod p-1$ for $p > 2$, (resp. mod $2$ for $p = 2$); $s$
may be also an integer, representing $(s,s)$ or $\chi^s$.

\misctitle{The $p$-adic $L$ function}
The $p$-adic $L$ function $L_p$ is defined on the set of continuous
characters of $\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$, as $\int_{\Z_p^*}
\chi^s d \mu$ for a certain $p$-adic distribution $\mu$ on $\Z_p^*$. The
derivative is given by
$$L_p^{(r)}(E, \chi^s) = \int_{\Z_p^*} \log_p^r(a) \chi^s(a) d\mu(a).$$
More precisely:

\item When $E$ has good supersingular reduction, $L_p$ takes its
values in $\Q_p \otimes H^1_{dR}(E/\Q)$ and satisfies
$$(1-p^{-1} F)^{-2} L_p(E, \chi^0)= (L(E,1) / \Omega) \cdot \omega$$
where $F$ is the Frobenius, $L(E,1)$ is the value of the complex $L$
function at $1$, $\omega$ is the N\'eron differential
and $\Omega$ the attached period on $E(\R)$. Here, $\chi^0$ represents
the trivial character.

The function returns the components of $L_p^{(r)}(E,\chi^s)$ in
the basis $(\omega, F(\omega))$.

\item When $E$ has ordinary good reduction, this method only defines
the projection of $L_p(E,\chi^s)$ on the $\alpha$-eigenspace,
where $\alpha$ is the unit eigenvalue for $F$. This is what the function
returns. We have
$$(1- \alpha^{-1})^{-2} L_{p,\alpha}(E,\chi^0)= L(E,1) / \Omega.$$

Two supersingular examples:
\bprog
? cxL(e) = bestappr( ellL1(e) / e.omega[1] );

? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0
? L = ellpadicL(e,p,4);
? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
? (1-p^(-1)*F)^-2 * L / cxL(e)
%5 = [1 + O(3^5), O(3^5)]~ \\ [1,0]~

? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4);
? F = [0,-p; 1,ellap(e,p)];
? (1-p^(-1)*F)^-2*L~ / cxL(e)
%9 = [1 + O(3^4), O(3^5)]~
@eprog

Good ordinary reduction:
\bprog
? e = ellinit("17a1"); p=5; ap = ellap(e,p)
%1 = -2 \\ ordinary
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];
? (1-al^(-1))^(-2) * L / cxL(e)
%4 = 1 + O(5^4)
@eprog

Twist and Teichm\"uller:
\bprog
? e = ellinit("17a1"); p=5; \\ ordinary
\\ 2nd derivative at tau^1, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)
%2 = 2*5^2 + 5^3 + O(5^4)
@eprog

This function is a special case of \tet{mspadicL}, and it also appears
as the first term of \tet{mspadicseries}:
\bprog
? e = ellinit("17a1"); p=5;
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? [M,phi] = msfromell(e, 1);
? Mp = mspadicinit(M, p, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6)
? mspadicseries(mu)
%7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))
      + (3 + 3*5 + 5^2 + 5^3 + O(5^4))*x
      + (2 + 3*5 + 5^2 + O(5^3))*x^2
      + (3 + 4*5 + 4*5^2 + O(5^3))*x^3
      + (3 + 2*5 + O(5^2))*x^4 + O(x^5)
@eprog\noindent These are more cumbersome than \kbd{ellpadicL} but allow to
compute at different characters, or successive derivatives, or to
twist by a quadratic character essentially for the cost of a single call to
\kbd{ellpadicL} due to precomputations.

The library syntax is \fun{GEN}{ellpadicL}{GEN E, GEN p, long n, GEN s = NULL, long r, GEN D = NULL}.

\subsec{ellpadicfrobenius$(E,p,n)$}\kbdsidx{ellpadicfrobenius}\label{se:ellpadicfrobenius}
If $p>2$ is a prime and $E$ is a elliptic curve on $\Q$ with good
reduction at $p$, return the matrix of the Frobenius endomorphism $\varphi$ on
the crystalline module $D_p(E)= \Q_p \otimes H^1_{dR}(E/\Q)$ with respect to
the basis of the given model $(\omega, \eta=x\*\omega)$, where
$\omega = dx/(2\*y+a_1\*x+a_3)$ is the invariant differential.
The characteristic polynomial of $\varphi$ is $x^2 - a_p\*x + p$.
The matrix is computed to absolute $p$-adic precision $p^n$.

\bprog
? E = ellinit([1,-1,1,0,0]);
? F = ellpadicfrobenius(E,5,3);
? lift(F)
%3 =
[120 29]

[ 55  5]
? charpoly(F)
%4 = x^2 + O(5^3)*x + (5 + O(5^3))
? ellap(E, 5)
%5 = 0
@eprog

The library syntax is \fun{GEN}{ellpadicfrobenius}{GEN E, long p, long n}.

\subsec{ellpadicheight$(E, p,n, P,\{Q\})$}\kbdsidx{ellpadicheight}\label{se:ellpadicheight}
Cyclotomic $p$-adic height of the rational point $P$ on the elliptic curve
$E$ (defined over $\Q$), given to $n$ $p$-adic digits.
If the argument $Q$ is present, computes the value of the bilinear
form $(h(P+Q)-h(P-Q)) / 4$.

Let $D_{dR}(E) := H^1_{dR}(E) \otimes_\Q \Q_p$ be the $\Q_p$ vector space
spanned by $\omega$
(invariant differential $dx/(2y+a_1x+a3)$ related to the given model) and
$\eta = x \omega$. Then the cyclotomic $p$-adic height associates to
$P\in E(\Q)$ an element $f \omega + g\eta$ in $D_{dR}$.
This routine returns the vector $[f, g]$ to $n$ $p$-adic digits.

If $P\in E(\Q)$ is in the kernel of reduction mod $p$ and if its reduction
at all finite places is non singular, then $g = -(\log_E P)^2$, where
$\log_E$ is the logarithm for the formal group of $E$ at $p$.

If furthermore the model is of the form $Y^2 = X^3 + a X + b$ and $P = (x,y)$,
then
  $$ f = \log_p(\kbd{denominator}(x)) - 2 \log_p(\sigma(P))$$
where $\sigma(P)$ is given by \kbd{ellsigma}$(E,P)$.

Recall (\emph{Advanced topics in the arithmetic of elliptic
curves}, Theorem~3.2) that the local height function over the complex numbers
is of the form
  $$ \lambda(z) = -\log (|\kbd{E.disc}|) / 6 + \Re(z \eta(z)) - 2 \log(
  \sigma(z). $$
(N.B. our normalization for local and global heights is twice that of
Silverman's).
\bprog
 ? E = ellinit([1,-1,1,0,0]); P = [0,0];
 ? ellpadicheight(E,5,4, P)
 %2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^6)]
 ? E = ellinit("11a1"); P = [5,5]; \\ torsion point
 ? ellpadicheight(E,19,6, P)
 %4 = O(19^6)
 ? E = ellinit([0,0,1,-4,2]); P = [-2,1];
 ? ellpadicheight(E,3,5, P)
 %6 = [2*3^2 + 2*3^3 + 3^4 + O(3^5), 2*3^2 + 3^4 + 2*3^5 + 3^6 + O(3^7)]
 ? ellpadicheight(E,3,5, P, elladd(E,P,P))
@eprog

One can replace the parameter $p$ prime by a vector $[p,[a,b]]$, in which
case the routine returns the $p$-adic number $af + bg$.

When $E$ has good ordinary reduction at $p$, the ``canonical''
$p$-adic height is given by
\bprog
s2 = ellpadics2(E,p,n);
ellpadicheight(E, [p,[1,-s2]], n, P)
@eprog\noindent Since $s_2$ does not depend on $P$, it is preferable to
compute it only once:
\bprog
? E = ellinit("5077a1"); p = 5; n = 7;
? s2 = ellpadics2(E,p,n);
? M = ellpadicheightmatrix(E,[p,[1,-s2]], n, E.gen);
? matdet(M)   \\ p-adic regulator
%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 5^6 + O(5^7)
@eprog

The library syntax is \fun{GEN}{ellpadicheight0}{GEN E, GEN p, long n, GEN P, GEN Q = NULL}.

\subsec{ellpadicheightmatrix$(E,p,n,v)$}\kbdsidx{ellpadicheightmatrix}\label{se:ellpadicheightmatrix}
$v$ being a vector of points, this function outputs the Gram matrix of
$v$ with respect to the cyclotomic $p$-adic height, given to $n$ $p$-adic
digits; in other words, the $(i,j)$ component of the matrix is equal to
\kbd{ellpadicheight}$(E,p,n, v[i],v[j]) = [f,g]$.

See \tet{ellpadicheight}; in particular one can replace the parameter $p$
prime by a vector $[p,[a,b]]$, in which case the routine returns the matrix
containing the $p$-adic numbers $af + bg$.

The library syntax is \fun{GEN}{ellpadicheightmatrix}{GEN E, GEN p, long n, GEN v}.

\subsec{ellpadiclog$(E,p,n,P)$}\kbdsidx{ellpadiclog}\label{se:ellpadiclog}
Given $E$ defined over $K = \Q$ or $\Q_p$ and $P = [x,y]$ on $E(K)$ in the
kernel of reduction mod $p$, let $t(P) = -x/y$ be the formal group
parameter; this function returns $L(t)$, where $L$ denotes the formal
logarithm (mapping the formal group of $E$  to the additive formal group)
attached to the canonical invariant differential:
$dL = dx/(2y + a_1x + a_3)$.

The library syntax is \fun{GEN}{ellpadiclog}{GEN E, GEN p, long n, GEN P}.

\subsec{ellpadics2$(E,p,n)$}\kbdsidx{ellpadics2}\label{se:ellpadics2}
If $p>2$ is a prime and $E/\Q$ is a elliptic curve with ordinary good
reduction at $p$, returns the slope of the unit eigenvector
of \kbd{ellpadicfrobenius(E,p,n)}, i.e. the action of Frobenius $\varphi$ on
the crystalline module $D_p(E)= \Q_p \otimes H^1_{dR}(E/\Q)$ in the basis of
the given model $(\omega, \eta=x\*\omega)$, where $\omega$ is the invariant
differential $dx/(2\*y+a_1\*x+a_3)$. In other words, $\eta + s_2\omega$
is an eigenvector for the unit eigenvalue of $\varphi$.

This slope is the unique $c \in 3^{-1}\Z_p$ such that the odd solution
  $\sigma(t) = t + O(t^2)$ of
$$ - d(\dfrac{1}{\sigma} \dfrac{d \sigma}{\omega})
 = (x(t) + c) \omega$$
is in $t\Z_p[[t]]$.

It is equal to $b_2/12 - E_2/12$ where $E_2$ is the value of the Katz
$p$-adic Eisenstein series of weight 2 on $(E,\omega)$. This is
used to construct a canonical $p$-adic height when $E$ has good ordinary
reduction at $p$ as follows
\bprog
s2 = ellpadics2(E,p,n);
h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);
@eprog\noindent Since $s_2$ does not depend on the point $P$, we compute it
only once.

The library syntax is \fun{GEN}{ellpadics2}{GEN E, GEN p, long n}.

\subsec{ellperiods$(w, \{\fl = 0\})$}\kbdsidx{ellperiods}\label{se:ellperiods}
Let $w$ describe a complex period lattice ($w = [w_1,w_2]$
or an \kbd{ellinit} structure). Returns normalized periods $[W_1,W_2]$ generating
the same lattice such that $\tau := W_1/W_2$ has positive imaginary part
and lies in the standard fundamental domain for $\text{SL}_2(\Z)$.

If $\fl = 1$, the function returns $[[W_1,W_2], [\eta_1,\eta_2]]$, where
$\eta_1$ and $\eta_2$ are the quasi-periods attached to
$[W_1,W_2]$, satisfying $\eta_1 W_2 - \eta_2 W_1 = 2 i \pi$.

The output of this function is meant to be used as the first argument
given to ellwp, ellzeta, ellsigma or elleisnum. Quasi-periods are
needed by ellzeta and ellsigma only.

The library syntax is \fun{GEN}{ellperiods}{GEN w, long flag, long prec}.

\subsec{ellpointtoz$(E,P)$}\kbdsidx{ellpointtoz}\label{se:ellpointtoz}
If $E/\C \simeq \C/\Lambda$ is a complex elliptic curve ($\Lambda =
\kbd{E.omega}$),
computes a complex number $z$, well-defined modulo the lattice $\Lambda$,
corresponding to the point $P$; i.e.~such that
 $P = [\wp_\Lambda(z),\wp'_\Lambda(z)]$
satisfies the equation
$$y^2 = 4x^3 - g_2 x - g_3,$$
where $g_2$, $g_3$ are the elliptic invariants.

If $E$ is defined over $\R$ and $P\in E(\R)$, we have more precisely, $0 \leq
\Re(t) < w1$ and $0 \leq \Im(t) < \Im(w2)$, where $(w1,w2)$ are the real and
complex periods of $E$.
\bprog
? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [6.372367644529809109 E-58, 7.646841173435770930 E-57]
? ellpointtoz(E, [0]) \\ the point at infinity
%5 = 0
@eprog

If $E/\Q_p$ has multiplicative reduction, then $E/\bar{\Q_p}$ is analytically
isomorphic to $\bar{\Q}_p^*/q^\Z$ (Tate curve) for some $p$-adic integer $q$.
The behaviour is then as follows:

\item If the reduction is split ($E.\kbd{tate[2]}$ is a \typ{PADIC}), we have
an isomorphism $\phi: E(\Q_p) \simeq \Q_p^*/q^\Z$ and the function returns
$\phi(P)\in \Q_p$.

\item If the reduction is \emph{not} split ($E.\kbd{tate[2]}$ is a
\typ{POLMOD}), we only have an isomorphism $\phi: E(K) \simeq K^*/q^\Z$ over
the unramified quadratic extension $K/\Q_p$. In this case, the output
$\phi(P)\in K$ is a \typ{POLMOD}.
\bprog
? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction
%2 = "t_PADIC"
? ellmul(E, P, 5)  \\ P has order 5
%3 = [0]
? z = ellpointtoz(E, [0,0])
%4 = 3 + 11^2 + 2*11^3 + 3*11^4 + O(11^5)
? z^5
%5 = 1 + O(11^5)
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \\ lift all p-adics
%8 = Mod(8*u + 7, u^2 + 437)
@eprog

The library syntax is \fun{GEN}{zell}{GEN E, GEN P, long prec}.

\subsec{ellpow$(E,z,n)$}\kbdsidx{ellpow}\label{se:ellpow}
Deprecated alias for \kbd{ellmul}.

The library syntax is \fun{GEN}{ellmul}{GEN E, GEN z, GEN n}.

\subsec{ellrootno$(E,\{p\})$}\kbdsidx{ellrootno}\label{se:ellrootno}
$E$ being an \kbd{ell} structure over $\Q$ as output by \kbd{ellinit},
this function computes the local root number of its $L$-series at the place
$p$ (at the infinite place if $p = 0$). If $p$ is omitted, return the global
root number. Note that the global root number is the sign of the functional
equation and conjecturally is the parity of the rank of the
\idx{Mordell-Weil group}. The equation for $E$ needs not be minimal at $p$,
but if the model is already minimal the function will run faster.

The library syntax is \fun{long}{ellrootno}{GEN E, GEN p = NULL}.

\subsec{ellsea$(E,\{\var{tors}=0\})$}\kbdsidx{ellsea}\label{se:ellsea}
Let $E$ be an \var{ell} structure as output by \kbd{ellinit}, defined over
a finite field $\F_q$. This function computes the order of the group
$E(\F_q)$ using the SEA algorithm and the \kbd{tors} argument allows to
speed up a search for curves having almost prime order.

\item If the characteristic is too small ($p \leq 7$) the generic algorithm
\kbd{ellcard} is used instead and the \kbd{tors} argument is ignored.

\item When \kbd{tors} is set to a non-zero value, the function returns $0$
as soon as it detects that the order has a small prime factor not dividing
\kbd{tors}; SEA considers modular polynomials of increasing prime degree
$\ell$ and we return $0$ as soon as we hit an $\ell$ (coprime to \kbd{tors})
dividing $\#E(\F_q)$.

In particular, you should set \kbd{tors} to $1$ if you want a curve with
prime order, to $2$ if you want to allow a cofacteur which is a power of two
(e.g. for Edwards's curves), etc.

The availability of the \kbd{seadata} package will speed up the computation,
and is strongly recommended.

The following function returns a curve of prime order over $\F_p$.
\bprog
cryptocurve(p) =
{
  while(1,
    my(E, N, j = Mod(random(p), p));
    E = ellinit(ellfromj(j));
    N = ellsea(E, 1); if(!N, continue);
    if (isprime(N), return(E));
    \\ try the quadratic twist for free
    if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
  );
}
? p = randomprime([2^255, 2^256]);
? E = cryptocurve(p); \\ insist on prime order
%2 = 47,447ms
@eprog\noindent The same example without early abort (using \kbd{ellsea(E,1)}
instead of \kbd{ellsea(E)}) runs for about 5 minutes before finding a
suitable curve.

The library syntax is \fun{GEN}{ellsea}{GEN E, ulong tors}.

\subsec{ellsearch$(N)$}\kbdsidx{ellsearch}\label{se:ellsearch}
This function finds all curves in the \tet{elldata} database satisfying
the constraint defined by the argument $N$:

\item if $N$ is a character string, it selects a given curve, e.g.
\kbd{"11a1"}, or curves in the given isogeny class, e.g. \kbd{"11a"}, or
curves with given conductor, e.g. \kbd{"11"};

\item if $N$ is a vector of integers, it encodes the same constraints
as the character string above, according to the \tet{ellconvertname}
correspondance, e.g. \kbd{[11,0,1]} for \kbd{"11a1"}, \kbd{[11,0]} for
\kbd{"11a"} and \kbd{[11]} for \kbd{"11"};

\item if $N$ is an integer, curves with conductor $N$ are selected.

If $N$ codes a full curve name, for instance \kbd{"11a1"} or \kbd{[11,0,1]},
the output format is $[N, [a_1,a_2,a_3,a_4,a_6], G]$ where
$[a_1,a_2,a_3,a_4,a_6]$ are the coefficients of the Weierstrass equation of
the curve and $G$ is a $\Z$-basis of the free part of the
\idx{Mordell-Weil group} attached to the curve.
\bprog
? ellsearch("11a3")
%1 = ["11a3", [0, -1, 1, 0, 0], []]
? ellsearch([11,0,3])
%2 = ["11a3", [0, -1, 1, 0, 0], []]
@eprog\noindent

If $N$ is not a full curve name, then the output is a vector of all matching
curves in the above format:
\bprog
? ellsearch("11a")
%1 = [["11a1", [0, -1, 1, -10, -20], []],
      ["11a2", [0, -1, 1, -7820, -263580], []],
      ["11a3", [0, -1, 1, 0, 0], []]]
? ellsearch("11b")
%2 = []
@eprog

The library syntax is \fun{GEN}{ellsearch}{GEN N}.
Also available is \fun{GEN}{ellsearchcurve}{GEN N} that only
accepts complete curve names (as \typ{STR}).

\subsec{ellsigma$(L,\{z='x\},\{\fl=0\})$}\kbdsidx{ellsigma}\label{se:ellsigma}
Computes the value at $z$ of the Weierstrass $\sigma$ function attached to
the lattice $L$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
is useful, otherwise there are recomputed from scratch for each new $z$.
$$ \sigma(z, L) = z \prod_{\omega\in L^*} \left(1 -
\dfrac{z}{\omega}\right)e^{\dfrac{z}{\omega} + \dfrac{z^2}{2\omega^2}}.$$
It is also possible to directly input $L = [\omega_1,\omega_2]$,
or an elliptic curve $E$ as given by \kbd{ellinit} ($L = \kbd{E.omega}$).
\bprog
? w = ellperiods([1,I], 1);
? ellsigma(w, 1/2)
%2 = 0.47494937998792065033250463632798296855
? E = ellinit([1,0]);
? ellsigma(E) \\ at 'x, implicitly at default seriesprecision
%4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)
@eprog

If $\fl=1$, computes an arbitrary determination of $\log(\sigma(z))$.

The library syntax is \fun{GEN}{ellsigma}{GEN L, GEN z = NULL, long flag, long prec}.

\subsec{ellsub$(E,\var{z1},\var{z2})$}\kbdsidx{ellsub}\label{se:ellsub}
Difference of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.

The library syntax is \fun{GEN}{ellsub}{GEN E, GEN z1, GEN z2}.

\subsec{elltaniyama$(E, \{d = \var{seriesprecision}\})$}\kbdsidx{elltaniyama}\label{se:elltaniyama}
Computes the modular parametrization of the elliptic curve $E/\Q$,
where $E$ is an \kbd{ell} structure as output by \kbd{ellinit}. This returns
a two-component vector $[u,v]$ of power series, given to $d$ significant
terms (\tet{seriesprecision} by default), characterized by the following two
properties. First the point $(u,v)$ satisfies the equation of the elliptic
curve. Second, let $N$ be the conductor of $E$ and $\Phi: X_0(N)\to E$
be a modular parametrization; the pullback by $\Phi$ of the
N\'eron differential $du/(2v+a_1u+a_3)$ is equal to $2i\pi
f(z)dz$, a holomorphic differential form. The variable used in the power
series for $u$ and $v$ is $x$, which is implicitly understood to be equal to
$\exp(2i\pi z)$.

The algorithm assumes that $E$ is a \emph{strong} \idx{Weil curve}
and that the Manin constant is equal to 1: in fact, $f(x) = \sum_{n > 0}
\kbd{ellan}(E, n) x^n$.

The library syntax is \fun{GEN}{elltaniyama}{GEN E, long precdl}.

\subsec{elltatepairing$(E, P, Q, m)$}\kbdsidx{elltatepairing}\label{se:elltatepairing}
Computes the Tate pairing of the two points $P$ and $Q$ on the elliptic
curve $E$. The point $P$ must be of $m$-torsion.

The library syntax is \fun{GEN}{elltatepairing}{GEN E, GEN P, GEN Q, GEN m}.

\subsec{elltors$(E)$}\kbdsidx{elltors}\label{se:elltors}
If $E$ is an elliptic curve defined over a number field or a finite field,
outputs the torsion subgroup of $E$ as a 3-component vector \kbd{[t,v1,v2]},
where \kbd{t} is the order of the torsion group, \kbd{v1} gives the structure
of the torsion group as a product of cyclic groups (sorted by decreasing
order), and \kbd{v2} gives generators for these cyclic groups. $E$ must be an
\kbd{ell} structure as output by \kbd{ellinit}.
\bprog
?  E = ellinit([-1,0]);
?  elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]
@eprog\noindent
Here, the torsion subgroup is isomorphic to $\Z/2\Z \times \Z/2\Z$, with
generators $[0,0]$ and $[1,0]$.

The library syntax is \fun{GEN}{elltors}{GEN E}.

\subsec{elltwist$(E,\{P\})$}\kbdsidx{elltwist}\label{se:elltwist}
Returns the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of the twist of the
elliptic curve $E$ by the quadratic extension of the coefficient ring
defined by $P$ (when $P$ is a polynomial) or \kbd{quadpoly(P)} when $P$ is an
integer.  If $E$ is defined over a finite field, then $P$ can be omitted,
in which case a random model of the unique non-trivial twist is returned.
If $E$ is defined over a number field, the model should be replaced by a
minimal model (if one exists).

Example: Twist by discriminant $-3$:
\bprog
? elltwist(ellinit([0,a2,0,a4,a6]),-3)
%1 = [0,-3*a2,0,9*a4,-27*a6]
@eprog
Twist by the Artin-Shreier extension given by $x^2+x+T$ in
characteristic $2$:
\bprog
? lift(elltwist(ellinit([a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))
%1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]
@eprog
Twist of an elliptic curve defined over a finite field:
\bprog
? E=ellinit([1,7]*Mod(1,19));lift(elltwist(E))
%1 = [0,0,0,11,12]
@eprog

The library syntax is \fun{GEN}{elltwist}{GEN E, GEN P = NULL}.

\subsec{ellweilpairing$(E, P, Q, m)$}\kbdsidx{ellweilpairing}\label{se:ellweilpairing}
Computes the Weil pairing of the two points of $m$-torsion $P$ and $Q$
on the elliptic curve $E$.

The library syntax is \fun{GEN}{ellweilpairing}{GEN E, GEN P, GEN Q, GEN m}.

\subsec{ellwp$(w,\{z='x\},\{\fl=0\})$}\kbdsidx{ellwp}\label{se:ellwp}
Computes the value at $z$ of the Weierstrass $\wp$ function attached to
the lattice $w$ as given by \tet{ellperiods}. It is also possible to
directly input $w = [\omega_1,\omega_2]$, or an elliptic curve $E$ as given
by \kbd{ellinit} ($w = \kbd{E.omega}$).
\bprog
? w = ellperiods([1,I]);
? ellwp(w, 1/2)
%2 = 6.8751858180203728274900957798105571978
? E = ellinit([1,1]);
? ellwp(E, 1/2)
%4 = 3.9413112427016474646048282462709151389
@eprog\noindent One can also compute the series expansion around $z = 0$:
\bprog
? E = ellinit([1,0]);
? ellwp(E)              \\ 'x implicitly at default seriesprecision
%5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)
? ellwp(E, x + O(x^12)) \\ explicit precision
%6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)
@eprog

Optional \fl\ means 0 (default): compute only $\wp(z)$, 1: compute
$[\wp(z),\wp'(z)]$.

The library syntax is \fun{GEN}{ellwp0}{GEN w, GEN z = NULL, long flag, long prec}.
For $\fl = 0$, we also have
\fun{GEN}{ellwp}{GEN w, GEN z, long prec}, and
\fun{GEN}{ellwpseries}{GEN E, long v, long precdl} for the power series in
variable $v$.

\subsec{ellxn$(E,n,\{v='x\})$}\kbdsidx{ellxn}\label{se:ellxn}
In standard notation, for any affine point $P = (v,w)$ on the
curve $E$, we have
$$[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)$$
for some polynomials $\phi_n,\omega_n,\psi_n$ in
$\Z[a_1,a_2,a_3,a_4,a_6][v,w]$. This function returns
$[\phi_n(P),\psi_n(P)^2]$, which give the numerator and denominator of
the abcissa of $[n]P$ and depend only on $v$.

The library syntax is \fun{GEN}{ellxn}{GEN E, long n, long v = -1} where \kbd{v} is a variable number.

\subsec{ellzeta$(w,\{z='x\})$}\kbdsidx{ellzeta}\label{se:ellzeta}
Computes the value at $z$ of the Weierstrass $\zeta$ function attached to
the lattice $w$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
is useful, otherwise there are recomputed from scratch for each new $z$.
$$ \zeta(z, L) = \dfrac{1}{z} + z^2\sum_{\omega\in L^*}
\dfrac{1}{\omega^2(z-\omega)}.$$
It is also possible to directly input $w = [\omega_1,\omega_2]$,
or an elliptic curve $E$ as given by \kbd{ellinit} ($w = \kbd{E.omega}$).
The quasi-periods of $\zeta$, such that
$$\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2 $$
for integers $a$ and $b$ are obtained as $\eta_i = 2\zeta(\omega_i/2)$.
Or using directly \tet{elleta}.
\bprog
? w = ellperiods([1,I],1);
? ellzeta(w, 1/2)
%2 = 1.5707963267948966192313216916397514421
? E = ellinit([1,0]);
? ellzeta(E, E.omega[1]/2)
%4 = 0.84721308479397908660649912348219163647
@eprog\noindent One can also compute the series expansion around $z = 0$
(the quasi-periods are useless in this case):
\bprog
? E = ellinit([0,1]);
? ellzeta(E) \\ at 'x, implicitly at default seriesprecision
%4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)
? ellzeta(E, x + O(x^20)) \\ explicit precision
%5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)
@eprog\noindent

The library syntax is \fun{GEN}{ellzeta}{GEN w, GEN z = NULL, long prec}.

\subsec{ellztopoint$(E,z)$}\kbdsidx{ellztopoint}\label{se:ellztopoint}
$E$ being an \var{ell} as output by
\kbd{ellinit}, computes the coordinates $[x,y]$ on the curve $E$
corresponding to the complex number $z$. Hence this is the inverse function
of \kbd{ellpointtoz}. In other words, if the curve is put in Weierstrass
form $y^2 = 4x^3 - g_2x - g_3$, $[x,y]$ represents the Weierstrass
$\wp$-function\sidx{Weierstrass $\wp$-function} and its derivative. More
precisely, we have
$$x = \wp(z) - b_2/12,\quad y = \wp'(z) - (a_1 x + a_3)/2.$$
If $z$ is in the lattice defining $E$ over $\C$, the result is the point at
infinity $[0]$.

The library syntax is \fun{GEN}{pointell}{GEN E, GEN z, long prec}.

\subsec{genus2red$(\var{PQ},\{p\})$}\kbdsidx{genus2red}\label{se:genus2red}
Let $PQ$ be a polynomial $P$, resp. a vector $[P,Q]$ of polynomials, with
rational coefficients.
Determines the reduction at $p > 2$ of the (proper, smooth) genus~2
curve $C/\Q$, defined by the hyperelliptic equation $y^2 = P(x)$, resp.
$y^2 + Q(x)*y = P(x)$.
(The special fiber $X_p$ of the minimal regular model $X$ of $C$ over $\Z$.)

If $p$ is omitted, determines the reduction type for all (odd) prime
divisors of the discriminant.

\noindent This function was rewritten from an implementation of Liu's
algorithm by Cohen and Liu (1994), \kbd{genus2reduction-0.3}, see
\url{http://www.math.u-bordeaux.fr/~liu/G2R/}.

\misctitle{CAVEAT} The function interface may change: for the
time being, it returns $[N,\var{FaN}, T, V]$
where $N$ is either the local conductor at $p$ or the
global conductor, \var{FaN} is its factorization, $y^2 = T$ defines a
minimal model over $\Z[1/2]$ and $V$ describes the reduction type at the
various considered~$p$. Unfortunately, the program is not complete for
$p = 2$, and we may return the odd part of the conductor only: this is the
case if the factorization includes the (impossible) term $2^{-1}$; if the
factorization contains another power of $2$, then this is the exact local
conductor at $2$ and $N$ is the global conductor.

\bprog
? default(debuglevel, 1);
? genus2red(x^6 + 3*x^3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: [III{9}] page 184, [3, 3], f = 10
%1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []],
       ["[III{9}] page 184", [3, 3]]]]
? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x);  \\ X_1(13), global reduction
p = 13
(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
reduction at p: [I{0}-II-0] page 159, [], f = 2
? N
%3 = 169
? FaN
%4 = Mat([13, 2])   \\ in particular, good reduction at 2 !
? T
%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
? V
%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], ["[I{0}-II-0] page 159", []]]]
@eprog\noindent
We now first describe the format of the vector $V = V_p$ in the case where
$p$ was specified (local reduction at~$p$): it is a triple $[p, \var{stable},
\var{red}]$. The component $\var{stable} = [\var{type}, \var{vecj}]$ contains
information about the stable reduction after a field extension;
depending on \var{type}s, the stable reduction is

\item 1: smooth (i.e. the curve has potentially good reduction). The
      Jacobian $J(C)$ has potentially good reduction.

\item 2: an elliptic curve $E$ with an ordinary double point; \var{vecj}
contains $j$ mod $p$, the modular invariant of $E$. The (potential)
semi-abelian reduction of $J(C)$ is the extension of an elliptic curve (with
modular invariant $j$ mod $p$) by a torus.

\item 3: a projective line with two ordinary double points. The Jacobian
$J(C)$ has potentially multiplicative reduction.

\item 4: the union of two projective lines crossing transversally at three
points. The Jacobian $J(C)$ has potentially multiplicative reduction.

\item 5: the union of two elliptic curves $E_1$ and $E_2$ intersecting
transversally at one point; \var{vecj} contains their modular invariants
$j_1$ and $j_2$, which may live in a quadratic extension of $\F_p$ and need
not be distinct. The Jacobian $J(C)$ has potentially good reduction,
isomorphic to the product of the reductions of $E_1$ and $E_2$.

\item 6: the union of an elliptic curve $E$ and a projective line which has
an ordinary double point, and these two components intersect transversally
at one point; \var{vecj} contains $j$ mod $p$, the modular invariant of $E$.
The (potential) semi-abelian reduction of $J(C)$ is the extension of an
elliptic curve (with modular invariant $j$ mod $p$) by a torus.

\item 7: as in type 6, but the two components are both singular. The
Jacobian $J(C)$ has potentially multiplicative reduction.

The component $\var{red} = [\var{NUtype}, \var{neron}]$ contains two data
concerning the reduction at $p$ without any ramified field extension.

The \var{NUtype} is a \typ{STR} describing the reduction at $p$ of $C$,
following Namikawa-Ueno, \emph{The complete classification of fibers in
pencils of curves of genus two}, Manuscripta Math., vol. 9, (1973), pages
143-186. The reduction symbol is followed by the corresponding page number
or page range in this article.

The second datum \var{neron} is the group of connected components (over an
algebraic closure of $\F_p$) of the N\'eron model of $J(C)$, given as a
finite abelian group (vector of elementary divisors).
\smallskip
If $p = 2$, the \var{red} component may be omitted altogether (and
replaced by \kbd{[]}, in the case where the program could not compute it.
When $p$ was not specified, $V$ is the vector of all $V_p$, for all
considered $p$.

\misctitle{Notes about Namikawa-Ueno types}

\item A lower index is denoted between braces: for instance,
 \kbd{[I\obr2\cbr-II-5]} means \kbd{[I\_2-II-5]}.

\item If $K$ and $K'$ are Kodaira symbols for singular fibers of elliptic
curves, then \kbd{[$K$-$K'$-m]} and \kbd{[$K'$-$K$-m]} are the same.

We define a total ordering on Kodaira symbol by fixing $\kbd{I} < \kbd{I*} <
\kbd{II} < \kbd{II*}, \dots$. If the reduction type is the same, we order by
the number of components, e.g. $\kbd{I}_2 < \kbd{I}_4$, etc.
Then we normalize our output so that $K \leq K'$.

\item \kbd{[$K$-$K'$-$-1$]}  is \kbd{[$K$-$K'$-$\alpha$]} in the notation of
Namikawa-Ueno.

\item The figure \kbd{[2I\_0-m]} in Namikawa-Ueno, page 159, must be denoted
by \kbd{[2I\_0-(m+1)]}.

The library syntax is \fun{GEN}{genus2red}{GEN PQ, GEN p = NULL}.

\subsec{hyperellcharpoly$(X)$}\kbdsidx{hyperellcharpoly}\label{se:hyperellcharpoly}
$X$ being a non-singular hyperelliptic curve defined over a finite field,
return the characteristic polynomial of the Frobenius automorphism.
$X$ can be given either by a squarefree polynomial $P$ such that
$X: y^2 = P(x)$ or by a vector $[P,Q]$ such that
$X: y^2 + Q(x)\*y = P(x)$ and $Q^2+4\*P$ is squarefree.

The library syntax is \fun{GEN}{hyperellcharpoly}{GEN X}.

\subsec{hyperellpadicfrobenius$(Q,p,n)$}\kbdsidx{hyperellpadicfrobenius}\label{se:hyperellpadicfrobenius}
Let $X$ be the curve defined by $y^2=Q(x)$, where  $Q$ is a polynomial of
degree $d$ over $\Q$ and $p\ge d$ a prime such that $X$ has good reduction
at $p$ return the matrix of the Frobenius endomorphism $\varphi$ on the
crystalline module $D_p(X) = \Q_p \otimes H^1_{dR}(X/\Q)$ with respect to the
basis of the given model $(\omega, x\*\omega,\ldots,x^{g-1}\*\omega)$, where
$\omega = dx/(2\*y)$ is the invariant differential, where $g$ is the genus of
$X$ (either $d=2\*g+1$ or $d=2\*g+2$).  The characteristic polynomial of
$\varphi$ is the numerator of the zeta-function of the reduction of the curve
$X$ modulo $p$. The matrix is computed to absolute $p$-adic precision $p^n$.

The library syntax is \fun{GEN}{hyperellpadicfrobenius}{GEN Q, ulong p, long n}.
%SECTION: elliptic_curves

\section{$L$-functions}

This section describes routines related to $L$-functions. We first introduce
the basic concept and notations, then explain how to represent them in GP.
Let $\Gamma_\R(s) = \pi^{-s/2}\Gamma(s/2)$, where $\Gamma$ is Euler's gamma
function. Given $d \geq 1$ and a $d$-tuple $A=[\alpha_1,\dots,\alpha_d]$ of
complex numbers, we let $\gamma_A(s) = \prod_{\alpha \in A} \Gamma_\R(s +
\alpha)$.

Given a sequence $a = (a_n)_{n\geq 1}$ of complex numbers (such that $a_1 = 1$),
a positive \emph{conductor} $N \in \Z$, and a \emph{gamma factor}
$\gamma_A$ as above, we consider the Dirichlet series
$$ L(a,s) = \sum_{n\geq 1} a_n n^{-s} $$
and the attached completed function
$$ \Lambda(a,s) = N^{s/2}\gamma_A(s) \cdot L(a,s). $$

Such a datum defines an \emph{$L$-function} if it satisfies the three
following assumptions:

\item [Convergence] The $a_n = O_\epsilon(n^{k_1+\epsilon})$ have polynomial
growth, equivalently $L(s)$ converges absolutely in some right half-plane
$\Re(s) > k_1 + 1$.

\item [Analytic continuation] $L(s)$ has a meromorphic continuation to the
whole complex plane with finitely many poles.

\item [Functional equation] There exist an integer $k$, a complex number
$\epsilon$ (usually of modulus~$1$), and an attached sequence $a^*$
defining both an $L$-function $L(a^*,s)$ satisfying the above two assumptions
and a completed function $\Lambda(a^*,s) = N^{s/2}\gamma_A(s) \cdot
L(a^*,s)$, such that
$$\Lambda(a,k-s) = \epsilon \Lambda(a^*,s)$$
for all regular points.

More often than not in number theory we have $a^* = \overline{a}$ (which
forces $|\epsilon| = 1$), but this needs not be the case. If $a$ is a real
sequence and $a = a^*$, we say that $L$ is \emph{self-dual}. We do not assume
that the $a_n$ are multiplicative, nor equivalently that $L(s)$ has an Euler
product.

\misctitle{Remark}
Of course, $a$ determines the $L$-function, but the (redundant) datum $a,a^*,
A, N, k, \epsilon$ describes the situation in a form more suitable for fast
computations; knowing the polar part $r$ of $\Lambda(s)$ (a rational function
such that $\Lambda-r$ is holomorphic) is also useful. A subset of these,
including only finitely many $a_n$-values will still completely determine $L$
(in suitable families), and we provide routines to try and compute missing
invariants from whatever information is available.

\misctitle{Important Caveat}
We currently assume that we can take the growth exponent $k_1 = (k-1)/2$ if
$L$ is entire and $k_1 = k-1$ otherwise, and that the implied constants in
the $O_\epsilon$ are small. This may be changed and made user-configurable
in future versions but the essential point remains that it is impossible to
return proven results in such a generic framework, without more detailed
information about the $L$ function. The intended use of the $L$-function
package is not to prove theorems, but to experiment and formulate
conjectures, so all numerical results should be taken with a grain of salt.
One can always increase \kbd{realbitprecision} and recompute: the difference
estimates the actual absolute error in the original output.

\misctitle{Note} The requested precision has a major impact on runtimes.
Because of this, most $L$-function routines, in particular \kbd{lfun} itself,
specify the requested precision in \emph{bits}, not in decimal digits.
This is transparent for the user once \tet{realprecision} or
\tet{realbitprecision} are set. We advise to manipulate precision via
\tet{realbitprecision} as it allows finer granularity: \kbd{realprecision}
increases by increments of 64 bits, i.e. 19 decimal digits at a time.

\subsec{Theta functions}

Given an $L$-function as above, we define an attached theta function
via Mellin inversion: for any positive real $t > 0$, we let
$$ \theta(a,t) := \dfrac{1}{2\pi i}\int_{\Re(s) = c} t^{-s} \Lambda(s)\, ds $$
where $c$ is any positive real number $c > k_1+1$ such that $c + \Re(a) > 0$
for all $a\in A$. In fact, we have
$$\theta(a,t) = \sum_{n\geq 1} a_n K(nt/N^{1/2})
\quad\text{where}\quad
K(t) := \dfrac{1}{2\pi i}\int_{\Re(s) = c} t^{-s} \gamma_A(s)\, ds.$$
Note that this function is analytic and actually makes sense for complex $t$,
such that $\Re(t^{2/d}) > 0$, i.e. in a cone containing the positive real
half-line. The functional equation for $\Lambda$ translates into
$$ \theta(a,1/t) - \epsilon t^k\theta(a^*,t) = P_\Lambda(t), $$
where $P_\Lambda$ is an explicit polynomial in $t$ and $\log t$ given by the
Taylor development of the polar part of $\Lambda$: there are no $\log$'s if
all poles are simple, and $P = 0$ if $\Lambda$ is entire. The values
$\theta(t)$ are generally easier to compute than the $L(s)$, and this
functional equation provides a fast way to guess possible values for
missing invariants in the $L$-function definition.

\subsec{Data structures describing $L$ and theta functions}

We have 3 levels of description:

\item an \tet{Lmath} is an arbitrary description of the underlying
mathematical situation (to which e.g., we associate the $a_p$ as traces of
Frobenius elements); this is done via constructors to be described in the
subsections below.

\item an \tet{Ldata} is a computational description of situation, containing
the complete datum ($a,a^*,A,k,N,\epsilon,r$). Where $a$ and $a^*$ describe
the coefficients (given $n,b$ we must be able to compute $[a_1,\dots,a_n]$
with bit accuracy $b$), $A$ describes the Euler factor, the (classical) weight
is $k$, $N$ is the conductor, and $r$ describes the polar part of $L(s)$.
This is obtained via the function \tet{lfuncreate}. N.B. For motivic
$L$-functions, the motivic weight $w$ is $w = k-1$; but we also support
non-motivic $L$-functions.

\misctitle{Design problem} All components of an \kbd{Ldata} should be given
exactly since the accuracy to which they must be computed is not bounded a
priori; but this is not always possible, in particular for $\epsilon$ and $r$.

\item an \tet{Linit} contains an \kbd{Ldata} and everything needed for fast
\emph{numerical} computations. It specifies the functions to be considered
(either $L^{(j)}(s)$ or $\theta^{(j)}(t)$ for derivatives of order $j \leq
m$, where $m$ is now fixed) and specifies a \emph{domain} which limits
the range of arguments ($t$ or $s$, respectively to certain cones and
rectangular regions) and the output accuracy. This is obtained via the
functions \tet{lfuninit} or \tet{lfunthetainit}.

All the functions which are specific to $L$ or theta functions share the
prefix \kbd{lfun}. They take as first argument either an \kbd{Lmath}, an
\kbd{Ldata}, or an \kbd{Linit}. If a single value is to be computed,
this makes no difference, but when many values are needed (e.g. for plots or
when searching for zeros), one should first construct an \kbd{Linit}
attached to the search range and use it in all subsequent calls.
If you attempt to use an \kbd{Linit} outside the range for which it was
initialized, a warning is issued, because the initialization is
performed again, a major inefficiency:
\bprog
? Z = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(Z, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100
? lfun(L, 1/2)    \\ OK, within domain
%3 = -1.4603545088095868128894991525152980125
? lfun(L, 0)      \\ not on critical strip !
  *** lfun: Warning: lfuninit: insufficient initialization.
%4 = -0.50000000000000000000000000000000000000
? lfun(L, 1/2, 1) \\ attempt first derivative !
*** lfun: Warning: lfuninit: insufficient initialization.
%5 = -3.9226461392091517274715314467145995137
@eprog

For many $L$-functions, passing from \kbd{Lmath} to an \kbd{Ldata} is
inexpensive: in that case one may use \kbd{lfuninit} directly from the
\kbd{Lmath} even when evaluations in different domains are needed. The
above example could equally have skipped the \kbd{lfuncreate}:
\bprog
? L = lfuninit(1, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100
@eprog\noindent In fact, when computing a single value, you can even skip
\kbd{lfuninit}:
\bprog
? L = lfun(1, 1/2, 1); \\ zeta'(1/2)
? L = lfun(1, 1+x+O(x^5)); \\ first 5 terms of Taylor development at 1
@eprog\noindent Both give the desired results with no warning.

\misctitle{Complexity}
The implementation requires $O(N(|t|+1))^{1/2}$ coefficients $a_n$
to evaluate $L$ of conductor $N$ at $s = \sigma + i t$.

We now describe the available high-level constructors, for built-in $L$
functions.

\subsec{Dirichlet $L$-functions} %GPHELPskip

Given a Dirichlet character $\chi:(\Z/N\Z)^*\to \C$, we let
$$L(\chi, s) = \sum_{n\geq 1} \chi(n) n^{-s}.$$
Only primitive characters are supported. Given a fundamental discriminant
$D$, the function $L((D/.), s)$, for the quadratic Kronecker symbol, is encoded
by the \typ{INT} $D$. This includes Riemann $\zeta$ function via the special
case $D = 1$.

More general characters can be represented in a variety of ways:

\item via Conrey notation (see \tet{znconreychar}): $\chi_N(m,\cdot)$
is given as the \typ{INTMOD} \kbd{Mod(m,N)}.

\item via a \var{bid} structure describing the abelian  group $(\Z/N\Z)^*$,
where the character is given in terms of the \var{bid} generators:
\bprog
  ? bid = idealstar(,100,2); \\ (Z/100Z)^*
  ? bid.cyc \\ ~ Z/20 . g1  + Z/2 . g2 for some generators g1 and g2
  %2 = [20, 2]
  ? bid.gen
  %3 = [77, 51]
  ? chi = [a, b]  \\ maps g1 to e(a/20) and g2 to e(b/2);  e(x) = exp(2ipi x)
@eprog\noindent
More generally, let $(\Z/N\Z)^* = \oplus (\Z/d_i\Z) g_i$ be given via a
\var{bid} structure $G$ (\kbd{G.cyc} gives the $d_i$ and \kbd{G.gen} the
$g_i$). A \tev{character} $\chi$ on $G$ is given by a row vector
$v = [a_1,\ldots,a_n]$ such that $\chi(\prod g_i^{n_i}) = \exp(2\pi i\sum a_i
n_i / d_i)$. The pair $[\var{bid}, v]$ encodes the \emph{primitive} character
attached to $\chi$.

\item in fact, this construction $[\var{bid}, m]$ describing a character
is more general: $m$ is also allowed to be a Conrey index as seen above,
or a Conrey logarithm (see \tet{znconreylog}), and the latter format is
actually the fastest one.

\item it is also possible to view Dirichlet characters as Hecke characters
over $K = \Q$ (see below), for a modulus $[N, [1]]$ but this is both more
complicated and less efficient.

\subsec{Hecke $L$-functions} %GPHELPskip

The Dedekind zeta function of a number field $K = \Q[X]/(T)$ is encoded
either by the defining polynomial $T$, or any absolute number fields
structure (preferably at least a \var{bnf}).

Given a finite order Hecke character $\chi: Cl_f(K)\to \C$, we let
$$L(\chi, s) = \sum_{A \subset O_K} \chi(A)\, \left(N_{K/\Q}A\right)^{-s}.$$

Let $Cl_f(K) = \oplus (\Z/d_i\Z) g_i$ given by a \var{bnr} structure with
generators: the $d_i$ are given by \kbd{K.cyc} and the $g_i$ by \kbd{K.gen}.
A \tev{character} $\chi$ on the ray class group is given by a row vector
$v = [a_1,\ldots,a_n]$ such that $\chi(\prod g_i^{n_i}) = \exp(2\pi i\sum
a_i n_i / d_i)$. The pair $[\var{bnr}, v]$ encodes the \emph{primitive}
character attached to $\chi$.

\bprog
? K  = bnfinit(x^2-60);
? Cf = bnrinit(K, [7, [1,1]], 1); \\ f = 7 oo_1 oo_2
? Cf.cyc
%3 = [6, 2, 2]
? Cf.gen
%4 = [[2, 1; 0, 1], [22, 9; 0, 1], [-6, 7]~]
? lfuncreate([Cf, [1,0,0]]); \\@com $\chi(g_1) = \zeta_6$, $\chi(g_2)=\chi(g_3)=1$
@eprog

\noindent Dirichlet characters on $(\Z/N\Z)^*$ are a special case,
where $K = \Q$:
\bprog
? Q  = bnfinit(x);
? Cf = bnrinit(Q, [100, [1]]); \\ for odd characters on (Z/100Z)*
@eprog\noindent
For even characters, replace by \kbd{bnrinit(K, N)}. Note that the simpler
direct construction in the previous section will be more efficient.

\subsec{Artin $L$ functions} %GPHELPskip

Given a Galois number field $N/\Q$ with group $G = \kbd{galoisinit}(N)$,
a representation $\rho$ of $G$ over the cyclotomic field $\Q(\zeta_n)$
is specified by the matrices giving the images of $\kbd{G.gen}$ by $\rho$.
The corresponding Artin $L$ function is created using \tet{lfunartin}.
\bprog
   P = quadhilbert(-47); \\  degree 5, Galois group D_5
   N = nfinit(nfsplitting(P)); \\ Galois closure
   G = galoisinit(N);
   [s,t] = G.gen; \\ order 5 and 2
   L = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5); \\ irr. degree 2
@eprog\noindent In the above, the polynomial variable (here \kbd{a}) represents
$\zeta_5 := \exp(2i\pi/5)$ and the two matrices give the images of
$s$ and $t$. Here, priority of \kbd{a} must be lower than the priority
of \kbd{x}.

\subsec{$L$-functions of algebraic varieties} %GPHELPskip

$L$-function of elliptic curves over number fields are supported.
\bprog
? E = ellinit([1,1]);
? L = lfuncreate(E);  \\ L-function of E/Q
? E2 = ellinit([1,a], nfinit(a^2-2));
? L2 = lfuncreate(E2);  \\ L-function of E/Q(sqrt(2))
@eprog

$L$-function of hyperelliptic genus-$2$ curve can be created with
\kbd{lfungenus2}. To create the $L$ function of the curve
$y^2+(x^3+x^2+1)y = x^2+x$:
\bprog
? L = lfungenus2([x^2+x, x^3+x^2+1]);
@eprog
Currently, the model needs to be minimal at $2$, and if the conductor is even,
its valuation at $2$ might be incorrect (a warning is issued).

\subsec{Eta quotients / Modular forms} %GPHELPskip

An eta quotient is created by applying \tet{lfunetaquo} to a matrix with
2 columns $[m, r_m]$ representing
$$ f(\tau) := \prod_m \eta(m\tau)^{r_m}. $$
It is currently assumed that $f$ is a self-dual cuspidal form on
$\Gamma_0(N)$ for some $N$.
For instance, the $L$-function $\sum \tau(n) n^{-s}$
attached to Ramanujan's $\Delta$ function is encoded as follows
\bprog
? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100)  \\ first 100 values of tau(n)
@eprog

More general modular forms defined by modular symbols will be added later.

\subsec{Low-level Ldata format} %GPHELPskip

When no direct constructor is available, you can still input an $L$ function
directly by supplying $[a, a^*,A, k, N, \epsilon, r]$ to \kbd{lfuncreate}
(see \kbd{??lfuncreate} for details).

It is \emph{strongly} suggested to first check consistency of the created
$L$-function:
\bprog
? L = lfuncreate([a, as, A, k, N, eps, r]);
? lfuncheckfeq(L)  \\ check functional equation
@eprog


\subsec{lfun$(L,s,\{D=0\})$}\kbdsidx{lfun}\label{se:lfun}
Compute the L-function value $L(s)$, or if \kbd{D} is set, the
derivative of order \kbd{D} at $s$. The parameter
\kbd{L} is either an Lmath, an Ldata (created by \kbd{lfuncreate}, or an
Linit (created by \kbd{lfuninit}), preferrably the latter if many values
are to be computed.

The argument $s$ is also allowed to be a power series; for instance, if $s =
\alpha + x + O(x^n)$, the function returns the Taylor expansion of order $n$
around $\alpha$. The result is given with absolute error less than $2^{-B}$,
where $B = \text{realbitprecision}$.

\misctitle{Caveat} The requested precision has a major impact on runtimes.
It is advised to manipulate precision via \tet{realbitprecision} as
 explained above instead of \tet{realprecision} as the latter allows less
granularity: \kbd{realprecision} increases by increments of 64 bits, i.e. 19
decimal digits at a time.

\bprog
? lfun(x^2+1, 2)  \\ Lmath: Dedekind zeta for Q(i) at 2
%1 = 1.5067030099229850308865650481820713960

? L = lfuncreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function
? lfun(L, 1+x+O(x^4))  \\ zero of order 3 at the central point
%3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x^2 + 1.7318[...]*x^3 + O(x^4)

\\ Linit: zeta(1/2+it), |t| < 100, and derivative
? L = lfuninit(1, [100], 1);
? T = lfunzeros(L, [1,25]);
%5 = [14.134725[...], 21.022039[...]]
? z = 1/2 + I*T[1];
? abs( lfun(L, z) )
%7 = 8.7066865533412207420780392991125136196 E-39
? abs( lfun(L, z, 1) )
%8 = 0.79316043335650611601389756527435211412  \\ simple zero
@eprog

The library syntax is \fun{GEN}{lfun0}{GEN L, GEN s, long D, long bitprec}.

\subsec{lfunabelianrelinit$(\var{bnfL},\var{bnfK},\var{polrel},\var{sdom},\{\var{der}=0\})$}\kbdsidx{lfunabelianrelinit}\label{se:lfunabelianrelinit}
Returns the \kbd{Linit} structure attached to the Dedekind zeta function
 of the number field $L$ (see \tet{lfuninit}), given a subfield $K$ such that
 $L/K$ is abelian.
 Here \kbd{polrel} defines $L$ over $K$, as usual with the priority of the
 variable of \kbd{bnfK} lower than that of \kbd{polrel}.
 \kbd{sdom} and \kbd{der} are as in \kbd{lfuninit}.
 \bprog
 ? D = -47; K = bnfinit(y^2-D);
 ? rel = quadhilbert(D); T = rnfequation(K.pol, rel); \\ degree 10
 ? L = lfunabelianrelinit(T,K,rel, [2,0,0]); \\ at 2
 time = 84 ms.
 ? lfun(L, 2)
 %4 = 1.0154213394402443929880666894468182650
 ? lfun(T, 2) \\ using parisize > 300MB
 time = 652 ms.
 %5 = 1.0154213394402443929880666894468182656
 @eprog\noindent As the example shows, using the (abelian) relative structure
 is more efficient than a direct computation. The difference becomes drastic
 as the absolute degree increases while the subfield degree remains constant.

The library syntax is \fun{GEN}{lfunabelianrelinit}{GEN bnfL, GEN bnfK, GEN polrel, GEN sdom, long der, long bitprec}.

\subsec{lfunan$(L,n)$}\kbdsidx{lfunan}\label{se:lfunan}
Compute the first $n$ terms of the Dirichlet series attached to the
 $L$-function given by \kbd{L} (\kbd{Lmath}, \kbd{Ldata} or \kbd{Linit}).
 \bprog
 ? lfunan(1, 10)  \\ Riemann zeta
 %1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 ? lfunan(5, 10)  \\ Dirichlet L-function for kronecker(5,.)
 %2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]
 @eprog

The library syntax is \fun{GEN}{lfunan}{GEN L, long n, long prec}.

\subsec{lfunartin$(\var{nf},\var{gal},M,n)$}\kbdsidx{lfunartin}\label{se:lfunartin}
Returns the \kbd{Ldata} structure attached to the
Artin $L$-function attached to the representation $\rho$ of the Galois group
of the extension $K/\Q$, defined over the cyclotomic field $\Q(\zeta_n)$,
where \var{nf} is the nfinit structure attached to $K$,
\var{gal} is the galoisinit structure attached to $K/\Q$, and $M$ is
the vector of the image of the generators \kbd{\var{gal}.gen} by $\rho$.
The elements of $M$ are matrices with polynomial entries, whose variable
is understood as the complex number $\exp(2\*i\*\pi/n)$.

In the following example we build the Artin $L$-functions attached to the two
irreducible degree $2$ representations of the dihedral group $D_{10}$ defined
over $\Q(\zeta_5)$, for the extension $H/\Q$ where $H$ is the Hilbert class
field of $\Q(\sqrt{-47})$.
We show numerically some identities involving Dedekind $\zeta$ functions and
Hecke $L$ series.
\bprog
? P = quadhilbert(-47);
? N = nfinit(nfsplitting(P));
? G = galoisinit(N);
? L1 = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5);
? L2 = lfunartin(N,G, [[a^2,0;0,a^-2],[0,1;1,0]], 5);
? s = 1 + x + O(x^4);
? lfun(1,s)*lfun(-47,s)*lfun(L1,s)^2*lfun(L2,s)^2 - lfun(N,s)
%6 ~ 0
? lfun(1,s)*lfun(L1,s)*lfun(L2,s) - lfun(P,s)
%7 ~ 0
? bnr = bnrinit(bnfinit(x^2+47),1,1);
? lfun([bnr,[1]], s) - lfun(L1, s)
%9 ~ 0
? lfun([bnr,[1]], s) - lfun(L1, s)
%10 ~ 0
@eprog
The first identity is the factorisation of the regular representation of
$D_{10}$, the second the factorisation of the natural representation of
$D_{10}\subset S_5$, the next two are the expressions of the degree $2$
representations as induced from degree $1$ representations.

The library syntax is \fun{GEN}{lfunartin}{GEN nf, GEN gal, GEN M, long n}.

\subsec{lfuncheckfeq$(L,\{t\})$}\kbdsidx{lfuncheckfeq}\label{se:lfuncheckfeq}
Given the data attached to an $L$-function (\kbd{Lmath}, \kbd{Ldata}
or \kbd{Linit}), check whether the functional equation is satisfied.
This is most useful for an \kbd{Ldata} constructed ``by hand'', via
\kbd{lfuncreate}, to detect mistakes.

If the function has poles, the polar part must be specified. The routine
returns a bit accuracy $b$ such that $|w - \hat{w}| < 2^{b}$, where $w$ is
the root number contained in \kbd{data}, and $\hat{w}$ is a computed value
derived from $\overline{\theta}(t)$ and $\theta(1/t)$ at some $t\neq 0$ and
the assumed functional equation. Of course, a large negative value of the
order of \kbd{realbitprecision} is expected.

If $t$ is given, it should be close to the unit disc for efficiency and
such that $\overline{\theta}(t) \neq 0$. We then check the functional
equation at that $t$.
\bprog
? \pb 128       \\ 128 bits of accuracy
? default(realbitprecision)
%1 = 128
? L = lfuncreate(1);  \\ Riemann zeta
? lfuncheckfeq(L)
%3 = -124
@eprog\noindent i.e. the given data is consistent to within 4 bits for the
particular check consisting of estimating the root number from all other
given quantities. Checking away from the unit disc will either fail with
a precision error, or give disappointing results (if $\theta(1/t)$ is
large it will be computed with a large absolute error)
\bprog
? lfuncheckfeq(L, 2+I)
%4 = -115
? lfuncheckfeq(L,10)
 ***   at top-level: lfuncheckfeq(L,10)
 ***                 ^------------------
 *** lfuncheckfeq: precision too low in lfuncheckfeq.
@eprog

The library syntax is \fun{long}{lfuncheckfeq}{GEN L, GEN t = NULL, long bitprec}.

\subsec{lfunconductor$(L,\{\var{ab}=[1,{10000}]\},\{\fl=0\})$}\kbdsidx{lfunconductor}\label{se:lfunconductor}
Compute the conductor of the given $L$-function
 (if the structure contains a conductor, it is ignored);
 $\kbd{ab} = [a,b]$ is the interval where we expect to find the conductor;
 it may be given as a single scalar $b$, in which case we look in $[1,b]$.
 Increasing \kbd{ab} slows down the program but gives better accuracy for the
 result.

 If \kbd{flag} is $0$ (default), give either the conductor found as an
 integer, or a vector (possibly empty) of conductors found. If \kbd{flag} is
 $1$, same but give the computed floating point approximations to the
 conductors found, without rounding to integers. It \kbd{flag} is $2$, give
 all the conductors found, even those far from integers.

 \misctitle{Caveat} This is a heuristic program and the result is not
 proven in any way:
 \bprog
 ? L = lfuncreate(857); \\ Dirichlet L function for kronecker(857,.)
 ? \p19
   realprecision = 19 significant digits
 ? lfunconductor(L)
 %2 = [17, 857]
 ? lfunconductor(L,,1) \\ don't round
 %3 = [16.99999999999999999, 857.0000000000000000]

 ? \p38
   realprecision = 38 significant digits
 ? lfunconductor(L)
 %4 = 857
 @eprog

 \misctitle{Note} This program should only be used if the primes dividing the
 conductor are unknown, which is rare. If they are known, a direct
 search through possible prime exponents using \kbd{lfuncheckfeq} will
 be more efficient and rigorous:
 \bprog
 ? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */
 ? E.disc  \\ |disc E| = 2^12
 %2 = -4096
 \\ create Ldata by hand. Guess that root number is 1 and conductor N
 ? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, 1]);
 ? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d))))
 1: 0
 2: 0
 4: -1
 8: -2
 16: -3
 32: -127
 64: -3
 128: -2
 256: -2
 512: -1
 1024: -1
 2048: 0
 4096: 0
 ? lfunconductor(L(1)) \\ lfunconductor ignores conductor = 1 in Ldata !
 %5 = 32
 @eprog\noindent The above code assumed that root number was $1$;
 had we set it to $-1$, none of the \kbd{lfuncheckfeq} values would have been
 acceptable:
 \bprog
 ? L2(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, -1]);
 ? [ lfuncheckfeq(L2(d)) | d<-divisors(E.disc) ]
 %7 = [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1]
 @eprog

The library syntax is \fun{GEN}{lfunconductor}{GEN L, GEN ab = NULL, long 10000], long bitprec}.

\subsec{lfuncost$(L,\{\var{sdom}\},\{\var{der}=0\})$}\kbdsidx{lfuncost}\label{se:lfuncost}
Estimate the cost of running
\kbd{lfuninit(L,sdom,der)} at current bit precision. Returns $[t,b]$, to
indicate that $t$ coefficients $a_n$ will be computed, as well as $t$ values of
\tet{gammamellininv}, all at bit accuracy $b$.
A subsequent call to \kbd{lfun} at $s$ evaluates a polynomial of degree $t$
at $\exp(h s)$ for some real parameter $h$, at the same bit accuracy $b$.
If $L$ is already an \kbd{Linit}, then \var{sdom} and \var{der} are ignored
and are best left omitted; the bit accuracy is also inferred from $L$: in
short we get an estimate of the cost of using that particular \kbd{Linit}.

\bprog
? \pb 128
? lfuncost(1, [100]) \\ for zeta(1/2+I*t), |t| < 100
%1 = [7, 242]  \\ 7 coefficients, 242 bits
? lfuncost(1, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100
%2 = [7, 246]  \\ now 246 bits
? lfuncost(1, [100], 10) \\ for zeta(1/2+I*t), |t| < 100
%3 = [8, 263]  \\ 10th derivative increases the cost by a small amount
? lfuncost(1, [10^5])
%3 = [158, 113438]  \\ larger imaginary part: huge accuracy increase

? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ at s = 1/2+I*t), |t| < 100
%5 = [11457, 582]
? lfuncost(L, [200]) \\ twice higher
%6 = [36294, 1035]
? lfuncost(L, [10^4])  \\ much higher: very costly !
%7 = [70256473, 45452]
? \pb 256
? lfuncost(L, [100]); \\ doubling bit accuracy
%8 = [17080, 710]
@eprog\noindent In fact, some $L$ functions can be factorized algebraically
by the \kbd{lfuninit} call, e.g. the Dedekind zeta function of abelian
fields, leading to much faster evaluations than the above upper bounds.
In that case, the function returns a vector of costs as above for each
individual function in the product actually evaluated:
\bprog
? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100])  \\ a priori cost
%2 = [11457, 582]
? L = lfuninit(L, [100]); \\ actually perform all initializations
? lfuncost(L)
%4 = [[16, 242], [16, 242], [7, 242]]
@eprog\noindent The Dedekind function of this abelian quartic field
is the product of four Dirichlet $L$-functions attached to the trivial
character, a non-trivial real character and two complex conjugate
characters. The non-trivial characters happen to have the same conductor
(hence same evaluation costs), and correspond to two evaluations only
since the two conjugate characters are evaluated simultaneously.
For a total of three $L$-functions evaluations, which explains the three
components above. Note that the actual cost is much lower than the a priori
cost in this case.

The library syntax is \fun{GEN}{lfuncost0}{GEN L, GEN sdom = NULL, long der, long bitprec}.
Also available is
\fun{GEN}{lfuncost}{GEN L, GEN dom, long der, long bitprec}
when $L$ is \emph{not} an \kbd{Linit}; the return value is a \typ{VECSMALL}
in this case.

\subsec{lfuncreate$(\var{obj})$}\kbdsidx{lfuncreate}\label{se:lfuncreate}
This low-level routine creates \tet{Ldata} structures, needed by
\var{lfun} functions, describing an $L$-function and its functional equation.
You are urged to use a high-level constructor when one is available,
and this function accepts them, see \kbd{??lfun}:
\bprog
? L = lfuncreate(1); \\ Riemann zeta
? L = lfuncreate(5); \\ Dirichlet L-function for quadratic character (5/.)
? L = lfuncreate(x^2+1); \\ Dedekind zeta for Q(i)
? L = lfuncreate(ellinit([0,1])); \\ L-function of E/Q: y^2=x^3+1
@eprog\noindent One can then use, e.g., \kbd{Lfun(L,s)} to directly
evaluate the respective $L$-functions at $s$, or \kbd{lfuninit(L, [c,w,h]}
to initialize computations in the rectangular box $\Re(s-c) \leq w$,
$\Im(s) \leq h$.

We now describe the low-level interface, used to input non-builtin
$L$-functions. The input is now a $6$ or $7$ component vector
$V=[a,astar,Vga,k,N,eps,poles]$, whose components are as follows:

\item \kbd{V[1]=a} encodes the Dirichlet series coefficients. The
preferred format is a closure of arity 1: \kbd{n->vector(n,i,a(i))} giving
the vector of the first $n$ coefficients. The closure is allowed to return
a vector of more than $n$ coefficients (only the first $n$ will be
considered) or even less than $n$, in which case loss of accuracy will occur
and a warning that \kbd{\#an} is less than expected is issued. This
allows to precompute and store a fixed large number of Dirichlet
coefficients in a vector $v$ and use the closure \kbd{n->v}, which
does not depend on $n$. As a shorthand for this latter case, you can input
the vector $v$ itself instead of the closure.

A second format is limited to multiplicative $L$ functions affording an
Euler product. It is a closure of arity 2 \kbd{(p,d)->L(p)} giving the local
factor $L_p$ at $p$ as a rational function, to be evaluated at $p^{-s}$ as in
\kbd{direuler}; $d$ is set to the floor of $\log_p(n)$, where $n$ is the
total number of Dirichlet coefficients $(a_1,\dots,a_n)$ that will be
computed in this way. This parameter $d$ allows to compute only part of $L_p$
when $p$ is large and $L_p$ expensive to compute, but it can of course be
ignored by the closure.

Finally one can describe separately the generic Dirichlet coefficients
and the bad local factors by setting $\kbd{dir} = [an, [p_1,L^{-1}_{p_1}],
\dots,[p_k,L^{-1}_{p_k}]]$, where \kbd{an} describes the generic coefficients
in one of the two formats above, except that coefficients $a_n$ with
$p_i \mid n$ for some $i \leq k$ will be ignored. The subsequent pairs $[p,
L_p^{-1}]$ give the bad primes and corresponding \emph{inverse} local
factors.

\item \kbd{V[2]=astar} is the Dirichlet series coefficients of the dual
function, encoded as \kbd{a} above. The sentinel values $0$ and $1$ may
be used for the special cases where $a = a^*$ and $a = \overline{a^*}$,
respectively.

\item \kbd{V[3]=Vga} is the vector of $\alpha_j$ such that the gamma
factor of the $L$-function is equal to
$$\gamma_A(s)=\prod_{1\le j\le d}\Gamma_{\R}(s+\alpha_j),$$
where $\Gamma_{\R}(s)=\pi^{-s/2}\Gamma(s/2)$.
This same syntax is used in the \kbd{gammamellininv} functions.
In particular the length $d$ of \kbd{Vga} is the degree of the $L$-function.
In the present implementation, the $\alpha_j$ are assumed to be exact
rational numbers. However when calling theta functions with \emph{complex}
(as opposed to real) arguments, determination problems occur which may
give wrong results when the $\alpha_j$ are not integral.

\item \kbd{V[4]=k} is a positive integer $k$. The functional equation relates
values at $s$ and $k-s$. For instance, for an Artin $L$-series such as a
Dedekind zeta function we have $k = 1$, for an elliptic curve $k = 2$, and
for a modular form, $k$ is its weight. For motivic $L$-functions, the
\emph{motivic} weight $w$ is $w = k-1$.

\item \kbd{V[5]=N} is the conductor, an integer $N\ge1$, such that
$\Lambda(s)=N^{s/2}\gamma_A(s)L(s)$ with $\gamma_A(s)$ as above.

\item \kbd{V[6]=eps} is the root number $\varepsilon$, i.e., the
complex number (usually of modulus $1$) such that
$\Lambda(a, k-s) = \varepsilon \Lambda(a^*, s)$.

\item The last optional component \kbd{V[7]=poles} encodes the poles of the
$L$ or $\Lambda$-functions, and is omitted if they have no poles.
A polar part is given by a list of $2$-component vectors
$[\beta,P_{\beta}(x)]$, where
$\beta$ is a pole and the power series $P_{\beta}(x)$ describes
the attached polar part, such that $L(s) - P_\beta(s-\beta)$ is holomorphic
in a neighbourhood of $\beta$. For instance $P_\beta = r/x+O(1)$ for a
simple pole at $\beta$ or $r_1/x^2+r_2/x+O(1)$ for a double pole.
The type of the list describing the polar part allows to distinguish between
$L$ and $\Lambda$: a \typ{VEC} is attached to $L$, and a \typ{COL}
is attached to $\Lambda$.

The latter is mandatory unless $a = \overline{a^*}$ (coded by \kbd{astar}
equal to $0$ or $1$): otherwise, the poles of $L^*$ cannot be infered from
the poles of $L$ ! (Whereas the functional equation allows to deduce
the polar part of $\Lambda^*$ from the polar part of $\Lambda$.)
The special coding $\kbd{poles} = r$ a complex scalar is available in this
case, to describe a $L$ function with at most a single simple pole at $s =
k$ and residue $r$. (This is the usual situation, for instance for Dedekind
zeta functions.) This value $r$ can be set to $0$ if unknown, and it will be
computed.

The library syntax is \fun{GEN}{lfuncreate}{GEN obj}.

\subsec{lfundiv$(\var{L1},\var{L2})$}\kbdsidx{lfundiv}\label{se:lfundiv}
Creates the \kbd{Ldata} structure (without initialization) corresponding
 to the quotient of the Dirichlet series $L_1$ and $L_2$ given by
\kbd{L1} and \kbd{L2}. Assume that $v_z(L_1) \geq v_z(L_2)$ at all
complex numbers $z$: the construction may not create new poles, nor increase
the order of existing ones.

The library syntax is \fun{GEN}{lfundiv}{GEN L1, GEN L2, long bitprec}.

\subsec{lfunetaquo$(M)$}\kbdsidx{lfunetaquo}\label{se:lfunetaquo}
Returns the \kbd{Ldata} structure attached to the $L$ function
attached to the modular form
$z\mapsto \prod_{i=1}^n \eta(M_{i,1}\*z)^{M_{i,2}}$
It is currently assumed that $f$ is a self-dual cuspidal form on
$\Gamma_0(N)$ for some $N$.
For instance, the $L$-function $\sum \tau(n) n^{-s}$
attached to Ramanujan's $\Delta$ function is encoded as follows
\bprog
? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100)  \\ first 100 values of tau(n)
@eprog

The library syntax is \fun{GEN}{lfunetaquo}{GEN M}.

\subsec{lfungenus2$(F)$}\kbdsidx{lfungenus2}\label{se:lfungenus2}
Returns the \kbd{Ldata} structure attached to the $L$ function
attached to the genus-2 curve defined by $y^2=F(x)$ or
$y^2+Q(x)\*y=P(x)$ if $F=[P,Q]$.
Currently, the model needs to be minimal at 2, and if the conductor
is even, its valuation at $2$ might be incorrect (a warning is issued).

The library syntax is \fun{GEN}{lfungenus2}{GEN F}.

\subsec{lfunhardy$(L,t)$}\kbdsidx{lfunhardy}\label{se:lfunhardy}
Variant of the Hardy $Z$-function given by \kbd{L}, used for
plotting or locating zeros of $L(k/2+it)$ on the critical line.
The precise definition is as
follows: if as usual $k/2$ is the center of the critical strip, $d$ is the
degree, $\alpha_j$ the entries of \kbd{Vga} giving the gamma factors,
and $\varepsilon$ the root number, then if we set
$s = k/2+it = \rho e^{i\theta}$ and
$E=(d(k/2-1)+\sum_{1\le j\le d}\alpha_j)/2$, the computed function at $t$ is
equal to
$$Z(t) = \varepsilon^{-1/2}\Lambda(s) \cdot |s|^{-E}e^{dt\theta/2}\;,$$
which is a real function of $t$ for self-dual $\Lambda$,
vanishing exactly when $L(k/2+it)$ does on the critical line. The
normalizing factor $|s|^{-E}e^{dt\theta/2}$ compensates the
exponential decrease of $\gamma_A(s)$ as $t\to\infty$ so that
$Z(t) \approx 1$.

\bprog
? T = 100; \\ maximal height
? L = lfuninit(1, [T]); \\ initialize for zeta(1/2+it), |t|<T
? \p19 \\ no need for large accuracy
? ploth(t = 0, T, lfunhardy(L,t))
@eprog\noindent Using \kbd{lfuninit} is critical for this particular
applications since thousands of values are computed. Make sure to initialize
up to the maximal $t$ needed: otherwise expect to see many warnings for
unsufficient initialization and suffer major slowdowns.

The library syntax is \fun{GEN}{lfunhardy}{GEN L, GEN t, long bitprec}.

\subsec{lfuninit$(L,\var{sdom},\{\var{der}=0\})$}\kbdsidx{lfuninit}\label{se:lfuninit}
Initalization function for all functions linked to the
computation of the $L$-function $L(s)$ encoded by \kbd{L}, where
$s$ belongs to the rectangular domain $\kbd{sdom} = [\var{center},w,h]$
centered on the real axis, $|\Re(s)-\var{center}| \leq w$, $|\Im(s)| \leq h$,
where all three components of \kbd{sdom} are real and $w$, $h$ are
non-negative. \kbd{der} is the maximum order of derivation that will be used.
The subdomain $[k/2, 0, h]$ on the critical line (up to height $h$)
can be encoded as $[h]$ for brevity. The subdomain $[k/2, w, h]$
centered on the critical line can be encoded as $[w, h]$ for brevity.

The argument \kbd{L} is an \kbd{Lmath}, an \kbd{Ldata} or an \kbd{Linit}. See
\kbd{??Ldata} and \kbd{??lfuncreate} for how to create it.

The height $h$ of the domain is a \emph{crucial} parameter: if you only
need $L(s)$ for real $s$, set $h$ to~0.
The running time is roughly proportional to
$$(B / d+\pi h/4)^{d/2+3}N^{1/2},$$
where $B$ is the default bit accuracy, $d$ is the degree of the
$L$-function, and $N$ is the conductor (the exponent $d/2+3$ is reduced
to $d/2+2$ when $d=1$ and $d=2$). There is also a dependency on $w$,
which is less crucial, but make sure to use the smallest rectangular
domain that you need.
\bprog
? L0 = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(L0, [1/2, 0, 100]); \\ for zeta(1/2+it), |t| < 100
? lfun(L, 1/2 + I)
? L = lfuninit(L0, [100]); \\ same as above !
@eprog

The library syntax is \fun{GEN}{lfuninit0}{GEN L, GEN sdom, long der, long bitprec}.

\subsec{lfunlambda$(L,s,\{D=0\})$}\kbdsidx{lfunlambda}\label{se:lfunlambda}
Compute the completed $L$-function $\Lambda(s) = N^{s/2}\gamma(s)L(s)$,
or if \kbd{D} is set, the derivative of order \kbd{D} at $s$.
The parameter \kbd{L} is either an \kbd{Lmath}, an \kbd{Ldata} (created by
\kbd{lfuncreate}, or an \kbd{Linit} (created by \kbd{lfuninit}), preferrably the
latter if many values are to be computed.

The result is given with absolute error less than $2^{-B}|\gamma(s)N^{s/2}|$,
where $B = \text{realbitprecision}$.

The library syntax is \fun{GEN}{lfunlambda0}{GEN L, GEN s, long D, long bitprec}.

\subsec{lfunmfspec$(L)$}\kbdsidx{lfunmfspec}\label{se:lfunmfspec}
Returns \kbd{[valeven,valodd,omminus,omplus]},
 where \kbd{valeven} (resp., \kbd{valodd}) is the vector of even (resp., odd)
 periods of the modular form given by \kbd{L}, and \kbd{omminus} and
 \kbd{omplus} the corresponding real numbers $\omega^-$ and $\omega^+$
 normalized in a noncanonical way. For the moment, only for modular forms of even weight.

The library syntax is \fun{GEN}{lfunmfspec}{GEN L, long bitprec}.

\subsec{lfunmul$(\var{L1},\var{L2})$}\kbdsidx{lfunmul}\label{se:lfunmul}
Creates the \kbd{Ldata} structure (without initialization) corresponding
 to the product of the Dirichlet series given by \kbd{L1} and
 \kbd{L2}.

The library syntax is \fun{GEN}{lfunmul}{GEN L1, GEN L2, long bitprec}.

\subsec{lfunorderzero$(L, \{m = -1\})$}\kbdsidx{lfunorderzero}\label{se:lfunorderzero}
Computes the order of the possible zero of the $L$-function at the
center $k/2$ of the critical strip; return $0$ if $L(k/2)$ does not vanish.

If $m$ is given and has a non-negative value, assumes the order is at most $m$.
Otherwise, the algorithm chooses a sensible default:

\item if the $L$ argument is an \kbd{Linit}, assume that a multiple zero at
$s = k / 2$ has order less than or equal to the maximal allowed derivation
order.

\item else assume the order is less than $4$.

You may explicitly increase this value using optional argument~$m$; this
overrides the default value above. (Possibly forcing a recomputation
of the \kbd{Linit}.)

The library syntax is \fun{long}{lfunorderzero}{GEN L, long m, long bitprec}.

\subsec{lfunqf$(Q)$}\kbdsidx{lfunqf}\label{se:lfunqf}
Returns the \kbd{Ldata} structure attached to the $\Theta$ function
of the lattice attached to the definite positive quadratic form $Q$.
\bprog
? L = lfunqf(matid(2));
? lfunqf(L,2)
%2 = 6.0268120396919401235462601927282855839
? lfun(x^2+1,2)*4
%3 = 6.0268120396919401235462601927282855839
@eprog

The library syntax is \fun{GEN}{lfunqf}{GEN Q, long prec}.

\subsec{lfunrootres$(\var{data})$}\kbdsidx{lfunrootres}\label{se:lfunrootres}
Given the \kbd{Ldata} attached to an $L$-function (or the output of
\kbd{lfunthetainit}), compute the root number and the residues.
The output is a 3-component vector $[r,R,w]$, where $r$ is the
residue of $L(s)$ at the unique pole, $R$ is the residue of $\Lambda(s)$,
and $w$ is the root number. In the present implementation,

\item either the polar part must be completely known (and is then arbitrary):
the function determines the root number,

\bprog
? L = lfunmul(1,1); \\ zeta^2
? [r,R,w] = lfunrootres(L);
? r  \\ single pole at 1, double
%3 = [[1, 1.[...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]
? w
%4 = 1
? R \\ double pole at 0 and 1
%5 = [[1,[...]], [0,[...]]
@eprog

\item or at most a single pole is allowed: the function computes both
the root number and the residue ($0$ if no pole).

The library syntax is \fun{GEN}{lfunrootres}{GEN data, long bitprec}.

\subsec{lfuntheta$(\var{data},t,\{m=0\})$}\kbdsidx{lfuntheta}\label{se:lfuntheta}
Compute the value of the $m$-th derivative
at $t$ of the theta function attached to the $L$-function given by \kbd{data}.
 \kbd{data} can be either the standard $L$-function data, or the output of
\kbd{lfunthetainit}.
The theta function is defined by the formula
$\Theta(t)=\sum_{n\ge1}a(n)K(nt/\sqrt(N))$, where $a(n)$ are the coefficients
of the Dirichlet series, $N$ is the conductor, and $K$ is the inverse Mellin
transform of the gamma product defined by the \kbd{Vga} component.
Its Mellin transform is equal to $\Lambda(s)-P(s)$, where $\Lambda(s)$
is the completed $L$-function and the rational function $P(s)$ its polar part.
In particular, if the $L$-function is the $L$-function of a modular form
$f(\tau)=\sum_{n\ge0}a(n)q^n$ with $q=\exp(2\pi i\tau)$, we have
$\Theta(t)=2(f(it/\sqrt{N})-a(0))$. Note that an easy theorem on modular
forms implies that $a(0)$ can be recovered by the formula $a(0)=-L(f,0)$.

The library syntax is \fun{GEN}{lfuntheta}{GEN data, GEN t, long m, long bitprec}.

\subsec{lfunthetacost$(L,\{\var{tdom}\},\{m=0\})$}\kbdsidx{lfunthetacost}\label{se:lfunthetacost}
This function estimates the cost of running
\kbd{lfunthetainit(L,tdom,m)} at current bit precision. Returns the number of
coefficients $a_n$ that would be computed. This also estimates the
cost of a subsequent evaluation \kbd{lfuntheta}, which must compute
that many values of \kbd{gammamellininv} at the current bit precision.
If $L$ is already an \kbd{Linit}, then \var{tdom} and $m$ are ignored
and are best left omitted: we get an estimate of the cost of using that
particular \kbd{Linit}.

\bprog
? \pb 1000
? L = lfuncreate(1); \\ Riemann zeta
? lfunthetacost(L); \\ cost for theta(t), t real >= 1
%1 = 15
? lfunthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !
 ***   at top-level: lfunthetacost(1,1+I)
 ***                 ^--------------------
 *** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785
? lfunthetacost(L, 1 + I/2) \\ for theta(1+I/2).
%2 = 23
? lfunthetacost(L, 1 + I/2, 10) \\ for theta^((10))(1+I/2).
%3 = 24
? lfunthetacost(L, [2, 1/10]) \\ cost for theta(t), |t| >= 2, |arg(t)| < 1/10
%4 = 8

? L = lfuncreate( ellinit([1,1]) );
? lfunthetacost(L)  \\ for t >= 1
%6 = 2471
@eprog

The library syntax is \fun{long}{lfunthetacost0}{GEN L, GEN tdom = NULL, long m, long bitprec}.

\subsec{lfunthetainit$(L,\{\var{tdom}\},\{m=0\})$}\kbdsidx{lfunthetainit}\label{se:lfunthetainit}
Initalization function for evaluating the $m$-th derivative of theta
functions with argument $t$ in domain \var{tdom}. By default (\var{tdom}
omitted), $t$ is real, $t \geq 1$. Otherwise, \var{tdom} may be

\item a positive real scalar $\rho$: $t$ is real, $t \geq \rho$.

\item a non-real complex number: compute at this particular $t$; this
allows to compute $\theta(z)$ for any complex $z$ satisfying $|z|\geq |t|$
and $|\arg z| \leq |\arg t|$; we must have $|2 \arg z / d| < \pi/2$, where
$d$ is the degree of the $\Gamma$ factor.

\item a pair $[\rho,\alpha]$: assume that $|t| \geq \rho$ and $|\arg t| \leq
\alpha$; we must have $|2\alpha / d| < \pi/2$, where $d$ is the degree of
the $\Gamma$ factor.

\bprog
? \p500
? L = lfuncreate(1); \\ Riemann zeta
? t = 1+I/2;
? lfuntheta(L, t); \\ direct computation
time = 30 ms.
? T = lfunthetainit(L, 1+I/2);
time = 30 ms.
? lfuntheta(T, t); \\ instantaneous
@eprog\noindent The $T$ structure would allow to quickly compute $\theta(z)$
for any $z$ in the cone delimited by $t$ as explained above. On the other hand
\bprog
? lfuntheta(T,I)
 ***   at top-level: lfuntheta(T,I)
 ***                 ^--------------
 *** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448
@eprog
The initialization is equivalent to
\bprog
? lfunthetainit(L, [abs(t), arg(t)])
@eprog

The library syntax is \fun{GEN}{lfunthetainit}{GEN L, GEN tdom = NULL, long m, long bitprec}.

\subsec{lfunzeros$(L,\var{lim},\{\var{divz}=8\})$}\kbdsidx{lfunzeros}\label{se:lfunzeros}
\kbd{lim} being either a positive upper limit or a non-empty real
interval inside $[0,+\infty[$, computes an
ordered list of zeros of $L(s)$ on the critical line up to the given
upper limit or in the given interval. Use a naive algorithm which may miss
some zeros: it assumes that two consecutive zeros at height $T \geq 1$
differ at least by $2\pi/\omega$, where
$$\omega := \kbd{divz} \cdot \big(d\log(T/2\pi) +d+ 2\log(N/(\pi/2)^d)\big).$$
To use a finer search mesh, set divz to some integral value
larger than the default (= 8).
\bprog
? lfunzeros(1, 30) \\ zeros of Rieman zeta up to height 30
%1 = [14.134[...], 21.022[...], 25.010[...]]
? #lfunzeros(1, [100,110])  \\ count zeros with 100 <= Im(s) <= 110
%2 = 4
@eprog\noindent The algorithm also assumes that all zeros are simple except
possibly on the real axis at $s = k/2$ and that there are no poles in the
search interval. (The possible zero at $s = k/2$ is repeated according to
its multiplicity.)

Should you pass an \kbd{Linit} argument to the function, beware that the
algorithm needs at least
\bprog
   L = lfuninit(Ldata, T+1)
@eprog\noindent where $T$ is the upper bound of the interval defined by
\kbd{lim}: this allows to detect zeros near $T$. Make sure that your
\kbd{Linit} domain contains this one. The algorithm assumes
that a multiple zero at $s = k / 2$ has order less than or equal to
the maximal derivation order allowed by the \kbd{Linit}. You may increase
that value in the \kbd{Linit} but this is costly: only do it for zeros
of low height or in \kbd{lfunorderzero} instead.

The library syntax is \fun{GEN}{lfunzeros}{GEN L, GEN lim, long divz, long bitprec}.
%SECTION: l_functions

%\section{Modular forms}
%
%This section is currently empty but with be populated during the 2.8 cycle
%with functions from the \kbd{kb-mftrace} branch.
%
%%SECTION: modular_forms

\section{Modular symbols}

Let $\Delta := \text{Div}^0(\P^1(\Q))$ be the abelian group of divisors of
degree $0$ on the rational projective line. The standard $\text{GL}(2,\Q)$
action on $\P^1(\Q)$ via homographies naturally extends to $\Delta$. Given

\item $G$ a finite index subgroup of $\text{SL}(2,\Z)$,

\item a field $F$ and a finite dimensional representation $V/F$ of
  $\text{GL}(2,\Q)$,

\noindent we consider the space of \emph{modular symbols} $M :=
\Hom_G(\Delta, V)$. This finite dimensional $F$-vector
space is a $G$-module, canonically isomorphic to $H^1_c(X(G), V)$,
and allows to compute modular forms for $G$.

Currently, we only support the groups $\Gamma_0(N)$ ($N > 1$ an integer)
and the representations $V_k = \Q[X,Y]_{k-2}$ ($k \geq 2$ an integer) over
$\Q$. We represent a space of modular symbols by an \var{ms} structure,
created by the function \tet{msinit}. It encodes basic data attached to the
space: chosen $\Z[G]$-generators $(g_i)$ for $\Delta$ (and relations among
those) and an $F$-basis of $M$. A modular symbol $s$ is thus given either in
terms of this fixed basis, or as a collection of values $s(g_i)$
satisfying certain relations.

A subspace of $M$ (e.g. the cuspidal or Eisenstein subspaces, the new or
old modular symbols, etc.) is given by a structure allowing quick projection
and restriction of linear operators; its first component is a matrix whose
columns  form  an $F$-basis  of the subspace.


\subsec{msatkinlehner$(M,Q,\{H\})$}\kbdsidx{msatkinlehner}\label{se:msatkinlehner}
Let $M$ be a full modular symbol space of level $N$,
as given by \kbd{msinit}, let $Q \mid N$, $(Q,N/Q) = 1$,
and let $H$ be a subspace stable under the Atkin-Lehner involution $w_Q$.
Return the matrix of $w_Q$ acting on $H$ ($M$ if omitted).
\bprog
? M = msinit(36,2); \\ M_2(Gamma_0(36))
? w = msatkinlehner(M,4); w^2 == 1
%2 = 1
? #w   \\ involution acts on a 13-dimensional space
%3 = 13
? M = msinit(36,2, -1); \\ M_2(Gamma_0(36))^-
? w = msatkinlehner(M,4); w^2 == 1
%5 = 1
? #w
%6 = 4
@eprog

The library syntax is \fun{GEN}{msatkinlehner}{GEN M, long Q, GEN H = NULL}.

\subsec{mscuspidal$(M, \{\fl=0\})$}\kbdsidx{mscuspidal}\label{se:mscuspidal}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return its cuspidal part $S$. If $\fl = 1$, return
$[S,E]$ its decomposition into cuspidal and Eisenstein parts.

A subspace is given by a structure allowing quick projection and
restriction of linear operators; its first component is
a matrix with integer coefficients whose columns form a $\Q$-basis of
the subspace.
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? [S,E] = mscuspidal(M, 1);
? E[1]  \\ 2-dimensional
%3 =
[0 -10]

[0 -15]

[0  -3]

[1   0]

? S[1]  \\ 1-dimensional
%4 =
[ 3]

[30]

[ 6]

[-8]
@eprog

The library syntax is \fun{GEN}{mscuspidal}{GEN M, long flag}.

\subsec{mseisenstein$(M)$}\kbdsidx{mseisenstein}\label{se:mseisenstein}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return its Eisenstein subspace.
A subspace is given by a structure allowing quick projection and
restriction of linear operators; its first component is
a matrix with integer coefficients whose columns form a $\Q$-basis of
the subspace.
This is the same basis as given by the second component of
\kbd{mscuspidal}$(M, 1)$.
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1]  \\ 2-dimensional
%3 =
[0 -10]

[0 -15]

[0  -3]

[1   0]

? E == mscuspidal(M,1)[2]
%4 = 1
@eprog

The library syntax is \fun{GEN}{mseisenstein}{GEN M}.

\subsec{mseval$(M,s,\{p\})$}\kbdsidx{mseval}\label{se:mseval}
Let $\Delta:=\text{Div}^0(\P^1 (\Q))$.
Let $M$ be a full modular symbol space, as given by \kbd{msinit},
let $s$ be a modular symbol from $M$, i.e. an element
of $\Hom_G(\Delta, V)$, and let $p=[a,b] \in \Delta$ be a path between
two elements in $\P^1(\Q)$, return $s(p)\in V$. The path extremities $a$ and
$b$ may be given as \typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$.
The symbol $s$ is either

\item a \typ{COL} coding an element of a modular symbol subspace in terms of
the fixed basis of $\Hom_G(\Delta,V)$ chosen in $M$; if $M$ was
initialized with a non-zero \emph{sign} ($+$ or $-$), then either the
basis for the full symbol space or the $\pm$-part can be used (the dimension
being used to distinguish the two).

\item a \typ{VEC} $(v_i)$ of elements of $V$, where the $v_i = s(g_i)$ give
the image of the generators $g_i$ of $\Delta$, see \tet{mspathgens}.
We assume that $s$ is a proper symbol, i.e.~that the $v_i$ satisfy
the \kbd{mspathgens} relations.

If $p$ is omitted, convert the symbol $s$ to the second form: a vector of
the $s(g_i)$.
\bprog
? M = msinit(2,8,1); \\ M_8(Gamma_0(2))^+
? g = mspathgens(M)[1]
%2 = [[+oo, 0], [0, 1]]
? N = msnew(M)[1]; #N \\ Q-basis of new subspace, dimension 1
%3 = 1
? s = N[,1]         \\ t_COL representation
%4 = [-3, 6, -8]~
? S = mseval(M, s)   \\ t_VEC representation
%5 = [64*x^6-272*x^4+136*x^2-8, 384*x^5+960*x^4+192*x^3-672*x^2-432*x-72]
? mseval(M,s, g[1])
%6 = 64*x^6 - 272*x^4 + 136*x^2 - 8
? mseval(M,S, g[1])
%7 = 64*x^6 - 272*x^4 + 136*x^2 - 8
@eprog\noindent Note that the symbol should have values in
$V = \Q[x,y]_{k-2}$, we return the de-homogenized values corresponding to $y
= 1$ instead.

The library syntax is \fun{GEN}{mseval}{GEN M, GEN s, GEN p = NULL}.

\subsec{msfromcusp$(M, c)$}\kbdsidx{msfromcusp}\label{se:msfromcusp}
Returns the modular symbol attached to the cusp
$c$, where $M$ is a modular symbol space of level $N$, attached to
$G = \Gamma_0(N)$. The cusp $c$ in  $\P^1(\Q)/G$
can be given either as \kbd{oo} ($=(1:0)$), as a rational number $a/b$
($=(a:b)$). The attached symbol maps the path $[b] - [a] \in
\text{Div}^0 (\P^1(\Q))$ to $E_c(b) - E_c(a)$, where $E_c(r)$ is
$0$ when $r \neq c$ and $X^{k-2} \mid \gamma_r$ otherwise, where
$\gamma_r \cdot r = (1:0)$. These symbol span the  Eisenstein subspace
of $M$.
\bprog
? M = msinit(2,8);  \\  M_8(Gamma_0(2))
? E =  mseisenstein(M);
? E[1] \\ two-dimensional
%3 =
[0 -10]

[0 -15]

[0  -3]

[1   0]

? s = msfromcusp(M,oo)
%4 = [0, 0, 0, 1]~
? mseval(M, s)
%5 = [1, 0]
? s = msfromcusp(M,1)
%6 = [-5/16, -15/32, -3/32, 0]~
? mseval(M,s)
%7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]
@eprog
In case $M$ was initialized with a non-zero \emph{sign}, the symbol is given
in terms of the fixed basis of the whole symbol space, not the $+$ or $-$
part (to which it need not belong).
\bprog
? M = msinit(2,8, 1);  \\  M_8(Gamma_0(2))^+
? E =  mseisenstein(M);
? E[1] \\ still two-dimensional, in a smaller space
%3 =
[ 0 -10]

[ 0   3]

[-1   0]

? s = msfromcusp(M,oo) \\ in terms of the basis for M_8(Gamma_0(2)) !
%4 = [0, 0, 0, 1]~
? mseval(M, s) \\ same symbol as before
%5 = [1, 0]
@eprog

The library syntax is \fun{GEN}{msfromcusp}{GEN M, GEN c}.

\subsec{msfromell$(E, \{\var{sign}=0\})$}\kbdsidx{msfromell}\label{se:msfromell}
Let $E/\Q$ be an elliptic curve of conductor $N$. For $\varepsilon =
\pm1$, we define the (cuspidal, new) modular symbol $x^\varepsilon$ in
$H^1_c(X_0(N),\Q)^\varepsilon$  attached to
$E$. For all primes $p$ not dividing $N$ we have
$T_p(x^\varepsilon) =  a_p x^\varepsilon$, where $a_p = p+1-\#E(\F_p)$.

Let $\Omega^+ = \kbd{E.omega[1]}$ be the real period of $E$
(integration of the N\'eron differential $dx/(2y+a_1x+a3)$ on the connected
component of $E(\R)$, i.e.~the generator of $H_1(E,\Z)^+$) normalized by
$\Omega^+>0$. Let $i\Omega^-$ the integral on a generator of $H_1(E,\Z)^-$ with
$\Omega^- \in \R_{>0}$. If $c_\infty$ is the number of connected
components of $E(\R)$, $\Omega^-$ is equal to
$(-2/c_\infty) \times \kbd{imag(E.omega[2])}$.
The complex modular symbol is defined by
$$F: \delta \to  2i\pi \int_{\delta} f(z) dz$$
The modular symbols $x^\varepsilon$ are normalized so that
$ F = x^+ \Omega^+ + x^- i\Omega^-$.
In particular, we have
$$ x^+([0]-[\infty]) = L(E,1) / \Omega^+,$$
which defines $x^{\pm}$ unless $L(E,1)=0$.
Furthermore, for all fundamental discriminants $D$ such
that $\varepsilon \cdot D > 0$, we also have
$$\sum_{0\leq a<|D|} (D|a) x^\varepsilon([a/|D|]-[\infty])
   = L(E,(D|.),1) / \Omega^{\varepsilon},$$
where $(D|.)$ is the Kronecker symbol.
The period $\Omega^-$ is also $2/c_\infty \times$ the real period
of the twist $E^{(-4)} = \kbd{elltwist(E,-4)}$.

This function returns the pair $[M, x]$, where $M$ is
\kbd{msinit}$(N,2)$ and $x$ is $x^{\var{sign}}$ as above when $\var{sign}=
\pm1$, and $x = [x^+,x^-]$ when \var{sign} is $0$.
The modular symbols $x^\pm$ are given as a \typ{COL} (in terms
of the fixed basis of $\Hom_G(\Delta,\Q)$ chosen in $M$).
\bprog
? E=ellinit([0,-1,1,-10,-20]);  \\ X_0(11)
? [M,xp]= msfromell(E,1);
? xp
%3 = [1/5, -1/2, -1/2]~
? [M,x]= msfromell(E);
? x    \\ both x^+ and x^-
%5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~]
? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]
%6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]
@eprog

The library syntax is \fun{GEN}{msfromell}{GEN E, long sign}.

\subsec{msfromhecke$(M, v, \{H\})$}\kbdsidx{msfromhecke}\label{se:msfromhecke}
Given a msinit $M$ and a vector $v$ of pairs $[p, P]$ (where $p$ is prime
and $P$ is a polynomial with integer coefficients), return a basis of all
modular symbols such that $P(T_p)(s) = 0$. If $H$ is present, it must
be a Hecke-stable subspace and we restrict to $s \in H$. When $T_p$ has
a rational eigenvalue and $P(x) = x-a_p$ has degree $1$, we also accept the
integer $a_p$ instead of $P$.
\bprog
? E = ellinit([0,-1,1,-10,-20]) \\11a1
? ellap(E,2)
%2 = -2
? ellap(E,3)
%3 = -1
? M = msinit(11,2);
? S = msfromhecke(M, [[2,-2],[3,-1]])
%5 =
[ 1  1]

[-5  0]

[ 0 -5]
? mshecke(M, 2, S)
%6 =
[-2  0]

[ 0 -2]

? M = msinit(23,4);
? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);
? factor( charpoly(mshecke(M,5,S)) )
%9 =
[x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]
@eprog

The library syntax is \fun{GEN}{msfromhecke}{GEN M, GEN v, GEN H = NULL}.

\subsec{msgetlevel$(M)$}\kbdsidx{msgetlevel}\label{se:msgetlevel}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its level $N$.

The library syntax is \fun{long}{msgetlevel}{GEN M}.

\subsec{msgetsign$(M)$}\kbdsidx{msgetsign}\label{se:msgetsign}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its sign: $\pm1$ or 0 (unset).
\bprog
? M = msinit(11,4, 1);
? msgetsign(M)
%2 = 1
? M = msinit(11,4);
? msgetsign(M)
%4 = 0
@eprog

The library syntax is \fun{long}{msgetsign}{GEN M}.

\subsec{msgetweight$(M)$}\kbdsidx{msgetweight}\label{se:msgetweight}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its weight $k$.
\bprog
? M = msinit(11,4);
? msgetweight(M)
%2 = 4
@eprog

The library syntax is \fun{long}{msgetweight}{GEN M}.

\subsec{mshecke$(M,p,\{H\})$}\kbdsidx{mshecke}\label{se:mshecke}
$M$ being a full modular symbol space, as given by \kbd{msinit},
$p$ being a prime number, and $H$ being a Hecke-stable subspace ($M$ if
omitted) return the matrix of $T_p$ acting on $H$
($U_p$ if $p$ divides $N$). Result is undefined if $H$ is not stable
by $T_p$ (resp.~$U_p$).
\bprog
? M = msinit(11,2); \\ M_2(Gamma_0(11))
? T2 = mshecke(M,2)
%2 =
[3  0  0]

[1 -2  0]

[1  0 -2]
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? T2 = mshecke(M,2)
%4 =
[ 3  0]

[-1 -2]

? N = msnew(M)[1] \\ Q-basis of new cuspidal subspace
%5 =
[-2]

[-5]

? p = 1009; mshecke(M, p, N) \\ action of T_1009 on N
%6 =
[-10]
? ellap(ellinit("11a1"), p)
%7 = -10
@eprog

The library syntax is \fun{GEN}{mshecke}{GEN M, long p, GEN H = NULL}.

\subsec{msinit$(G, V, \{\var{sign}=0\})$}\kbdsidx{msinit}\label{se:msinit}
Given $G$ a finite index subgroup of $\text{SL}(2,\Z)$
and a finite dimensional representation $V$ of $\text{GL}(2,\Q)$, creates a
space of modular symbols, the $G$-module $\Hom_G(\text{Div}^0(\P^1
(\Q)), V)$. This is canonically isomorphic to $H^1_c(X(G), V)$, and allows to
compute modular forms for $G$. If \emph{sign} is present and non-zero, it
must be $\pm1$ and we consider the subspace defined by $\text{Ker} (\sigma -
\var{sign})$, where $\sigma$ is induced by \kbd{[-1,0;0,1]}. Currently the
only supported groups are the $\Gamma_0(N)$, coded by the integer $N > 1$.
The only supported representation is $V_k = \Q[X,Y]_{k-2}$, coded by the
integer $k \geq 2$.

The library syntax is \fun{GEN}{msinit}{GEN G, GEN V, long sign}.

\subsec{msissymbol$(M,s)$}\kbdsidx{msissymbol}\label{se:msissymbol}
$M$ being a full modular symbol space, as given by \kbd{msinit},
check whether $s$ is a modular symbol attached to $M$.
\bprog
? M = msinit(7,8, 1); \\ M_8(Gamma_0(7))^+
? N = msnew(M)[1];
? s = N[,1];
? msissymbol(M, s)
%4 = 1
? S = mseval(M,s);
? msissymbol(M, S)
%6 = 1
? [g,R] = mspathgens(M); g
%7 = [[+oo, 0], [0, 1/2], [1/2, 1]]
? #R  \\ 3 relations among the generators g_i
%8 = 3
? T = S; T[3]++; \\ randomly perturb S(g_3)
? msissymbol(M, T)
%10 = 0  \\ no longer satisfies the relations
@eprog

The library syntax is \fun{long}{msissymbol}{GEN M, GEN s}.

\subsec{msnew$(M)$}\kbdsidx{msnew}\label{se:msnew}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return the \emph{new} part of its cuspidal subspace. A subspace is given by
a structure allowing quick projection and restriction of linear operators;
its first component is a matrix with integer coefficients whose columns form
a $\Q$-basis of the subspace.
\bprog
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? N = msnew(M);
? #N[1]  \\ 6-dimensional
%3 = 6
@eprog

The library syntax is \fun{GEN}{msnew}{GEN M}.

\subsec{msomseval$(\var{Mp}, \var{PHI}, \var{path})$}\kbdsidx{msomseval}\label{se:msomseval}
Return the vectors of moments of the $p$-adic distribution attached
to the path \kbd{path} by the overconvergent modular symbol \kbd{PHI}.
\bprog
? M = msinit(3,6,1);
? Mp= mspadicinit(M,5,10);
? phi = [5,-3,-1]~;
? msissymbol(M,phi)
%4 = 1
? PHI = mstooms(Mp,phi);
? ME = msomseval(Mp,PHI,[oo, 0]);
@eprog

The library syntax is \fun{GEN}{msomseval}{GEN Mp, GEN PHI, GEN path}.

\subsec{mspadicL$(\var{mu}, \{s = 0\}, \{r = 0\})$}\kbdsidx{mspadicL}\label{se:mspadicL}
Returns the value (or $r$-th derivative)
on a character $\chi^s$ of $\Z_p^*$ of the $p$-adic $L$-function
attached to \kbd{mu}.

Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for
$T_N(p)$ for the eigenvalue $a_p$). Then $L_p(\Phi,\chi^s)=L_p(\mu,s)$ is the
$p$-adic $L$ function defined by
$$L_p(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) d\mu(z)$$
where $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of
$\Phi([\infty]-[0])$ to $\Z_p^*$. The $r$-th derivative is taken in
direction $\langle \chi\rangle$:
$$L_p^{(r)}(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) (\log z)^r d\mu(z).$$
In the argument list,

\item \kbd{mu} is as returned by \tet{mspadicmoments} (distributions
attached to $\Phi$ by restriction to discs $a + p^\nu\Z_p$, $(a,p)=1$).

\item $s=[s_1,s_2]$ with $s_1 \in \Z \subset \Z_p$ and $s_2 \bmod p-1$ or
$s_2 \bmod 2$ for $p=2$, encoding the $p$-adic character $\chi^s := \langle
\chi \rangle^{s_1} \tau^{s_2}$; here $\chi$ is the cyclotomic character from
$\text{Gal}(\Q_p(\mu_{p^\infty})/\Q_p)$ to $\Z_p^*$, and $\tau$ is the
Teichm\"uller character (for $p>2$ and the character of order 2 on
$(\Z/4\Z)^*$ if $p=2$); for convenience, the character $[s,s]$ can also be
represented by the integer $s$.

When $a_p$ is a $p$-adic unit, $L_p$ takes its values in $\Q_p$.
When $a_p$ is not a unit, it takes its values in the
two-dimensional $\Q_p$-vector space $D_{cris}(M(\phi))$ where $M(\phi)$ is
the ``motive'' attached to $\phi$, and we return the two $p$-adic components
with respect to some fixed $\Q_p$-basis.
\bprog
? M = msinit(3,6,1); phi=[5, -3, -1]~;
? msissymbol(M,phi)
%2 = 1
? Mp = mspadicinit(M, 5, 4);
? mu = mspadicmoments(Mp, phi); \\ no twist
\\ End of initializations

? mspadicL(mu,0) \\ L_p(chi^0)
%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...
? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons
%6 = [O(5^13)]~
? mspadicL(mu,2) \\ L_p(chi^2)
%7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...
? mspadicL(mu,[0,2]) \\ L_p(tau^2)
%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...
? mspadicL(mu, [1,0]) \\ L_p(<chi>)
%9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)
? mspadicL(mu,0,1) \\ L_p'(chi^0)
%10 = 2*5 + 4*5^2 + 3*5^3 + ...
? mspadicL(mu, 2, 1) \\ L_p'(chi^2)
%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...
@eprog

Now several quadratic twists: \tet{mstooms} is indicated.
\bprog
? PHI = mstooms(Mp,phi);
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%14 = 5 + 5^2 + 5^3 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8
? mspadicL(mu)
%16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0
? mspadicL(mu)
%18 = O(5^13) \\ always 0, phi is in the + part and D < 0
@eprog

One can locate interesting symbols of level $N$ and weight $k$ with
\kbd{msnew} and \kbd{mssplit}. Note that instead of a symbol, one can
input a 1-dimensional Hecke-subspace from \kbd{mssplit}: the function will
automatically use the underlying basis vector.
\bprog
? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+
? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces
? phi = L[1]; \\ one Galois orbit of newforms
? #phi[1] \\... this one is rational
%4 = 1
? Mp = mspadicinit(M, 3, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)

? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? Mp = mspadicinit(M, 3, 4);
? L = mssplit(M, msnew(M));
? phi = L[1]; #phi[1] \\ ... this one is two-dimensional
%11 = 2
? mu = mspadicmoments(Mp, phi);
 ***   at top-level: mu=mspadicmoments(Mp,ph
 ***                    ^--------------------
 *** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]
@eprog

The library syntax is \fun{GEN}{mspadicL}{GEN mu, GEN s = NULL, long r}.

\subsec{mspadicinit$(M, p, n, \{\fl\})$}\kbdsidx{mspadicinit}\label{se:mspadicinit}
$M$ being a full modular symbol space, as given by \kbd{msinit}, and $p$
a prime, initialize technical data needed to compute with overconvergent
modular symbols, modulo $p^n$. If $\fl$ is unset, allow
all symbols; else initialize only for a restricted range of symbols
depending on $\fl$: if $\fl = 0$ restrict to ordinary symbols, else
restrict to symbols $\phi$ such that $T_p(\phi) = a_p \phi$,
with $v_p(a_p) \geq \fl$, which is faster as $\fl$ increases.
(The fastest initialization is obtained for $\fl = 0$ where we only allow
ordinary symbols.) For supersingular eigensymbols, such that $p\mid a_p$, we
must further assume that $p$ does not divide the level.
\bprog
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? ellap(E,3)
%3 = -1
? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
? PHI = mstooms(Mp,phi);
@eprog

If we restrict the range of allowed symbols with \fl (for faster
initialization), exceptions will occur if $v_p(a_p)$ violates this bound:
\bprog
? E = ellinit("15a1");
? [M,phi] = msfromell(E,1);
? ellap(E,7)
%3 = 0
? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)
***   at top-level: PHI=mstooms(Mp,phi)
***                     ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,7,5); \\ no restriction
? PHI = mstooms(Mp,phi);
@eprog\noindent This function uses $O(N^2(n+k)^2p)$ memory, where $N$ is the
level of $M$.

The library syntax is \fun{GEN}{mspadicinit}{GEN M, long p, long n, long flag}.

\subsec{mspadicmoments$(\var{Mp}, \var{PHI}, \{D = 1\})$}\kbdsidx{mspadicmoments}\label{se:mspadicmoments}
Given \kbd{Mp} from \kbd{mspadicinit}, an overconvergent
eigensymbol \kbd{PHI} from \kbd{mstooms} and a fundamental discriminant
$D$ coprime to $p$,
let $\kbd{PHI}^D$ denote the twisted symbol. This function computes
the distribution $\mu = \kbd{PHI}^D([0] - \infty]) \mid \Z_p^*$ restricted
to $\Z_p^*$. More precisely, it returns
the moments of the $p-1$ distributions $\kbd{PHI}^D([0]-[\infty])
\mid (a + p\Z_p)$, $0 < a < p$.
We also allow \kbd{PHI} to be given as a classical
symbol, which is then lifted to an overconvergent symbol by \kbd{mstooms};
but this is wasteful if more than one twist is later needed.

The returned data $\mu$ ($p$-adic distributions attached to \kbd{PHI})
can then be used in \tet{mspadicL} or \tet{mspadicseries}.
This precomputation allows to quickly compute derivatives of different
orders or values at different characters.
\bprog
? M = msinit(3,6, 1);
? phi = [5,-3,-1]~;
? msissymbol(M, phi)
%3 = 1
? p = 5; mshecke(M,p) * phi  \\ eigenvector of T_5, a_5 = 6
%4 = [30, -18, -6]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%8 = 5 + 2*5^2 + 2*5^3 + ...
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...
@eprog

The library syntax is \fun{GEN}{mspadicmoments}{GEN Mp, GEN PHI, long D}.

\subsec{mspadicseries$(\var{mu}, \{i=0\})$}\kbdsidx{mspadicseries}\label{se:mspadicseries}
Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for
$T_N(p)$ for the eigenvalue $a_p$).
If $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of
$\Phi([\infty]-[0])$ to $\Z_p^*$, let
$$\hat{L}_p(\mu,\tau^{i})(x)
  = \int_{\Z_p^*} \tau^i(t) (1+x)^{\log_p(t)/\log_p(u)}d\mu(t)$$
Here, $\tau$ is the Teichm\"uller character and $u$ is a specific
multiplicative generator of $1+2p\Z_p$. (Namely $1+p$ if $p>2$ or $5$
if $p=2$.) To explain
the formula, let $G_\infty := \text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$,
let $\chi:G_\infty\to \Z_p^*$ be the cyclotomic character (isomorphism)
and $\gamma$ the element of $G_\infty$ such that $\chi(\gamma)=u$;
then
$\chi(\gamma)^{\log_p(t)/\log_p(u)}= \langle t \rangle$.

The $p$-padic precision of individual terms is maximal given the precision of
the overconvergent symbol $\mu$.
\bprog
? [M,phi] = msfromell(ellinit("17a1"),1);
? Mp = mspadicinit(M, 5,7);
? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol
? mspadicseries(mu)
%4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \
 + (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \
 + (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \
 + (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \
 + (3 + O(5))*x^4 + O(x^5)
@eprog\noindent
An example with non-zero Teichm\"uller:
\bprog
? [M,phi] = msfromell(ellinit("11a1"),1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu, 2)
%4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \
 + (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \
 + (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \
 + (3 + O(3^2))*x^3 + O(x^4)
@eprog\noindent
Supersingular example (not checked)
\bprog
? E = ellinit("17a1"); ellap(E,3)
%1 = 0
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,7);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu)
%5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
 + (2 + 3^3 + O(3^5))*x \
 + (1 + 2*3 + O(3^2))*x^2 + O(x^3),\
 (3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
 + (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \
 + (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)]
@eprog\noindent
Example with a twist:
\bprog
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,5); \\ twist by 5
? L = mspadicseries(mu)
%5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
 + (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \
 + (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)
? mspadicL(mu)
%6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~
? ellpadicL(E,3,10,,5)
%7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)
? mspadicseries(mu,1) \\ must be 0
%8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)
@eprog

The library syntax is \fun{GEN}{mspadicseries}{GEN mu, long i}.

\subsec{mspathgens$(M)$}\kbdsidx{mspathgens}\label{se:mspathgens}
Let $\Delta:=\text{Div}^0(\P^1(\Q))$.
Let $M$ being a full modular symbol space, as given by \kbd{msinit},
return a set of $\Z[G]$-generators for $\Delta$. The output
is $[g,R]$, where $g$ is a minimal system of generators and $R$
the vector of $\Z[G]$-relations between the given generators. A
relation is coded by a vector of pairs $[a_i,i]$ with $a_i\in \Z[G]$
and $i$ the index of a generator, so that $\sum_i a_i g[i] = 0$.

An element $[v]-[u]$ in $\Delta$ is coded by the ``path'' $[u,v]$,
where \kbd{oo} denotes the point at infinity $(1:0)$ on the projective
line.
An element of $\Z[G]$ is coded by a ``factorization matrix'': the first
column contains distinct elements of $G$, and the second integers:
\bprog
? M = msinit(11,8); \\ M_8(Gamma_0(11))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \\ 3 paths
? #R  \\ a single relation
%4 = 1
? r = R[1]; #r \\ ...involving all 3 generators
%5 = 3
? r[1]
%6 = [[1, 1; [1, 1; 0, 1], -1], 1]
? r[2]
%7 = [[1, 1; [7, -2; 11, -3], -1], 2]
? r[3]
%8 = [[1, 1; [8, -3; 11, -4], -1], 3]
@eprog\noindent
The given relation is of the form $\sum_i (1-\gamma_i) g_i = 0$, with
$\gamma_i\in \Gamma_0(11)$. There will always be a single relation involving
all generators (corresponding to a round trip along all cusps), then
relations involving a single generator (corresponding to $2$ and $3$-torsion
elements in the group:
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
@eprog\noindent
Note that the output depends only on the group $G$, not on the
representation $V$.

The library syntax is \fun{GEN}{mspathgens}{GEN M}.

\subsec{mspathlog$(M,p)$}\kbdsidx{mspathlog}\label{se:mspathlog}
Let $\Delta:=\text{Div}^0(\P^1(\Q))$.
Let $M$ being a full modular symbol space, as given by \kbd{msinit},
encoding fixed $\Z[G]$-generators $(g_i)$ of $\Delta$ (see \tet{mspathgens}).
A path $p=[a,b]$ between two elements in $\P^1(\Q)$ corresponds to
$[b]-[a]\in \Delta$. The path extremities $a$ and $b$ may be given as
\typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$.

Returns $(p_i)$ in $\Z[G]$ such that $p = \sum_i p_i g_i$.
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
? p = mspathlog(M, [1/2,2/3]);
? p[1]
%5 =
[[1, 0; 2, 1] 1]

? p[2]
%6 =
[[1, 0; 0, 1] 1]

[[3, -1; 4, -1] 1]

@eprog\noindent
Note that the output depends only on the group $G$, not on the
representation $V$.

The library syntax is \fun{GEN}{mspathlog}{GEN M, GEN p}.

\subsec{msqexpansion$(M,\var{projH},\{B = \var{seriesprecision}\})$}\kbdsidx{msqexpansion}\label{se:msqexpansion}
$M$ being a full modular symbol space, as given by \kbd{msinit},
and \var{projH} being a projector on a Hecke-simple subspace (as given
by \tet{mssplit}), return the Fourier coefficients $a_n$, $n\leq B$ of the
corresponding normalized newform. If $B$ is omitted, use
\kbd{seriesprecision}.

This function uses a naive $O(B^2 d^3)$
algorithm, where $d = O(kN)$ is the dimension of $M_k(\Gamma_0(N))$.
\bprog
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? L = mssplit(M, msnew(M));
? msqexpansion(M,L[1], 20)
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
? ellan(ellinit("11a1"), 20)
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
@eprog\noindent The shortcut \kbd{msqexpansion(M, s, B)} is available for
a symbol $s$, provided it is a Hecke eigenvector:
\bprog
? E = ellinit("11a1");
? [M,s]=msfromell(E);
? msqexpansion(M,s,10)
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? ellan(E, 10)
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
@eprog

The library syntax is \fun{GEN}{msqexpansion}{GEN M, GEN projH, long precdl}.

\subsec{mssplit$(M,H,\{\var{dimlim}\})$}\kbdsidx{mssplit}\label{se:mssplit}
Let $M$ denote a full modular symbol space, as given by \kbd{msinit}$(N,k,1)$
or $\kbd{msinit}(N,k,-1)$ and let $H$ be a Hecke-stable subspace of
\kbd{msnew}$(M)$. This function split $H$ into Hecke-simple subspaces. If
\kbd{dimlim} is present and positive, restrict to subspaces of dimension
$\leq \kbd{dimlim}$. A subspace is given by a structure allowing quick
projection and restriction of linear operators; its first component is a
matrix with integer coefficients whose columns form a $\Q$-basis of the
subspace.

\bprog
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? L = mssplit(M, msnew(M));
? #L
%3 = 2
? f = msqexpansion(M,L[1],5); f[1].mod
%4 = x^2 + 8*x - 44
? lift(f)
%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
? g = msqexpansion(M,L[2],5); g[1].mod
%6 = x^4 - 558*x^2 + 140*x + 51744
@eprog\noindent To a Hecke-simple subspace corresponds an orbit of
(normalized) newforms, defined over a number field. In the above example,
we printed the polynomials defining the said fields, as well as the first
5 Fourier coefficients (at the infinite cusp) of one such form.

The library syntax is \fun{GEN}{mssplit}{GEN M, GEN H, long dimlim}.

\subsec{msstar$(M,\{H\})$}\kbdsidx{msstar}\label{se:msstar}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return the matrix of the \kbd{*} involution, induced by complex conjugation,
acting on the (stable) subspace $H$ ($M$ if omitted).
\bprog
? M = msinit(11,2); \\ M_2(Gamma_0(11))
? w = msstar(M);
? w^2 == 1
%3 = 1
@eprog

The library syntax is \fun{GEN}{msstar}{GEN M, GEN H = NULL}.

\subsec{mstooms$(\var{Mp}, \var{phi})$}\kbdsidx{mstooms}\label{se:mstooms}
Given \kbd{Mp} from \kbd{mspadicinit}, lift the (classical) eigen symbol
\kbd{phi} to a $p$-adic distribution-valued overconvergent symbol in the
sense of Pollack and Stevens. More precisely, let $\phi$ belong to the space
$W$ of modular symbols of level $N$, $v_p(N) \leq 1$, and weight $k$ which is
an eigenvector for the Hecke operator $T_N(p)$ for a non-zero eigenvalue
$a_p$ and let $N_0 = \text{lcm}(N,p)$.

Under the action of $T_{N_0}(p)$, $\phi$ generates a subspace $W_\phi$ of
dimension $1$ (if $p\mid N$) or $2$ (if $p$ does not divide $N$) in the
space of modular symbols of level $N_0$.

Let $V_p=[p,0;0,1]$ and $C_p=[a_p,p^{k-1};-1,0]$.
When $p$ does not divide $N$ and $a_p$ is divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $(\phi,\phi|_k V_p)$ such that
 $$T_{N_0}(p) \Phi = C_p \Phi$$

When $p$ does not divide $N$ and $a_p$ is not divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $\phi - \alpha^{-1} \phi|_k V_p$
which is an eigenvector of $T_{N_0}(p)$ for the unit eigenvalue
where $\alpha^2 - a_p \alpha + p^{k-1}=0$.

The resulting overconvergent eigensymbol can then be used in
\tet{mspadicmoments}, then \tet{mspadicL} or \tet{mspadicseries}.
\bprog
? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 3126 2]

[   x - 6 1]
? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...
@eprog
A non ordinary symbol.
\bprog
? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 244 3]

[ x + 12 1]
? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
 ***   at top-level: PHI=mstooms(Mp,phi)
 ***                     ^---------------
 *** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);
@eprog

The library syntax is \fun{GEN}{mstooms}{GEN Mp, GEN phi}.
%SECTION: modular_symbols

\section{General number fields}

In this section, we describe functions related to general number fields.
Functions related to quadratic number fields are found in
\secref{se:arithmetic} (Arithmetic functions).

\subsec{Number field structures} %GPHELPskip

Let $K = \Q[X] / (T)$ a number field, $\Z_K$ its ring of integers, $T\in\Z[X]$
is monic. Three basic number field structures can be attached to $K$ in
GP:

\item $\tev{nf}$ denotes a number field, i.e.~a data structure output by
\tet{nfinit}. This contains the basic arithmetic data attached to the
number field: signature, maximal order (given by a basis \kbd{nf.zk}),
discriminant, defining polynomial $T$, etc.

\item $\tev{bnf}$ denotes a ``Buchmann's number field'', i.e.~a
data structure output by \tet{bnfinit}. This contains
$\var{nf}$ and the deeper invariants of the field: units $U(K)$, class group
$\Cl(K)$, as well as technical data required to solve the two attached
discrete logarithm problems.

\item $\tev{bnr}$ denotes a ``ray number field'', i.e.~a data structure
output by \kbd{bnrinit}, corresponding to the ray class group structure of
the field, for some modulus $f$. It contains a \var{bnf}, the modulus
$f$, the ray class group $\Cl_f(K)$ and data attached to
the discrete logarithm problem therein.

\subsec{Algebraic numbers and ideals} %GPHELPskip

\noindent An \tev{algebraic number} belonging to $K = \Q[X]/(T)$ is given as

\item a \typ{INT}, \typ{FRAC} or \typ{POL} (implicitly modulo $T$), or

\item a \typ{POLMOD} (modulo $T$), or

\item a \typ{COL}~\kbd{v} of dimension $N = [K:\Q]$, representing
the element in terms of the computed integral basis, as
\kbd{sum(i = 1, N,~v[i] * nf.zk[i])}. Note that a \typ{VEC}
will not be recognized.
\medskip

\noindent An \tev{ideal} is given in any of the following ways:

\item an algebraic number in one of the above forms, defining a principal ideal.

\item a prime ideal, i.e.~a 5-component vector in the format output by
\kbd{idealprimedec} or \kbd{idealfactor}.

\item a \typ{MAT}, square and in Hermite Normal Form (or at least
upper triangular with non-negative coefficients), whose columns represent a
$\Z$-basis of the ideal.

One may use \kbd{idealhnf} to convert any ideal to the last (preferred) format.

\item an \emph{extended ideal} \sidx{ideal (extended)} is a 2-component
vector $[I, t]$, where $I$ is an ideal as above and $t$ is an algebraic
number, representing the ideal $(t)I$. This is useful whenever \tet{idealred}
is involved, implicitly working in the ideal class group, while keeping track
of principal ideals. Ideal operations suitably update the principal part
when it makes sense (in a multiplicative context), e.g.~using \kbd{idealmul}
on $[I,t]$, $[J,u]$, we obtain $[IJ, tu]$. When it does not make sense, the
extended part is silently discarded, e.g.~using \kbd{idealadd} with the above
input produces $I+J$.

The ``principal part'' $t$ in an extended ideal may be
represented in any of the above forms, and \emph{also} as a factorization
matrix (in terms of number field elements, not ideals!), possibly the empty
matrix \kbd{[;]} representing $1$. In the latter case, elements stay in
factored form, or \tev{famat} for \emph{fa}ctorization \emph{mat}rix, which
is a convenient way to avoid coefficient explosion. To recover the
conventional expanded form, try \tet{nffactorback}; but many functions
already accept \var{famat}s as input, for instance \tet{ideallog}, so
expanding huge elements should never be necessary.

\subsec{Finite abelian groups} %GPHELPskip

A finite abelian group $G$ in user-readable format is given by its Smith
Normal Form as a pair $[h,d]$ or triple $[h,d,g]$.
Here $h$ is the cardinality of $G$, $(d_i)$ is the vector of elementary
divisors, and $(g_i)$ is a vector of generators. In short,
$G = \oplus_{i\leq n} (\Z/d_i\Z) g_i$, with $d_n \mid \dots \mid d_2 \mid d_1$
and $\prod d_i = h$. This information can also be retrieved as
$G.\kbd{no}$, $G.\kbd{cyc}$ and $G.\kbd{gen}$.

\item a \tev{character} on the abelian group
$\oplus (\Z/d_j\Z) g_j$
is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$.

\item given such a structure, a \tev{subgroup} $H$ is input as a square
matrix in HNF, whose columns express generators of $H$ on the given generators
$g_i$. Note that the determinant of that matrix is equal to the index $(G:H)$.

\subsec{Relative extensions} %GPHELPskip

We now have a look at data structures attached to relative extensions
of number fields $L/K$, and to projective $\Z_K$-modules. When defining a
relative extension $L/K$, the $\var{nf}$ attached to the base field $K$
must be defined by a variable having a lower priority (see
\secref{se:priority}) than the variable defining the extension. For example,
you may use the variable name $y$ to define the base field $K$, and $x$ to
define the relative extension $L/K$.

\subsubsec{Basic definitions}\label{se:ZKmodules} %GPHELPskip

\item $\tev{rnf}$ denotes a relative number field, i.e.~a data structure
output by \kbd{rnfinit}, attached to the extension $L/K$. The \var{nf}
attached to be base field $K$ is \kbd{rnf.nf}.

\item A \emph{relative matrix} is an $m\times n$ matrix whose entries are
elements of $K$, in any form. Its $m$ columns $A_j$ represent elements
in $K^n$.

\item An \tev{ideal list} is a row vector of fractional ideals of the number
field $\var{nf}$.

\item A \tev{pseudo-matrix} is a 2-component row vector $(A,I)$ where $A$
is a relative $m\times n$ matrix and $I$ an ideal list of length $n$. If $I =
\{\goth{a}_1,\dots, \goth{a}_n\}$ and the columns of $A$ are $(A_1,\dots,
A_n)$, this data defines the torsion-free (projective) $\Z_K$-module
$\goth{a}_1 A_1\oplus \goth{a}_n A_n$.

\item An \tev{integral pseudo-matrix} is a 3-component row vector w$(A,I,J)$
where $A = (a_{i,j})$ is an $m\times n$ relative matrix and $I =
(\goth{b}_1,\dots, \goth{b}_m)$, $J = (\goth{a}_1,\dots, \goth{a}_n)$ are ideal
lists, such that $a_{i,j} \in \goth{b}_i \goth{a}_j^{-1}$ for all $i,j$. This
data defines two abstract projective $\Z_K$-modules
$N = \goth{a}_1\omega_1\oplus \cdots\oplus \goth{a}_n\omega_n $ in $K^n$,
$P = \goth{b}_1\eta_1\oplus \cdots\oplus \goth{b}_m\eta_m$ in $K^m$, and a
$\Z_K$-linear map $f:N\to P$ given by
$$ f(\sum \alpha_j\omega_j) = \sum_i \Big(a_{i,j}\alpha_j\Big) \eta_i.$$
This data defines the $\Z_K$-module $M = P/f(N)$.

\item Any \emph{projective} $\Z_K$-module\varsidx{projective module} $M$
of finite type in $K^m$ can be given by a pseudo matrix $(A,I)$.

\item An arbitrary $\Z_K$ modules of finite type in $K^m$, with non-trivial
torsion, is given by an integral pseudo-matrix $(A,I,J)$

\subsubsec{Pseudo-bases, determinant} %GPHELPskip

\item The pair $(A,I)$ is a \tev{pseudo-basis} of the module it
generates if the $\goth{a}_j$ are non-zero, and the $A_j$ are $K$-linearly
independent. We call $n$ the \emph{size} of the pseudo-basis. If $A$ is a
relative matrix, the latter condition means it is square with non-zero
determinant; we say that it is in Hermite Normal
Form\sidx{Hermite normal form} (HNF) if it is upper triangular and all the
elements of the diagonal are equal to 1.

\item For instance, the relative integer basis \kbd{rnf.zk} is a pseudo-basis
$(A,I)$ of $\Z_L$, where $A = \kbd{rnf.zk[1]}$ is a vector of elements of $L$,
which are $K$-linearly independent. Most \var{rnf} routines return and handle
$\Z_K$-modules contained in $L$ (e.g.~$\Z_L$-ideals) via a pseudo-basis
$(A',I')$, where $A'$ is a relative matrix representing a vector of elements of
$L$ in terms of the fixed basis \kbd{rnf.zk[1]}

\item The \emph{determinant} of a pseudo-basis $(A,I)$ is the ideal
equal to the product of the determinant of $A$ by all the ideals of $I$. The
determinant of a pseudo-matrix is the determinant of any pseudo-basis of the
module it generates.

\subsec{Class field theory}\label{se:CFT}

A $\tev{modulus}$, in the sense of class field theory, is a divisor supported
on the non-complex places of $K$. In PARI terms, this means either an
ordinary ideal $I$ as above (no Archimedean component), or a pair $[I,a]$,
where $a$ is a vector with $r_1$ $\{0,1\}$-components, corresponding to the
infinite part of the divisor. More precisely, the $i$-th component of $a$
corresponds to the real embedding attached to the $i$-th real root of
\kbd{K.roots}. (That ordering is not canonical, but well defined once a
defining polynomial for $K$ is chosen.) For instance, \kbd{[1, [1,1]]} is a
modulus for a real quadratic field, allowing ramification at any of the two
places at infinity, and nowhere else.

A \tev{bid} or ``big ideal'' is a structure output by \kbd{idealstar}
needed to compute in $(\Z_K/I)^*$, where $I$ is a modulus in the above sense.
It is a finite abelian group as described above, supplemented by
technical data needed to solve discrete log problems.

Finally we explain how to input ray number fields (or \var{bnr}), using class
field theory. These are defined by a triple $A$, $B$, $C$, where the
defining set $[A,B,C]$ can have any of the following forms:
$[\var{bnr}]$,
$[\var{bnr},\var{subgroup}]$,
$[\var{bnr},\var{character}]$,
$[\var{bnf},\var{mod}]$,
$[\var{bnf},\var{mod},\var{subgroup}]$. The last two forms are kept for
backward compatibility, but no longer serve any real purpose (see example
below); no newly written function will accept them.

\item $\var{bnf}$ is as output by \kbd{bnfinit}, where units are mandatory
unless the modulus is trivial; \var{bnr} is as output by \kbd{bnrinit}. This
is the ground field $K$.

\item \emph{mod} is a modulus $\goth{f}$, as described above.

\item \emph{subgroup} a subgroup of the ray class group modulo $\goth{f}$ of
$K$. As described above, this is input as a square matrix expressing
generators of a subgroup of the ray class group \kbd{\var{bnr}.clgp} on the
given generators.

The corresponding \var{bnr} is the subfield of the ray class field of $K$
modulo $\goth{f}$, fixed by the given subgroup.

\bprog
  ? K = bnfinit(y^2+1);
  ? bnr = bnrinit(K, 13)
  ? %.clgp
  %3 = [36, [12, 3]]
  ? bnrdisc(bnr); \\ discriminant of the full ray class field
  ? bnrdisc(bnr, [3,1;0,1]); \\ discriminant of cyclic cubic extension of K
  ? bnrconductor(bnr, [3,1]); \\ conductor of chi: g1->zeta_12^3, g2->zeta_3
@eprog\noindent
We could have written directly
\bprog
  ? bnrdisc(K, 13);
  ? bnrdisc(K, 13, [3,1;0,1]);
@eprog\noindent
avoiding one \tet{bnrinit}, but this would actually be slower since the
\kbd{bnrinit} is called internally anyway. And now twice!

\subsec{General use}

All the functions which are specific to relative extensions, number fields,
Buchmann's number fields, Buchmann's number rays, share the prefix \kbd{rnf},
\kbd{nf}, \kbd{bnf}, \kbd{bnr} respectively. They take as first argument a
number field of that precise type, respectively output by \kbd{rnfinit},
\kbd{nfinit}, \kbd{bnfinit}, and \kbd{bnrinit}.

However, and even though it may not be specified in the descriptions of the
functions below, it is permissible, if the function expects a $\var{nf}$, to
use a $\var{bnf}$ instead, which contains much more information. On the other
hand, if the function requires a \kbd{bnf}, it will \emph{not} launch
\kbd{bnfinit} for you, which is a costly operation. Instead, it will give you
a specific error message. In short, the types
$$ \kbd{nf} \leq \kbd{bnf} \leq \kbd{bnr}$$
are ordered, each function requires a minimal type to work properly, but you
may always substitute a larger type.

The data types corresponding to the structures described above are rather
complicated. Thus, as we already have seen it with elliptic curves, GP
provides ``member functions'' to retrieve data from these structures (once
they have been initialized of course). The relevant types of number fields
are indicated between parentheses: \smallskip

\sidx{member functions}
\settabs\+xxxxxxx&(\var{bnr},x&\var{bnf},x&nf\hskip2pt&)x&: &\cr
\+\tet{bid}    &(\var{bnr}&&&)&: & bid ideal structure.\cr

\+\tet{bnf}    &(\var{bnr},& \var{bnf}&&)&: & Buchmann's number field.\cr

\+\tet{clgp}  &(\var{bnr},& \var{bnf}&&)&: & classgroup. This one admits the
following three subclasses:\cr

\+      \quad \tet{cyc} &&&&&: & \quad cyclic decomposition
 (SNF)\sidx{Smith normal form}.\cr

\+      \quad \kbd{gen}\sidx{gen (member function)} &&&&&: &
 \quad generators.\cr

\+      \quad \tet{no}  &&&&&: & \quad number of elements.\cr

\+\tet{diff}  &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the different ideal.\cr

\+\tet{codiff}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & the codifferent
(inverse of the different in the ideal group).\cr

\+\tet{disc} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & discriminant.\cr

\+\tet{fu}   &(\var{bnr},& \var{bnf}&&)&: & \idx{fundamental units}.\cr

\+\tet{index}   &(\var{bnr},& \var{bnf},& \var{nf}&)&: &
 \idx{index} of the power order in the ring of integers.\cr

\+\tet{mod}   &(\var{bnr}&&&)&: & modulus.\cr

\+\tet{nf}   &(\var{bnr},& \var{bnf},& \var{nf}&)&: & number field.\cr

\+\tet{pol}   &(\var{bnr},& \var{bnf},& \var{nf}&)&: & defining polynomial.\cr

\+\tet{r1} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the number
of real embeddings.\cr

\+\tet{r2} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the number
of pairs of complex embeddings.\cr

\+\tet{reg}  &(\var{bnr},& \var{bnf}&&)&: & regulator.\cr

\+\tet{roots}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & roots of the
polynomial generating the field.\cr

\+\tet{sign} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & signature $[r1,r2]$.\cr

\+\tet{t2}   &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the $T_2$ matrix (see
\kbd{nfinit}).\cr

\+\tet{tu}   &(\var{bnr},& \var{bnf}&&)&: & a generator for the torsion
units.\cr

\+\tet{zk}   &(\var{bnr},& \var{bnf},& \var{nf}&)&: & integral basis, i.e.~a
$\Z$-basis of the maximal order.\cr

\+\tet{zkst}   &(\var{bnr}&&&)&: & structure of $(\Z_K/m)^*$.\cr

\misctitle{Deprecated} The following member functions are still available, but deprecated and should not be used in new scripts :
\+\tet{futu} &(\var{bnr},& \var{bnf},&&)&: &
 $[u_1,...,u_r,w]$, $(u_i)$ is a vector of fundamental units,\cr
\+&&&&&& $w$ generates the torsion units.\cr

\+\tet{tufu} &(\var{bnr},& \var{bnf},&&)&: &
 $[w,u_1,...,u_r]$, $(u_i)$ is a vector of fundamental units,\cr
\+&&&&&& $w$ generates the torsion units.\cr


  For instance, assume that $\var{bnf} = \kbd{bnfinit}(\var{pol})$, for some
polynomial. Then \kbd{\var{bnf}.clgp} retrieves the class group, and
\kbd{\var{bnf}.clgp.no} the class number. If we had set $\var{bnf} =
\kbd{nfinit}(\var{pol})$, both would have output an error message. All these
functions are completely recursive, thus for instance
\kbd{\var{bnr}.bnf.nf.zk} will yield the maximal order of \var{bnr}, which
you could get directly with a simple \kbd{\var{bnr}.zk}.

\subsec{Class group, units, and the GRH}\label{se:GRHbnf}

Some of the functions starting with \kbd{bnf} are implementations of the
sub-exponential algorithms for finding class and unit groups under \idx{GRH},
due to Hafner-McCurley, \idx{Buchmann} and Cohen-Diaz-Olivier. The general
call to the functions concerning class groups of general number fields
(i.e.~excluding \kbd{quadclassunit}) involves a polynomial $P$ and a
technical vector
$$\var{tech} = [c_1, c_2, \var{nrpid} ],$$
where the parameters are to be understood as follows:

$P$ is the defining polynomial for the number field, which must be in
$\Z[X]$, irreducible and monic. In fact, if you supply a non-monic polynomial
at this point, \kbd{gp} issues a warning, then \emph{transforms your
polynomial} so that it becomes monic. The \kbd{nfinit} routine
will return a different result in this case: instead of \kbd{res}, you get a
vector \kbd{[res,Mod(a,Q)]}, where \kbd{Mod(a,Q) = Mod(X,P)} gives the change
of variables. In all other routines, the variable change is simply lost.

The \var{tech} interface is obsolete and you should not tamper with
these parameters. Indeed, from version 2.4.0 on,

\item the results are always rigorous under \idx{GRH} (before that version,
they relied on a heuristic strengthening, hence the need for overrides).

\item the influence of these parameters on execution time and stack size is
marginal. They \emph{can} be useful to fine-tune and experiment with the
\kbd{bnfinit} code, but you will be better off modifying all tuning
parameters in the C code (there are many more than just those three).
We nevertheless describe it for completeness.

The numbers $c_1 \leq c_2$ are non-negative real numbers. By default they are
chosen so that the result is correct under GRH. For $i = 1,2$, let
$B_i = c_i(\log |d_K|)^2$, and denote by $S(B)$ the set of maximal ideals of
$K$ whose norm is less than $B$. We want $S(B_1)$ to generate $\Cl(K)$ and hope
that $S(B_2)$ can be \emph{proven} to generate $\Cl(K)$.

More precisely, $S(B_1)$ is a factorbase used to compute a tentative
$\Cl(K)$ by generators and relations. We then check explicitly, using
essentially \kbd{bnfisprincipal}, that the elements of $S(B_2)$ belong to the
span of $S(B_1)$. Under the assumption that $S(B_2)$ generates $\Cl(K)$, we
are done. User-supplied $c_i$ are only used to compute initial guesses for
the bounds $B_i$, and the algorithm increases them until one can \emph{prove}
under GRH that $S(B_2)$ generates $\Cl(K)$. A uniform result of Bach says
that $c_2 = 12$ is always suitable, but this bound is very pessimistic and a
direct algorithm due to Belabas-Diaz-Friedman is used to check the condition,
assuming GRH. The default values are $c_1 = c_2 = 0$. When $c_1$ is equal to
$0$ the algorithm takes it equal to $c_2$.

$\var{nrpid}$ is the maximal number of small norm relations attached to each
ideal in the factor base. Set it to $0$ to disable the search for small norm
relations. Otherwise, reasonable values are between 4 and 20. The default is
4.

\misctitle{Warning} Make sure you understand the above! By default, most of
the \kbd{bnf} routines depend on the correctness of the GRH. In particular,
any of the class number, class group structure, class group generators,
regulator and fundamental units may be wrong, independently of each other.
Any result computed from such a \kbd{bnf} may be wrong. The only guarantee is
that the units given generate a subgroup of finite index in the full unit
group. You must use \kbd{bnfcertify} to certify the computations
unconditionally.

\misctitle{Remarks}

You do not need to supply the technical parameters (under the library you
still need to send at least an empty vector, coded as \kbd{NULL}). However,
should you choose to set some of them, they \emph{must} be given in the
requested order. For example, if you want to specify a given value of
\var{nrpid}, you must give some values as well for $c_1$ and $c_2$, and provide
a vector $[c_1,c_2,\var{nrpid}]$.

Note also that you can use an $\var{nf}$ instead of $P$, which avoids
recomputing the integral basis and analogous quantities.

\smallskip


\subsec{bnfcertify$(\var{bnf},\{\fl = 0\})$}\kbdsidx{bnfcertify}\label{se:bnfcertify}
$\var{bnf}$ being as output by
\kbd{bnfinit}, checks whether the result is correct, i.e.~whether it is
possible to remove the assumption of the Generalized Riemann
Hypothesis\sidx{GRH}. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely.
You can check its progress by increasing the debug level. The \var{bnf}
structure must contain the fundamental units:
\bprog
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
  ***   at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
  ***                                        ^-------------
  *** bnfcertify: missing units in bnf.
? K = bnfinit(x^3+2^2^3+1, 1); \\ include units
? bnfcertify(K)
%3 = 1
@eprog

If flag is present, only certify that the class group is a quotient of the
one computed in bnf (much simpler in general); likewise, the computed units
may form a subgroup of the full unit group. In this variant, the units are
no longer needed:
\bprog
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)
%4 = 1
@eprog

The library syntax is \fun{long}{bnfcertify0}{GEN bnf, long flag}.
Also available is  \fun{GEN}{bnfcertify}{GEN bnf} ($\fl=0$).

\subsec{bnfcompress$(\var{bnf})$}\kbdsidx{bnfcompress}\label{se:bnfcompress}
Computes a compressed version of \var{bnf} (from \tet{bnfinit}), a
``small Buchmann's number field'' (or \var{sbnf} for short) which contains
enough information to recover a full $\var{bnf}$ vector very rapidly, but
which is much smaller and hence easy to store and print. Calling
\kbd{bnfinit} on the result recovers a true \kbd{bnf}, in general different
from the original. Note that an \tev{snbf} is useless for almost all
purposes besides storage, and must be converted back to \tev{bnf} form
before use; for instance, no \kbd{nf*}, \kbd{bnf*} or member function
accepts them.

An \var{sbnf} is a 12 component vector $v$, as follows. Let \kbd{bnf} be
the result of a full \kbd{bnfinit}, complete with units. Then $v[1]$ is
\kbd{bnf.pol}, $v[2]$ is the number of real embeddings \kbd{bnf.sign[1]},
$v[3]$ is \kbd{bnf.disc}, $v[4]$ is \kbd{bnf.zk}, $v[5]$ is the list of roots
\kbd{bnf.roots}, $v[7]$ is the matrix $\kbd{W} = \kbd{bnf[1]}$,
$v[8]$ is the matrix $\kbd{matalpha}=\kbd{bnf[2]}$,
$v[9]$ is the prime ideal factor base \kbd{bnf[5]} coded in a compact way,
and ordered according to the permutation \kbd{bnf[6]}, $v[10]$ is the
2-component vector giving the number of roots of unity and a generator,
expressed on the integral basis, $v[11]$ is the list of fundamental units,
expressed on the integral basis, $v[12]$ is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix \kbd{matalpha},
expressed on the integral basis.

All the components are exact (integral or rational), except for the roots in
$v[5]$.

The library syntax is \fun{GEN}{bnfcompress}{GEN bnf}.

\subsec{bnfdecodemodule$(\var{nf},m)$}\kbdsidx{bnfdecodemodule}\label{se:bnfdecodemodule}
If $m$ is a module as output in the
first component of an extension given by \kbd{bnrdisclist}, outputs the
true module.
\bprog
? K = bnfinit(x^2+23); L = bnrdisclist(K, 10); s = L[1][2]
%1 = [[Mat([8, 1]), [[0, 0, 0]]], [Mat([9, 1]), [[0, 0, 0]]]]
? bnfdecodemodule(K, s[1][1])
%2 =
[2 0]

[0 1]
@eprog

The library syntax is \fun{GEN}{decodemodule}{GEN nf, GEN m}.

\subsec{bnfinit$(P,\{\fl=0\},\{\var{tech}=[\,]\})$}\kbdsidx{bnfinit}\label{se:bnfinit}
Initializes a
\kbd{bnf} structure. Used in programs such as \kbd{bnfisprincipal},
\kbd{bnfisunit} or \kbd{bnfnarrow}. By default, the results are conditional
on the GRH, see \ref{se:GRHbnf}. The result is a
10-component vector \var{bnf}.

This implements \idx{Buchmann}'s sub-exponential algorithm for computing the
class group, the regulator and a system of \idx{fundamental units} of the
general algebraic number field $K$ defined by the irreducible polynomial $P$
with integer coefficients.

If the precision becomes insufficient, \kbd{gp} does not strive to compute
the units by default ($\fl=0$).

When $\fl=1$, we insist on finding the fundamental units exactly. Be
warned that this can take a very long time when the coefficients of the
fundamental units on the integral basis are very large. If the fundamental
units are simply too large to be represented in this form, an error message
is issued. They could be obtained using the so-called compact representation
of algebraic numbers as a formal product of algebraic integers. The latter is
implemented internally but not publicly accessible yet.

$\var{tech}$ is a technical vector (empty by default, see \ref{se:GRHbnf}).
Careful use of this parameter may speed up your computations,
but it is mostly obsolete and you should leave it alone.

\smallskip

The components of a \var{bnf} or \var{sbnf} are technical and never used by
the casual user. In fact: \emph{never access a component directly, always use
a proper member function.} However, for the sake of completeness and internal
documentation, their description is as follows. We use the notations
explained in the book by H. Cohen, \emph{A Course in Computational Algebraic
Number Theory}, Graduate Texts in Maths \key{138}, Springer-Verlag, 1993,
Section 6.5, and subsection 6.5.5 in particular.

$\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
form giving relations for the class group on prime ideal generators
$(\goth{p}_i)_{1\le i\le r}$.

$\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
expressions of the prime ideal factorbase in terms of the $\goth{p}_i$.
It is an $r\times c$ matrix.

$\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
fundamental units which has been found. It is an $(r_1+r_2)\times(r_1+r_2-1)$
matrix.

$\var{bnf}[4]$ contains the matrix $M''_C$ of Archimedean components of the
relations of the matrix $(W|B)$.

$\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
ideals used in finding the relations.

$\var{bnf}[6]$ used to contain a permutation of the prime factor base, but
has been obsoleted. It contains a dummy $0$.

$\var{bnf}[7]$ or \kbd{\var{bnf}.nf} is equal to the number field data
$\var{nf}$ as would be given by \kbd{nfinit}.

$\var{bnf}[8]$ is a vector containing the classgroup \kbd{\var{bnf}.clgp}
as a finite abelian group, the regulator \kbd{\var{bnf}.reg}, a $1$ (used to
contain an obsolete ``check number''), the number of roots of unity and a
generator \kbd{\var{bnf}.tu}, the fundamental units \kbd{\var{bnf}.fu}.

$\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only
and obtained as follows. Let $D = U W V$ obtained by applying the
\idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the
factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,
with Archimedean component $g_a$; let also $GD_a$ be the Archimedean
components of the generators of the (principal) ideals defined by the
\kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.

$\var{bnf}[10]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available, which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{bnfinit} call. For instance, the generators of the principal ideals
\kbd{bnf.gen[i]\pow bnf.cyc[i]} (during a call to \tet{bnrisprincipal}), or
those corresponding to the relations in $W$ and $B$ (when the \kbd{bnf}
internal precision needs to be increased).

The library syntax is \fun{GEN}{bnfinit0}{GEN P, long flag, GEN tech = NULL, long prec}.

Also available is \fun{GEN}{Buchall}{GEN P, long flag, long prec},
corresponding to \kbd{tech = NULL}, where
\kbd{flag} is either $0$ (default) or \tet{nf_FORCE} (insist on finding
fundamental units). The function
\fun{GEN}{Buchall_param}{GEN P, double c1, double c2, long nrpid, long flag, long prec} gives direct access to the technical parameters.

\subsec{bnfisintnorm$(\var{bnf},x)$}\kbdsidx{bnfisintnorm}\label{se:bnfisintnorm}
Computes a complete system of
solutions (modulo units of positive norm) of the absolute norm equation
$\Norm(a)=x$,
where $a$ is an integer in $\var{bnf}$. If $\var{bnf}$ has not been certified,
the correctness of the result depends on the validity of \idx{GRH}.

See also \tet{bnfisnorm}.

The library syntax is \fun{GEN}{bnfisintnorm}{GEN bnf, GEN x}.
The function \fun{GEN}{bnfisintnormabs}{GEN bnf, GEN a}
returns a complete system of solutions modulo units of the absolute norm
equation $|\Norm(x)| = |a|$. As fast as \kbd{bnfisintnorm}, but solves
the two equations $\Norm(x) = \pm a$ simultaneously.

\subsec{bnfisnorm$(\var{bnf},x,\{\fl=1\})$}\kbdsidx{bnfisnorm}\label{se:bnfisnorm}
Tries to tell whether the
rational number $x$ is the norm of some element y in $\var{bnf}$. Returns a
vector $[a,b]$ where $x=Norm(a)*b$. Looks for a solution which is an $S$-unit,
with $S$ a certain set of prime ideals containing (among others) all primes
dividing $x$. If $\var{bnf}$ is known to be \idx{Galois}, set $\fl=0$ (in
this case, $x$ is a norm iff $b=1$). If $\fl$ is non zero the program adds to
$S$ the following prime ideals, depending on the sign of $\fl$. If $\fl>0$,
the ideals of norm less than $\fl$. And if $\fl<0$ the ideals dividing $\fl$.

Assuming \idx{GRH}, the answer is guaranteed (i.e.~$x$ is a norm iff $b=1$),
if $S$ contains all primes less than $12\log(\disc(\var{Bnf}))^2$, where
$\var{Bnf}$ is the Galois closure of $\var{bnf}$.

See also \tet{bnfisintnorm}.

The library syntax is \fun{GEN}{bnfisnorm}{GEN bnf, GEN x, long flag}.

\subsec{bnfisprincipal$(\var{bnf},x,\{\fl=1\})$}\kbdsidx{bnfisprincipal}\label{se:bnfisprincipal}
$\var{bnf}$ being the \sidx{principal ideal}
number field data output by \kbd{bnfinit}, and $x$ being an ideal, this
function tests whether the ideal is principal or not. The result is more
complete than a simple true/false answer and solves general discrete
logarithm problem. Assume the class group is $\oplus (\Z/d_i\Z)g_i$
(where the generators $g_i$ and their orders $d_i$ are respectively given by
\kbd{bnf.gen} and \kbd{bnf.cyc}). The routine returns a row vector $[e,t]$,
where $e$ is a vector of exponents $0 \leq e_i < d_i$, and $t$ is a number
field element such that
$$ x = (t) \prod_i  g_i^{e_i}.$$
For \emph{given} $g_i$ (i.e. for a given \kbd{bnf}), the $e_i$ are unique,
and $t$ is unique modulo units.

In particular, $x$ is principal if and only if $e$ is the zero vector. Note
that the empty vector, which is returned when the class number is $1$, is
considered to be a zero vector (of dimension $0$).
\bprog
? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]]          \\ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~]
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]

[0 1]
? % == idealhnf(K, P)
%7 = 1
@eprog

\noindent The binary digits of \fl mean:

\item $1$: If set, outputs $[e,t]$ as explained above, otherwise returns
only $e$, which is much easier to compute. The following idiom only tests
whether an ideal is principal:
\bprog
  is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
@eprog

\item $2$: It may not be possible to recover $t$, given the initial accuracy
to which the \kbd{bnf} structure was computed. In that case, a warning is
printed and $t$ is set equal to the empty vector \kbd{[]\til}. If this bit is
set, increase the precision and recompute needed quantities until $t$ can be
computed. Warning: setting this may induce \emph{lengthy} computations.

The library syntax is \fun{GEN}{bnfisprincipal0}{GEN bnf, GEN x, long flag}.
Instead of the above hardcoded numerical flags, one should
rather use an or-ed combination of the symbolic flags \tet{nf_GEN} (include
generators, possibly a place holder if too difficult) and \tet{nf_FORCE}
(insist on finding the generators).

\subsec{bnfissunit$(\var{bnf},\var{sfu},x)$}\kbdsidx{bnfissunit}\label{se:bnfissunit}
$\var{bnf}$ being output by
\kbd{bnfinit}, \var{sfu} by \kbd{bnfsunit}, gives the column vector of
exponents of $x$ on the fundamental $S$-units and the roots of unity.
If $x$ is not a unit, outputs an empty vector.

The library syntax is \fun{GEN}{bnfissunit}{GEN bnf, GEN sfu, GEN x}.

\subsec{bnfisunit$(\var{bnf},x)$}\kbdsidx{bnfisunit}\label{se:bnfisunit}
\var{bnf} being the number field data
output by \kbd{bnfinit} and $x$ being an algebraic number (type integer,
rational or polmod), this outputs the decomposition of $x$ on the fundamental
units and the roots of unity if $x$ is a unit, the empty vector otherwise.
More precisely, if $u_1$,\dots,$u_r$ are the fundamental units, and $\zeta$
is the generator of the group of roots of unity (\kbd{bnf.tu}), the output is
a vector $[x_1,\dots,x_r,x_{r+1}]$ such that $x=u_1^{x_1}\cdots
u_r^{x_r}\cdot\zeta^{x_{r+1}}$. The $x_i$ are integers for $i\le r$ and is an
integer modulo the order of $\zeta$ for $i=r+1$.

Note that \var{bnf} need not contain the fundamental unit explicitly:
\bprog
? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
  ***   at top-level: bnf.fu
  ***                     ^--
  *** _.fu: missing units in .fu.
? u = [119836165644250789990462835950022871665178127611316131167, \
       379554884019013781006303254896369154068336082609238336]~;
? bnfisunit(bnf, u)
%3 = [-1, Mod(0, 2)]~
@eprog\noindent The given $u$ is the inverse of the fundamental unit
implicitly stored in \var{bnf}. In this case, the fundamental unit was not
computed and stored in algebraic form since the default accuracy was too
low. (Re-run the command at \bs g1 or higher to see such diagnostics.)

The library syntax is \fun{GEN}{bnfisunit}{GEN bnf, GEN x}.

\subsec{bnflog$(\var{bnf}, l)$}\kbdsidx{bnflog}\label{se:bnflog}
Let \var{bnf} be attached to a number field $F$ and let $l$ be
a prime number (hereafter denoted $\ell$ for typographical reasons). Return
the logarithmic $\ell$-class group $\widetilde{Cl}_F$
of $F$. This is an abelian group, conjecturally finite (known to be finite
if $F/\Q$ is abelian). The function returns if and only if
the group is indeed finite (otherwise it would run into an infinite loop).
Let $S = \{ \goth{p}_1,\dots, \goth{p}_k\}$ be the set of $\ell$-adic places
(maximal ideals containing $\ell$).
The function returns $[D, G(\ell), G']$, where

\item $D$ is the vector of elementary divisors for $\widetilde{Cl}_F$;

\item $G(\ell)$ is the vector of elementary divisors for
the (conjecturally finite) abelian group
$$\widetilde{\Cl}(\ell) =
\{ \goth{a} = \sum_{i \leq k} a_i \goth{p}_i :~\deg_F \goth{a} = 0\},$$
where the $\goth{p}_i$ are the $\ell$-adic places of $F$; this is a
subgroup of $\widetilde{\Cl}$.

\item $G'$ is the vector of elementary divisors for the $\ell$-Sylow $Cl'$
of the $S$-class group of $F$; the group $\widetilde{\Cl}$ maps to $Cl'$
with a simple co-kernel.

The library syntax is \fun{GEN}{bnflog}{GEN bnf, GEN l}.

\subsec{bnflogdegree$(\var{nf}, A, l)$}\kbdsidx{bnflogdegree}\label{se:bnflogdegree}
Let \var{nf} be the number field data output by \kbd{nfinit},
attached to the field $F$, and let $l$ be a prime number (hereafter
denoted $\ell$). The
$\ell$-adified group of id\`{e}les of $F$ quotiented by
the group of logarithmic units is identified to the $\ell$-group
of logarithmic divisors $\oplus \Z_\ell [\goth{p}]$, generated by the
maximal ideals of $F$.

The \emph{degree} map $\deg_F$ is additive with values in $\Z_\ell$,
defined by $\deg_F \goth{p} = \tilde{f}_{\goth{p}} \deg_\ell p$,
where the integer $\tilde{f}$ is as in \tet{bnflogef} and $\deg_\ell p$
is $\log_\ell p$ for $p\neq \ell$, $\log_\ell (1 + \ell)$ for
$p = \ell\neq 2$ and $\log_\ell (1 + 2^2)$ for $p = \ell = 2$.

Let $A = \prod \goth{p}^{n_{\goth{p}}}$ be an ideal and let $\tilde{A} =
\sum n_\goth{p} [\goth{p}]$ be the attached logarithmic divisor. Return the
exponential of the $\ell$-adic logarithmic degree $\deg_F A$, which is a
natural number.

The library syntax is \fun{GEN}{bnflogdegree}{GEN nf, GEN A, GEN l}.

\subsec{bnflogef$(\var{nf},\var{pr})$}\kbdsidx{bnflogef}\label{se:bnflogef}
Let $F$ be a number field represented by the \var{nf} structure,
and let \var{pr} be a \kbd{prid} structure attached to the
maximal ideal $\goth{p} / p$. Return
$[\tilde{e}(F_\goth{p} / \Q_p), \tilde{f}(F_\goth{p} / \Q_p)]$
the logarithmic ramification and residue degrees. Let $\Q_p^c/\Q_p$ be the
cyclotomic $\Z_p$-extension, then
$\tilde{e} = [F_\goth{p} \colon F_\goth{p} \cap \Q_p^c]$
$\tilde{f} = [F_\goth{p} \cap \Q_p^c \colon \Q_p]$. Note that
$\tilde{e}\tilde{f} = e(\goth{p}/p) f(\goth{p}/p)$, where $e,f$ denote the
usual ramification and residue degrees.
\bprog
? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
? bnflogef(F, idealprimedec(F,2)[1])
%2 = [6, 1]
? bnflogef(F, idealprimedec(F,5)[1])
%3 = [1, 2]
@eprog

The library syntax is \fun{GEN}{bnflogef}{GEN nf, GEN pr}.

\subsec{bnfnarrow$(\var{bnf})$}\kbdsidx{bnfnarrow}\label{se:bnfnarrow}
\var{bnf} being as output by
\kbd{bnfinit}, computes the narrow class group of \var{bnf}. The output is
a 3-component row vector $v$ analogous to the corresponding class group
component \kbd{\var{bnf}.clgp}: the first component
is the narrow class number \kbd{$v$.no}, the second component is a vector
containing the SNF\sidx{Smith normal form} cyclic components \kbd{$v$.cyc} of
the narrow class group, and the third is a vector giving the generators of
the corresponding \kbd{$v$.gen} cyclic groups. Note that this function is a
special case of \kbd{bnrinit}; the \var{bnf} need not contain fundamental
units.

The library syntax is \fun{GEN}{buchnarrow}{GEN bnf}.

\subsec{bnfsignunit$(\var{bnf})$}\kbdsidx{bnfsignunit}\label{se:bnfsignunit}
$\var{bnf}$ being as output by
\kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix having $\pm1$
components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:

\bprog
/* exponents of totally positive units generators on bnf.tufu */
tpuexpo(bnf)=
{ my(K, S = bnfsignunit(bnf), [m,n] = matsize(S));
  \\ m = bnf.r1, n = r1+r2-1
  S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
  S = concat(vectorv(m,i,1), S);   \\ add sign(-1)
  K = matker(S * Mod(1,2));
  if (K, mathnfmodid(lift(K), 2), 2*matid(n+1))
}

/* totally positive fundamental units */
tpu(bnf)=
{ my(ex = tpuexpo(bnf)[,2..-1]); \\ remove ex[,1], corresponds to 1 or -1
  vector(#ex, i, nffactorback(bnf, bnf.tufu, ex[,i]));
}
@eprog

The library syntax is \fun{GEN}{signunits}{GEN bnf}.

\subsec{bnfsunit$(\var{bnf},S)$}\kbdsidx{bnfsunit}\label{se:bnfsunit}
Computes the fundamental $S$-units of the
number field $\var{bnf}$ (output by \kbd{bnfinit}), where $S$ is a list of
prime ideals (output by \kbd{idealprimedec}). The output is a vector $v$ with
6 components.

$v[1]$ gives a minimal system of (integral) generators of the $S$-unit group
modulo the unit group.

$v[2]$ contains technical data needed by \kbd{bnfissunit}.

$v[3]$ is an empty vector (used to give the logarithmic embeddings of the
generators in $v[1]$ in version 2.0.16).

$v[4]$ is the $S$-regulator (this is the product of the regulator, the
determinant of $v[2]$ and the natural logarithms of the norms of the ideals
in $S$).

$v[5]$ gives the $S$-class group structure, in the usual format
(a row vector whose three components give in order the $S$-class number,
the cyclic components and the generators).

$v[6]$ is a copy of $S$.

The library syntax is \fun{GEN}{bnfsunit}{GEN bnf, GEN S, long prec}.

\subsec{bnrL1$(\var{bnr}, \{H\}, \{\fl=0\})$}\kbdsidx{bnrL1}\label{se:bnrL1}
Let \var{bnr} be the number field data output by \kbd{bnrinit(,,1)} and
\var{H} be a square matrix defining a congruence subgroup of the
ray class group corresponding to \var{bnr} (the trivial congruence subgroup
if omitted). This function returns, for each \idx{character} $\chi$ of the ray
class group which is trivial on $H$, the value at $s = 1$ (or $s = 0$) of the
abelian $L$-function attached to $\chi$. For the value at $s = 0$, the
function returns in fact for each $\chi$ a vector $[r_\chi, c_\chi]$ where
$$L(s, \chi) = c \cdot s^r + O(s^{r + 1})$$
\noindent near $0$.

The argument \fl\ is optional, its binary digits
mean 1: compute at $s = 0$ if unset or $s = 1$ if set, 2: compute the
primitive $L$-function attached to $\chi$ if unset or the $L$-function
with Euler factors at prime ideals dividing the modulus of \var{bnr} removed
if set (that is $L_S(s, \chi)$, where $S$ is the
set of infinite places of the number field together with the finite prime
ideals dividing the modulus of \var{bnr}), 3: return also the character if
set.
\bprog
K = bnfinit(x^2-229);
bnr = bnrinit(K,1,1);
bnrL1(bnr)
@eprog\noindent
returns the order and the first non-zero term of $L(s, \chi)$ at $s = 0$
where $\chi$ runs through the characters of the class group of
$K = \Q(\sqrt{229})$. Then
\bprog
bnr2 = bnrinit(K,2,1);
bnrL1(bnr2,,2)
@eprog\noindent
returns the order and the first non-zero terms of $L_S(s, \chi)$ at $s = 0$
where $\chi$ runs through the characters of the class group of $K$ and $S$ is
the set of infinite places of $K$ together with the finite prime $2$. Note
that the ray class group modulo $2$ is in fact the class group, so
\kbd{bnrL1(bnr2,0)} returns the same answer as \kbd{bnrL1(bnr,0)}.

This function will fail with the message
\bprog
 *** bnrL1: overflow in zeta_get_N0 [need too many primes].
@eprog\noindent if the approximate functional equation requires us to sum
too many terms (if the discriminant of $K$ is too large).

The library syntax is \fun{GEN}{bnrL1}{GEN bnr, GEN H = NULL, long flag, long prec}.

\subsec{bnrchar$(\var{bnr},g,\{v\})$}\kbdsidx{bnrchar}\label{se:bnrchar}
Returns all characters $\chi$ on \kbd{bnr.clgp} such that
$\chi(g_i) = e(v_i)$, where $e(x) = \exp(2i\pi x)$. If $v$ is omitted,
returns all characters that are trivial on the $g_i$. Else the vectors $g$
and $v$ must have the same length, the $g_i$ must be ideals in any form, and
each $v_i$ is a rational number whose denominator must divide the order of
$g_i$ in the ray class group. For convenience, the vector of the $g_i$
can be replaced by a matrix whose columns give their discrete logarithm,
as given by \kbd{bnrisprincipal}; this allows to specify abstractly a
subgroup of the ray class group.

\bprog
? bnr = bnrinit(bnfinit(x), [160,[1]], 1); /* (Z/160Z)^* */
? bnr.cyc
%2 = [8, 4, 2]
? g = bnr.gen;
? bnrchar(bnr, g, [1/2,0,0])
%4 = [[4, 0, 0]]  \\ a unique character
? bnrchar(bnr, [g[1],g[3]]) \\ all characters trivial on g[1] and g[3]
%5 = [[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]
? bnrchar(bnr, [1,0,0;0,1,0;0,0,2])
%6 = [[0, 0, 1], [0, 0, 0]]  \\ characters trivial on given subgroup
@eprog

The library syntax is \fun{GEN}{bnrchar}{GEN bnr, GEN g, GEN v = NULL}.

\subsec{bnrclassno$(A,\{B\},\{C\})$}\kbdsidx{bnrclassno}\label{se:bnrclassno}
Let $A$, $B$, $C$ define a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
or \kbd{[\var{bnf}, \var{modulus}]},
or \kbd{[\var{bnf}, \var{modulus},\var{subgroup}]},
\secref{se:CFT}); this function returns the relative degree $[L:K]$.

In particular if $A$ is a \var{bnf} (with units), and $B$ a modulus,
this function returns the corresponding ray class number modulo $B$.
One can input the attached \var{bid} (with generators if the subgroup
$C$ is non trivial) for $B$ instead of the module itself, saving some time.

This function is faster than \kbd{bnrinit} and should be used if only the
ray class number is desired. See \tet{bnrclassnolist} if you need ray class
numbers for all moduli less than some bound.

The library syntax is \fun{GEN}{bnrclassno0}{GEN A, GEN B = NULL, GEN C = NULL}.
Also available is
\fun{GEN}{bnrclassno}{GEN bnf,GEN f} to compute the ray class number
modulo~$f$.

\subsec{bnrclassnolist$(\var{bnf},\var{list})$}\kbdsidx{bnrclassnolist}\label{se:bnrclassnolist}
$\var{bnf}$ being as
output by \kbd{bnfinit}, and \var{list} being a list of moduli (with units) as
output by \kbd{ideallist} or \kbd{ideallistarch}, outputs the list of the
class numbers of the corresponding ray class groups. To compute a single
class number, \tet{bnrclassno} is more efficient.

\bprog
? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
@eprog
The weird \kbd{l[i].mod[1]}, is the first component of \kbd{l[i].mod}, i.e.
the finite part of the conductor. (This is cosmetic: since by construction
the Archimedean part is trivial, I do not want to see it). This tells us that
the ray class groups modulo the ideals of norm 98 (printed as \kbd{\%5}) have
respectively order $1$, $3$ and $1$. Indeed, we may check directly:
\bprog
? bnrclassno(bnf, ids[2])
%6 = 3
@eprog

The library syntax is \fun{GEN}{bnrclassnolist}{GEN bnf, GEN list}.

\subsec{bnrconductor$(A,\{B\},\{C\},\{\fl=0\})$}\kbdsidx{bnrconductor}\label{se:bnrconductor}
Conductor $f$ of the subfield of a ray class field as defined by $[A,B,C]$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT})

If $\fl = 0$, returns $f$.

If $\fl = 1$, returns $[f, Cl_f, H]$, where $Cl_f$ is the ray class group
modulo $f$, as a finite abelian group; finally $H$ is the subgroup of $Cl_f$
defining the extension.

If $\fl = 2$, returns $[f, \var{bnr}(f), H]$, as above except $Cl_f$ is
replaced by a \kbd{bnr} structure, as output by $\tet{bnrinit}(,f,1)$.

In place of a subgroup $H$, this function also accepts a character
\kbd{chi}  $=(a_j)$, expressed as usual in terms of the generators
\kbd{bnr.gen}: $\chi(g_j) = \exp(2i\pi a_j / d_j)$, where $g_j$ has
order $d_j = \kbd{bnr.cyc[j]}$. In which case, the function returns
respectively

If $\fl = 0$, the conductor $f$ of $\text{Ker} \chi$.

If $\fl = 1$, $[f, Cl_f, \chi_f]$, where $\chi_f$ is $\chi$ expressed
on the minimal ray class group, whose modulus is the conductor.

If $\fl = 2$, $[f, \var{bnr}(f), \chi_f]$.

The library syntax is \fun{GEN}{bnrconductor0}{GEN A, GEN B = NULL, GEN C = NULL, long flag}.

Also available is \fun{GEN}{bnrconductor}{GEN bnr, GEN H, long flag}

\subsec{bnrconductorofchar$(\var{bnr},\var{chi})$}\kbdsidx{bnrconductorofchar}\label{se:bnrconductorofchar}
This function is obsolete, use \tev{bnrconductor}.

The library syntax is \fun{GEN}{bnrconductorofchar}{GEN bnr, GEN chi}.

\subsec{bnrdisc$(A,\{B\},\{C\},\{\fl=0\})$}\kbdsidx{bnrdisc}\label{se:bnrdisc}
$A$, $B$, $C$ defining a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnr}, \var{character}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT}), outputs data $[N,r_1,D]$ giving the discriminant and
signature of $L$, depending on the binary digits of \fl:

\item 1: if this bit is unset, output absolute data related to $L/\Q$:
$N$ is the absolute degree $[L:\Q]$, $r_1$ the number of real places of $L$,
and $D$ the discriminant of $L/\Q$. Otherwise, output relative data for $L/K$:
$N$ is the relative degree $[L:K]$, $r_1$ is the number of real places of $K$
unramified in $L$ (so that the number of real places of $L$ is equal to $r_1$
times $N$), and $D$ is the relative discriminant ideal of $L/K$.

\item 2: if this bit is set and if the modulus is not the conductor of $L$,
only return 0.

The library syntax is \fun{GEN}{bnrdisc0}{GEN A, GEN B = NULL, GEN C = NULL, long flag}.

\subsec{bnrdisclist$(\var{bnf},\var{bound},\{\var{arch}\})$}\kbdsidx{bnrdisclist}\label{se:bnrdisclist}
$\var{bnf}$ being as output by \kbd{bnfinit} (with units), computes a
list of discriminants of Abelian extensions of the number field by increasing
modulus norm up to bound \var{bound}. The ramified Archimedean places are
given by \var{arch}; all possible values are taken if \var{arch} is omitted.

The alternative syntax $\kbd{bnrdisclist}(\var{bnf},\var{list})$ is
supported, where \var{list} is as output by \kbd{ideallist} or
\kbd{ideallistarch} (with units), in which case \var{arch} is disregarded.

The output $v$ is a vector of vectors, where $v[i][j]$ is understood to be in
fact $V[2^{15}(i-1)+j]$ of a unique big vector $V$. (This awkward scheme
allows for larger vectors than could be otherwise represented.)

$V[k]$ is itself a vector $W$, whose length is the number of ideals of norm
$k$. We consider first the case where \var{arch} was specified. Each
component of $W$ corresponds to an ideal $m$ of norm $k$, and
gives invariants attached to the ray class field $L$ of $\var{bnf}$ of
conductor $[m, \var{arch}]$. Namely, each contains a vector $[m,d,r,D]$ with
the following meaning: $m$ is the prime ideal factorization of the modulus,
$d = [L:\Q]$ is the absolute degree of $L$, $r$ is the number of real places
of $L$, and $D$ is the factorization of its absolute discriminant. We set $d
= r = D = 0$ if $m$ is not the finite part of a conductor.

If \var{arch} was omitted, all $t = 2^{r_1}$ possible values are taken and a
component of $W$ has the form $[m, [[d_1,r_1,D_1], \dots, [d_t,r_t,D_t]]]$,
where $m$ is the finite part of the conductor as above, and
$[d_i,r_i,D_i]$ are the invariants of the ray class field of conductor
$[m,v_i]$, where $v_i$ is the $i$-th Archimedean component, ordered by
inverse lexicographic order; so $v_1 = [0,\dots,0]$, $v_2 = [1,0\dots,0]$,
etc. Again, we set $d_i = r_i = D_i = 0$ if $[m,v_i]$ is not a conductor.

Finally, each prime ideal $pr = [p,\alpha,e,f,\beta]$ in the prime
factorization $m$ is coded as the integer $p\cdot n^2+(f-1)\cdot n+(j-1)$,
where $n$ is the degree of the base field and $j$ is such that

\kbd{pr = idealprimedec(\var{nf},p)[j]}.

\noindent $m$ can be decoded using \tet{bnfdecodemodule}.

Note that to compute such data for a single field, either \tet{bnrclassno}
or \tet{bnrdisc} is more efficient.

The library syntax is \fun{GEN}{bnrdisclist0}{GEN bnf, GEN bound, GEN arch = NULL}.

\subsec{bnrgaloisapply$(\var{bnr}, \var{mat}, H)$}\kbdsidx{bnrgaloisapply}\label{se:bnrgaloisapply}
Apply the automorphism given by its matrix \var{mat} to the congruence
subgroup $H$ given as a HNF matrix.
The matrix \var{mat} can be computed with \tet{bnrgaloismatrix}.

The library syntax is \fun{GEN}{bnrgaloisapply}{GEN bnr, GEN mat, GEN H}.

\subsec{bnrgaloismatrix$(\var{bnr},\var{aut})$}\kbdsidx{bnrgaloismatrix}\label{se:bnrgaloismatrix}
Return the matrix of the action of the automorphism \var{aut} of the base
field \kbd{bnf.nf} on the generators of the ray class field \kbd{bnr.gen}.
\var{aut} can be given as a polynomial, an algebraic number, or a vector of
automorphisms or a Galois group as output by \kbd{galoisinit}, in which case a
vector of matrices is returned (in the later case, only for the generators
\kbd{aut.gen}).

See \kbd{bnrisgalois} for an example.

The library syntax is \fun{GEN}{bnrgaloismatrix}{GEN bnr, GEN aut}.
When $aut$ is a polynomial or an algebraic number,
\fun{GEN}{bnrautmatrix}{GEN bnr, GEN aut} is available.

\subsec{bnrinit$(\var{bnf},f,\{\fl=0\})$}\kbdsidx{bnrinit}\label{se:bnrinit}
$\var{bnf}$ is as
output by \kbd{bnfinit} (including fundamental units), $f$ is a modulus,
initializes data linked to the ray class group structure corresponding to
this module, a so-called \kbd{bnr} structure. One can input the attached
\var{bid} with generators for $f$ instead of the module itself, saving some
time. (As in \tet{idealstar}, the finite part of the conductor may be given
by a factorization into prime ideals, as produced by \tet{idealfactor}.)

The following member functions are available
on the result: \kbd{.bnf} is the underlying \var{bnf},
\kbd{.mod} the modulus, \kbd{.bid} the \kbd{bid} structure attached to the
modulus; finally, \kbd{.clgp}, \kbd{.no}, \kbd{.cyc}, \kbd{.gen} refer to the
ray class group (as a finite abelian group), its cardinality, its elementary
divisors, its generators (only computed if $\fl = 1$).

The last group of functions are different from the members of the underlying
\var{bnf}, which refer to the class group; use \kbd{\var{bnr}.bnf.\var{xxx}}
to access these, e.g.~\kbd{\var{bnr}.bnf.cyc} to get the cyclic decomposition
of the class group.

They are also different from the members of the underlying \var{bid}, which
refer to $(\Z_K/f)^*$; use \kbd{\var{bnr}.bid.\var{xxx}} to access these,
e.g.~\kbd{\var{bnr}.bid.no} to get $\phi(f)$.

If $\fl=0$ (default), the generators of the ray class group are not computed,
which saves time. Hence \kbd{\var{bnr}.gen} would produce an error.

If $\fl=1$, as the default, except that generators are computed.

The library syntax is \fun{GEN}{bnrinit0}{GEN bnf, GEN f, long flag}.
Instead the above  hardcoded  numerical flags,  one should rather use
\fun{GEN}{Buchray}{GEN bnf, GEN module, long flag}
where flag is an or-ed combination of \kbd{nf\_GEN} (include generators)
and \kbd{nf\_INIT} (if omitted, return just the cardinality of the ray class
group and its structure), possibly 0.

\subsec{bnrisconductor$(A,\{B\},\{C\})$}\kbdsidx{bnrisconductor}\label{se:bnrisconductor}
Fast variant of \kbd{bnrconductor}$(A,B,C)$; $A$, $B$, $C$ represent
an extension of the base field, given by class field theory
(see~\secref{se:CFT}). Outputs 1 if this modulus is the conductor, and 0
otherwise. This is slightly faster than \kbd{bnrconductor} when the
character or subgroup is not primitive.

The library syntax is \fun{long}{bnrisconductor0}{GEN A, GEN B = NULL, GEN C = NULL}.

\subsec{bnrisgalois$(\var{bnr}, \var{gal}, H)$}\kbdsidx{bnrisgalois}\label{se:bnrisgalois}
Check whether the class field attached to the subgroup $H$ is Galois
over the subfield of \kbd{bnr.nf} fixed by the group \var{gal}, which can be
given as output by \tet{galoisinit}, or as a matrix or a vector of matrices as
output by \kbd{bnrgaloismatrix}, the second option being preferable, since it
saves the recomputation of the matrices.  Note: The function assumes that the
ray class field attached to bnr is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of
degree at most $3$ of the ray class field of conductor $9$ which are Galois
over the rationals.

\bprog
K=bnfinit(a^4-3*a^2+253009);
G=galoisinit(K);
B=bnrinit(K,9,1);
L1=[H|H<-subgrouplist(B,3), bnrisgalois(B,G,H)]
##
M=bnrgaloismatrix(B,G)
L2=[H|H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
##
@eprog
The second computation is much faster since \kbd{bnrgaloismatrix(B,G)} is
computed only once.

The library syntax is \fun{long}{bnrisgalois}{GEN bnr, GEN gal, GEN H}.

\subsec{bnrisprincipal$(\var{bnr},x,\{\fl=1\})$}\kbdsidx{bnrisprincipal}\label{se:bnrisprincipal}
\var{bnr} being the
number field data which is output by \kbd{bnrinit}$(,,1)$ and $x$ being an
ideal in any form, outputs the components of $x$ on the ray class group
generators in a way similar to \kbd{bnfisprincipal}. That is a 2-component
vector $v$ where $v[1]$ is the vector of components of $x$ on the ray class
group generators, $v[2]$ gives on the integral basis an element $\alpha$ such
that $x=\alpha\prod_ig_i^{x_i}$.

If $\fl=0$, outputs only $v_1$. In that case, \var{bnr} need not contain the
ray class group generators, i.e.~it may be created with \kbd{bnrinit}$(,,0)$
If $x$ is not coprime to the modulus of \var{bnr} the result is undefined.

The library syntax is \fun{GEN}{bnrisprincipal}{GEN bnr, GEN x, long flag}.
Instead of hardcoded  numerical flags,  one should rather
use
\fun{GEN}{isprincipalray}{GEN bnr, GEN x} for $\kbd{flag} = 0$, and if you
want generators:
\bprog
  bnrisprincipal(bnr, x, nf_GEN)
@eprog

\subsec{bnrrootnumber$(\var{bnr},\var{chi},\{\fl=0\})$}\kbdsidx{bnrrootnumber}\label{se:bnrrootnumber}
If $\chi=\var{chi}$ is a
\idx{character} over \var{bnr}, not necessarily primitive, let
$L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the attached
\idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the
complex number $W(\chi)$ of modulus 1 such that
%
$$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$
%
\noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_\chi(s) L(s,\chi)$ is
the enlarged L-function attached to $L$.

The generators of the ray class group are needed, and you can set $\fl=1$ if
the character is known to be primitive. Example:

\bprog
bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]], 1);
bnrrootnumber(bnr, [2,1])
@eprog\noindent
returns the root number of the character $\chi$ of
$\Cl_{7\infty_1\infty_2}(\Q(\sqrt{229}))$ defined by $\chi(g_1^ag_2^b)
= \zeta_1^{2a}\zeta_2^b$. Here $g_1, g_2$ are the generators of the
ray-class group given by \kbd{bnr.gen} and $\zeta_1 = e^{2i\pi/N_1},
\zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and
$g_2$ respectively ($N_1=6$ and $N_2=3$ as \kbd{bnr.cyc} readily tells us).

The library syntax is \fun{GEN}{bnrrootnumber}{GEN bnr, GEN chi, long flag, long prec}.

\subsec{bnrstark$(\var{bnr},\{\var{subgroup}\})$}\kbdsidx{bnrstark}\label{se:bnrstark}
\var{bnr} being as output by \kbd{bnrinit(,,1)}, finds a relative equation
for the class field corresponding to the modulus in \var{bnr} and the given
congruence subgroup (as usual, omit $\var{subgroup}$ if you want the whole ray
class group).

The main variable of \var{bnr} must not be $x$, and the ground field and the
class field must be totally real. When the base field is $\Q$, the vastly
simpler \tet{galoissubcyclo} is used instead. Here is an example:
\bprog
bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5, 1);
bnrstark(bnr)
@eprog\noindent
returns the ray class field of $\Q(\sqrt{3})$ modulo $5$. Usually, one wants
to apply to the result one of
\bprog
rnfpolredabs(bnf, pol, 16)     \\@com compute a reduced relative polynomial
rnfpolredabs(bnf, pol, 16 + 2) \\@com compute a reduced absolute polynomial
@eprog

The routine uses \idx{Stark units} and needs to find a suitable auxiliary
conductor, which may not exist when the class field is not cyclic over the
base. In this case \kbd{bnrstark} is allowed to return a vector of
polynomials defining \emph{independent} relative extensions, whose compositum
is the requested class field. It was decided that it was more useful
to keep the extra information thus made available, hence the user has to take
the compositum herself.

Even if it exists, the auxiliary conductor may be so large that later
computations become unfeasible. (And of course, Stark's conjecture may simply
be wrong.) In case of difficulties, try \tet{rnfkummer}:
\bprog
? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2, 1);
? bnrstark(bnr)
  ***   at top-level: bnrstark(bnr)
  ***                 ^-------------
  *** bnrstark: need 3919350809720744 coefficients in initzeta.
  *** Computation impossible.
? lift( rnfkummer(bnr) )
time = 24 ms.
%2 = x^2 + (1/3*y^6 - 11/3*y^4 + 8*y^2 - 5)
@eprog

The library syntax is \fun{GEN}{bnrstark}{GEN bnr, GEN subgroup = NULL, long prec}.

\subsec{dirzetak$(\var{nf},b)$}\kbdsidx{dirzetak}\label{se:dirzetak}
Gives as a vector the first $b$
coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
considered as a \idx{Dirichlet series}.

The library syntax is \fun{GEN}{dirzetak}{GEN nf, GEN b}.

\subsec{factornf$(x,t)$}\kbdsidx{factornf}\label{se:factornf}
This function is obsolete, use \kbd{nffactor}.

factorization of the univariate polynomial $x$
over the number field defined by the (univariate) polynomial $t$. $x$ may
have coefficients in $\Q$ or in the number field. The algorithm reduces to
factorization over $\Q$ (\idx{Trager}'s trick). The direct approach of
\tet{nffactor}, which uses \idx{van Hoeij}'s method in a relative setting, is
in general faster.

The main variable of $t$ must be of \emph{lower} priority than that of $x$
(see \secref{se:priority}). However if non-rational number field elements
occur (as polmods or polynomials) as coefficients of $x$, the variable of
these polmods \emph{must} be the same as the main variable of $t$. For
example

\bprog
? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \\@com these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
  ***   at top-level: factornf(x^2+Mod(z,z
  ***                 ^--------------------
  *** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
  ***   at top-level: factornf(x^2+z,y^2+1
  ***                 ^--------------------
  *** factornf: incorrect variable in rnf function.
@eprog

The library syntax is \fun{GEN}{polfnf}{GEN x, GEN t}.

\subsec{galoisexport$(\var{gal},\{\fl\})$}\kbdsidx{galoisexport}\label{se:galoisexport}
\var{gal} being be a Galois group as output by \tet{galoisinit},
export the underlying permutation group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
compute the index of the underlying abstract group in the GAP library:
\bprog
? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo \"IdGroup("s");\" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]
@eprog\noindent
This command also accepts subgroups returned by \kbd{galoissubgroups}.

To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for
instance), the following GAP function may be useful:
\bprog
PermToGP := function(p, n)
  return Permuted([1..n],p);
end;

gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
  (16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
gap> PermToGP(p,32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
  29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
@eprog

The library syntax is \fun{GEN}{galoisexport}{GEN gal, long flag}.

\subsec{galoisfixedfield$(\var{gal},\var{perm},\{\fl\},\{v=y\})$}\kbdsidx{galoisfixedfield}\label{se:galoisfixedfield}
\var{gal} being be a Galois group as output by \tet{galoisinit} and
\var{perm} an element of $\var{gal}.group$, a vector of such elements
or a subgroup of \var{gal} as returned by galoissubgroups,
computes the fixed field of \var{gal} by the automorphism defined by the
permutations \var{perm} of the roots $\var{gal}.roots$. $P$ is guaranteed to
be squarefree modulo $\var{gal}.p$.

If no flags or $\fl=0$, output format is the same as for \tet{nfsubfield},
returning $[P,x]$ such that $P$ is a polynomial defining the fixed field, and
$x$ is a root of $P$ expressed as a polmod in $\var{gal}.pol$.

If $\fl=1$ return only the polynomial $P$.

If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
factorization of $\var{gal}.pol$ over the field defined by $P$, where
variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
must be less than the priority of the variable of $\var{gal}.pol$ (see
\secref{se:priority}). Example:

\bprog
? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]
@eprog\noindent
computes the factorization  $x^4+1=(x^2-\sqrt{-2}x-1)(x^2+\sqrt{-2}x-1)$

The library syntax is \fun{GEN}{galoisfixedfield}{GEN gal, GEN perm, long flag, long v = -1} where \kbd{v} is a variable number.

\subsec{galoisgetpol$(a,\{b\},\{s\})$}\kbdsidx{galoisgetpol}\label{se:galoisgetpol}
Query the galpol package for a polynomial with Galois group isomorphic to
GAP4(a,b), totally real if $s=1$ (default) and totally complex if $s=2$. The
output is a vector [\kbd{pol}, \kbd{den}] where

\item  \kbd{pol} is the polynomial of degree $a$

\item \kbd{den} is the denominator of \kbd{nfgaloisconj(pol)}.
Pass it as an optional argument to \tet{galoisinit} or \tet{nfgaloisconj} to
speed them up:
\bprog
? [pol,den] = galoisgetpol(64,4,1);
? G = galoisinit(pol);
time = 352ms
? galoisinit(pol, den);  \\ passing 'den' speeds up the computation
time = 264ms
? % == %`
%4 = 1  \\ same answer
@eprog
If $b$ and $s$ are omitted, return the number of isomorphism classes of
groups of order $a$.

The library syntax is \fun{GEN}{galoisgetpol}{long a, long b, long s}.
Also available is \fun{GEN}{galoisnbpol}{long a} when $b$ and $s$
are omitted.

\subsec{galoisidentify$(\var{gal})$}\kbdsidx{galoisidentify}\label{se:galoisidentify}
\var{gal} being be a Galois group as output by \tet{galoisinit},
output the isomorphism class of the underlying abstract group as a
two-components vector $[o,i]$, where $o$ is the group order, and $i$ is the
group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina
Eick and Eamonn O'Brien.

This command also accepts subgroups returned by \kbd{galoissubgroups}.

The current implementation is limited to degree less or equal to $127$.
Some larger ``easy'' orders are also supported.

The output is similar to the output of the function \kbd{IdGroup} in GAP4.
Note that GAP4 \kbd{IdGroup} handles all groups of order less than $2000$
except $1024$, so you can use \tet{galoisexport} and GAP4 to identify large
Galois groups.

The library syntax is \fun{GEN}{galoisidentify}{GEN gal}.

\subsec{galoisinit$(\var{pol},\{\var{den}\})$}\kbdsidx{galoisinit}\label{se:galoisinit}
Computes the Galois group
and all necessary information for computing the fixed fields of the
Galois extension $K/\Q$ where $K$ is the number field defined by
$\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
Galois with Galois group ``weakly'' super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial
of order strictly less than $36$ is Galois or not.

The algorithm used is an improved version of the paper
``An efficient algorithm for the computation of Galois automorphisms'',
Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.

A group $G$ is said to be ``weakly'' super-solvable if there exists a
normal series

$\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1}
\triangleleft H_n$

such that each $H_i$ is normal in $G$ and for $i<n$, each quotient group
$H_{i+1}/H_i$ is cyclic, and either $H_n=G$ (then $G$ is super-solvable) or
$G/H_n$ is isomorphic to either $A_4$ or $S_4$.

In practice, almost all small groups are WKSS, the exceptions having order
36(1 exception), 48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and $\geq
108$.

This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
For instance:

\bprog
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))
@eprog

The output is an 8-component vector \var{gal}.

$\var{gal}[1]$ contains the polynomial \var{pol}
(\kbd{\var{gal}.pol}).

$\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
modulo $p$ , $e$ is an integer and $q=p^e$ (\kbd{\var{gal}.mod}) is the
modulus of the roots in \kbd{\var{gal}.roots}.

$\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
\var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
(\kbd{\var{gal}.roots}).

$\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
$p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.

$\var{gal}[5]$ is a multiple of the least common denominator of the
automorphisms expressed as polynomial in a root of \var{pol}.

$\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
permutations of $L$ (\kbd{\var{gal}.group}).

$\var{gal}[7]$ is a generating subset $S=[s_1,\ldots,s_g]$ of $G$
expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).

$\var{gal}[8]$ contains the relative orders $[o_1,\ldots,o_g]$ of
the generators of $S$ (\kbd{\var{gal}.orders}).

Let $H_n$ be as above, we have the following properties:

\quad\item if $G/H_n\simeq A_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3]$.

\quad\item if $G/H_n\simeq S_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3,2]$.

\quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
$[s_1,\ldots,s_g]$ is normal, with the exception of $i=g-2$ in the
$A_4$ case and of $i=g-3$ in the $S_A$ case.

\quad\item the relative order $o_i$ of $s_i$ is its order in the
quotient group $G/\langle s_1,\ldots,s_{i-1}\rangle$, with the same
exceptions.

\quad\item for any $x\in G$ there exists a unique family
$[e_1,\ldots,e_g]$ such that (no exceptions):

-- for $1\leq i \leq g$ we have $0\leq e_i<o_i$

-- $x=g_1^{e_1}g_2^{e_2}\ldots g_n^{e_n}$

If present $den$ must be a suitable value for $\var{gal}[5]$.

The library syntax is \fun{GEN}{galoisinit}{GEN pol, GEN den = NULL}.

\subsec{galoisisabelian$(\var{gal},\{\fl=0\})$}\kbdsidx{galoisisabelian}\label{se:galoisisabelian}
\var{gal} being as output by \kbd{galoisinit}, return $0$ if
\var{gal} is not an abelian group, and the HNF matrix of \var{gal} over
\kbd{gal.gen} if $fl=0$, $1$ if $fl=1$.

This command also accepts subgroups returned by \kbd{galoissubgroups}.

The library syntax is \fun{GEN}{galoisisabelian}{GEN gal, long flag}.

\subsec{galoisisnormal$(\var{gal},\var{subgrp})$}\kbdsidx{galoisisnormal}\label{se:galoisisnormal}
\var{gal} being as output by \kbd{galoisinit}, and \var{subgrp} a subgroup
of \var{gal} as output by \kbd{galoissubgroups},return $1$ if \var{subgrp} is a
normal subgroup of \var{gal}, else return 0.

This command also accepts subgroups returned by \kbd{galoissubgroups}.

The library syntax is \fun{long}{galoisisnormal}{GEN gal, GEN subgrp}.

\subsec{galoispermtopol$(\var{gal},\var{perm})$}\kbdsidx{galoispermtopol}\label{se:galoispermtopol}
\var{gal} being a
Galois group as output by \kbd{galoisinit} and \var{perm} a element of
$\var{gal}.group$, return the polynomial defining the Galois
automorphism, as output by \kbd{nfgaloisconj}, attached to the
permutation \var{perm} of the roots $\var{gal}.roots$. \var{perm} can
also be a vector or matrix, in this case, \kbd{galoispermtopol} is
applied to all components recursively.

\noindent Note that
\bprog
G = galoisinit(pol);
galoispermtopol(G, G[6])~
@eprog\noindent
is equivalent to \kbd{nfgaloisconj(pol)}, if degree of \var{pol} is greater
or equal to $2$.

The library syntax is \fun{GEN}{galoispermtopol}{GEN gal, GEN perm}.

\subsec{galoissubcyclo$(N,H,\{\var{fl}=0\},\{v\})$}\kbdsidx{galoissubcyclo}\label{se:galoissubcyclo}
Computes the subextension
of $\Q(\zeta_n)$ fixed by the subgroup $H \subset (\Z/n\Z)^*$. By the
Kronecker-Weber theorem, all abelian number fields can be generated in this
way (uniquely if $n$ is taken to be minimal).

\noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows

\item $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
integer or an integer modulo $n$; or a vector of generators.

\item $N$ the output of \kbd{znstar($n$)}. $H$ as in the first case
above, or a matrix, taken to be a HNF left divisor of the SNF for $(\Z/n\Z)^*$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.

\item $N$ the output of \kbd{bnrinit(bnfinit(y), $m$, 1)} where $m$ is a
module. $H$ as in the first case, or a matrix taken to be a HNF left
divisor of the SNF for the ray class group modulo $m$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.

In this last case, beware that $H$ is understood relatively to $N$; in
particular, if the infinite place does not divide the module, e.g if $m$ is
an integer, then it is not a subgroup of $(\Z/n\Z)^*$, but of its quotient by
$\{\pm 1\}$.

If $fl=0$, compute a polynomial (in the variable \var{v}) defining
the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of $(\Z/n\Z)^*$.

If $fl=1$, compute only the conductor of the abelian extension, as a module.

If $fl=2$, output $[pol, N]$, where $pol$ is the polynomial as output when
$fl=0$ and $N$ the conductor as output when $fl=1$.

The following function can be used to compute all subfields of
$\Q(\zeta_n)$ (of exact degree \kbd{d}, if \kbd{d} is set):
\bprog
polsubcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
  IndexBound = if (d < 0, n, [d]);
  bnr = bnrinit(bnfinit(y), [n,[1]], 1);
  L = subgrouplist(bnr, IndexBound, 1);
  vector(#L,i, galoissubcyclo(bnr,L[i]));
}
@eprog\noindent
Setting \kbd{L = subgrouplist(bnr, IndexBound)} would produce subfields of exact
conductor $n\infty$.

The library syntax is \fun{GEN}{galoissubcyclo}{GEN N, GEN H = NULL, long fl, long v = -1} where \kbd{v} is a variable number.

\subsec{galoissubfields$(G,\{\fl=0\},\{v\})$}\kbdsidx{galoissubfields}\label{se:galoissubfields}
Outputs all the subfields of the Galois group \var{G}, as a vector.
This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of
\var{flag} is the same as for \kbd{galoisfixedfield}.

The library syntax is \fun{GEN}{galoissubfields}{GEN G, long flag, long v = -1} where \kbd{v} is a variable number.

\subsec{galoissubgroups$(G)$}\kbdsidx{galoissubgroups}\label{se:galoissubgroups}
Outputs all the subgroups of the Galois group \kbd{gal}. A subgroup is a
vector [\var{gen}, \var{orders}], with the same meaning
as for $\var{gal}.gen$ and $\var{gal}.orders$. Hence \var{gen} is a vector of
permutations generating the subgroup, and \var{orders} is the relatives
orders of the generators. The cardinality of a subgroup is the product of the
relative orders. Such subgroup can be used instead of a Galois group in the
following command: \kbd{galoisisabelian}, \kbd{galoissubgroups},
\kbd{galoisexport} and \kbd{galoisidentify}.

To get the subfield fixed by a subgroup \var{sub} of \var{gal}, use
\bprog
galoisfixedfield(gal,sub[1])
@eprog

The library syntax is \fun{GEN}{galoissubgroups}{GEN G}.

\subsec{idealadd$(\var{nf},x,y)$}\kbdsidx{idealadd}\label{se:idealadd}
Sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
result is given in HNF.
\bprog
 ? K = nfinit(x^2 + 1);
 ? a = idealadd(K, 2, x + 1)  \\ ideal generated by 2 and 1+I
 %2 =
 [2 1]

 [0 1]
 ? pr = idealprimedec(K, 5)[1];  \\ a prime ideal above 5
 ? idealadd(K, a, pr)     \\ coprime, as expected
 %4 =
 [1 0]

 [0 1]
@eprog\noindent
This function cannot be used to add arbitrary $\Z$-modules, since it assumes
that its arguments are ideals:
\bprog
  ? b = Mat([1,0]~);
  ? idealadd(K, b, b)     \\ only square t_MATs represent ideals
  *** idealadd: non-square t_MAT in idealtyp.
  ? c = [2, 0; 2, 0]; idealadd(K, c, c)   \\ non-sense
  %6 =
  [2 0]

  [0 2]
  ? d = [1, 0; 0, 2]; idealadd(K, d, d)   \\ non-sense
  %7 =
  [1 0]

  [0 1]

@eprog\noindent In the last two examples, we get wrong results since the
matrices $c$ and $d$ do not correspond to an ideal: the $\Z$-span of their
columns (as usual interpreted as coordinates with respect to the integer basis
\kbd{K.zk}) is not an $O_K$-module. To add arbitrary $\Z$-modules generated
by the columns of matrices $A$ and $B$, use \kbd{mathnf(concat(A,B))}.

The library syntax is \fun{GEN}{idealadd}{GEN nf, GEN x, GEN y}.

\subsec{idealaddtoone$(\var{nf},x,\{y\})$}\kbdsidx{idealaddtoone}\label{se:idealaddtoone}
$x$ and $y$ being two co-prime
integral ideals (given in any form), this gives a two-component row vector
$[a,b]$ such that $a\in x$, $b\in y$ and $a+b=1$.

The alternative syntax $\kbd{idealaddtoone}(\var{nf},v)$, is supported, where
$v$ is a $k$-component vector of ideals (given in any form) which sum to
$\Z_K$. This outputs a $k$-component vector $e$ such that $e[i]\in x[i]$ for
$1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.

The library syntax is \fun{GEN}{idealaddtoone0}{GEN nf, GEN x, GEN y = NULL}.

\subsec{idealappr$(\var{nf},x,\{\fl\})$}\kbdsidx{idealappr}\label{se:idealappr}
If $x$ is a fractional ideal
(given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
all prime ideals $\goth{p}$ such that the valuation of $x$ at $\goth{p}$ is
non-zero, we have $v_{\goth{p}}(\alpha)=v_{\goth{p}}(x)$, and
$v_{\goth{p}}(\alpha)\ge0$ for all other $\goth{p}$.

The argument $x$ may also be given as a prime ideal factorization, as
output by \kbd{idealfactor}, but allowing zero exponents.
This yields an element $\alpha$ such that for all prime ideals $\goth{p}$
occurring in $x$, $v_{\goth{p}}(\alpha) = v_{\goth{p}}(x)$;
for all other prime ideals, $v_{\goth{p}}(\alpha)\ge0$.

flag is deprecated (ignored), kept for backward compatibility

The library syntax is \fun{GEN}{idealappr0}{GEN nf, GEN x, long flag}.
Use directly \fun{GEN}{idealappr}{GEN nf, GEN x} since \fl is ignored.

\subsec{idealchinese$(\var{nf},x,\{y\})$}\kbdsidx{idealchinese}\label{se:idealchinese}
$x$ being a prime ideal factorization
(i.e.~a 2 by 2 matrix whose first column contains prime ideals, and the second
column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by
the ideals in $x$, computes an element $b$ such that

$v_{\goth{p}}(b - y_{\goth{p}}) \geq v_{\goth{p}}(x)$ for all prime ideals
in $x$ and $v_{\goth{p}}(b)\geq 0$ for all other $\goth{p}$.

\bprog
? K = nfinit(t^2-2);
? x = idealfactor(K, 2^2*3)
%2 =
[[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4]

[           [3, [3, 0]~, 1, 2, 1] 1]
? y = [t,1];
? idealchinese(K, x, y)
%4 = [4, -3]~
@eprog

The argument $x$ may also be of the form $[x, s]$ where the first component
is as above and $s$ is a vector of signs, with $r_1$ components
$s_i$ in $\{-1,0,1\}$:
if $\sigma_i$ denotes the $i$-th real embedding of the number field,
the element $b$ returned satisfies further
$s_i \kbd{sign}(\sigma_i(b)) \geq 0$ for all $i$. In other words, the sign is
fixed to $s_i$ at the $i$-th embedding whenever $s_i$ is non-zero.
\bprog
? idealchinese(K, [x, [1,1]], y)
%5 = [16, -3]~
? idealchinese(K, [x, [-1,-1]], y)
%6 = [-20, -3]~
? idealchinese(K, [x, [1,-1]], y)
%7 = [4, -3]~
@eprog

If $y$ is omitted, return a data structure which can be used in
place of $x$ in later calls and allows to solve many chinese remainder
problems for a given $x$ more efficiently.
\bprog
? C = idealchinese(K, [x, [1,1]]);
? idealchinese(K, C, y) \\ as above
%9 = [16, -3]~
? for(i=1,10^4, idealchinese(K,C,y))  \\ ... but faster !
time = 80 ms.
? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))
time = 224 ms.
@eprog
Finally, this structure is itself allowed in place of $x$, the
new $s$ overriding the one already present in the structure. This allows to
initialize for different sign conditions more efficiently when the underlying
ideal factorization remains the same.
\bprog
? D = idealchinese(K, [C, [1,-1]]);   \\ replaces [1,1]
? idealchinese(K, D, y)
%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))
time = 40 ms.   \\ faster than starting from scratch
? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))
time = 128 ms.
@eprog

The library syntax is \fun{GEN}{idealchinese}{GEN nf, GEN x, GEN y = NULL}.
Also available is
\fun{GEN}{idealchineseinit}{GEN nf, GEN x} when $y = \kbd{NULL}$.

\subsec{idealcoprime$(\var{nf},x,y)$}\kbdsidx{idealcoprime}\label{se:idealcoprime}
Given two integral ideals $x$ and $y$
in the number field $\var{nf}$, returns a $\beta$ in the field,
such that $\beta\cdot x$ is an integral ideal coprime to $y$.

The library syntax is \fun{GEN}{idealcoprime}{GEN nf, GEN x, GEN y}.

\subsec{idealdiv$(\var{nf},x,y,\{\fl=0\})$}\kbdsidx{idealdiv}\label{se:idealdiv}
Quotient $x\cdot y^{-1}$ of the two ideals $x$ and $y$ in the number
field $\var{nf}$. The result is given in HNF.

If $\fl$ is non-zero, the quotient $x \cdot y^{-1}$ is assumed to be an
integral ideal. This can be much faster when the norm of the quotient is
small even though the norms of $x$ and $y$ are large.

The library syntax is \fun{GEN}{idealdiv0}{GEN nf, GEN x, GEN y, long flag}.
Also available are \fun{GEN}{idealdiv}{GEN nf, GEN x, GEN y}
($\fl=0$) and \fun{GEN}{idealdivexact}{GEN nf, GEN x, GEN y} ($\fl=1$).

\subsec{idealfactor$(\var{nf},x)$}\kbdsidx{idealfactor}\label{se:idealfactor}
Factors into prime ideal powers the
ideal $x$ in the number field $\var{nf}$. The output format is similar to the
\kbd{factor} function, and the prime ideals are represented in the form
output by the \kbd{idealprimedec} function.

The library syntax is \fun{GEN}{idealfactor}{GEN nf, GEN x}.

\subsec{idealfactorback$(\var{nf},f,\{e\},\{\fl = 0\})$}\kbdsidx{idealfactorback}\label{se:idealfactorback}
Gives back the ideal corresponding to a factorization. The integer $1$
corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.

If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced by \kbd{idealfactor}.
\bprog
? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]

[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]

? idealfactorback(nf, %)
%2 =
[10 4]

[0  2]

? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]

[0  2]

? % == idealhnf(nf, 4 + 2*y)
%4 = 1
@eprog
If \kbd{flag} is non-zero, perform ideal reductions (\tet{idealred}) along the
way. This is most useful if the ideals involved are all \emph{extended}
ideals (for instance with trivial principal part), so that the principal parts
extracted by \kbd{idealred} are not lost. Here is an example:
\bprog
? f = vector(#f, i, [f[i], [;]]);  \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~
@eprog
The extended ideal returned in \kbd{\%6} is the trivial ideal $1$, extended
with a principal generator given in factored form. We use \tet{nffactorback}
to recover it in standard form.

The library syntax is \fun{GEN}{idealfactorback}{GEN nf, GEN f, GEN e = NULL, long flag}.

\subsec{idealfrobenius$(\var{nf},\var{gal},\var{pr})$}\kbdsidx{idealfrobenius}\label{se:idealfrobenius}
Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
Galois extension with Galois group given \kbd{gal=galoisinit(nf)},
and that \var{pr} is an unramified prime ideal $\goth{p}$ in \kbd{prid}
format.
This function returns a permutation of \kbd{gal.group} which defines
the Frobenius element $\Frob_{\goth{p}}$ attached to $\goth{p}$.
If $p$ is the unique prime number in $\goth{p}$, then
$\Frob(x)\equiv x^p\mod\goth{p}$ for all $x\in\Z_K$.
\bprog
? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8
@eprog\noindent This is correct since $101\equiv 8\mod{31}$.

The library syntax is \fun{GEN}{idealfrobenius}{GEN nf, GEN gal, GEN pr}.

\subsec{idealhnf$(\var{nf},u,\{v\})$}\kbdsidx{idealhnf}\label{se:idealhnf}
Gives the \idx{Hermite normal form} of the ideal $u\Z_K+v\Z_K$, where $u$
and $v$ are elements of the number field $K$ defined by \var{nf}.
\bprog
? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]

[0 1 0]

[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]

[0 1/6 0]

[0 0 1/6]
@eprog

If $b$ is omitted, returns the HNF of the ideal defined by $u$: $u$ may be an
algebraic number (defining a principal ideal), a maximal ideal (as given by
\kbd{idealprimedec} or \kbd{idealfactor}), or a matrix whose columns give
generators for the ideal. This last format is a little complicated, but
useful to reduce general modules to the canonical form once in a while:

\item if strictly less than $N = [K:\Q]$ generators are given, $u$
is the $\Z_K$-module they generate,

\item if $N$ or more are given, it is \emph{assumed} that they form a
$\Z$-basis of the ideal, in particular that the matrix has maximal rank $N$.
This acts as \kbd{mathnf} since the $\Z_K$-module structure is (taken for
granted hence) not taken into account in this case.
\bprog
? idealhnf(nf, idealprimedec(nf,2)[1])
%4 =
[2 0 0]

[0 1 0]

[0 0 1]
? idealhnf(nf, [1,2;2,3;3,4])
%5 =
[1 0 0]

[0 1 0]

[0 0 1]
@eprog\noindent Finally, when $K$ is quadratic with discriminant $D_K$, we
allow $u =$ \kbd{Qfb(a,b,c)}, provided $b^2 - 4ac = D_K$. As usual,
this represents the ideal $a \Z + (1/2)(-b + \sqrt{D_K}) \Z$.
\bprog
? K = nfinit(x^2 - 60); K.disc
%1 = 60
? idealhnf(K, qfbprimeform(60,2))
%2 =
[2 1]

[0 1]
? idealhnf(K, Qfb(1,2,3))
  ***   at top-level: idealhnf(K,Qfb(1,2,3
  ***                 ^--------------------
  *** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.
@eprog

The library syntax is \fun{GEN}{idealhnf0}{GEN nf, GEN u, GEN v = NULL}.
Also available is \fun{GEN}{idealhnf}{GEN nf, GEN a}.

\subsec{idealintersect$(\var{nf},A,B)$}\kbdsidx{idealintersect}\label{se:idealintersect}
Intersection of the two ideals
$A$ and $B$ in the number field $\var{nf}$. The result is given in HNF.
\bprog
? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]

[0 2]
@eprog

This function does not apply to general $\Z$-modules, e.g.~orders, since its
arguments are replaced by the ideals they generate. The following script
intersects $\Z$-modules $A$ and $B$ given by matrices of compatible
dimensions with integer coefficients:
\bprog
ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B)));
  mathnf( A * Ker[1..#A,] )
}
@eprog

The library syntax is \fun{GEN}{idealintersect}{GEN nf, GEN A, GEN B}.

\subsec{idealinv$(\var{nf},x)$}\kbdsidx{idealinv}\label{se:idealinv}
Inverse of the ideal $x$ in the
number field $\var{nf}$, given in HNF. If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. inverting $[I,t]$, yields $[I^{-1}, 1/t]$.

The library syntax is \fun{GEN}{idealinv}{GEN nf, GEN x}.

\subsec{ideallist$(\var{nf},\var{bound},\{\fl=4\})$}\kbdsidx{ideallist}\label{se:ideallist}
Computes the list
of all ideals of norm less or equal to \var{bound} in the number field
\var{nf}. The result is a row vector with exactly \var{bound} components.
Each component is itself a row vector containing the information about
ideals of a given norm, in no specific order, depending on the value of
$\fl$:

The possible values of $\fl$ are:

\quad 0: give the \var{bid} attached to the ideals, without generators.

\quad 1: as 0, but include the generators in the \var{bid}.

\quad 2: in this case, \var{nf} must be a \var{bnf} with units. Each
component is of the form $[\var{bid},U]$, where \var{bid} is as case 0
and $U$ is a vector of discrete logarithms of the units. More precisely, it
gives the \kbd{ideallog}s with respect to \var{bid} of \kbd{bnf.tufu}.
This structure is technical, and only meant to be used in conjunction with
\tet{bnrclassnolist} or \tet{bnrdisclist}.

\quad 3: as 2, but include the generators in the \var{bid}.

\quad 4: give only the HNF of the ideal.

\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]]  \\@com A single ideal of norm 1
? #L[65]
%4 = 4               \\@com There are 4 ideals of norm 4 in $\Z[i]$
@eprog
If one wants more information, one could do instead:
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%4 = [[25, 18; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]
@eprog\noindent where we ask for the structures of the $(\Z[i]/I)^*$ for all
three ideals of norm $25$. In fact, for all moduli with finite part of norm
$25$ and trivial Archimedean part, as the last 3 commands show. See
\tet{ideallistarch} to treat general moduli.

The library syntax is \fun{GEN}{ideallist0}{GEN nf, long bound, long flag}.

\subsec{ideallistarch$(\var{nf},\var{list},\var{arch})$}\kbdsidx{ideallistarch}\label{se:ideallistarch}
\var{list} is a vector of vectors of bid's, as output by \tet{ideallist} with
flag $0$ to $3$. Return a vector of vectors with the same number of
components as the original \var{list}. The leaves give information about
moduli whose finite part is as in original list, in the same order, and
Archimedean part is now \var{arch} (it was originally trivial). The
information contained is of the same kind as was present in the input; see
\tet{ideallist}, in particular the meaning of \fl.

\bprog
? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0]                         \\@com two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \\@com add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
@eprog
Of course, the results above are obvious: adding $t$ places at infinity will
add $t$ copies of $\Z/2\Z$ to $(\Z_K/f)^*$. The following application
is more typical:
\bprog
? L = ideallist(bnf, 100, 2);        \\@com units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
? H[98];
%4 = [2, 12, 2]
@eprog

The library syntax is \fun{GEN}{ideallistarch}{GEN nf, GEN list, GEN arch}.

\subsec{ideallog$(\{\var{nf}\},x,\var{bid})$}\kbdsidx{ideallog}\label{se:ideallog}
$\var{nf}$ is a number field,
\var{bid} is as output by \kbd{idealstar(nf, D, \dots)} and $x$ a
non-necessarily integral element of \var{nf} which must have valuation
equal to 0 at all prime ideals in the support of $\kbd{D}$. This function
computes the discrete logarithm of $x$ on the generators given in
\kbd{\var{bid}.gen}. In other words, if $g_i$ are these generators, of orders
$d_i$ respectively, the result is a column vector of integers $(x_i)$ such
that $0\le x_i<d_i$ and
$$x \equiv \prod_i g_i^{x_i} \pmod{\ ^*D}\enspace.$$
Note that when the support of \kbd{D} contains places at infinity, this
congruence implies also sign conditions on the attached real embeddings.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.

When \var{nf} is omitted, take it to be the rational number field. In that
case, $x$ must be a \typ{INT} and \var{bid} must have been initialized by
\kbd{idealstar(,N)}.

The library syntax is \fun{GEN}{ideallog}{GEN nf = NULL, GEN x, GEN bid}.
Also available is
\fun{GEN}{Zideallog}{GEN bid, GEN x} when \kbd{nf} is \kbd{NULL}.

\subsec{idealmin$(\var{nf},\var{ix},\{\var{vdir}\})$}\kbdsidx{idealmin}\label{se:idealmin}
\emph{This function is useless and kept for backward compatibility only,
use \kbd{idealred}}. Computes a pseudo-minimum of the ideal $x$ in the
direction \var{vdir} in the number field \var{nf}.

The library syntax is \fun{GEN}{idealmin}{GEN nf, GEN ix, GEN vdir = NULL}.

\subsec{idealmul$(\var{nf},x,y,\{\fl=0\})$}\kbdsidx{idealmul}\label{se:idealmul}
Ideal multiplication of the ideals $x$ and $y$ in the number field
\var{nf}; the result is the ideal product in HNF. If either $x$ or $y$
are extended ideals\sidx{ideal (extended)}, their principal part is suitably
updated: i.e. multiplying $[I,t]$, $[J,u]$ yields $[IJ, tu]$; multiplying
$I$ and $[J, u]$ yields $[IJ, u]$.
\bprog
? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 =
[4 2]

[0 2]
? idealmul(nf, [2, x], x+1)        \\ extended ideal * ideal
%3 = [[4, 2; 0, 2], x]
? idealmul(nf, [2, x], [x+1, x])   \\ two extended ideals
%4 = [[4, 2; 0, 2], [-1, 0]~]
@eprog\noindent
If $\fl$ is non-zero, reduce the result using \kbd{idealred}.

The library syntax is \fun{GEN}{idealmul0}{GEN nf, GEN x, GEN y, long flag}.

\noindent See also
\fun{GEN}{idealmul}{GEN nf, GEN x, GEN y} ($\fl=0$) and
\fun{GEN}{idealmulred}{GEN nf, GEN x, GEN y} ($\fl\neq0$).

\subsec{idealnorm$(\var{nf},x)$}\kbdsidx{idealnorm}\label{se:idealnorm}
Computes the norm of the ideal~$x$ in the number field~$\var{nf}$.

The library syntax is \fun{GEN}{idealnorm}{GEN nf, GEN x}.

\subsec{idealnumden$(\var{nf},x)$}\kbdsidx{idealnumden}\label{se:idealnumden}
Returns $[A,B]$, where $A,B$ are coprime integer ideals
such that $x = A/B$, in the number field $\var{nf}$.
\bprog
? nf = nfinit(x^2+1);
? idealnumden(nf, (x+1)/2)
%2 = [[1, 0; 0, 1], [2, 1; 0, 1]]
@eprog

The library syntax is \fun{GEN}{idealnumden}{GEN nf, GEN x}.

\subsec{idealpow$(\var{nf},x,k,\{\fl=0\})$}\kbdsidx{idealpow}\label{se:idealpow}
Computes the $k$-th power of
the ideal $x$ in the number field $\var{nf}$; $k\in\Z$.
If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. raising $[I,t]$ to the $k$-th power, yields $[I^k, t^k]$.

If $\fl$ is non-zero, reduce the result using \kbd{idealred}, \emph{throughout
the (binary) powering process}; in particular, this is \emph{not} the same
as $\kbd{idealpow}(\var{nf},x,k)$ followed by reduction.

The library syntax is \fun{GEN}{idealpow0}{GEN nf, GEN x, GEN k, long flag}.

\noindent See also
\fun{GEN}{idealpow}{GEN nf, GEN x, GEN k} and
\fun{GEN}{idealpows}{GEN nf, GEN x, long k} ($\fl = 0$).
Corresponding to $\fl=1$ is \fun{GEN}{idealpowred}{GEN nf, GEN vp, GEN k}.

\subsec{idealprimedec$(\var{nf},p,\{f=0\})$}\kbdsidx{idealprimedec}\label{se:idealprimedec}
Computes the prime ideal
decomposition of the (positive) prime number $p$ in the number field $K$
represented by \var{nf}. If a non-prime $p$ is given the result is undefined.
If $f$ is present and non-zero, restrict the result to primes of residue
degree $\leq f$.

The result is a vector of \tev{prid} structures, each representing one of the
prime ideals above $p$ in the number field $\var{nf}$. The representation
$\kbd{pr}=[p,a,e,f,\var{mb}]$ of a prime ideal means the following: $a$ and
is an algebraic integer in the maximal order $\Z_K$ and the prime ideal is
equal to $\goth{p} = p\Z_K + a\Z_K$;
$e$ is the ramification index; $f$ is the residual index;
finally, \var{mb} is the multiplication table attached to the algebraic
integer $b$ is such that $\goth{p}^{-1}=\Z_K+ b/ p\Z_K$, which is used
internally to compute valuations. In other words if $p$ is inert,
then \var{mb} is the integer $1$, and otherwise it's a square \typ{MAT}
whose $j$-th column is $b \cdot \kbd{nf.zk[j]}$.

The algebraic number $a$ is guaranteed to have a
valuation equal to 1 at the prime ideal (this is automatic if $e>1$).

The components of \kbd{pr} should be accessed by member functions: \kbd{pr.p},
\kbd{pr.e}, \kbd{pr.f}, and \kbd{pr.gen} (returns the vector $[p,a]$):
\bprog
? K = nfinit(x^3-2);
? P = idealprimedec(K, 5);
? #P       \\ 2 primes above 5 in Q(2^(1/3))
%3 = 2
? [p1,p2] = P;
? [p1.e, p1.f]    \\ the first is unramified of degree 1
%5 = [1, 1]
? [p2.e, p2.f]    \\ the second is unramified of degree 2
%6 = [1, 2]
? p1.gen
%7 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %[2])  \\ a uniformizer for p1
%8 = Mod(x + 2, x^3 - 2)
? #idealprimedec(K, 5, 1) \\ restrict to f = 1
%9 = 1            \\ now only p1
@eprog

The library syntax is \fun{GEN}{idealprimedec_limit_f}{GEN nf, GEN p, long f}.

\subsec{idealprincipalunits$(\var{nf},\var{pr},k)$}\kbdsidx{idealprincipalunits}\label{se:idealprincipalunits}
Given a prime ideal in \tet{idealprimedec} format,
returns the multiplicative group $(1 + \var{pr}) / (1 + \var{pr}^k)$ as an
abelian group. This function is much faster than \tet{idealstar} when the
norm of \var{pr} is large, since it avoids (useless) work in the
multiplicative group of the residue field.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1];
? G = idealprincipalunits(K, P, 20);
? G.cyc
%4 = [512, 256, 4]   \\ Z/512 x Z/256 x Z/4
? G.gen
%5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order
@eprog

The library syntax is \fun{GEN}{idealprincipalunits}{GEN nf, GEN pr, long k}.

\subsec{idealramgroups$(\var{nf},\var{gal},\var{pr})$}\kbdsidx{idealramgroups}\label{se:idealramgroups}
Let $K$ be the number field defined by \var{nf} and assume that $K/\Q$ is
Galois with Galois group $G$ given by \kbd{gal=galoisinit(nf)}.
Let \var{pr} be the prime ideal $\goth{P}$ in prid format.
This function returns a vector $g$ of subgroups of \kbd{gal}
as follow:

\item \kbd{g[1]} is the decomposition group of $\goth{P}$,

\item \kbd{g[2]} is $G_0(\goth{P})$, the inertia group of $\goth{P}$,

and for $i\geq 2$,

\item \kbd{g[i]} is $G_{i-2}(\goth{P})$, the $i-2$-th
\idx{ramification group} of $\goth{P}$.

\noindent The length of $g$ is the number of non-trivial groups in the
sequence, thus is $0$ if $e=1$ and $f=1$, and $1$ if $f>1$ and $e=1$.
The following function computes the cardinality of a subgroup of $G$,
as given by the components of $g$:
\bprog
card(H) =my(o=H[2]); prod(i=1,#o,o[i]);
@eprog
\bprog
? nf=nfinit(x^6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];
? g = idealramgroups(nf, gal, pr);
? apply(card,g)
%3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i
@eprog

\bprog
? nf=nfinit(x^6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr)[2]
%5 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
? nfdisc(galoisfixedfield(gal,iso,1))
%6 = -3
@eprog\noindent The field fixed by the inertia group of $2$ is not ramified at
$2$.

The library syntax is \fun{GEN}{idealramgroups}{GEN nf, GEN gal, GEN pr}.

\subsec{idealred$(\var{nf},I,\{v=0\})$}\kbdsidx{idealred}\label{se:idealred}
\idx{LLL} reduction of
the ideal $I$ in the number field $K$ attached to \var{nf}, along the
direction $v$. The $v$ parameter is best left omitted, but if it is present,
it must be an $\kbd{nf.r1} + \kbd{nf.r2}$-component vector of
\emph{non-negative} integers. (What counts is the relative magnitude of the
entries: if all entries are equal, the effect is the same as if the vector
had been omitted.)

This function finds an $a\in K^*$ such that $J = (a)I$ is
``small'' and integral (see the end for technical details).
The result is the Hermite normal form of
the ``reduced'' ideal $J$.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,5)[1];
? idealred(K, P)
%3 =
[1 0]

[0 1]
@eprog\noindent More often than not, a \idx{principal ideal} yields the unit
ideal as above. This is a quick and dirty way to check if ideals are principal,
but it is not a necessary condition: a non-trivial result does not prove that
the ideal is non-principal. For guaranteed results, see \kbd{bnfisprincipal},
which requires the computation of a full \kbd{bnf} structure.

If the input is an extended ideal $[I,s]$, the output is $[J, sa]$; in
this way, one keeps track of the principal ideal part:
\bprog
? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [2, -1]~]
@eprog\noindent
meaning that $P$ is generated by $[2, -1]~$. The number field element in the
extended part is an algebraic number in any form \emph{or} a factorization
matrix (in terms of number field elements, not ideals!). In the latter case,
elements stay in factored form, which is a convenient way to avoid
coefficient explosion; see also \tet{idealpow}.

\misctitle{Technical note} The routine computes an LLL-reduced
basis for the lattice $I^(-1)$ equipped with the quadratic
form
$$|| x ||_v^2 = \sum_{i=1}^{r_1+r_2} 2^{v_i}\varepsilon_i|\sigma_i(x)|^2,$$
where as usual the $\sigma_i$ are the (real and) complex embeddings and
$\varepsilon_i = 1$, resp.~$2$, for a real, resp.~complex place. The element
$a$ is simply the first vector in the LLL basis. The only reason you may want
to try to change some directions and set some $v_i\neq 0$ is to randomize
the elements found for a fixed ideal, which is heuristically useful in index
calculus algorithms like \tet{bnfinit} and \tet{bnfisprincipal}.

\misctitle{Even more technical note} In fact, the above is a white lie.
We do not use $||\cdot||_v$ exactly but a rescaled rounded variant which
gets us faster and simpler LLLs. There's no harm since we are not using any
theoretical property of $a$ after all, except that it belongs to $I^(-1)$
and that $a I$ is ``expected to be small''.

The library syntax is \fun{GEN}{idealred0}{GEN nf, GEN I, GEN v = NULL}.

\subsec{idealstar$(\{\var{nf}\},N,\{\fl=1\})$}\kbdsidx{idealstar}\label{se:idealstar}
Outputs a \kbd{bid} structure,
necessary for computing in the finite abelian group $G = (\Z_K/N)^*$. Here,
\var{nf} is a number field and $N$ is a \var{modulus}: either an ideal in any
form, or a row vector whose first component is an ideal and whose second
component is a row vector of $r_1$ 0 or 1. Ideals can also be given
by a factorization into prime ideals, as produced by \tet{idealfactor}.

This \var{bid} is used in \tet{ideallog} to compute discrete logarithms. It
also contains useful information which can be conveniently retrieved as
\kbd{\var{bid}.mod} (the modulus),
\kbd{\var{bid}.clgp} ($G$ as a finite abelian group),
\kbd{\var{bid}.no} (the cardinality of $G$),
\kbd{\var{bid}.cyc} (elementary divisors) and
\kbd{\var{bid}.gen} (generators).

If $\fl=1$ (default), the result is a \kbd{bid} structure without
generators: they are well defined but not explicitly computed, which saves
time.

If $\fl=2$, as $\fl=1$, but including generators.

If $\fl=0$, only outputs $(\Z_K/N)^*$ as an abelian group,
i.e as a 3-component vector $[h,d,g]$: $h$ is the order, $d$ is the vector of
SNF\sidx{Smith normal form} cyclic components and $g$ the corresponding
generators.

If \var{nf} is omitted, we take it to be the rational number fields, $N$ must
be an integer and we return the structure of $(\Z/N\Z)^*$. In other words
\kbd{idealstar(, N, flag)} is short for
\bprog
  idealstar(nfinit(x), N, flag)
@eprog\noindent but much faster. The alternative syntax \kbd{znstar(N, flag)}
is also available for the same effect, but due to an unfortunate historical
oversight, the default value of \kbd{flag} is different in the two
functions (\kbd{znstar} does not initialize by default).

The library syntax is \fun{GEN}{idealstar0}{GEN nf = NULL, GEN N, long flag}.
Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Idealstar}{GEN nf, GEN ideal, long flag}, where \kbd{flag} is
an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
(return a full \kbd{bid}, not a group), possibly $0$. This offers
one more combination: gen, but no init.

\subsec{idealtwoelt$(\var{nf},x,\{a\})$}\kbdsidx{idealtwoelt}\label{se:idealtwoelt}
Computes a two-element
representation of the ideal $x$ in the number field $\var{nf}$, combining a
random search and an approximation theorem; $x$ is an ideal
in any form (possibly an extended ideal, whose principal part is ignored)

\item When called as \kbd{idealtwoelt(nf,x)}, the result is a row vector
$[a,\alpha]$ with two components such that $x=a\Z_K+\alpha\Z_K$ and $a$ is
chosen to be the positive generator of $x\cap\Z$, unless $x$ was given as a
principal ideal (in which case we may choose $a = 0$). The algorithm
uses a fast lazy factorization of $x\cap \Z$ and runs in randomized
polynomial time.

\item When called as \kbd{idealtwoelt(nf,x,a)} with an explicit non-zero $a$
supplied as third argument, the function assumes that $a \in x$ and returns
$\alpha\in x$ such that $x = a\Z_K + \alpha\Z_K$. Note that we must factor
$a$ in this case, and the algorithm is generally much slower than the
default variant.

The library syntax is \fun{GEN}{idealtwoelt0}{GEN nf, GEN x, GEN a = NULL}.
Also available are
\fun{GEN}{idealtwoelt}{GEN nf, GEN x} and
\fun{GEN}{idealtwoelt2}{GEN nf, GEN x, GEN a}.

\subsec{idealval$(\var{nf},x,\var{pr})$}\kbdsidx{idealval}\label{se:idealval}
Gives the valuation of the ideal $x$ at the prime ideal \var{pr} in the
number field $\var{nf}$, where \var{pr} is in \kbd{idealprimedec} format.
The valuation of the $0$ ideal is \kbd{+oo}.

The library syntax is \fun{GEN}{gpidealval}{GEN nf, GEN x, GEN pr}.
Also available is
\fun{long}{idealval}{GEN nf, GEN x, GEN pr}, which returns
\tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer.

\subsec{matalgtobasis$(\var{nf},x)$}\kbdsidx{matalgtobasis}\label{se:matalgtobasis}
This function is deprecated, use \kbd{apply}.

$\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfalgtobasis} to each entry
of $x$.

The library syntax is \fun{GEN}{matalgtobasis}{GEN nf, GEN x}.

\subsec{matbasistoalg$(\var{nf},x)$}\kbdsidx{matbasistoalg}\label{se:matbasistoalg}
This function is deprecated, use \kbd{apply}.

$\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfbasistoalg} to each entry
of $x$.

The library syntax is \fun{GEN}{matbasistoalg}{GEN nf, GEN x}.

\subsec{modreverse$(z)$}\kbdsidx{modreverse}\label{se:modreverse}
Let $z = \kbd{Mod(A, T)}$ be a polmod, and $Q$ be its minimal
polynomial, which must satisfy $\text{deg}(Q) = \text{deg}(T)$.
Returns a ``reverse polmod'' \kbd{Mod(B, Q)}, which is a root of $T$.

This is quite useful when one changes the generating element in algebraic
extensions:
\bprog
? u = Mod(x, x^3 - x -1); v = u^5;
? w = modreverse(v)
%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)
@eprog\noindent
which means that $x^3 - 5x^2 + 4x -1$ is another defining polynomial for the
cubic field
$$\Q(u) = \Q[x]/(x^3 - x - 1) = \Q[x]/(x^3 - 5x^2 + 4x - 1) = \Q(v),$$
and that $u \to v^2 - 4v + 1$ gives an explicit isomorphism. From this, it is
easy to convert elements between the $A(u)\in \Q(u)$ and $B(v)\in \Q(v)$
representations:
\bprog
? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
? B = v^2 + v + 1;   subst(lift(B), 'x, v)
%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)
@eprog
If the minimal polynomial of $z$ has lower degree than expected, the routine
fails
\bprog
? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)
 *** modreverse: domain error in modreverse: deg(minpoly(z)) < 4
 ***   Break loop: type 'break' to go back to GP prompt
break> Vec( dbg_err() ) \\ ask for more info
["e_DOMAIN", "modreverse", "deg(minpoly(z))", "<", 4,
  Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]
break> minpoly(u)
x^2 - 8
@eprog

The library syntax is \fun{GEN}{modreverse}{GEN z}.

\subsec{newtonpoly$(x,p)$}\kbdsidx{newtonpoly}\label{se:newtonpoly}
Gives the vector of the slopes of the Newton
polygon of the polynomial $x$ with respect to the prime number $p$. The $n$
components of the vector are in decreasing order, where $n$ is equal to the
degree of $x$. Vertical slopes occur iff the constant coefficient of $x$ is
zero and are denoted by \kbd{+oo}.

The library syntax is \fun{GEN}{newtonpoly}{GEN x, GEN p}.

\subsec{nfalgtobasis$(\var{nf},x)$}\kbdsidx{nfalgtobasis}\label{se:nfalgtobasis}
Given an algebraic number $x$ in the number field $\var{nf}$,
transforms it to a column vector on the integral basis \kbd{\var{nf}.zk}.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%5 = [0, 2]~
@eprog
This is the inverse function of \kbd{nfbasistoalg}.

The library syntax is \fun{GEN}{algtobasis}{GEN nf, GEN x}.

\subsec{nfbasis$(T)$}\kbdsidx{nfbasis}\label{se:nfbasis}
Let $T(X)$ be an irreducible polynomial with integral coefficients. This
function returns an \idx{integral basis} of the number field defined by $T$,
that is a $\Z$-basis of its maximal order. The basis elements are given as
elements in $\Q[X]/(T)$:
\bprog
? nfbasis(x^2 + 1)
%1 = [1, x]
@eprog
This function uses a modified version of the \idx{round 4} algorithm,
due to David \idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}.

\misctitle{Local basis, orders maximal at certain primes}

Obtaining the maximal order is hard: it requires factoring the discriminant
$D$ of $T$. Obtaining an order which is maximal at a finite explicit set of
primes is easy, but it may then be a strict suborder of the maximal order. To
specify that we are interested in a given set of places only, we can replace
the argument $T$ by an argument $[T,\var{listP}]$, where \var{listP} encodes
the primes we are interested in: it must be a factorization matrix, a vector
of integers or a single integer.

\item Vector: we assume that it contains distinct \emph{prime} numbers.

\item Matrix: we assume that it is a two-column matrix of a
(partial) factorization of $D$; namely the first column contains
distinct \emph{primes} and the second one the valuation of $D$ at each of
these primes.

\item Integer $B$: this is replaced by the vector of primes up to $B$. Note
that the function will use at least $O(B)$ time: a small value, about
$10^5$, should be enough for most applications. Values larger than $2^{32}$
are not supported.

In all these cases, the primes may or may not divide the discriminant $D$
of $T$. The function then returns a $\Z$-basis of an order whose index is
not divisible by any of these prime numbers. The result is actually a global
integral basis if all prime divisors of the \emph{field} discriminant are
included! Note that \kbd{nfinit} has built-in support for such
a check:
\bprog
? K = nfinit([T, listP]);
? nfcertify(K)   \\ we computed an actual maximal order
%2 = [];
@eprog\noindent The first line initializes a number field structure
incorporating \kbd{nfbasis([T, listP]} in place of a proven integral basis.
The second line certifies that the resulting structure is correct. This
allows to create an \kbd{nf} structure attached to the number field $K =
\Q[X]/(T)$, when the discriminant of $T$ cannot be factored completely,
whereas the prime divisors of $\disc K$ are known.

Of course, if \var{listP} contains a single prime number $p$,
the function returns a local integral basis for $\Z_p[X]/(T)$:
\bprog
? nfbasis(x^2+x-1001)
%1 = [1, 1/3*x - 1/3]
? nfbasis( [x^2+x-1001, [2]] )
%2 = [1, x]
@eprog

\misctitle{The Buchmann-Lenstra algorithm}

We now complicate the picture: it is in fact allowed to include
\emph{composite} numbers instead of primes
in \kbd{listP} (Vector or Matrix case), provided they are pairwise coprime.
The result will still be a correct integral basis \emph{if}
the field discriminant factors completely over the actual primes in the list.
Adding a composite $C$ such that $C^2$ \emph{divides} $D$ may help because
when we consider $C$ as a prime and run the algorithm, two good things can
happen: either we
succeed in proving that no prime dividing $C$ can divide the index
(without actually needing to find those primes), or the computation
exhibits a non-trivial zero divisor, thereby factoring $C$ and
we go on with the refined factorization. (Note that including a $C$
such that $C^2$ does not divide $D$ is useless.) If neither happen, then the
computed basis need not generate the maximal order. Here is an example:
\bprog
? B = 10^5;
? P = factor(poldisc(T), B)[,1]; \\ primes <= B dividing D + cofactor
? basis = nfbasis([T, listP])
? disc = nfdisc([T, listP])
@eprog\noindent We obtain the maximal order and its discriminant if the
field discriminant factors
completely over the primes less than $B$ (together with the primes
contained in the \tet{addprimes} table). This can be tested as follows:
\bprog
  check = factor(disc, B);
  lastp = check[-1..-1,1];
  if (lastp > B && !setsearch(addprimes(), lastp),
    warning("nf may be incorrect!"))
@eprog\noindent
This is a sufficient but not a necessary condition, hence the warning,
instead of an error. N.B. \kbd{lastp} is the last entry
in the first column of the \kbd{check} matrix, i.e. the largest prime
dividing \kbd{nf.disc} if $\leq B$ or if it belongs to the prime table.

The function \tet{nfcertify} speeds up and automates the above process:
\bprog
? B = 10^5;
? nf = nfinit([T, B]);
? nfcertify(nf)
%3 = []      \\ nf is unconditionally correct
? basis = nf.zk;
? disc = nf.disc;
@eprog

\synt{nfbasis}{GEN T, GEN *d, GEN listP = NULL}, which returns the order
basis, and where \kbd{*d} receives the order discriminant.

\subsec{nfbasistoalg$(\var{nf},x)$}\kbdsidx{nfbasistoalg}\label{se:nfbasistoalg}
Given an algebraic number $x$ in the number field \var{nf}, transforms it
into \typ{POLMOD} form.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%5 = Mod(y, y^2 + 4)
@eprog
This is the inverse function of \kbd{nfalgtobasis}.

The library syntax is \fun{GEN}{basistoalg}{GEN nf, GEN x}.

\subsec{nfcertify$(\var{nf})$}\kbdsidx{nfcertify}\label{se:nfcertify}
$\var{nf}$ being as output by
\kbd{nfinit}, checks whether the integer basis is known unconditionally.
This is in particular useful when the argument to \kbd{nfinit} was of the
form $[T, \kbd{listP}]$, specifying a finite list of primes when
$p$-maximality had to be proven, or a list of coprime integers to which
Buchmann-Lenstra algorithm was to be applied.

The function returns a vector of coprime composite integers. If this vector
is empty, then \kbd{nf.zk} and \kbd{nf.disc} are correct. Otherwise, the
result is dubious. In order to obtain a certified result, one must completely
factor each of the given integers, then \kbd{addprime} each of their prime
factors, then check whether \kbd{nfdisc(nf.pol)} is equal to \kbd{nf.disc}.

The library syntax is \fun{GEN}{nfcertify}{GEN nf}.

\subsec{nfcompositum$(\var{nf},P,Q,\{\fl=0\})$}\kbdsidx{nfcompositum}\label{se:nfcompositum}
Let \var{nf} be a number field structure attached to the field $K$
and let \sidx{compositum} $P$ and $Q$
be squarefree polynomials in $K[X]$ in the same variable. Outputs
the simple factors of the \'etale $K$-algebra $A = K[X, Y] / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $K[X]$, attached to
the number field $K[X]/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway. In
this case, there will be a single factor $R$ if and only if the number
fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
$K$).

The binary digits of $\fl$ mean

1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$K[X]/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.

2: assume that $P$ and $Q$ define number fields that are linearly disjoint:
both polynomials are irreducible and the corresponding number fields
have no common subfield besides $K$. This allows to save a costly
factorization over $K$. In this case return the single simple factor
instead of a vector with one element.

A compositum is often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is an example involving
the field $K(\zeta_5, 5^{1/10})$, $K=\Q(\sqrt{5})$:
\bprog
? K = nfinit(y^2-5);
? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
? [R, a] = L[1];  \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
? lift(R)         \\@com defines the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \
(-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 +    \
(-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
? a^5 - y         \\@com a fifth root of $y$
%5 = 0
? [T, X] = rnfpolredbest(K, R, 1);
? lift(T)     \\@com simpler defining polynomial for $K[x]/(R)$
%7 = x^10 + (-11/2*y + 25/2)
? liftall(X)  \\ @com root of $R$ in $K[x]/(T(x))$
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
? a = subst(a.pol, 'x, X);  \\@com \kbd{a} in the new coordinates
? liftall(a)
%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
? a^5 - y
%11 = 0
@eprog

The main variables of $P$ and $Q$ must be the same and have higher priority
than that of \var{nf} (see~\kbd{varhigher} and~\kbd{varlower}).

The library syntax is \fun{GEN}{nfcompositum}{GEN nf, GEN P, GEN Q, long flag}.

\subsec{nfdetint$(\var{nf},x)$}\kbdsidx{nfdetint}\label{se:nfdetint}
Given a pseudo-matrix $x$, computes a
non-zero ideal contained in (i.e.~multiple of) the determinant of $x$. This
is particularly useful in conjunction with \kbd{nfhnfmod}.

The library syntax is \fun{GEN}{nfdetint}{GEN nf, GEN x}.

\subsec{nfdisc$(T)$}\kbdsidx{nfdisc}\label{se:nfdisc}
\idx{field discriminant} of the number field defined by the integral,
preferably monic, irreducible polynomial $T(X)$. Returns the discriminant of
the number field $\Q[X]/(T)$, using the Round $4$ algorithm.

\misctitle{Local discriminants, valuations at certain primes}

As in \kbd{nfbasis}, the argument $T$ can be replaced by $[T,\var{listP}]$,
where \kbd{listP} is as in \kbd{nfbasis}: a vector of
pairwise coprime integers (usually distinct primes), a factorization matrix,
or a single integer. In that case, the function returns the discriminant of
an order whose basis is given by \kbd{nfbasis(T,listP)}, which need not be
the maximal order, and whose valuation at a prime entry in \kbd{listP} is the
same as the valuation of the field discriminant.

In particular, if \kbd{listP} is $[p]$ for a prime $p$, we can
return the $p$-adic discriminant of the maximal order of $\Z_p[X]/(T)$,
as a power of $p$, as follows:
\bprog
? padicdisc(T,p) = p^valuation(nfdisc(T,[p]), p);
? nfdisc(x^2 + 6)
%2 = -24
? padicdisc(x^2 + 6, 2)
%3 = 8
? padicdisc(x^2 + 6, 3)
%4 = 3
@eprog

\synt{nfdisc}{GEN T} (\kbd{listP = NULL}). Also available is
\fun{GEN}{nfbasis}{GEN T, GEN *d, GEN listP = NULL}, which returns the order
basis, and where \kbd{*d} receives the order discriminant.

\subsec{nfeltadd$(\var{nf},x,y)$}\kbdsidx{nfeltadd}\label{se:nfeltadd}
Given two elements $x$ and $y$ in
\var{nf}, computes their sum $x+y$ in the number field $\var{nf}$.

The library syntax is \fun{GEN}{nfadd}{GEN nf, GEN x, GEN y}.

\subsec{nfeltdiv$(\var{nf},x,y)$}\kbdsidx{nfeltdiv}\label{se:nfeltdiv}
Given two elements $x$ and $y$ in
\var{nf}, computes their quotient $x/y$ in the number field $\var{nf}$.

The library syntax is \fun{GEN}{nfdiv}{GEN nf, GEN x, GEN y}.

\subsec{nfeltdiveuc$(\var{nf},x,y)$}\kbdsidx{nfeltdiveuc}\label{se:nfeltdiveuc}
Given two elements $x$ and $y$ in
\var{nf}, computes an algebraic integer $q$ in the number field $\var{nf}$
such that the components of $x-qy$ are reasonably small. In fact, this is
functionally identical to \kbd{round(nfdiv(\var{nf},x,y))}.

The library syntax is \fun{GEN}{nfdiveuc}{GEN nf, GEN x, GEN y}.

\subsec{nfeltdivmodpr$(\var{nf},x,y,\var{pr})$}\kbdsidx{nfeltdivmodpr}\label{se:nfeltdivmodpr}
This function is obsolete, use \kbd{nfmodpr}.

Given two elements $x$
and $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their quotient $x / y$ modulo the prime ideal
\var{pr}.

The library syntax is \fun{GEN}{nfdivmodpr}{GEN nf, GEN x, GEN y, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

\subsec{nfeltdivrem$(\var{nf},x,y)$}\kbdsidx{nfeltdivrem}\label{se:nfeltdivrem}
Given two elements $x$ and $y$ in
\var{nf}, gives a two-element row vector $[q,r]$ such that $x=qy+r$, $q$ is
an algebraic integer in $\var{nf}$, and the components of $r$ are
reasonably small.

The library syntax is \fun{GEN}{nfdivrem}{GEN nf, GEN x, GEN y}.

\subsec{nfeltmod$(\var{nf},x,y)$}\kbdsidx{nfeltmod}\label{se:nfeltmod}
Given two elements $x$ and $y$ in
\var{nf}, computes an element $r$ of $\var{nf}$ of the form $r=x-qy$ with
$q$ and algebraic integer, and such that $r$ is small. This is functionally
identical to
$$\kbd{x - nfmul(\var{nf},round(nfdiv(\var{nf},x,y)),y)}.$$

The library syntax is \fun{GEN}{nfmod}{GEN nf, GEN x, GEN y}.

\subsec{nfeltmul$(\var{nf},x,y)$}\kbdsidx{nfeltmul}\label{se:nfeltmul}
Given two elements $x$ and $y$ in
\var{nf}, computes their product $x*y$ in the number field $\var{nf}$.

The library syntax is \fun{GEN}{nfmul}{GEN nf, GEN x, GEN y}.

\subsec{nfeltmulmodpr$(\var{nf},x,y,\var{pr})$}\kbdsidx{nfeltmulmodpr}\label{se:nfeltmulmodpr}
This function is obsolete, use \kbd{nfmodpr}.

Given two elements $x$ and
$y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their product $x*y$ modulo the prime ideal
\var{pr}.

The library syntax is \fun{GEN}{nfmulmodpr}{GEN nf, GEN x, GEN y, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

\subsec{nfeltnorm$(\var{nf},x)$}\kbdsidx{nfeltnorm}\label{se:nfeltnorm}
Returns the absolute norm of $x$.

The library syntax is \fun{GEN}{nfnorm}{GEN nf, GEN x}.

\subsec{nfeltpow$(\var{nf},x,k)$}\kbdsidx{nfeltpow}\label{se:nfeltpow}
Given an element $x$ in \var{nf}, and a positive or negative integer $k$,
computes $x^k$ in the number field $\var{nf}$.

The library syntax is \fun{GEN}{nfpow}{GEN nf, GEN x, GEN k}.
\fun{GEN}{nfinv}{GEN nf, GEN x} correspond to $k = -1$, and
\fun{GEN}{nfsqr}{GEN nf,GEN x} to $k = 2$.

\subsec{nfeltpowmodpr$(\var{nf},x,k,\var{pr})$}\kbdsidx{nfeltpowmodpr}\label{se:nfeltpowmodpr}
This function is obsolete, use \kbd{nfmodpr}.

Given an element $x$ in \var{nf}, an integer $k$ and a prime ideal
\var{pr} in \kbd{modpr} format
(see \tet{nfmodprinit}), computes $x^k$ modulo the prime ideal \var{pr}.

The library syntax is \fun{GEN}{nfpowmodpr}{GEN nf, GEN x, GEN k, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

\subsec{nfeltreduce$(\var{nf},a,\var{id})$}\kbdsidx{nfeltreduce}\label{se:nfeltreduce}
Given an ideal \var{id} in
Hermite normal form and an element $a$ of the number field $\var{nf}$,
finds an element $r$ in $\var{nf}$ such that $a-r$ belongs to the ideal
and $r$ is small.

The library syntax is \fun{GEN}{nfreduce}{GEN nf, GEN a, GEN id}.

\subsec{nfeltreducemodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfeltreducemodpr}\label{se:nfeltreducemodpr}
This function is obsolete, use \kbd{nfmodpr}.

Given an element $x$ of the number field $\var{nf}$ and a prime ideal
\var{pr} in \kbd{modpr} format compute a canonical representative for the
class of $x$ modulo \var{pr}.

The library syntax is \fun{GEN}{nfreducemodpr}{GEN nf, GEN x, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

\subsec{nfelttrace$(\var{nf},x)$}\kbdsidx{nfelttrace}\label{se:nfelttrace}
Returns the absolute trace of $x$.

The library syntax is \fun{GEN}{nftrace}{GEN nf, GEN x}.

\subsec{nfeltval$(\var{nf},x,\var{pr},\{\&y\})$}\kbdsidx{nfeltval}\label{se:nfeltval}
Given an element $x$ in
\var{nf} and a prime ideal \var{pr} in the format output by
\kbd{idealprimedec}, computes the valuation $v$ at \var{pr} of the
element $x$. The valuation of $0$ is \kbd{+oo}.
\bprog
? nf = nfinit(x^2 + 1);
? P = idealprimedec(nf, 2)[1];
? nfeltval(nf, x+1, P)
%3 = 1
@eprog\noindent
This particular valuation can also be obtained using
\kbd{idealval(\var{nf},x,\var{pr})}, since $x$ is then converted to a
principal ideal.

If the $y$ argument is present, sets $y = x \tau^v$, where $\tau$ is a
fixed ``anti-uniformizer'' for \var{pr}: its valuation at \var{pr} is $-1$;
its valuation is $0$ at other prime ideals dividing \kbd{\var{pr}.p} and
nonnegative at all other primes. In other words $y$ is the part of $x$
coprime to \var{pr}. If $x$ is an algebraic integer, so is $y$.
\bprog
? nfeltval(nf, x+1, P, &y); y
%4 = [0, 1]~
@eprog
For instance if $x = \prod_i x_i^{e_i}$ is known to be coprime to \var{pr},
where the $x_i$ are algebraic integers and $e_i\in\Z$ then,
if $v_i = \kbd{nfeltval}(\var{nf}, x_i, \var{pr}, \&y_i)$, we still
have $x = \prod_i y_i^{e_i}$, where the $y_i$ are still algebraic integers
but now all of them are coprime to \var{pr}. They can then be mapped to
the residue field of \var{pr} more efficiently than if the product had
been expanded beforehand: we can reduce mod \var{pr} after each ring
operation.

The library syntax is \fun{GEN}{gpnfvalrem}{GEN nf, GEN x, GEN pr, GEN *y = NULL}.
Also available is
\fun{long}{nfvalrem}{GEN nf, GEN x, GEN pr, GEN *y = NULL}, which returns
\tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer.

\subsec{nffactor$(\var{nf},T)$}\kbdsidx{nffactor}\label{se:nffactor}
Factorization of the univariate
polynomial $T$ over the number field $\var{nf}$ given by \kbd{nfinit}; $T$
has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or
column vector). The factors are sorted by increasing degree.

The main variable of $\var{nf}$ must be of \emph{lower}
priority than that of $T$, see \secref{se:priority}. However if
the polynomial defining the number field occurs explicitly  in the
coefficients of $T$ as modulus of a \typ{POLMOD} or as a \typ{POL}
coefficient, its main variable must be \emph{the same} as the main variable
of $T$. For example,
\bprog
? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \\@com OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ @com OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ @com WRONG
@eprog

It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will then be computed internally. This is useful in two
situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
initialize an \kbd{nf} due to integer factorization difficulties when
attempting to compute the field discriminant and maximal order.

\misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
which is not guaranteed to be maximal at all primes. Always either use
\kbd{nfcertify} first (which may not run in polynomial time) or make sure
to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nffactor} is
able to recover in polynomial time in this case, instead of potentially
missing a factor.

The library syntax is \fun{GEN}{nffactor}{GEN nf, GEN T}.

\subsec{nffactorback$(\var{nf},f,\{e\})$}\kbdsidx{nffactorback}\label{se:nffactorback}
Gives back the \var{nf} element corresponding to a factorization.
The integer $1$ corresponds to the empty factorization.

If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.

If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization matrix.
\bprog
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
@eprog

The library syntax is \fun{GEN}{nffactorback}{GEN nf, GEN f, GEN e = NULL}.

\subsec{nffactormod$(\var{nf},Q,\var{pr})$}\kbdsidx{nffactormod}\label{se:nffactormod}
This routine is obsolete, use \kbd{nfmodpr} and \kbd{factorff}.

Factors the univariate polynomial $Q$ modulo the prime ideal \var{pr} in
the number field $\var{nf}$. The coefficients of $Q$ belong to the number
field (scalar, polmod, polynomial, even column vector) and the main variable
of $\var{nf}$ must be of lower priority than that of $Q$ (see
\secref{se:priority}). The prime ideal \var{pr} is either in
\tet{idealprimedec} or (preferred) \tet{modprinit} format. The coefficients
of the polynomial factors are lifted to elements of \var{nf}:
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? nffactormod(K, x^2 + y*x + 18*y+1, P)
%3 =
[x + (2*y + 1) 1]

[x + (2*y + 2) 1]
? P = nfmodprinit(K, P);  \\ convert to nfmodprinit format
? nffactormod(K, x^2 + y*x + 18*y+1)
%5 =
[x + (2*y + 1) 1]

[x + (2*y + 2) 1]
@eprog\noindent Same result, of course, here about 10\% faster due to the
precomputation.

The library syntax is \fun{GEN}{nffactormod}{GEN nf, GEN Q, GEN pr}.

\subsec{nfgaloisapply$(\var{nf},\var{aut},x)$}\kbdsidx{nfgaloisapply}\label{se:nfgaloisapply}
Let $\var{nf}$ be a
number field as output by \kbd{nfinit}, and let \var{aut} be a \idx{Galois}
automorphism of $\var{nf}$ expressed by its image on the field generator
(such automorphisms can be found using \kbd{nfgaloisconj}). The function
computes the action of the automorphism \var{aut} on the object $x$ in the
number field; $x$ can be a number field element, or an ideal (possibly
extended). Because of possible confusion with elements and ideals, other
vector or matrix arguments are forbidden.
 \bprog
 ? nf = nfinit(x^2+1);
 ? L = nfgaloisconj(nf)
 %2 = [-x, x]~
 ? aut = L[1]; /* the non-trivial automorphism */
 ? nfgaloisapply(nf, aut, x)
 %4 = Mod(-x, x^2 + 1)
 ? P = idealprimedec(nf,5); /* prime ideals above 5 */
 ? nfgaloisapply(nf, aut, P[2]) == P[1]
 %6 = 0 \\ !!!!
 ? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
 %7 = 1
@eprog\noindent The surprising failure of the equality test (\kbd{\%7}) is
due to the fact that although the corresponding prime ideals are equal, their
representations are not. (A prime ideal is specified by a uniformizer, and
there is no guarantee that applying automorphisms yields the same elements
as a direct \kbd{idealprimedec} call.)

The automorphism can also be given as a column vector, representing the
image of \kbd{Mod(x, nf.pol)} as an algebraic number. This last
representation is more efficient and should be preferred if a given
automorphism must be used in many such calls.
\bprog
 ? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
 ? aut = nfgaloisconj(nf)[2]; \\ @com an automorphism in basistoalg form
 %2 = -31/11*x^2 + 1109/11*x - 925/11
 ? AUT = nfalgtobasis(nf, aut); \\ @com same in algtobasis form
 %3 = [16, -6, 5]~
 ? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
 %4 = 1 \\ @com same result...
 ? for (i=1,10^5, nfgaloisapply(nf, aut, v))
 time = 463 ms.
 ? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
 time = 343 ms.  \\ @com but the latter is faster
@eprog

The library syntax is \fun{GEN}{galoisapply}{GEN nf, GEN aut, GEN x}.

\subsec{nfgaloisconj$(\var{nf},\{\fl=0\},\{d\})$}\kbdsidx{nfgaloisconj}\label{se:nfgaloisconj}
$\var{nf}$ being a number field as output by \kbd{nfinit}, computes the
conjugates of a root $r$ of the non-constant polynomial $x=\var{nf}[1]$
expressed as polynomials in $r$. This also makes sense when the number field
is not \idx{Galois} since some conjugates may lie in the field.
$\var{nf}$ can simply be a polynomial.

If no flags or $\fl=0$, use a combination of flag $4$ and $1$ and the result
is always complete. There is no point whatsoever in using the other flags.

If $\fl=1$, use \kbd{nfroots}: a little slow, but guaranteed to work in
polynomial time.

If $\fl=4$, use \kbd{galoisinit}: very fast, but only applies to (most)
Galois fields. If the field is Galois with weakly super-solvable Galois
group (see \tet{galoisinit}), return the complete list of automorphisms, else
only the identity element. If present, $d$ is assumed to be a multiple of the
least common denominator of the conjugates expressed as polynomial in a root
of \var{pol}.

This routine can only compute $\Q$-automorphisms, but it may be used to get
$K$-automorphism for any base field $K$ as follows:
\bprog
rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
{
  my(polabs, N,al,S, ala,k, vR);
  R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
  vR = variable(R);
  al = Mod(variable(nfK.pol),nfK.pol);
  [polabs,ala,k] = rnfequation(nfK, R, 1);
  Rt = if(k==0,R,subst(R,vR,vR-al*k));
  N = nfgaloisconj(polabs) % Rt; \\ Q-automorphisms of L
  S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);
  if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));
}
K  = nfinit(y^2 + 7);
rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1)  \\ K-automorphisms of L
@eprog

The library syntax is \fun{GEN}{galoisconj0}{GEN nf, long flag, GEN d = NULL, long prec}.
Use directly
\fun{GEN}{galoisconj}{GEN nf, GEN d}, corresponding to $\fl = 0$, the others
only have historical interest.

\subsec{nfgrunwaldwang$(\var{nf},\var{Lpr},\var{Ld},\var{pl},\{v='x\})$}\kbdsidx{nfgrunwaldwang}\label{se:nfgrunwaldwang}
Given \var{nf} a number field in \var{nf} or \var{bnf} format,
a \typ{VEC} \var{Lpr} of primes of \var{nf} and a \typ{VEC} \var{Ld} of
positive integers of the same length, a \typ{VECSMALL} \var{pl} of length
$r_1$ the number of real places of \var{nf}, computes a polynomial with
coefficients in \var{nf} defining a cyclic extension of \var{nf} of
minimal degree satisfying certain local conditions:

\item at the prime \kbd{Lpr[i]}, the extension has local degree a multiple of
\kbd{Ld[i]};

\item at the $i$-th real place of \var{nf}, it is complex if $pl[i]=-1$
(no condition if $pl[i]=0$).

The extension has degree the LCM of the local degrees. Currently, the degree
is restricted to be a prime power for the search, and to be prime for the
construction because of the \kbd{rnfkummer} restrictions.

When \var{nf} is $\Q$, prime integers are accepted instead of \kbd{prid}
structures. However, their primality is not checked and the behaviour is
undefined if you provide a composite number.

\misctitle{Warning} If the number field \var{nf} does not contain the $n$-th
roots of unity where $n$ is the degree of the extension to be computed,
triggers the computation of the \var{bnf} of $nf(\zeta_n)$, which may be
costly.

\bprog
? nf = nfinit(y^2-5);
? pr = idealprimedec(nf,13)[1];
? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)
%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)
@eprog

The library syntax is \fun{GEN}{nfgrunwaldwang}{GEN nf, GEN Lpr, GEN Ld, GEN pl, long v = -1} where \kbd{v} is a variable number.

\subsec{nfhilbert$(\var{nf},a,b,\{\var{pr}\})$}\kbdsidx{nfhilbert}\label{se:nfhilbert}
If \var{pr} is omitted,
compute the global quadratic \idx{Hilbert symbol} $(a,b)$ in $\var{nf}$, that
is $1$ if $x^2 - a y^2 - b z^2$ has a non trivial solution $(x,y,z)$ in
$\var{nf}$, and $-1$ otherwise. Otherwise compute the local symbol modulo
the prime ideal \var{pr}, as output by \kbd{idealprimedec}.

The library syntax is \fun{long}{nfhilbert0}{GEN nf, GEN a, GEN b, GEN pr = NULL}.

Also available is \fun{long}{nfhilbert}{GEN bnf,GEN a,GEN b} (global
quadratic Hilbert symbol).

\subsec{nfhnf$(\var{nf},x,\{\fl=0\})$}\kbdsidx{nfhnf}\label{se:nfhnf}
Given a pseudo-matrix $(A,I)$, finds a
pseudo-basis $(B,J)$ in \idx{Hermite normal form} of the module it generates.
If $\fl$ is non-zero, also return the transformation matrix $U$ such that
$AU = [0|B]$.

The library syntax is \fun{GEN}{nfhnf0}{GEN nf, GEN x, long flag}.
Also available:

\fun{GEN}{nfhnf}{GEN nf, GEN x} ($\fl = 0$).

\fun{GEN}{rnfsimplifybasis}{GEN bnf, GEN x} simplifies the pseudo-basis
given by $x = (A,I)$. The ideals in the list $I$ are integral, primitive and
either trivial (equal to the full ring of integer) or non-principal.

\subsec{nfhnfmod$(\var{nf},x,\var{detx})$}\kbdsidx{nfhnfmod}\label{se:nfhnfmod}
Given a pseudo-matrix $(A,I)$
and an ideal \var{detx} which is contained in (read integral multiple of) the
determinant of $(A,I)$, finds a pseudo-basis in \idx{Hermite normal form}
of the module generated by $(A,I)$. This avoids coefficient explosion.
\var{detx} can be computed using the function \kbd{nfdetint}.

The library syntax is \fun{GEN}{nfhnfmod}{GEN nf, GEN x, GEN detx}.

\subsec{nfinit$(\var{pol},\{\fl=0\})$}\kbdsidx{nfinit}\label{se:nfinit}
\var{pol} being a non-constant,
preferably monic, irreducible polynomial in $\Z[X]$, initializes a
\emph{number field} structure (\kbd{nf}) attached to the field $K$ defined
by \var{pol}. As such, it's a technical object passed as the first argument
to most \kbd{nf}\var{xxx} functions, but it contains some information which
may be directly useful. Access to this information via \emph{member
functions} is preferred since the specific data organization given below
may change in the future. Currently, \kbd{nf} is a row vector with 9
components:

$\var{nf}[1]$ contains the polynomial \var{pol} (\kbd{\var{nf}.pol}).

$\var{nf}[2]$ contains $[r1,r2]$ (\kbd{\var{nf}.sign}, \kbd{\var{nf}.r1},
\kbd{\var{nf}.r2}), the number of real and complex places of $K$.

$\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\var{nf}.disc}) of $K$.

$\var{nf}[4]$ contains the index of $\var{nf}[1]$ (\kbd{\var{nf}.index}),
i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.

$\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, \var{roundG}, $T$,
$MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.

\quad\item $M$ is the $(r1+r2)\times n$ matrix whose columns represent
the numerical values of the conjugates of the elements of the integral
basis.

\quad\item $G$ is an $n\times n$ matrix such that $T2 = {}^t G G$,
where $T2$ is the quadratic form $T_2(x) = \sum |\sigma(x)|^2$, $\sigma$
running over the embeddings of $K$ into $\C$.

\quad\item \var{roundG} is a rescaled copy of $G$, rounded to nearest
integers.

\quad\item $T$ is the $n\times n$ matrix whose coefficients are
$\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the
integral basis. Note also that $\det(T)$ is equal to the discriminant of the
field $K$. Also, when understood as an ideal, the matrix $T^{-1}$
generates the codifferent ideal.

\quad\item The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
of the different of $K$ on the integral basis.

\quad\item $TI$ is equal to the primitive part of $T^{-1}$, which has integral
coefficients.

\quad\item Finally, $MDI$ is a two-element representation (for faster
ideal product) of $d(K)$ times the codifferent ideal
(\kbd{\var{nf}.disc$*$\var{nf}.codiff}, which is an integral ideal). $MDI$
is only used in \tet{idealinv}.

$\var{nf}[6]$ is the vector containing the $r1+r2$ roots
(\kbd{\var{nf}.roots}) of $\var{nf}[1]$ corresponding to the $r1+r2$
embeddings of the number field into $\C$ (the first $r1$ components are real,
the next $r2$ have positive imaginary part).

$\var{nf}[7]$ is an integral basis for $\Z_K$ (\kbd{\var{nf}.zk}) expressed
on the powers of~$\theta$. Its first element is guaranteed to be $1$. This
basis is LLL-reduced with respect to $T_2$ (strictly speaking, it is a
permutation of such a basis, due to the condition that the first element be
$1$).

$\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
basis in terms of the integral basis, and finally

$\var{nf}[9]$ is the $n\times n^2$ matrix giving the multiplication table
of the integral basis.

If a non monic polynomial is input, \kbd{nfinit} will transform it into a
monic one, then reduce it (see $\fl=3$). It is allowed, though not very
useful given the existence of \tet{nfnewprec}, to input a \var{nf} or a
\var{bnf} instead of a polynomial. It is also allowed to
input a \var{rnf}, in which case an \kbd{nf} structure attached to the
absolute defining polynomial \kbd{polabs} is returned (\fl is then ignored).

\bprog
? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol   \\ defining polynomial
%2 = x^3 - 12
? nf.disc  \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk    \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign  \\ signature
%6 = [1, 1]
? factor(abs(nf.disc ))  \\ determines ramified primes
%7 =
[2 2]

[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3]  \\ @com $\goth{p}_2^3$
@eprog

\misctitle{Huge discriminants, helping nfdisc}

In case \var{pol} has a huge discriminant which is difficult to factor,
it is hard to compute from scratch the maximal order. The special input
format $[\var{pol}, B]$ is also accepted where \var{pol} is a polynomial as
above and $B$ has one of the following forms

\item an integer basis, as would be computed by \tet{nfbasis}: a vector of
polynomials with first element $1$. This is useful if the maximal order is
known in advance.

\item an argument \kbd{listP} which specifies a list of primes (see
\tet{nfbasis}). Instead of the maximal order, \kbd{nfinit} then computes an
order which is maximal at these particular primes as well as the primes
contained in the private prime table (see \tet{addprimes}). The result is
unconditionaly correct when the discriminant \kbd{nf.disc} factors
completely over this set of primes. The function \tet{nfcertify} automates
this:
\bprog
? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? nf = nfinit( [pol, 10^3] );
? nfcertify(nf)
%3 = []
@eprog\noindent A priori, \kbd{nf.zk} defines an order which is only known
to be maximal at all primes $\leq 10^3$ (no prime $\leq 10^3$ divides
\kbd{nf.index}). The certification step proves the correctness of the
computation.
\medskip

If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same
number field, which is as simple as can easily be found using the
\tet{polredbest} algorithm, and all the subsequent computations are done
using this new polynomial. In particular, the first component of the result
is the modified polynomial.

If $\fl=3$, apply \kbd{polredbest} as in case 2, but outputs
$[\var{nf},\kbd{Mod}(a,P)]$, where $\var{nf}$ is as before and
$\kbd{Mod}(a,P)=\kbd{Mod}(x,\var{pol})$ gives the change of
variables. This is implicit when \var{pol} is not monic: first a linear change
of variables is performed, to get a monic polynomial, then \kbd{polredbest}.

The library syntax is \fun{GEN}{nfinit0}{GEN pol, long flag, long prec}.
Also available are
\fun{GEN}{nfinit}{GEN x, long prec} ($\fl = 0$),
\fun{GEN}{nfinitred}{GEN x, long prec} ($\fl = 2$),
\fun{GEN}{nfinitred2}{GEN x, long prec} ($\fl = 3$).
Instead of the above hardcoded numerical flags in \kbd{nfinit0}, one should
rather use

\fun{GEN}{nfinitall}{GEN x, long flag, long prec}, where \fl\ is an
or-ed combination of

\item \tet{nf_RED}: find a simpler defining polynomial,

\item \tet{nf_ORIG}: if \tet{nf_RED} set, also return the change of variable,

\item \tet{nf_ROUND2}: \emph{Deprecated}. Slow down the routine by using an
obsolete normalization algorithm (do not use this one!),

\item \tet{nf_PARTIALFACT}: \emph{Deprecated}. Lazy factorization of the
polynomial discriminant. Result is conditional unless \kbd{nfcertify}
can certify it.

\subsec{nfisideal$(\var{nf},x)$}\kbdsidx{nfisideal}\label{se:nfisideal}
Returns 1 if $x$ is an ideal in the number field $\var{nf}$, 0 otherwise.

The library syntax is \fun{long}{isideal}{GEN nf, GEN x}.

\subsec{nfisincl$(x,y)$}\kbdsidx{nfisincl}\label{se:nfisincl}
Tests whether the number field $K$ defined
by the polynomial $x$ is conjugate to a subfield of the field $L$ defined
by $y$ (where $x$ and $y$ must be in $\Q[X]$). If they are not, the output
is the number 0. If they are, the output is a vector of polynomials, each
polynomial $a$ representing an embedding of $K$ into $L$, i.e.~being such
that $y\mid x\circ a$.

If $y$ is a number field (\var{nf}), a much faster algorithm is used
(factoring $x$ over $y$ using \tet{nffactor}). Before version 2.0.14, this
wasn't guaranteed to return all the embeddings, hence was triggered by a
special flag. This is no more the case.

The library syntax is \fun{GEN}{nfisincl}{GEN x, GEN y}.

\subsec{nfisisom$(x,y)$}\kbdsidx{nfisisom}\label{se:nfisisom}
As \tet{nfisincl}, but tests for isomorphism. If either $x$ or $y$ is a
number field, a much faster algorithm will be used.

The library syntax is \fun{GEN}{nfisisom}{GEN x, GEN y}.

\subsec{nfislocalpower$(\var{nf},\var{pr},a,n)$}\kbdsidx{nfislocalpower}\label{se:nfislocalpower}
Let \var{nf} be a number field structure attached to $K$,
let $a \in K$ and let \var{pr} be a \var{prid} attched to the
maximal ideal $v$. Return $1$ if $a$ is an $n$-th power in the completed
local field $K_v$, and $0$ otherwise.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1]; \\ the ramified prime above 2
? nfislocalpower(K,P,-1, 2) \\ -1 is a square
%3 = 1
? nfislocalpower(K,P,-1, 4) \\ ... but not a 4-th power
%4 = 0
? nfislocalpower(K,P,2, 2)  \\ 2 is not a square
%5 = 0

? Q = idealprimedec(K,5)[1]; \\ a prime above 5
? nfislocalpower(K,Q, [0, 32]~, 30)  \\ 32*I is locally a 30-th power
%7 = 1
@eprog

The library syntax is \fun{long}{nfislocalpower}{GEN nf, GEN pr, GEN a, GEN n}.

\subsec{nfkermodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfkermodpr}\label{se:nfkermodpr}
This function is obsolete, use \kbd{nfmodpr}.

Kernel of the matrix $a$ in $\Z_K/\var{pr}$, where \var{pr} is in
\key{modpr} format (see \kbd{nfmodprinit}).

The library syntax is \fun{GEN}{nfkermodpr}{GEN nf, GEN x, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.

\subsec{nfmodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfmodpr}\label{se:nfmodpr}
Map $x$ to the residue field modulo \var{pr}, to a \typ{FFELT}.
The argument \var{pr} is either a maximal ideal in \kbd{idealprimedec}
format or, preferably, a \kbd{modpr} structure from \tet{nfmodprinit}. The
function \tet{nfmodprlift} allows to lift back to $\Z_K$.

Note that the function applies to number field elements and not to
vector / matrices / polynomials of such. Use \kbd{apply} to convert
recursive structures.

\bprog
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2]
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
@eprog

The library syntax is \fun{GEN}{nfmodpr}{GEN nf, GEN x, GEN pr}.

\subsec{nfmodprinit$(\var{nf},\var{pr})$}\kbdsidx{nfmodprinit}\label{se:nfmodprinit}
Transforms the prime ideal \var{pr} into \tet{modpr} format necessary
for all operations modulo \var{pr} in the number field \var{nf}.
The functions \tet{nfmodpr} and \tet{nfmodprlift} allow to project
to and lift from the residue field.

The library syntax is \fun{GEN}{nfmodprinit}{GEN nf, GEN pr}.

\subsec{nfmodprlift$(\var{nf},x,\var{pr})$}\kbdsidx{nfmodprlift}\label{se:nfmodprlift}
Lift the \typ{FFELT} $x$ (from \tet{nfmodpr}) to the residue field
modulo \var{pr}. Vectors and matrices are also supported. For polynomials,
use \kbd{apply} and the present function.

The argument \kbd{pr} is either a maximal ideal in \kbd{idealprimedec}
format or, preferably, a \kbd{modpr} structure from \tet{nfmodprinit}.
There are no compatibility checks to try and decide whether $x$ is attached
the same residue field as defined by \kbd{pr}: the result is undefined
if not.

The function \tet{nfmodpr} allows to reduce to the residue field.
\bprog
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2]
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
? nfmodprlift(K, %, modP)
%6 = [1, 1/5*y, 2/5*y + 1]
? nfeltval(K, %[3] - K.zk[3], P)
%7 = 1
@eprog

The library syntax is \fun{GEN}{nfmodprlift}{GEN nf, GEN x, GEN pr}.

\subsec{nfnewprec$(\var{nf})$}\kbdsidx{nfnewprec}\label{se:nfnewprec}
Transforms the number field $\var{nf}$
into the corresponding data using current (usually larger) precision. This
function works as expected if \var{nf} is in fact a \var{bnf} or a \var{bnr}
(update structure to current precision) but may be quite slow: many
generators of principal ideals have to be computed; note that in this latter
case, the \var{bnf} must contain fundamental units.

The library syntax is \fun{GEN}{nfnewprec}{GEN nf, long prec}.
See also \fun{GEN}{bnfnewprec}{GEN bnf, long prec} and
\fun{GEN}{bnrnewprec}{GEN bnr, long prec}.

\subsec{nfroots$(\{\var{nf}\},x)$}\kbdsidx{nfroots}\label{se:nfroots}
Roots of the polynomial $x$ in the
number field $\var{nf}$ given by \kbd{nfinit} without multiplicity (in $\Q$
if $\var{nf}$ is omitted). $x$ has coefficients in the number field (scalar,
polmod, polynomial, column vector). The main variable of $\var{nf}$ must be
of lower priority than that of $x$ (see \secref{se:priority}). However if the
coefficients of the number field occur explicitly (as polmods) as
coefficients of $x$, the variable of these polmods \emph{must} be the same as
the main variable of $t$ (see \kbd{nffactor}).

It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will then be computed internally. This is useful in two
situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
initialize an \kbd{nf} due to integer factorization difficulties when
attempting to compute the field discriminant and maximal order.

\misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
which is not guaranteed to be maximal at all primes. Always either use
\kbd{nfcertify} first (which may not run in polynomial time) or make sure
to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nfroots} is
able to recover in polynomial time in this case, instead of potentially
missing a factor.

The library syntax is \fun{GEN}{nfroots}{GEN nf = NULL, GEN x}.
See also \fun{GEN}{nfrootsQ}{GEN x},
corresponding to $\kbd{nf} = \kbd{NULL}$.

\subsec{nfrootsof1$(\var{nf})$}\kbdsidx{nfrootsof1}\label{se:nfrootsof1}
Returns a two-component vector $[w,z]$ where $w$ is the number of roots of
unity in the number field \var{nf}, and $z$ is a primitive $w$-th root
of unity.
\bprog
? K = nfinit(polcyclo(11));
? nfrootsof1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
? z = nfbasistoalg(K, %[2])   \\ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)]     \\ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
@eprog
This function guesses the number $w$ as the gcd of the $\#k(v)^*$ for
unramified $v$ above odd primes, then computes the roots in \var{nf}
of the $w$-th cyclotomic polynomial: the algorithm is polynomial time with
respect to the field degree and the bitsize of the multiplication table in
\var{nf} (both of them polynomially bounded in terms of the size of the
discriminant). Fields of degree up to $100$ or so should require less than
one minute.

The library syntax is \fun{GEN}{rootsof1}{GEN nf}.
Also available is \fun{GEN}{rootsof1_kannan}{GEN nf}, that computes
all algebraic integers of $T_2$ norm equal to the field degree
(all roots of $1$, by Kronecker's theorem). This is in general a little
faster than the default when there \emph{are} roots of $1$ in the field
(say twice faster), but can be much slower (say, \emph{days} slower), since
the algorithm is a priori exponential in the field degree.

\subsec{nfsnf$(\var{nf},x,\{\fl=0\})$}\kbdsidx{nfsnf}\label{se:nfsnf}
Given a torsion $\Z_K$-module $x$ attached to the square integral
invertible pseudo-matrix $(A,I,J)$, returns an ideal list
$D=[d_1,\dots,d_n]$ which is the \idx{Smith normal form} of $x$. In other
words, $x$ is isomorphic to $\Z_K/d_1\oplus\cdots\oplus\Z_K/d_n$ and $d_i$
divides $d_{i-1}$ for $i\ge2$. If $\fl$ is non-zero return $[D,U,V]$, where
$UAV$ is the identity.

See \secref{se:ZKmodules} for the definition of integral pseudo-matrix;
briefly, it is input as a 3-component row vector $[A,I,J]$ where
$I = [b_1,\dots,b_n]$ and $J = [a_1,\dots,a_n]$ are two ideal lists,
and $A$ is a square $n\times n$ matrix with columns $(A_1,\dots,A_n)$,
seen as elements in $K^n$ (with canonical basis $(e_1,\dots,e_n)$).
This data defines the $\Z_K$ module $x$ given by
$$ (b_1e_1\oplus\cdots\oplus b_ne_n) / (a_1A_1\oplus\cdots\oplus a_nA_n)
\enspace, $$
The integrality condition is $a_{i,j} \in b_i a_j^{-1}$ for all $i,j$. If it
is not satisfied, then the $d_i$ will not be integral. Note that every
finitely generated torsion module is isomorphic to a module of this form and
even with $b_i=Z_K$ for all $i$.

The library syntax is \fun{GEN}{nfsnf0}{GEN nf, GEN x, long flag}.
Also available:

\fun{GEN}{nfsnf}{GEN nf, GEN x} ($\fl = 0$).

\subsec{nfsolvemodpr$(\var{nf},a,b,P)$}\kbdsidx{nfsolvemodpr}\label{se:nfsolvemodpr}
This function is obsolete, use \kbd{nfmodpr}.

Let $P$ be a prime ideal in \key{modpr} format (see \kbd{nfmodprinit}),
let $a$ be a matrix, invertible over the residue field, and let $b$ be
a column vector or matrix. This function returns a solution of $a\cdot x =
b$; the coefficients of $x$ are lifted to \var{nf} elements.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? P = nfmodprinit(K, P);
? a = [y+1, y; y, 0]; b = [1, y]~
? nfsolvemodpr(K, a,b, P)
%5 = [1, 2]~
@eprog

The library syntax is \fun{GEN}{nfsolvemodpr}{GEN nf, GEN a, GEN b, GEN P}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.

\subsec{nfsplitting$(\var{nf},\{d\})$}\kbdsidx{nfsplitting}\label{se:nfsplitting}
Defining polynomial over~$\Q$ for the splitting field of \var{nf};
if $d$ is given, it must be a multiple of the splitting field degree.
Instead of~\kbd{nf}, it is possible to input a defining (irreducible)
polynomial $T$ for~\kbd{nf}, but in general this is less efficient.

\bprog
? K = nfinit(x^3-2);
? nfsplitting(K)
%2 = x^6 + 108
?  nfsplitting(x^8-2)
%3 = x^16 + 272*x^8 + 64
@eprog
\noindent
Specifying the degree of the splitting field can make the computation faster.
\bprog
? nfsplitting(x^17-123);
time = 3,607 ms.
? poldegree(%)
%2 = 272
? nfsplitting(x^17-123,272);
time = 150 ms.
? nfsplitting(x^17-123,273);
 *** nfsplitting: Warning: ignoring incorrect degree bound 273
time = 3,611 ms.
@eprog
\noindent
The complexity of the algorithm is polynomial in the degree $d$ of the
splitting field and the bitsize of $T$; if $d$ is large the result will
likely be unusable, e.g. \kbd{nfinit} will not be an option:
\bprog
? nfsplitting(x^6-x-1)
[... degree 720 polynomial deleted ...]
time = 11,020 ms.
@eprog

The library syntax is \fun{GEN}{nfsplitting}{GEN nf, GEN d = NULL}.

\subsec{nfsubfields$(\var{pol},\{d=0\})$}\kbdsidx{nfsubfields}\label{se:nfsubfields}
Finds all subfields of degree
$d$ of the number field defined by the (monic, integral) polynomial
\var{pol} (all subfields if $d$ is null or omitted). The result is a vector
of subfields, each being given by $[g,h]$, where $g$ is an absolute equation
and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm
in the general case, and B.~Allombert's \tet{galoissubfields} when \var{nf}
is Galois (with weakly supersolvable Galois group).\sidx{Galois}\sidx{subfield}

The library syntax is \fun{GEN}{nfsubfields}{GEN pol, long d}.

\subsec{polcompositum$(P,Q,\{\fl=0\})$}\kbdsidx{polcompositum}\label{se:polcompositum}
\sidx{compositum} $P$ and $Q$
being squarefree polynomials in $\Z[X]$ in the same variable, outputs
the simple factors of the \'etale $\Q$-algebra $A = \Q(X, Y) / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $\Z[X]$, attached to
the number field $\Q(X)/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway. In
this case, there will be a single factor $R$ if and only if the number
fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
$\Q$).

Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it
is in general much faster to proceed as follows
\bprog
nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
@eprog\noindent
to obtain the same result. If you are only interested in the degrees of the
simple factors, the \kbd{rnfequation} instruction can be replaced by a
trivial \kbd{poldegree(P) * poldegree(L[i])}.

The binary digits of $\fl$ mean

1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$\Q(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.

2: assume that $P$ and $Q$ define number fields which are linearly disjoint:
both polynomials are irreducible and the corresponding number fields
have no common subfield besides $\Q$. This allows to save a costly
factorization over $\Q$. In this case return the single simple factor
instead of a vector with one element.

A compositum is often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is an example involving
the field $\Q(\zeta_5, 5^{1/5})$:
\bprog
? L = polcompositum(x^5 - 5, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
? [R, a] = L[1];  \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
? R               \\@com defines the compositum
%3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14\
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8    \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2     \
- 320*x + 256
? a^5 - 5         \\@com a fifth root of $5$
%4 = 0
? [T, X] = polredbest(R, 1);
? T     \\@com simpler defining polynomial for $\Q[x]/(R)$
%6 = x^20 + 25*x^10 + 5
? X     \\ @com root of $R$ in $\Q[y]/(T(y))$
%7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,\
x^20 + 25*x^10 + 5)
? a = subst(a.pol, 'x, X)  \\@com \kbd{a} in the new coordinates
%8 = Mod(1/11*x^14 + 29/11*x^4, x^20 + 25*x^10 + 5)
? a^5 - 5
%9 = 0
@eprog\noindent In the above example, $x^5-5$ and the $5$-th cyclotomic
polynomial are irreducible over $\Q$; they have coprime degrees so
define linearly disjoint extensions and we could have started by
\bprog
? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \\@com $[R,a,b,k]$
@eprog

The library syntax is \fun{GEN}{polcompositum0}{GEN P, GEN Q, long flag}.
Also available are
\fun{GEN}{compositum}{GEN P, GEN Q} ($\fl = 0$) and
\fun{GEN}{compositum2}{GEN P, GEN Q} ($\fl = 1$).

\subsec{polgalois$(T)$}\kbdsidx{polgalois}\label{se:polgalois}
\idx{Galois} group of the non-constant
polynomial $T\in\Q[X]$. In the present version \vers, $T$ must be irreducible
and the degree $d$ of $T$ must be less than or equal to 7. If the
\tet{galdata} package has been installed, degrees 8, 9, 10 and 11 are also
implemented. By definition, if $K = \Q[x]/(T)$, this computes the action of
the Galois group of the Galois closure of $K$ on the $d$ distinct roots of
$T$, up to conjugacy (corresponding to different root orderings).

The output is a 4-component vector $[n,s,k,name]$ with the
following meaning: $n$ is the cardinality of the group, $s$ is its signature
($s=1$ if the group is a subgroup of the alternating group $A_d$, $s=-1$
otherwise) and name is a character string containing name of the transitive
group according to the GAP 4 transitive groups library by Alexander Hulpke.

$k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
unfortunate: for $d > 7$, $k$ is the numbering of the group among all
transitive subgroups of $S_d$, as given in ``The transitive groups of degree up
to eleven'', G.~Butler and J.~McKay, \emph{Communications in Algebra}, vol.~11,
1983,
pp.~863--911 (group $k$ is denoted $T_k$ there). And for $d \leq 7$, it was ad
hoc, so as to ensure that a given triple would denote a unique group.
Specifically, for polynomials of degree $d\leq 7$, the groups are coded as
follows, using standard notations
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,1]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,1]$, $D_4=[8,-1,1]$, $A_4=[12,1,1]$,
$S_4=[24,-1,1]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,1]$, $M_{20}=[20,-1,1]$,
$A_5=[60,1,1]$, $S_5=[120,-1,1]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,1]$, $A_4=[12,1,1]$,
$G_{18}=[18,-1,1]$, $S_4^-=[24,-1,1]$, $A_4\times C_2=[24,-1,2]$,
$S_4^+=[24,1,1]$, $G_{36}^-=[36,-1,1]$, $G_{36}^+=[36,1,1]$,
$S_4\times C_2=[48,-1,1]$, $A_5=PSL_2(5)=[60,1,1]$, $G_{72}=[72,-1,1]$,
$S_5=PGL_2(5)=[120,-1,1]$, $A_6=[360,1,1]$, $S_6=[720,-1,1]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[21,1,1]$,
$M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,
$S_7=[5040,-1,1]$.
\smallskip
This is deprecated and obsolete, but for reasons of backward compatibility,
we cannot change this behavior yet. So you can use the default
\tet{new_galois_format} to switch to a consistent naming scheme, namely $k$ is
always the standard numbering of the group among all transitive subgroups of
$S_n$. If this default is in effect, the above groups will be coded as:
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,2]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,2]$, $D_4=[8,-1,3]$, $A_4=[12,1,4]$,
$S_4=[24,-1,5]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,2]$, $M_{20}=[20,-1,3]$,
$A_5=[60,1,4]$, $S_5=[120,-1,5]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,3]$, $A_4=[12,1,4]$,
$G_{18}=[18,-1,5]$, $A_4\times C_2=[24,-1,6]$, $S_4^+=[24,1,7]$,
$S_4^-=[24,-1,8]$, $G_{36}^-=[36,-1,9]$, $G_{36}^+=[36,1,10]$,
$S_4\times C_2=[48,-1,11]$, $A_5=PSL_2(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
$S_5=PGL_2(5)=[120,-1,14]$, $A_6=[360,1,15]$, $S_6=[720,-1,16]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,2]$, $M_{21}=[21,1,3]$,
$M_{42}=[42,-1,4]$, $PSL_2(7)=PSL_3(2)=[168,1,5]$, $A_7=[2520,1,6]$,
$S_7=[5040,-1,7]$.
\smallskip

\misctitle{Warning} The method used is that of resolvent polynomials and is
sensitive to the current precision. The precision is updated internally but,
in very rare cases, a wrong result may be returned if the initial precision
was not sufficient.

The library syntax is \fun{GEN}{polgalois}{GEN T, long prec}.
To enable the new format in library mode,
set the global variable \tet{new_galois_format} to $1$.

\subsec{polred$(T,\{\fl=0\})$}\kbdsidx{polred}\label{se:polred}
This function is \emph{deprecated}, use \tet{polredbest} instead.
Finds polynomials with reasonably small coefficients defining subfields of
the number field defined by $T$. One of the polynomials always defines $\Q$
(hence is equal to $x-1$), and another always defines the same number field
as $T$ if $T$ is irreducible.

All $T$ accepted by \tet{nfinit} are also allowed here;
in particular, the format \kbd{[T, listP]} is recommended, e.g. with
$\kbd{listP} = 10^5$ or a vector containing all ramified primes. Otherwise,
the maximal order of $\Q[x]/(T)$ must be computed.

The following binary digits of $\fl$ are significant:

1: Possibly use a suborder of the maximal order. The
primes dividing the index of the order chosen are larger than
\tet{primelimit} or divide integers stored in the \tet{addprimes} table.
This flag is \emph{deprecated}, the \kbd{[T, listP]} format is more
flexible.

2: gives also elements. The result is a two-column matrix, the first column
giving primitive elements defining these subfields, the second giving the
corresponding minimal polynomials.
\bprog
? M = polred(x^4 + 8, 2)
%1 =
[1 x - 1]

[1/2*x^2 x^2 + 2]

[1/4*x^3 x^4 + 2]

[x x^4 + 8]
? minpoly(Mod(M[2,1], x^4+8))
%2 = x^2 + 2
@eprog

\synt{polred}{GEN T} ($\fl = 0$). Also available is
\fun{GEN}{polred2}{GEN T} ($\fl = 2$). The function \kbd{polred0} is
deprecated, provided for backward compatibility.

\subsec{polredabs$(T,\{\fl=0\})$}\kbdsidx{polredabs}\label{se:polredabs}
Returns a canonical defining polynomial $P$ for the number field
$\Q[X]/(T)$ defined by $T$, such that the sum of the squares of the modulus
of the roots (i.e.~the $T_2$-norm) is minimal. Different $T$ defining
isomorphic number fields will yield the same $P$. All $T$ accepted by
\tet{nfinit} are also allowed here, e.g. non-monic polynomials, or pairs
\kbd{[T, listP]} specifying that a non-maximal order may be used. For
convenience, any number field structure (\var{nf}, \var{bnf},\dots) can also
be used instead of $T$.
\bprog
? polredabs(x^2 + 16)
%1 = x^2 + 1
? K = bnfinit(x^2 + 16); polredabs(K)
%2 = x^2 + 1
@eprog

\misctitle{Warning 1} Using a \typ{POL} $T$ requires computing
and fully factoring the discriminant $d_K$ of the maximal order which may be
very hard. You can use the format \kbd{[T, listP]}, where \kbd{listP}
encodes a list of known coprime divisors of $\disc(T)$ (see \kbd{??nfbasis}),
to help the routine, thereby replacing this part of the algorithm by a
polynomial time computation But this may only compute a suborder of the
maximal order, when the divisors are not squarefree or do not include all
primes dividing $d_K$. The routine attempts to certify the result
independently of this order computation as per \tet{nfcertify}: we try to
prove that the computed order is maximal. If the certification fails,
the routine then fully factors the integers returned by \kbd{nfcertify}.
You can use \tet{polredbest} or \kbd{polredabs(,16)} to avoid this
factorization step; in both cases, the result is no longer canonical.

\misctitle{Warning 2} Apart from the factorization of the discriminant of
$T$, this routine runs in polynomial time for a \emph{fixed} degree.
But the complexity is exponential in the degree: this routine
may be exceedingly slow when the number field has many subfields, hence a
lot of elements of small $T_2$-norm. If you do not need a canonical
polynomial, the function \tet{polredbest} is in general much faster (it runs
in polynomial time), and tends to return polynomials with smaller
discriminants.

The binary digits of $\fl$ mean

1: outputs a two-component row vector $[P,a]$, where $P$ is the default
output and \kbd{Mod(a, P)} is a root of the original $T$.

4: gives \emph{all} polynomials of minimal $T_2$ norm; of the two polynomials
$P(x)$ and $\pm P(-x)$, only one is given.

16: Possibly use a suborder of the maximal order, \emph{without} attempting to
certify the result as in Warning 1: we always return a polynomial and never
$0$. The result is a priori not canonical.

\bprog
? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \
      - 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
? T1 = polredabs(T); T2 = polredbest(T);
? [ norml2(polroots(T1)), norml2(polroots(T2)) ]
%3 = [88.0000000, 120.000000]
? [ sizedigit(poldisc(T1)), sizedigit(poldisc(T2)) ]
%4 = [75, 67]
@eprog

The library syntax is \fun{GEN}{polredabs0}{GEN T, long flag}.
Instead of the above hardcoded numerical flags, one should use an
or-ed combination of

\item \tet{nf_PARTIALFACT}: possibly use a suborder of the maximal order,
\emph{without} attempting to certify the result.

\item \tet{nf_ORIG}: return $[P, a]$, where \kbd{Mod(a, P)} is a root of $T$.

\item \tet{nf_RAW}: return $[P, b]$, where \kbd{Mod(b, T)} is a root of $P$.
The algebraic integer $b$ is the raw result produced by the small vectors
enumeration in the maximal order; $P$ was computed as the characteristic
polynomial of \kbd{Mod(b, T)}. \kbd{Mod(a, P)} as in \tet{nf_ORIG}
is obtained with \tet{modreverse}.

\item \tet{nf_ADDZK}: if $r$ is the result produced with some of the above
flags (of the form $P$ or $[P,c]$), return \kbd{[r,zk]}, where \kbd{zk} is a
$\Z$-basis for the maximal order of $\Q[X]/(P)$.

\item \tet{nf_ALL}: return a vector of results of the above form, for all
polynomials of minimal $T_2$-norm.

\subsec{polredbest$(T,\{\fl=0\})$}\kbdsidx{polredbest}\label{se:polredbest}
Finds a polynomial with reasonably
small coefficients defining the same number field as $T$.
All $T$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic
polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[T,Z\_K\_basis]}). Contrary to
\tet{polredabs}, this routine runs in polynomial time, but it offers no
guarantee as to the minimality of its result.

This routine computes an LLL-reduced basis for the ring of integers of
$\Q[X]/(T)$, then examines small linear combinations of the basis vectors,
computing their characteristic polynomials. It returns the \emph{separable}
$P$ polynomial of smallest discriminant (the one with lexicographically
smallest \kbd{abs(Vec(P))} in case of ties). This is a good candidate
for subsequent number field computations, since it guarantees that
the denominators of algebraic integers, when expressed in the power basis,
are reasonably small. With no claim of minimality, though.

It can happen that iterating this functions yields better and better
polynomials, until it stabilizes:
\bprog
? \p5
? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
? poldisc(P)*1.
%2 = 1.2622 E55
? P = polredbest(P);
? poldisc(P)*1.
%4 = 2.9012 E51
? P = polredbest(P);
? poldisc(P)*1.
%6 = 8.8704 E44
@eprog\noindent In this example, the initial polynomial $P$ is the one
returned by \tet{polredabs}, and the last one is stable.

If $\fl = 1$: outputs a two-component row vector $[P,a]$,  where $P$ is the
default output and \kbd{Mod(a, P)} is a root of the original $T$.
\bprog
? [P,a] = polredbest(x^4 + 8, 1)
%1 = [x^4 + 2, Mod(x^3, x^4 + 2)]
? charpoly(a)
%2 = x^4 + 8
@eprog\noindent In particular, the map $\Q[x]/(T) \to \Q[x]/(P)$,
$x\mapsto \kbd{Mod(a,P)}$ defines an isomorphism of number fields, which can
be computed as
\bprog
  subst(lift(Q), 'x, a)
@eprog\noindent if $Q$ is a \typ{POLMOD} modulo $T$; \kbd{b = modreverse(a)}
returns a \typ{POLMOD} giving the inverse of the above map (which should be
useless since $\Q[x]/(P)$ is a priori a better representation for the number
field and its elements).

The library syntax is \fun{GEN}{polredbest}{GEN T, long flag}.

\subsec{polredord$(x)$}\kbdsidx{polredord}\label{se:polredord}
This function is obsolete, use polredbest.

The library syntax is \fun{GEN}{polredord}{GEN x}.

\subsec{poltschirnhaus$(x)$}\kbdsidx{poltschirnhaus}\label{se:poltschirnhaus}
Applies a random Tschirnhausen
transformation to the polynomial $x$, which is assumed to be non-constant
and separable, so as to obtain a new equation for the \'etale algebra
defined by $x$. This is for instance useful when computing resolvents,
hence is used by the \kbd{polgalois} function.

The library syntax is \fun{GEN}{tschirnhaus}{GEN x}.

\subsec{rnfalgtobasis$(\var{rnf},x)$}\kbdsidx{rnfalgtobasis}\label{se:rnfalgtobasis}
Expresses $x$ on the relative
integral basis. Here, $\var{rnf}$ is a relative number field extension $L/K$
as output by \kbd{rnfinit}, and $x$ an element of $L$ in absolute form, i.e.
expressed as a polynomial or polmod with polmod coefficients, \emph{not} on
the relative integral basis.

The library syntax is \fun{GEN}{rnfalgtobasis}{GEN rnf, GEN x}.

\subsec{rnfbasis$(\var{bnf},M)$}\kbdsidx{rnfbasis}\label{se:rnfbasis}
Let $K$ the field represented by
\var{bnf}, as output by \kbd{bnfinit}. $M$ is a projective $\Z_K$-module
of rank $n$ ($M\otimes K$ is an $n$-dimensional $K$-vector space), given by a
pseudo-basis of size $n$. The routine returns either a true $\Z_K$-basis of
$M$ (of size $n$) if it exists, or an $n+1$-element generating set of $M$ if
not.

It is allowed to use an irreducible polynomial $P$ in $K[X]$ instead of $M$,
in which case, $M$ is defined as the ring of integers of $K[X]/(P)$, viewed
as a $\Z_K$-module.

The library syntax is \fun{GEN}{rnfbasis}{GEN bnf, GEN M}.

\subsec{rnfbasistoalg$(\var{rnf},x)$}\kbdsidx{rnfbasistoalg}\label{se:rnfbasistoalg}
Computes the representation of $x$
as a polmod with polmods coefficients. Here, $\var{rnf}$ is a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an element of
$L$ expressed on the relative integral basis.

The library syntax is \fun{GEN}{rnfbasistoalg}{GEN rnf, GEN x}.

\subsec{rnfcharpoly$(\var{nf},T,a,\{\var{var}='x\})$}\kbdsidx{rnfcharpoly}\label{se:rnfcharpoly}
Characteristic polynomial of
$a$ over $\var{nf}$, where $a$ belongs to the algebra defined by $T$ over
$\var{nf}$, i.e.~$\var{nf}[X]/(T)$. Returns a polynomial in variable $v$
($x$ by default).
\bprog
? nf = nfinit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1
@eprog

The library syntax is \fun{GEN}{rnfcharpoly}{GEN nf, GEN T, GEN a, long var = -1} where \kbd{var} is a variable number.

\subsec{rnfconductor$(\var{bnf},\var{pol})$}\kbdsidx{rnfconductor}\label{se:rnfconductor}
Given $\var{bnf}$
as output by \kbd{bnfinit}, and \var{pol} a relative polynomial defining an
\idx{Abelian extension}, computes the class field theory conductor of this
Abelian extension. The result is a 3-component vector
$[\var{conductor},\var{bnr},\var{subgroup}]$, where \var{conductor} is
the conductor of the extension given as a 2-component row vector
$[f_0,f_\infty]$, \var{bnr} is the attached \kbd{bnr} structure
and \var{subgroup} is a matrix in HNF defining the subgroup of the ray class
group on \kbd{bnr.gen}.

The library syntax is \fun{GEN}{rnfconductor}{GEN bnf, GEN pol}.

\subsec{rnfdedekind$(\var{nf},\var{pol},\{\var{pr}\},\{\fl=0\})$}\kbdsidx{rnfdedekind}\label{se:rnfdedekind}
Given a number field $K$ coded by $\var{nf}$ and a monic
polynomial $P\in \Z_K[X]$, irreducible over $K$ and thus defining a relative
extension $L$ of $K$, applies \idx{Dedekind}'s criterion to the order
$\Z_K[X]/(P)$, at the prime ideal \var{pr}. It is possible to set \var{pr}
to a vector of prime ideals (test maximality at all primes in the vector),
or to omit altogether, in which case maximality at \emph{all} primes is tested;
in this situation \fl\ is automatically set to $1$.

The default historic behavior (\fl\ is 0 or omitted and \var{pr} is a
single prime ideal) is not so useful since
\kbd{rnfpseudobasis} gives more information and is generally not that
much slower. It returns a 3-component vector $[\var{max}, \var{basis}, v]$:

\item \var{basis} is a pseudo-basis of an enlarged order $O$ produced by
Dedekind's criterion, containing the original order $\Z_K[X]/(P)$
with index a power of \var{pr}. Possibly equal to the original order.

\item \var{max} is a flag equal to 1 if the enlarged order $O$
could be proven to be \var{pr}-maximal and to 0 otherwise; it may still be
maximal in the latter case if \var{pr} is ramified in $L$,

\item $v$ is the valuation at \var{pr} of the order discriminant.

If \fl\ is non-zero, on the other hand, we just return $1$ if the order
$\Z_K[X]/(P)$ is \var{pr}-maximal (resp.~maximal at all relevant primes, as
described above), and $0$ if not. This is much faster than the default,
since the enlarged order is not computed.
\bprog
? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%4 = 1
@eprog\noindent In this example, \kbd{pr3} is the ramified ideal above $3$,
and the order generated by the cube roots of $y$ is already
\kbd{pr3}-maximal. The order-discriminant has valuation $8$. On the other
hand, the order is not maximal at the prime above 2:
\bprog
? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%6 = 0
? rnfdedekind(nf, P, pr2)
%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
     [1, 1/2; 0, 1/2]]], 2]
@eprog
The enlarged order is not proven to be \kbd{pr2}-maximal yet. In fact, it
is; it is in fact the maximal order:
\bprog
? B = rnfpseudobasis(nf, P)
%8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
     [162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%9 = 2
@eprog\noindent
It is possible to use this routine with non-monic
$P = \sum_{i\leq n} a_i X^i \in \Z_K[X]$ if $\fl = 1$;
in this case, we test maximality of Dedekind's order generated by
$$1, a_n \alpha, a_n\alpha^2 + a_{n-1}\alpha, \dots,
a_n\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \cdots + a_1\alpha.$$
The routine will fail if $P$ is $0$ on the projective line over the residue
field $\Z_K/\kbd{pr}$ (FIXME).

The library syntax is \fun{GEN}{rnfdedekind}{GEN nf, GEN pol, GEN pr = NULL, long flag}.

\subsec{rnfdet$(\var{nf},M)$}\kbdsidx{rnfdet}\label{se:rnfdet}
Given a pseudo-matrix $M$ over the maximal
order of $\var{nf}$, computes its determinant.

The library syntax is \fun{GEN}{rnfdet}{GEN nf, GEN M}.

\subsec{rnfdisc$(\var{nf},\var{pol})$}\kbdsidx{rnfdisc}\label{se:rnfdisc}
Given a number field $\var{nf}$ as
output by \kbd{nfinit} and a polynomial \var{pol} with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, computes the
relative discriminant of $L$. This is a two-element row vector $[D,d]$, where
$D$ is the relative ideal discriminant and $d$ is the relative discriminant
considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of
$\var{nf}$ \emph{must} be of lower priority than that of \var{pol}, see
\secref{se:priority}.

The library syntax is \fun{GEN}{rnfdiscf}{GEN nf, GEN pol}.

\subsec{rnfeltabstorel$(\var{rnf},x)$}\kbdsidx{rnfeltabstorel}\label{se:rnfeltabstorel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an
element of $L$ expressed as a polynomial modulo the absolute equation
\kbd{\var{rnf}.pol}, or in terms of the absolute $\Z$-basis for $\Z_L$
if \var{rnf} contains one (as in \kbd{rnfinit(nf,pol,1)}, or after
a call to \kbd{nfinit(rnf)}).
Computes $x$ as an element of the relative extension
$L/K$ as a polmod with polmod coefficients.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.polabs
%2 = x^4 + 1
? rnfeltabstorel(L, Mod(x, L.polabs))
%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, 1/3)
%4 = 1/3
? rnfeltabstorel(L, Mod(x, x^2-y))
%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltabstorel(L, [0,0,0,1]~) \\ Z_L not initialized yet
 ***   at top-level: rnfeltabstorel(L,[0,
 ***                 ^--------------------
 *** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
? nfinit(L); \\ initialize now
? rnfeltabstorel(L, [0,0,0,1]~)
%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))
@eprog

The library syntax is \fun{GEN}{rnfeltabstorel}{GEN rnf, GEN x}.

\subsec{rnfeltdown$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfeltdown}\label{se:rnfeltdown}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
$L$ expressed as a polynomial or polmod with polmod coefficients (or as a
\typ{COL} on \kbd{nfinit(rnf).zk}), computes
$x$ as an element of $K$ as a \typ{POLMOD} if $\fl = 0$ and as a \typ{COL}
otherwise. If $x$ is not in $K$, a domain error occurs.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltdown(L, Mod(x^2, L.pol))
%3 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x^2, L.pol), 1)
%4 = [0, 1]~
? rnfeltdown(L, Mod(y, x^2-y))
%5 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(y,K.pol))
%6 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x, L.pol))
 ***   at top-level: rnfeltdown(L,Mod(x,x
 ***                 ^--------------------
 *** rnfeltdown: domain error in rnfeltdown: element not in the base field
? rnfeltdown(L, Mod(y, x^2-y), 1) \\ as a t_COL
%7 = [0, 1]~
? rnfeltdown(L, [0,1,0,0]~) \\ not allowed without absolute nf struct
  *** rnfeltdown: incorrect type in rnfeltdown (t_COL).
? nfinit(L); \\ add absolute nf structure to L
? rnfeltdown(L, [0,1,0,0]~) \\ now OK
%8 = Mod(y, y^2 + 1)
@eprog\noindent If we had started with
\kbd{L = rnfinit(K, x\pow2-y, 1)}, then the final would have worked directly.

The library syntax is \fun{GEN}{rnfeltdown0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfeltdown}{GEN rnf, GEN x} ($\fl = 0$).

\subsec{rnfeltnorm$(\var{rnf},x)$}\kbdsidx{rnfeltnorm}\label{se:rnfeltnorm}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $L$, returns the relative norm
$N_{L/K}(x)$ as an element of $K$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfeltnorm(L, Mod(x, L.pol))
%2 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltnorm(L, 2)
%3 = 4
? rnfeltnorm(L, Mod(x, x^2-y))
@eprog

The library syntax is \fun{GEN}{rnfeltnorm}{GEN rnf, GEN x}.

\subsec{rnfeltreltoabs$(\var{rnf},x)$}\kbdsidx{rnfeltreltoabs}\label{se:rnfeltreltoabs}
$\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
element of $L$ expressed as a polynomial or polmod with polmod
coefficients, computes $x$ as an element of the absolute extension $L/\Q$ as
a polynomial modulo the absolute equation \kbd{\var{rnf}.pol}.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltreltoabs(L, Mod(x, L.pol))
%3 = Mod(x, x^4 + 1)
? rnfeltreltoabs(L, Mod(y, x^2-y))
%4 = Mod(x^2, x^4 + 1)
? rnfeltreltoabs(L, Mod(y,K.pol))
%5 = Mod(x^2, x^4 + 1)
@eprog

The library syntax is \fun{GEN}{rnfeltreltoabs}{GEN rnf, GEN x}.

\subsec{rnfelttrace$(\var{rnf},x)$}\kbdsidx{rnfelttrace}\label{se:rnfelttrace}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $L$, returns the relative trace
$Tr_{L/K}(x)$ as an element of $K$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfelttrace(L, Mod(x, L.pol))
%2 = 0
? rnfelttrace(L, 2)
%3 = 4
? rnfelttrace(L, Mod(x, x^2-y))
@eprog

The library syntax is \fun{GEN}{rnfelttrace}{GEN rnf, GEN x}.

\subsec{rnfeltup$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfeltup}\label{se:rnfeltup}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $K$, computes $x$ as an element of
the absolute extension $L/\Q$. As a \typ{POLMOD} modulo \kbd{\var{rnf}.pol}
if $\fl = 0$ and as a \typ{COL} on the absolute field integer basis if
$\fl = 1$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltup(L, Mod(y, K.pol))
%3 = Mod(x^2, x^4 + 1)
? rnfeltup(L, y)
%4 = Mod(x^2, x^4 + 1)
? rnfeltup(L, [1,2]~) \\ in terms of K.zk
%5 = Mod(2*x^2 + 1, x^4 + 1)
? rnfeltup(L, y, 1) \\ in terms of nfinit(L).zk
%6 = [0, 1, 0, 0]~
? rnfeltup(L, [1,2]~, 1)
%7 = [1, 2, 0, 0]~
@eprog

The library syntax is \fun{GEN}{rnfeltup0}{GEN rnf, GEN x, long flag}.

\subsec{rnfequation$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfequation}\label{se:rnfequation}
Given a number field
$\var{nf}$ as output by \kbd{nfinit} (or simply a polynomial) and a
polynomial \var{pol} with coefficients in $\var{nf}$ defining a relative
extension $L$ of $\var{nf}$, computes an absolute equation of $L$ over
$\Q$.

The main variable of $\var{nf}$ \emph{must} be of lower priority than that
of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
not check whether the relative equation is irreducible over $\var{nf}$, but
only if it is squarefree. If it is reducible but squarefree, the result will
be the absolute equation of the \'etale algebra defined by \var{pol}. If
\var{pol} is not squarefree, raise an \kbd{e\_DOMAIN} exception.
\bprog
? rnfequation(y^2+1, x^2 - y)
%1 = x^4 + 1
? T = y^3-2; rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))
%2 = x^6 + 108  \\ Galois closure of Q(2^(1/3))
@eprog

If $\fl$ is non-zero, outputs a 3-component row vector $[z,a,k]$, where

\item $z$ is the absolute equation of $L$ over $\Q$, as in the default
behavior,

\item $a$ expresses as a \typ{POLMOD} modulo $z$ a root $\alpha$ of the
polynomial defining the base field $\var{nf}$,

\item $k$ is a small integer such that $\theta = \beta+k\alpha$
is a root of $z$, where $\beta$ is a root of $\var{pol}$.
\bprog
? T = y^3-2; pol = x^2 +x*y + y^2;
? [z,a,k] = rnfequation(T, pol, 1);
? z
%3 = x^6 + 108
? subst(T, y, a)
%4 = 0
? alpha= Mod(y, T);
? beta = Mod(x*Mod(1,T), pol);
? subst(z, x, beta + k*alpha)
%7 = 0
@eprog

The library syntax is \fun{GEN}{rnfequation0}{GEN nf, GEN pol, long flag}.
Also available are
\fun{GEN}{rnfequation}{GEN nf, GEN pol} ($\fl = 0$) and
\fun{GEN}{rnfequation2}{GEN nf, GEN pol} ($\fl = 1$).

\subsec{rnfhnfbasis$(\var{bnf},x)$}\kbdsidx{rnfhnfbasis}\label{se:rnfhnfbasis}
Given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, gives either a true $\var{bnf}$-basis of $L$ in upper
triangular Hermite normal form, if it exists, and returns $0$ otherwise.

The library syntax is \fun{GEN}{rnfhnfbasis}{GEN bnf, GEN x}.

\subsec{rnfidealabstorel$(\var{rnf},x)$}\kbdsidx{rnfidealabstorel}\label{se:rnfidealabstorel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ be an ideal of
the absolute extension $L/\Q$ given by a $\Z$-basis of elements of $L$.
Returns the relative pseudo-matrix in HNF giving the ideal $x$ considered as
an ideal of the relative extension $L/K$, i.e.~as a $\Z_K$-module.

The reason why the input does not use the customary HNF in terms of a fixed
$\Z$-basis for $\Z_L$ is precisely that no such basis has been explicitly
specified. On the other hand, if you already computed an (absolute) \kbd{nf}
structure \kbd{Labs} attached to $L$, and $m$ is in HNF, defining
an (absolute) ideal with respect to the $\Z$-basis \kbd{Labs.zk}, then
\kbd{Labs.zk * m} is a suitable $\Z$-basis for the ideal, and
\bprog
  rnfidealabstorel(rnf, Labs.zk * m)
@eprog\noindent converts $m$ to a relative ideal.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y); Labs = nfinit(L);
? m = idealhnf(Labs, 17, x^3+2);
? B = rnfidealabstorel(L, Labs.zk * m)
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]  \\ pseudo-basis for m as Z_K-module
? A = rnfidealreltoabs(L, B)
%4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2]   \\ Z-basis for m in Q[x]/(L.pol)
? mathnf(matalgtobasis(Labs, A))
%5 =
[17 8 4 2]

[ 0 1 0 0]

[ 0 0 1 0]

[ 0 0 0 1]
? % == m
%6 = 1
@eprog

The library syntax is \fun{GEN}{rnfidealabstorel}{GEN rnf, GEN x}.

\subsec{rnfidealdown$(\var{rnf},x)$}\kbdsidx{rnfidealdown}\label{se:rnfidealdown}
Let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
$L$, given either in relative form or by a $\Z$-basis of elements of $L$
(see \secref{se:rnfidealabstorel}). This function returns the ideal of $K$
below $x$, i.e.~the intersection of $x$ with $K$.

The library syntax is \fun{GEN}{rnfidealdown}{GEN rnf, GEN x}.

\subsec{rnfidealfactor$(\var{rnf},x)$}\kbdsidx{rnfidealfactor}\label{se:rnfidealfactor}
Factors into prime ideal powers the
ideal $x$ in the attached absolute number field $L = \kbd{nfinit}(\var{rnf})$.
The output format is similar to the \kbd{factor} function, and the prime
ideals are represented in the form output by the \kbd{idealprimedec}
function for $L$.
\bprog
? rnf = rnfinit(nfinit(y^2+1), x^2-y+1);
? rnfidealfactor(rnf, y+1)  \\ P_2^2
%2 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 2]

? rnfidealfactor(rnf, x) \\ P_2
%3 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 1]

? L = nfinit(rnf);
? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealfactor(rnf, id)
%6 = 1
@eprog\noindent Note that ideals of the base field $K$ must be explicitly
lifted to $L$ via \kbd{rnfidealup} before they can be factored.

The library syntax is \fun{GEN}{rnfidealfactor}{GEN rnf, GEN x}.

\subsec{rnfidealhnf$(\var{rnf},x)$}\kbdsidx{rnfidealhnf}\label{se:rnfidealhnf}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a relative
ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the HNF pseudo-matrix attached to
$x$, viewed as a $\Z_K$-module.

The library syntax is \fun{GEN}{rnfidealhnf}{GEN rnf, GEN x}.

\subsec{rnfidealmul$(\var{rnf},x,y)$}\kbdsidx{rnfidealmul}\label{se:rnfidealmul}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ and $y$ being ideals
of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal
product, again as a relative ideal.

The library syntax is \fun{GEN}{rnfidealmul}{GEN rnf, GEN x, GEN y}.

\subsec{rnfidealnormabs$(\var{rnf},x)$}\kbdsidx{rnfidealnormabs}\label{se:rnfidealnormabs}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements). This function computes the norm of the
$x$ considered as an ideal of the absolute extension $L/\Q$. This is
identical to
\bprog
   idealnorm(rnf, rnfidealnormrel(rnf,x))
@eprog\noindent but faster.

The library syntax is \fun{GEN}{rnfidealnormabs}{GEN rnf, GEN x}.

\subsec{rnfidealnormrel$(\var{rnf},x)$}\kbdsidx{rnfidealnormrel}\label{se:rnfidealnormrel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements). This function computes the relative
norm of $x$ as an ideal of $K$ in HNF.

The library syntax is \fun{GEN}{rnfidealnormrel}{GEN rnf, GEN x}.

\subsec{rnfidealprimedec$(\var{rnf},\var{pr})$}\kbdsidx{rnfidealprimedec}\label{se:rnfidealprimedec}
Let \var{rnf} be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and \kbd{pr} a maximal
ideal of $K$ (\kbd{prid}), this function completes the \var{rnf}
with a \var{nf} structure attached to $L$ (see \secref{se:rnfinit})
and returns the prime ideal decomposition of \kbd{pr} in $L/K$.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^3+y+1);
? P = idealprimedec(K, 2)[1];
? S = rnfidealprimedec(rnf, P);
? #S
%4 = 1
@eprog
The argument \kbd{pr} is also allowed to be a prime number $p$, in which
case we return a pair of vectors \kbd{[SK,SL]}, where \kbd{SK} contains
the primes of $K$ above $p$ and \kbd{SL}$[i]$ is the vector of primes of $L$
above \kbd{SK}$[i]$.
\bprog
? [SK,SL] = rnfidealprimedec(rnf, 5);
? [#SK, vector(#SL,i,#SL[i])]
%6 = [2, [2, 2]]
@eprog

The library syntax is \fun{GEN}{rnfidealprimedec}{GEN rnf, GEN pr}.

\subsec{rnfidealreltoabs$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfidealreltoabs}\label{se:rnfidealreltoabs}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal, given as a $\Z_K$-module by a pseudo matrix $[A,I]$.
This function returns the ideal $x$ as an absolute ideal of $L/\Q$.
If $\fl = 0$, the result is given by a vector of \typ{POLMOD}s modulo
\kbd{rnf.pol} forming a $\Z$-basis; if $\fl = 1$, it is given in HNF in terms
of the fixed $\Z$-basis for $\Z_L$, see \secref{se:rnfinit}.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? P = rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? Prel = rnfidealhnf(rnf, P)
%4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]
? rnfidealreltoabs(rnf,Prel)
%5 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealreltoabs(rnf,Prel,1)
%6 =
[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]
@eprog
The reason why we do not return by default ($\fl = 0$) the customary HNF in
terms of a fixed $\Z$-basis for $\Z_L$ is precisely because
a \var{rnf} does not contain such a basis by default. Completing the
structure so that it contains a \var{nf} structure for $L$ is polynomial
time but costly when the absolute degree is large, thus it is not done by
default. Note that setting $\fl = 1$ will complete the \var{rnf}.

The library syntax is \fun{GEN}{rnfidealreltoabs0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfidealreltoabs}{GEN rnf, GEN x} ($\fl = 0$).

\subsec{rnfidealtwoelt$(\var{rnf},x)$}\kbdsidx{rnfidealtwoelt}\label{se:rnfidealtwoelt}
$\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
ideal of the relative extension $L/K$ given by a pseudo-matrix, gives a
vector of two generators of $x$ over $\Z_L$ expressed as polmods with polmod
coefficients.

The library syntax is \fun{GEN}{rnfidealtwoelement}{GEN rnf, GEN x}.

\subsec{rnfidealup$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfidealup}\label{se:rnfidealup}
Let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an ideal of
$K$. This function returns the ideal $x\Z_L$ as an absolute ideal of $L/\Q$,
in the form of a $\Z$-basis. If $\fl = 0$, the result is given by a vector of
polynomials (modulo \kbd{rnf.pol}); if $\fl = 1$, it is given in HNF in terms
of the fixed $\Z$-basis for $\Z_L$, see \secref{se:rnfinit}.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealup(rnf, P,1)
%4 =
[2 1 0 0]

[0 1 0 0]

[0 0 2 1]

[0 0 0 1]
@eprog
The reason why we do not return by default ($\fl = 0$) the customary HNF in
terms of a fixed $\Z$-basis for $\Z_L$ is precisely because
a \var{rnf} does not contain such a basis by default. Completing the
structure so that it contains a \var{nf} structure for $L$ is polynomial
time but costly when the absolute degree is large, thus it is not done by
default. Note that setting $\fl = 1$ will complete the \var{rnf}.

The library syntax is \fun{GEN}{rnfidealup0}{GEN rnf, GEN x, long flag}.
Also available is
 \fun{GEN}{rnfidealup}{GEN rnf, GEN x} ($\fl = 0$).

\subsec{rnfinit$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfinit}\label{se:rnfinit}
$\var{nf}$ being a number field in \kbd{nfinit}
format considered as base field, and \var{pol} a polynomial defining a relative
extension over $\var{nf}$, this computes data to work in the
relative extension. The main variable of \var{pol} must be of higher priority
(see \secref{se:priority}) than that of $\var{nf}$, and the coefficients of
\var{pol} must be in $\var{nf}$.

The result is a row vector, whose components are technical. In the following
description, we let $K$ be the base field defined by $\var{nf}$ and $L/K$
the extension attached to the \var{rnf}. Furthermore, we let
$m = [K:\Q]$ the degree of the base field, $n = [L:K]$ the relative degree,
$r_1$ and $r_2$ the number of real and complex places of $K$. Access to this
information via \emph{member functions} is preferred since the specific
data organization specified below will change in the future.

If $\fl = 1$, add an \var{nf} structure attached to $L$ to \var{rnf}.
This is likely to be very expensive if the absolute degree $mn$ is large,
but fixes an integer basis for $\Z_L$ as a $\Z$-module and allows to input
and output elements of $L$ in absolute form: as \typ{COL} for elements,
as \typ{MAT} in HNF for ideals, as \kbd{prid} for prime ideals. Without such
a call, elements of $L$ are represented as \typ{POLMOD}, etc.
Note that a subsequent \kbd{nfinit}$(\var{rnf})$ will also explicitly
add such a component, and so will the following functions \kbd{rnfidealmul},
\kbd{rnfidealtwoelt}, \kbd{rnfidealprimedec}, \kbd{rnfidealup} (with flag 1)
and \kbd{rnfidealreltoabs} (with flag 1). The absolute \var{nf} structure
attached to $L$ can be recovered using \kbd{nfinit(rnf)}.

$\var{rnf}[1]$(\kbd{rnf.pol}) contains the relative polynomial \var{pol}.

$\var{rnf}[2]$ contains the integer basis $[A,d]$ of $K$, as
(integral) elements of $L/\Q$. More precisely, $A$ is a vector of
polynomial with integer coefficients, $d$ is a denominator, and the integer
basis is given by $A/d$.

$\var{rnf}[3]$ (\kbd{rnf.disc}) is a two-component row vector
$[\goth{d}(L/K),s]$ where $\goth{d}(L/K)$ is the relative ideal discriminant
of $L/K$ and $s$ is the discriminant of $L/K$ viewed as an element of
$K^*/(K^*)^2$, in other words it is the output of \kbd{rnfdisc}.

$\var{rnf}[4]$(\kbd{rnf.index}) is the ideal index $\goth{f}$, i.e.~such
that $d(pol)\Z_K=\goth{f}^2\goth{d}(L/K)$.

$\var{rnf}[5]$ is currently unused.

$\var{rnf}[6]$ is currently unused.

$\var{rnf}[7]$ (\kbd{rnf.zk}) is the pseudo-basis $(A,I)$ for the maximal
order $\Z_L$ as a $\Z_K$-module: $A$ is the relative integral pseudo basis
expressed as polynomials (in the variable of $pol$) with polmod coefficients
in $\var{nf}$, and the second component $I$ is the ideal list of the
pseudobasis in HNF.

$\var{rnf}[8]$ is the inverse matrix of the integral basis matrix, with
coefficients polmods in $\var{nf}$.

$\var{rnf}[9]$ is currently unused.

$\var{rnf}[10]$ (\kbd{rnf.nf}) is $\var{nf}$.

$\var{rnf}[11]$ is an extension of \kbd{rnfequation(K, pol, 1)}. Namely, a
vector $[P, a, k, \kbd{K.pol}, \kbd{pol}]$ describing the \emph{absolute}
extension
$L/\Q$: $P$ is an absolute equation, more conveniently obtained
as \kbd{rnf.polabs}; $a$ expresses the generator $\alpha = y \mod \kbd{K.pol}$
of the number field $K$ as an element of $L$, i.e.~a polynomial modulo the
absolute equation $P$;

$k$ is a small integer such that, if $\beta$ is an abstract root of \var{pol}
and $\alpha$ the generator of $K$ given above, then $P(\beta + k\alpha) = 0$.

\misctitle{Caveat} Be careful if $k\neq0$ when dealing simultaneously with
absolute and relative quantities since $L = \Q(\beta + k\alpha) =
K(\alpha)$, and the generator chosen for the absolute extension is not the
same as for the relative one. If this happens, one can of course go on
working, but we advise to change the relative polynomial so that its root
becomes $\beta + k \alpha$. Typical GP instructions would be
\bprog
  [P,a,k] = rnfequation(K, pol, 1);
  if (k, pol = subst(pol, x, x - k*Mod(y, K.pol)));
  L = rnfinit(K, pol);
@eprog

$\var{rnf}[12]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available (which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{rnfinit} call).

The library syntax is \fun{GEN}{rnfinit0}{GEN nf, GEN pol, long flag}.
Also available is
\fun{GEN}{rnfinit}{GEN nf,GEN pol} ($\fl = 0$).

\subsec{rnfisabelian$(\var{nf},T)$}\kbdsidx{rnfisabelian}\label{se:rnfisabelian}
$T$ being a relative polynomial with coefficients
in \var{nf}, return 1 if it defines an abelian extension, and 0 otherwise.
\bprog
? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1
@eprog

The library syntax is \fun{long}{rnfisabelian}{GEN nf, GEN T}.

\subsec{rnfisfree$(\var{bnf},x)$}\kbdsidx{rnfisfree}\label{se:rnfisfree}
Given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, returns true (1) if $L/\var{bnf}$ is free, false (0) if
not.

The library syntax is \fun{long}{rnfisfree}{GEN bnf, GEN x}.

\subsec{rnfislocalcyclo$(\var{rnf})$}\kbdsidx{rnfislocalcyclo}\label{se:rnfislocalcyclo}
Let \var{rnf} a a relative number field extension $L/K$ as output
by \kbd{rnfinit} whole degree $[L:K]$ is a power of a prime $\ell$.
Return $1$ if the $\ell$-extension is locally cyclotomic (locally contained in
the cyclotomic $\Z_\ell$-extension of $K_v$ at all places $v | \ell$), and
$0$ if not.
\bprog
? K = nfinit(y^2 + y + 1);
? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
? rnfislocalcyclo(L)
%3 = 1
\\ we expect 3-adic continuity by Krasner's lemma
? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
%5 = [0, 1, 1, 1, 1]
@eprog

The library syntax is \fun{long}{rnfislocalcyclo}{GEN rnf}.

\subsec{rnfisnorm$(T,a,\{\fl=0\})$}\kbdsidx{rnfisnorm}\label{se:rnfisnorm}
Similar to
\kbd{bnfisnorm} but in the relative case. $T$ is as output by
\tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
whether the element $a$ in $K$ is the norm of some $x$ in the extension
$L/K$.

The output is a vector $[x,q]$, where $a = \Norm(x)*q$. The
algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
of places of $K$ containing at least the ramified primes, the generators of
the class group of $L$, as well as those primes dividing $a$. If $L/K$ is
Galois, then this is enough; otherwise, $\fl$ is used to add more primes to
$S$: all the places above the primes $p \leq \fl$ (resp.~$p|\fl$) if $\fl>0$
(resp.~$\fl<0$).

The answer is guaranteed (i.e.~$a$ is a norm iff $q = 1$) if the field is
Galois, or, under \idx{GRH}, if $S$ contains all primes less than
$12\log^2\left|\disc(M)\right|$, where $M$ is the normal
closure of $L/K$.

If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
\idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
$\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
Example:

\bprog
bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
rnfisnorm(T, 17)
@eprog\noindent
checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
\Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +
\alpha^2 + 2\alpha + 1 = 0$ (it is).

The library syntax is \fun{GEN}{rnfisnorm}{GEN T, GEN a, long flag}.

\subsec{rnfisnorminit$(\var{pol},\var{polrel},\{\fl=2\})$}\kbdsidx{rnfisnorminit}\label{se:rnfisnorminit}
Let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined
by the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
in $K$.

If $\fl = 0$, do not care whether $L/K$ is Galois or not.

If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
\tet{rnfisnorm}.

If $\fl = 2$, let the routine determine whether $L/K$ is Galois.

The library syntax is \fun{GEN}{rnfisnorminit}{GEN pol, GEN polrel, long flag}.

\subsec{rnfkummer$(\var{bnr},\{\var{subgp}\},\{d=0\})$}\kbdsidx{rnfkummer}\label{se:rnfkummer}
\var{bnr}
being as output by \kbd{bnrinit}, finds a relative equation for the
class field corresponding to the module in \var{bnr} and the given
congruence subgroup (the full ray class field if \var{subgp} is omitted).
If $d$ is positive, outputs the list of all relative equations of
degree $d$ contained in the ray class field defined by \var{bnr}, with
the \emph{same} conductor as $(\var{bnr}, \var{subgp})$.

\misctitle{Warning} This routine only works for subgroups of prime index. It
uses Kummer theory, adjoining necessary roots of unity (it needs to compute a
tough \kbd{bnfinit} here), and finds a generator via Hecke's characterization
of ramification in Kummer extensions of prime degree. If your extension does
not have prime degree, for the time being, you have to split it by hand as a
tower / compositum of such extensions.

The library syntax is \fun{GEN}{rnfkummer}{GEN bnr, GEN subgp = NULL, long d, long prec}.

\subsec{rnflllgram$(\var{nf},\var{pol},\var{order})$}\kbdsidx{rnflllgram}\label{se:rnflllgram}
Given a polynomial
\var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
a suborder \var{order} of $L$ (of maximal rank), as output by
\kbd{rnfpseudobasis}$(\var{nf},\var{pol})$ or similar, gives
$[[\var{neworder}],U]$, where \var{neworder} is a reduced order and $U$ is
the unimodular transformation matrix.

The library syntax is \fun{GEN}{rnflllgram}{GEN nf, GEN pol, GEN order, long prec}.

\subsec{rnfnormgroup$(\var{bnr},\var{pol})$}\kbdsidx{rnfnormgroup}\label{se:rnfnormgroup}
\var{bnr} being a big ray
class field as output by \kbd{bnrinit} and \var{pol} a relative polynomial
defining an \idx{Abelian extension}, computes the norm group (alias Artin
or Takagi group) corresponding to the Abelian extension of
$\var{bnf}=$\kbd{bnr.bnf}
defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
bnr). The result is the HNF defining the norm group on the given generators
of \kbd{bnr.gen}. Note that neither the fact that \var{pol} defines an
Abelian extension nor the fact that the module is a multiple of the conductor
is checked. The result is undefined if the assumption is not correct,
but the function will return the empty matrix \kbd{[;]} if it detects a
problem; it may also not detect the problem and return a wrong result.

The library syntax is \fun{GEN}{rnfnormgroup}{GEN bnr, GEN pol}.

\subsec{rnfpolred$(\var{nf},\var{pol})$}\kbdsidx{rnfpolred}\label{se:rnfpolred}
This function is obsolete: use \tet{rnfpolredbest} instead.
Relative version of \kbd{polred}. Given a monic polynomial \var{pol} with
coefficients in $\var{nf}$, finds a list of relative polynomials defining some
subfields, hopefully simpler and containing the original field. In the present
version \vers, this is slower and less efficient than \kbd{rnfpolredbest}.

\misctitle{Remark} this function is based on an incomplete reduction
theory of lattices over number fields, implemented by \kbd{rnflllgram}, which
deserves to be improved.

The library syntax is \fun{GEN}{rnfpolred}{GEN nf, GEN pol, long prec}.

\subsec{rnfpolredabs$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfpolredabs}\label{se:rnfpolredabs}
This function is obsolete: use \tet{rnfpolredbest} instead.
Relative version of \kbd{polredabs}. Given a monic polynomial \var{pol}
with coefficients in $\var{nf}$, finds a simpler relative polynomial defining
the same field. The binary digits of $\fl$ mean

The binary digits of $\fl$ correspond to $1$: add information to convert
elements to the new representation, $2$: absolute polynomial, instead of
relative, $16$: possibly use a suborder of the maximal order. More precisely:

0: default, return $P$

1: returns $[P,a]$ where $P$ is the default output and $a$,
a \typ{POLMOD} modulo $P$, is a root of \var{pol}.

2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
Same as but faster than
\bprog
  rnfequation(nf, rnfpolredabs(nf,pol))
@eprog

3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
and \var{pol} respectively.

16: possibly use a suborder of the maximal order. This is slower than the
default when the relative discriminant is smooth, and much faster otherwise.
See \secref{se:polredabs}.

\misctitle{Warning} In the present implementation, \kbd{rnfpolredabs}
produces smaller polynomials than \kbd{rnfpolred} and is usually
faster, but its complexity is still exponential in the absolute degree.
The function \tet{rnfpolredbest} runs in polynomial time, and  tends  to
return polynomials with smaller discriminants.

The library syntax is \fun{GEN}{rnfpolredabs}{GEN nf, GEN pol, long flag}.

\subsec{rnfpolredbest$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfpolredbest}\label{se:rnfpolredbest}
Relative version of \kbd{polredbest}. Given a monic polynomial \var{pol}
with coefficients in $\var{nf}$, finds a simpler relative polynomial $P$
defining the same field. As opposed to \tet{rnfpolredabs} this function does
not return a \emph{smallest} (canonical) polynomial with respect to some
measure, but it does run in polynomial time.

The binary digits of $\fl$ correspond to $1$: add information to convert
elements to the new representation, $2$: absolute polynomial, instead of
relative. More precisely:

0: default, return $P$

1: returns $[P,a]$ where $P$ is the default output and $a$,
a \typ{POLMOD} modulo $P$, is a root of \var{pol}.

2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
Same as but faster than
\bprog
  rnfequation(nf, rnfpolredbest(nf,pol))
@eprog

3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
and \var{pol} respectively.

\bprog
? K = nfinit(y^3-2); pol = x^2 +x*y + y^2;
? [P, a] = rnfpolredbest(K,pol,1);
? P
%3 = x^2 - x + Mod(y - 1, y^3 - 2)
? a
%4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),
         x^2 - x + Mod(y-1,y^3-2))
? subst(K.pol,y,a)
%5 = 0
? [Pabs, a, b] = rnfpolredbest(K,pol,3);
? Pabs
%7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1
? a
%8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)
? b
%9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)
? subst(K.pol,y,a)
%10 = 0
? substvec(pol,[x,y],[a,b])
%11 = 0
@eprog

The library syntax is \fun{GEN}{rnfpolredbest}{GEN nf, GEN pol, long flag}.

\subsec{rnfpseudobasis$(\var{nf},\var{pol})$}\kbdsidx{rnfpseudobasis}\label{se:rnfpseudobasis}
Given a number field
$\var{nf}$ as output by \kbd{nfinit} and a polynomial \var{pol} with
coefficients in $\var{nf}$ defining a relative extension $L$ of $\var{nf}$,
computes a pseudo-basis $(A,I)$ for the maximal order $\Z_L$ viewed as a
$\Z_K$-module, and the relative discriminant of $L$. This is output as a
four-element row vector $[A,I,D,d]$, where $D$ is the relative ideal
discriminant and $d$ is the relative discriminant considered as an element of
$\var{nf}^*/{\var{nf}^*}^2$.

The library syntax is \fun{GEN}{rnfpseudobasis}{GEN nf, GEN pol}.

\subsec{rnfsteinitz$(\var{nf},x)$}\kbdsidx{rnfsteinitz}\label{se:rnfsteinitz}
Given a number field $\var{nf}$ as
output by \kbd{nfinit} and either a polynomial $x$ with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, or a pseudo-basis
$x$ of such an extension as output for example by \kbd{rnfpseudobasis},
computes another pseudo-basis $(A,I)$ (not in HNF in general) such that all
the ideals of $I$ except perhaps the last one are equal to the ring of
integers of $\var{nf}$, and outputs the four-component row vector $[A,I,D,d]$
as in \kbd{rnfpseudobasis}. The name of this function comes from the fact
that the ideal class of the last ideal of $I$, which is well defined, is the
\idx{Steinitz class} of the $\Z_K$-module $\Z_L$ (its image in $SK_0(\Z_K)$).

The library syntax is \fun{GEN}{rnfsteinitz}{GEN nf, GEN x}.

\subsec{subgrouplist$(\var{bnr},\{\var{bound}\},\{\fl=0\})$}\kbdsidx{subgrouplist}\label{se:subgrouplist}
\var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components
of a finite Abelian group $G$, outputs the list of subgroups of $G$. Subgroups
are given as HNF left divisors of the SNF matrix corresponding to $G$.

If $\fl=0$ (default) and \var{bnr} is as output by \kbd{bnrinit}, gives
only the subgroups whose modulus is the conductor. Otherwise, the modulus is
not taken into account.

If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed. For instance
\bprog
? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3)    \\@com index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3])  \\@com index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);
@eprog\noindent
In the last example, $L$ corresponds to the 24 subfields of
$\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
we see there are a total of $43$ subgroups of degree $8$).
\bprog
? vector(#L, i, galoissubcyclo(bnr, L[i]))
@eprog\noindent
will produce their equations. (For a general base field, you would
have to rely on \tet{bnrstark}, or \tet{rnfkummer}.)

The library syntax is \fun{GEN}{subgrouplist0}{GEN bnr, GEN bound = NULL, long flag}.
%SECTION: number_fields

\section{Associative and central simple algebras}

This section collects functions related to associative algebras and central
simple algebras over number fields. Let $A$ be a finite-dimensional unitary
associative algebra over a field $K$. We say that $A$ is \emph{central} if
the center of $A$ is $K$, and that $A$ is \emph{simple} if it has no
nontrivial two-sided ideals.

We provide functions to manipulate associative algebras of finite
dimension over~$\Q$ or~$\F_p$. We represent them by the left multiplication
table on a basis over the prime subfield. The function \kbd{algtableinit}
creates the object representing an associative algebra. We also provide
functions to manipulate central simple algebras over number fields. We
represent them either by the left multiplication table on a basis over the
center, or by a cyclic algebra (see below). The function~\kbd{alginit} creates
the object representing a central simple algebra.

The set of elements of an algebra~$A$ that annihilate every simple left
$A$-module is a two-sided ideal, called the \emph{Jacobson radical} of~$A$.
An algebra is \emph{semisimple} if its Jacobson radical is trivial. A
semisimple algebra is isomorphic to a direct sum of simple algebras. The
dimension of a central simple algebra~$A$ over $K$ is always a square $d^2$,
and the integer $d$ is called the \emph{degree} of the algebra~$A$ over~$K$.
A central simple algebra~$A$ over a field~$K$ is always isomorphic to~$M_d(D)$
for some integer~$d$ and some central division algebra~$D$ of degree~$e$ : the
integer~$e$ is called the \emph{index} of~$A$.

Let $L/K$ be a cyclic extension of degree $d$, let $\sigma$ be a
generator of $\text{Gal}(L/K)$ and let $b\in K^*$. Then the
\emph{cyclic algebra} $(L/K,\sigma,b)$ is the algebra
$\bigoplus_{i=0}^{d-1}x^iL$ with $x^d=b$ and $\ell x=x\sigma(\ell)$ for
all~$\ell\in L$. The algebra $(L/K,\sigma,b)$ is a central simple $K$-algebra
of degree~$d$, and it is an $L$-vector space. Left multiplication is
$L$-linear and induces a $K$-algebra homomorphism $(L/K,\sigma,b)\to M_d(L)$.

Let $K$ be a nonarchimedean local field with uniformizer $\pi$, and let
$L/K$ be the unique unramified extension of degree $d$. Then every central
simple algebra $A$ of degree $d$ over $K$ is isomorphic to
$(L/K, \Frob, \pi^h)$ for some integer $h$. The element $h/d\in
(1/d)\Z/\Z\subset\Q/\Z$ is called the \emph{Hasse invariant} of $A$.

Let~$A$ be an algebra of finite dimension over~$\Q$. An \emph{order}
in~$A$ is a finitely generated $\Z$-submodule~${\cal O}$ such
that~$\Q{\cal O} = A$, that is also a subring with unit. We define natural
orders in central simple algebras defined by a cyclic algebra or by a
multiplication table over the center. Let~$A = (L/K,\sigma,b) =
\bigoplus_{i=0}^{d-1}x^iL$ be a cyclic algebra over a number field~$K$ of
degree~$n$ with ring of integers~$\Z_K$. Let~$\Z_L$ be the ring of integers
of~$L$, and assume that~$b$ is integral. Then the submodule~${\cal O} =
\bigoplus_{i=0}^{d-1}x^i\Z_L$ is an order in~$A$, called the
\emph{natural order}. Let~$\omega_0,\dots,\omega_{nd-1}$ be a~$\Z$-basis
of~$\Z_L$. The \emph{natural basis} of~${\cal O}$ is~$b_0,\dots,b_{nd^2-1}$
where~$b_i = x^{i/(nd)}\omega_{(i \mod nd)}$. Now let~$A$ be a central simple
algebra of degree~$d$ over a number field~$K$ of degree~$n$ with ring of
integers~$\Z_K$. Let~$e_0,\dots,e_{d^2-1}$ be a basis of~$A$ over~$K$ and
assume that the left multiplication table of~$A$ on~$(e_i)$ is integral. Then
the submodule~${\cal O} = \bigoplus_{i=0}^{d^2-1}\Z_K e_i$ is an order
in~$A$, called the \emph{natural order}. Let~$\omega_0,\dots,\omega_{n-1}$ be
a~$\Z$-basis of~$\Z_K$. The \emph{natural basis} of~${\cal O}$
is~$b_0,\dots,b_{nd^2-1}$ where~$b_i = \omega_{(i \mod n)}e_{i/n}$.

As with number fields, we represent elements of central simple algebras
in two ways, called the \emph{algebraic representation} and the \emph{basis
representation}, and you can convert betweeen the two with the functions
\kbd{algalgtobasis} and \kbd{algbasistoalg}. In every central simple algebra
object, we store a~$\Z$-basis of an order~${\cal O}_0$, and the basis
representation is simply a \typ{COL} with coefficients in~$\Q$ expressing the
element in that basis. If no maximal order was computed, then~${\cal O}_0$ is
the natural order. If a maximal order was computed, then~${\cal O}_0$ is a
maximal order containing the natural order. For a cyclic algebra~$A =
(L/K,\sigma,b)$, the algebraic representation is a \typ{COL} with coefficients
in~$L$ representing the element in the decomposition~$A =
\bigoplus_{i=0}^{d-1}x^iL$. For a central simple algebra defined by a
multiplication table over its center~$K$ on a basis~$(e_i)$, the algebraic
representation is a \typ{COL} with coefficients in~$K$ representing the element
on the basis~$(e_i)$.

\misctitle{Warning} The coefficients in the decomposition~$A =
\bigoplus_{i=0}^{d-1}x^iL$ are not the same as those in the decomposition~$A
= \bigoplus_{i=0}^{d-1}Lx^i$! The $i$-th coefficients are related by
conjugating by~$x^i$, which on~$L$ amounts to acting by~$\sigma^i$.

\misctitle{Warning} For a central simple algebra over $\Q$ defined by a
multiplication table, we cannot distinguish between the basis and the algebraic
representations from the size of the vectors. The behaviour is then to always
interpret the column vector as a basis representation if the coefficients are
\typ{INT} or \typ{FRAC}, and as an algebraic representation if the coefficients
are \typ{POL} or \typ{POLMOD}.


\subsec{algabsdim$(\var{al})$}\kbdsidx{algabsdim}\label{se:algabsdim}
Given an algebra \var{al} output by \tet{alginit} or by
\tet{algtableinit}, returns the dimension of \var{al} over its prime subfield
($\Q$ or $\F_p$).
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algabsdim(A)
%3 = 12
@eprog

The library syntax is \fun{long}{algabsdim}{GEN al}.

\subsec{algadd$(\var{al},x,y)$}\kbdsidx{algadd}\label{se:algadd}
Given two elements $x$ and $y$ in \var{al}, computes their sum $x+y$ in
the algebra~\var{al}.
\bprog
? A = alginit(nfinit(y),[-1,1]);
? algadd(A,[1,0]~,[1,2]~)
%2 = [2, 2]~
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algadd}{GEN al, GEN x, GEN y}.

\subsec{algalgtobasis$(\var{al},x)$}\kbdsidx{algalgtobasis}\label{se:algalgtobasis}
Given an element \var{x} in the central simple algebra \var{al} output
by \tet{alginit}, transforms it to a column vector on the integral basis of
\var{al}. This is the inverse function of \tet{algbasistoalg}.
\bprog
? A = alginit(nfinit(y^2-5),[2,y]);
? algalgtobasis(A,[y,1]~)
%2 = [0, 2, 0, -1, 2, 0, 0, 0]~
? algbasistoalg(A,algalgtobasis(A,[y,1]~))
%3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~
@eprog

The library syntax is \fun{GEN}{algalgtobasis}{GEN al, GEN x}.

\subsec{algaut$(\var{al})$}\kbdsidx{algaut}\label{se:algaut}
Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
\tet{alginit}, returns the automorphism $\sigma$.
\bprog
? nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algaut(A)
%5 = -1/3*x^2 + 1/3*x + 26/3
@eprog

The library syntax is \fun{GEN}{algaut}{GEN al}.

\subsec{algb$(\var{al})$}\kbdsidx{algb}\label{se:algb}
Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
\tet{alginit}, returns the element $b\in K$.
\bprog
nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algb(A)
%5 = Mod(-77, y)
@eprog

The library syntax is \fun{GEN}{algb}{GEN al}.

\subsec{algbasis$(\var{al})$}\kbdsidx{algbasis}\label{se:algbasis}
Given an central simple algebra \var{al} output by \tet{alginit}, returns
a $\Z$-basis of the order~${\cal O}_0$ stored in \var{al} with respect to the
natural order in \var{al}. It is a maximal order if one has been computed.
\bprog
A = alginit(nfinit(y), [-1,-1]);
? algbasis(A)
%2 =
[1 0 0 1/2]

[0 1 0 1/2]

[0 0 1 1/2]

[0 0 0 1/2]
@eprog

The library syntax is \fun{GEN}{algbasis}{GEN al}.

\subsec{algbasistoalg$(\var{al},x)$}\kbdsidx{algbasistoalg}\label{se:algbasistoalg}
Given an element \var{x} in the central simple algebra \var{al} output
by \tet{alginit}, transforms it to its algebraic representation in \var{al}.
This is the inverse function of \tet{algalgtobasis}.
\bprog
? A = alginit(nfinit(y^2-5),[2,y]);
? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);
? liftall(z)
%3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4]~
? algalgtobasis(A,z)
%4 = [0, 1, 0, 0, 2, -3, 0, 0]~
@eprog

The library syntax is \fun{GEN}{algbasistoalg}{GEN al, GEN x}.

\subsec{algcenter$(\var{al})$}\kbdsidx{algcenter}\label{se:algcenter}
If \var{al} is a table algebra output by \tet{algtableinit}, returns a
basis of the center of the algebra~\var{al} over its prime field ($\Q$ or
$\F_p$). If \var{al} is a central simple algebra output by \tet{alginit},
returns the center of~\var{al}, which is stored in \var{al}.

A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
generated by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$: the diagonal matrices
form the center.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algcenter(A) \\ = (I_2)
%3 =
[1]

[0]

[0]
@eprog

An example in the central simple case:

\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algcenter(A).pol
%3 = y^3 - y + 1
@eprog

The library syntax is \fun{GEN}{algcenter}{GEN al}.

\subsec{algcentralproj$(\var{al},z,\{\var{maps}=0\})$}\kbdsidx{algcentralproj}\label{se:algcentralproj}
Given a table algebra \var{al} output by \tet{algtableinit} and a
\typ{VEC} $\var{z}=[z_1,\dots,z_n]$ of orthogonal central idempotents,
returns a \typ{VEC} $[al_1,\dots,al_n]$ of algebras such that
$al_i = z_i\, al$. If $\var{maps}=1$, each $al_i$ is a \typ{VEC}
$[quo,proj,lift]$ where \var{quo} is the quotient algebra, \var{proj} is a
\typ{MAT} representing the projection onto this quotient and \var{lift} is a
\typ{MAT} representing a lift.

A simple example: $\F_2\oplus \F_4$, generated by~$1=(1,1)$, $e=(1,0)$
and~$x$ such that~$x^2+x+1=0$. We have~$e^2=e$, $x^2=x+1$ and~$ex=0$.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? e = [0,1,0]~;
? e2 = algsub(A,[1,0,0]~,e);
? [a,a2] = algcentralproj(A,[e,e2]);
? algdim(a)
%6 = 1
? algdim(a2)
%7 = 2
@eprog

The library syntax is \fun{GEN}{alg_centralproj}{GEN al, GEN z, long maps}.

\subsec{algchar$(\var{al})$}\kbdsidx{algchar}\label{se:algchar}
Given an algebra \var{al} output by \tet{alginit} or \tet{algtableinit},
returns the characteristic of \var{al}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,13);
? algchar(A)
%3 = 13
@eprog

The library syntax is \fun{GEN}{algchar}{GEN al}.

\subsec{algcharpoly$(\var{al},b,\{v='x\})$}\kbdsidx{algcharpoly}\label{se:algcharpoly}
Given an element $b$ in \var{al}, returns its characteristic polynomial
as a polynomial in the variable $v$. If \var{al} is a table algebra output
by \tet{algtableinit}, returns the absolute characteristic polynomial of
\var{b}, which is an element of $\F_p[v]$ or~$\Q[v]$; if \var{al} is a
central simple algebra output by \tet{alginit}, returns the reduced
characteristic polynomial of \var{b}, which is an element of $K[v]$ where~$K$
is the center of \var{al}.
\bprog
? al = alginit(nfinit(y), [-1,-1]); \\ (-1,-1)_Q
? algcharpoly(al, [0,1]~)
%2 = x^2 + 1
@eprog

Also accepts a square matrix with coefficients in \var{al}.

The library syntax is \fun{GEN}{algcharpoly}{GEN al, GEN b, long v = -1} where \kbd{v} is a variable number.

\subsec{algdecomposition$(\var{al})$}\kbdsidx{algdecomposition}\label{se:algdecomposition}
\var{al} being a table algebra output by \tet{algtableinit}, returns
$[J,[al_1,\dots,al_n]]$ where $J$ is a basis of the Jacobson radical of
\var{al} and $al_1,\dots,al_n$ are the simple factors of the semisimple
algebra $al/J$.

The library syntax is \fun{GEN}{alg_decomposition}{GEN al}.

\subsec{algdegree$(\var{al})$}\kbdsidx{algdegree}\label{se:algdegree}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
the degree of \var{al}.
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdegree(A)
%3 = 2
@eprog

The library syntax is \fun{long}{algdegree}{GEN al}.

\subsec{algdim$(\var{al})$}\kbdsidx{algdim}\label{se:algdim}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
the dimension of \var{al} over its center. Given a table algebra \var{al}
output by \tet{algtableinit}, returns the dimension of \var{al} over its prime
subfield ($\Q$ or $\F_p$).
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdim(A)
%3 = 4
@eprog

The library syntax is \fun{long}{algdim}{GEN al}.

\subsec{algdisc$(\var{al})$}\kbdsidx{algdisc}\label{se:algdisc}
Given a central simple algebra \var{al} output by \tet{alginit}, computes
the discriminant of the order ${\cal O}_0$ stored in \var{al}, that is the
determinant of the trace form $\rm{Tr} : {\cal O}_0\times {\cal O}_0 \to \Z$.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-3,1-y]);
? [PR,h] = alghassef(A);
%3 = [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])]
? n = algdegree(A);
? D = algabsdim(A);
? h = vector(#h, i, n - gcd(n,h[i]));
? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
%4 = 12960000
? algdisc(A)
%5 = 12960000
@eprog

The library syntax is \fun{GEN}{algdisc}{GEN al}.

\subsec{algdivl$(\var{al},x,y)$}\kbdsidx{algdivl}\label{se:algdivl}
Given two elements $x$ and $y$ in \var{al}, computes their left quotient
$x\backslash y$ in the algebra \var{al}: an element $z$ such that $xz=y$ (such
an element is not unique when $x$ is a zerodivisor). If~$x$ is invertible, this
is the same as $x^{-1}y$. Assumes that $y$ is left divisible by $x$ (i.e. that
$z$ exists). Also accepts matrices with coefficients in~\var{al}.

The library syntax is \fun{GEN}{algdivl}{GEN al, GEN x, GEN y}.

\subsec{algdivr$(\var{al},x,y)$}\kbdsidx{algdivr}\label{se:algdivr}
Given two elements $x$ and $y$ in \var{al}, return $xy^{-1}$. Also accepts
matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algdivr}{GEN al, GEN x, GEN y}.

\subsec{alggroup$(\var{gal}, \{p=0\})$}\kbdsidx{alggroup}\label{se:alggroup}
Initialize the group algebra~$K[G]$ over~$K=\Q$ ($p$ omitted) or~$\F_p$
where~$G$ is the underlying group of the \kbd{galoisinit} structure~\var{gal}.
The input~\var{gal} is also allowed to be a \typ{VEC} of permutations that is
closed under products.

Example:
\bprog
? K = nfsplitting(x^3-x+1);
? gal = galoisinit(K);
? al = alggroup(gal);
? algissemisimple(al)
%4 = 1
? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);
? algissemisimple(al2)
%8 = 0
@eprog

The library syntax is \fun{GEN}{alggroup}{GEN gal, GEN p = NULL}.

\subsec{alghasse$(\var{al},\var{pl})$}\kbdsidx{alghasse}\label{se:alghasse}
Given a central simple algebra \var{al} output by \tet{alginit} and a prime
ideal or an integer between $1$ and $r_1+r_2$, returns a \typ{FRAC} $h$ : the
local Hasse invariant of \var{al} at the place specified by \var{pl}.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 = 0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
%6 = 0
@eprog

The library syntax is \fun{GEN}{alghasse}{GEN al, GEN pl}.

\subsec{alghassef$(\var{al})$}\kbdsidx{alghassef}\label{se:alghassef}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
a \typ{VEC} $[\kbd{PR}, h_f]$ describing the local Hasse invariants at the
finite places of the center: \kbd{PR} is a \typ{VEC} of primes and $h_f$ is a
\typ{VECSMALL} of integers modulo the degree $d$ of \var{al}.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,2*y-1]);
? [PR,hf] = alghassef(A);
? PR
%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
? hf
%5 = Vecsmall([1, 0])
@eprog

The library syntax is \fun{GEN}{alghassef}{GEN al}.

\subsec{alghassei$(\var{al})$}\kbdsidx{alghassei}\label{se:alghassei}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
a \typ{VECSMALL} $h_i$ of $r_1$ integers modulo the degree $d$ of \var{al},
where $r_1$ is the number of real places of the center: the local Hasse
invariants of \var{al} at infinite places.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghassei(A)
%3 = Vecsmall([1, 0])
@eprog

The library syntax is \fun{GEN}{alghassei}{GEN al}.

\subsec{algindex$(\var{al},\{\var{pl}\})$}\kbdsidx{algindex}\label{se:algindex}
Return the index of the central simple algebra~$A$ over~$K$ (as output by
alginit), that is the degree~$e$ of the unique central division algebra~$D$
over $K$ such that~$A$ is isomorphic to some matrix algebra~$M_d(D)$. If
\var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
and~$r_1+r_2$, and in that case return the local index at the place \var{pl}
instead.

\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algindex(A, 1)
%3 = 2
? algindex(A, 2)
%4 = 1
? algindex(A, idealprimedec(nf,2)[1])
%5 = 2
? algindex(A, idealprimedec(nf,5)[1])
%6 = 1
? algindex(A)
%7 = 2
@eprog

The library syntax is \fun{long}{algindex}{GEN al, GEN pl = NULL}.

\subsec{alginit$(B, C, \{v\}, \{\fl = 1\})$}\kbdsidx{alginit}\label{se:alginit}
Initialize the central simple algebra defined by data $B$, $C$ and
variable $v$, as follows.

\item (multiplication table) $B$ is the base number field $K$ in \tet{nfinit}
form, $C$ is a ``multiplication table'' over $K$.
As a $K$-vector space, the algebra is generated by a basis
$(e_1 = 1,\dots, e_n)$; the table is given as a \typ{VEC} of $n$ matrices in
$M_n(K)$, giving the left multiplication by the basis elements $e_i$, in the
given basis.
Assumes that $e_1= 1$, that the multiplication table is integral, and that
$K[e_1,\dots,e_n]$ describes a central simple algebra over $K$.
\bprog
{ m_i = [0,-1,0, 0;
         1, 0,0, 0;
         0, 0,0,-1;
         0, 0,1, 0];
  m_j = [0, 0,-1,0;
         0, 0, 0,1;
         1, 0, 0,0;
         0,-1, 0,0];
  m_k = [0, 0, 0, 0;
         0, 0,-1, 0;
         0, 1, 0, 0;
         1, 0, 0,-1];
  A = alginit(nfinit(y), [matid(4), m_i,m_j,m_k],  0); }
@eprog represents (in a complicated way) the quaternion algebra $(-1,-1)_\Q$.
See below for a simpler solution.

\item (cyclic algebra) $B$ is an \kbd{rnf} structure attached to a cyclic
number field extension $L/K$ of degree $d$, $C$ is a \typ{VEC}
\kbd{[sigma,b]} with 2 components: \kbd{sigma} is a \typ{POLMOD} representing
an automorphism generating $\text{Gal}(L/K)$, $b$ is an element in $K^*$. This
represents the cyclic algebra~$(L/K,\sigma,b)$. Currently the element $b$ has
to be integral.
\bprog
 ? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
 ? A = alginit(F, [Mod(x^2,T), 3]);
@eprog defines the cyclic algebra $(L/\Q, \sigma, 3)$, where
$L = \Q(\zeta_5)$ and $\sigma:\zeta\mapsto\zeta^2$ generates
$\text{Gal}(L/\Q)$.

\item (quaternion algebra, special case of the above) $B$ is an \kbd{nf}
structure attached to a number field $K$, $C = [a,b]$ is a vector
containing two elements of $K^*$ with $a$ not a square in $K$, returns the quaternion algebra $(a,b)_K$.
The variable $v$ (\kbd{'x} by default) must have higher priority than the
variable of $K$\kbd{.pol} and is used to represent elements in the splitting
field $L = K[x]/(x^2-a)$.
\bprog
 ? Q = nfinit(y); A = alginit(Q, [-1,-1]);  \\@com $(-1,-1)_\Q$
@eprog

\item (algebra/$K$ defined by local Hasse invariants)
$B$ is an \kbd{nf} structure attached to a number field $K$,
$C = [d, [\kbd{PR},h_f], h_i]$ is a triple
containing an integer $d > 1$, a pair $[\kbd{PR}, h_f]$ describing the
Hasse invariants at finite places, and $h_i$ the Hasse invariants
at archimedean (real) places. A local Hasse invariant belongs to $(1/d)\Z/\Z
\subset \Q/\Z$, and is given either as a \typ{FRAC} (lift to $(1/d)\Z$),
a \typ{INT} or \typ{INTMOD} modulo $d$ (lift to $\Z/d\Z$); a whole vector
of local invariants can also be given as a \typ{VECSMALL}, whose
entries are handled as \typ{INT}s. \kbd{PR} is a list of prime ideals
(\kbd{prid} structures), and $h_f$ is a vector of the same length giving the
local invariants at those maximal ideals. The invariants at infinite real
places are indexed by the real roots $K$\kbd{.roots}: if the Archimedean
place $v$ is attached to the $j$-th root, the value of
$h_v$ is given by $h_i[j]$, must be $0$ or $1/2$ (or~$d/2$ modulo~$d$), and
can be nonzero only if~$d$ is even.

By class field theory, provided the local invariants $h_v$ sum to $0$, up
to Brauer equivalence, there is a unique central simple algebra over $K$
with given local invariants and trivial invariant elsewhere. In particular,
up to isomorphism, there is a unique such algebra $A$ of degree $d$.

We realize $A$ as a cyclic algebra through class field theory. The variable $v$
(\kbd{'x} by default) must have higher priority than the variable of
$K$\kbd{.pol} and is used to represent elements in the (cyclic) splitting
field extension $L/K$ for $A$.

\bprog
 ? nf = nfinit(y^2+1);
 ? PR = idealprimedec(nf,5); #PR
 %2 = 2
 ? hi = [];
 ? hf = [PR, [1/3,-1/3]];
 ? A = alginit(nf, [3,hf,hi]);
 ? algsplittingfield(A).pol
 %6 = x^3 - 21*x + 7
@eprog

\item (matrix algebra, toy example) $B$ is an \kbd{nf} structure attached
to a number field $K$, $C = d$ is a positive integer. Returns a cyclic
algebra isomorphic to the matrix algebra $M_d(K)$.

In all cases, this function computes a maximal order for the algebra by default,
which may require a lot of time. Setting $\fl = 0$ prevents this computation.

The pari object representing such an algebra $A$ is a \typ{VEC} with the
following data:

 \item A splitting field $L$ of $A$ of the same degree over $K$ as $A$, in
\kbd{rnfinit} format, accessed with \kbd{algsplittingfield}.

 \item The same splitting field $L$ in \kbd{nfinit} format.

 \item The Hasse invariants at the real places of $K$, accessed with
\kbd{alghassei}.

 \item The Hasse invariants of $A$ at the finite primes of $K$ that ramify in
the natural order of $A$, accessed with \kbd{alghassef}.

 \item A basis of an order ${\cal O}_0$ expressed on the basis of the natural
order, accessed with \kbd{algord}.

 \item A basis of the natural order expressed on the basis of ${\cal O}_0$,
accessed with \kbd{alginvord}.

 \item The left multiplication table of ${\cal O}_0$ on the previous basis,
accessed with \kbd{algmultable}.

 \item The characteristic of $A$ (always $0$), accessed with \kbd{algchar}.

 \item The absolute traces of the elements of the basis of ${\cal O}_0$.

 \item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$ of degree
$d$, a \typ{VEC} $[\sigma,\sigma^2,\dots,\sigma^{d-1}]$. The function
\kbd{algaut} returns $\sigma$.

 \item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$, the
element $b$, accessed with \kbd{algb}.

 \item If $A$ was constructed with its multiplication table $mt$ over $K$,
the \typ{VEC} of \typ{MAT} $mt$, accessed with \kbd{algrelmultable}.

 \item If $A$ was constructed with its multiplication table $mt$ over $K$,
a \typ{VEC} with three components: a \typ{COL} representing an element of $A$
generating the splitting field $L$ as a maximal subfield of $A$, a \typ{MAT}
representing an $L$-basis ${\cal B}$ of $A$ expressed on the $\Z$-basis of
${\cal O}_0$, and a \typ{MAT} representing the $\Z$-basis of ${\cal O}_0$
expressed on ${\cal B}$. This data is accessed with \kbd{algsplittingdata}.

The library syntax is \fun{GEN}{alginit}{GEN B, GEN C, long v = -1, long flag} where \kbd{v} is a variable number.

\subsec{alginv$(\var{al},x)$}\kbdsidx{alginv}\label{se:alginv}
Given an element $x$ in \var{al}, computes its inverse $x^{-1}$ in the
algebra \var{al}. Assumes that $x$ is invertible.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, 0]~
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{alginv}{GEN al, GEN x}.

\subsec{alginvbasis$(\var{al})$}\kbdsidx{alginvbasis}\label{se:alginvbasis}
Given an central simple algebra \var{al} output by \tet{alginit}, returns
a $\Z$-basis of the natural order in \var{al} with respect to the
order~${\cal O}_0$ stored in \var{al}.
\bprog
A = alginit(nfinit(y), [-1,-1]);
? alginvbasis(A)
%2 =
[1 0 0 -1]

[0 1 0 -1]

[0 0 1 -1]

[0 0 0  2]
@eprog

The library syntax is \fun{GEN}{alginvbasis}{GEN al}.

\subsec{algisassociative$(\var{mt},p=0)$}\kbdsidx{algisassociative}\label{se:algisassociative}
Returns 1 if the multiplication table \kbd{mt} is suitable for
\kbd{algtableinit(mt,p)}, 0 otherwise. More precisely, \kbd{mt} should be
a \typ{VEC} of $n$ matrices in $M_n(K)$, giving the left multiplications
by the basis elements $e_1, \dots, e_n$ (structure constants).
We check whether the first basis element $e_1$ is $1$ and $e_i(e_je_k) =
(e_ie_j)e_k$ for all $i,j,k$.
\bprog
 ? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
 ? algisassociative(mt)
 %2 = 1
@eprog

May be used to check a posteriori an algebra: we also allow \kbd{mt} as
output by \tet{algtableinit} ($p$ is ignored in this case).

The library syntax is \fun{GEN}{algisassociative}{GEN mt, GEN p}.

\subsec{algiscommutative$(\var{al})$}\kbdsidx{algiscommutative}\label{se:algiscommutative}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
commutative.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algiscommutative(A)
%3 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algiscommutative(A)
%6 = 1
@eprog

The library syntax is \fun{GEN}{algiscommutative}{GEN al}.

\subsec{algisdivision$(\var{al},\{\var{pl}\})$}\kbdsidx{algisdivision}\label{se:algisdivision}
Given a central simple algebra \var{al} output by \tet{alginit}, test
whether \var{al} is a division algebra. If \var{pl} is set, it should be a
prime ideal of~$K$ or an integer between~$1$ and~$r_1+r_2$, and in that case
test whether \var{al} is locally a division algebra at the place \var{pl}
instead.

\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisdivision(A, 1)
%3 = 1
? algisdivision(A, 2)
%4 = 0
? algisdivision(A, idealprimedec(nf,2)[1])
%5 = 1
? algisdivision(A, idealprimedec(nf,5)[1])
%6 = 0
? algisdivision(A)
%7 = 1
@eprog

The library syntax is \fun{GEN}{algisdivision}{GEN al, GEN pl = NULL}.

\subsec{algisdivl$(\var{al},x,y,\{\&z\})$}\kbdsidx{algisdivl}\label{se:algisdivl}
Given two elements $x$ and $y$ in \var{al}, tests whether $y$ is left
divisible by $x$, that is whether there exists~$z$ in \var{al} such
that~$xz=y$, and sets $z$ to this element if it exists.
\bprog
? A = alginit(nfinit(y), [-1,1]);
? algisdivl(A,[x+2,-x-2]~,[x,1]~)
%2 = 0
? algisdivl(A,[x+2,-x-2]~,[-x,x]~,&z)
%3 = 1
? z
%4 = [Mod(-2/5*x - 1/5, x^2 + 1), 0]~
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algisdivl}{GEN al, GEN x, GEN y, GEN *z = NULL}.

\subsec{algisinv$(\var{al},x,\{\&\var{ix}\})$}\kbdsidx{algisinv}\label{se:algisinv}
Given an element $x$ in \var{al}, tests whether $x$ is invertible, and sets
$ix$ to the inverse of $x$.
\bprog
? A = alginit(nfinit(y), [-1,1]);
? algisinv(A,[-1,1]~)
%2 = 0
? algisinv(A,[1,2]~,&ix)
%3 = 1
? ix
%4 = [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algisinv}{GEN al, GEN x, GEN *ix = NULL}.

\subsec{algisramified$(\var{al},\{\var{pl}\})$}\kbdsidx{algisramified}\label{se:algisramified}
Given a central simple algebra \var{al} output by \tet{alginit}, test
whether \var{al} is ramified, i.e. not isomorphic to a matrix algebra over its
center. If \var{pl} is set, it should be a prime ideal of~$K$ or an integer
between~$1$ and~$r_1+r_2$, and in that case test whether \var{al} is locally
ramified at the place \var{pl} instead.

\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisramified(A, 1)
%3 = 1
? algisramified(A, 2)
%4 = 0
? algisramified(A, idealprimedec(nf,2)[1])
%5 = 1
? algisramified(A, idealprimedec(nf,5)[1])
%6 = 0
? algisramified(A)
%7 = 1
@eprog

The library syntax is \fun{GEN}{algisramified}{GEN al, GEN pl = NULL}.

\subsec{algissemisimple$(\var{al})$}\kbdsidx{algissemisimple}\label{se:algissemisimple}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
semisimple.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algissemisimple(A)
%3 = 0
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \\ quaternion algebra (-1,-1)
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt);
? algissemisimple(A)
%9 = 1
@eprog

The library syntax is \fun{GEN}{algissemisimple}{GEN al}.

\subsec{algissimple$(\var{al}, \{\var{ss} = 0\})$}\kbdsidx{algissimple}\label{se:algissimple}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
simple. If $\var{ss}=1$, assumes that the algebra~\var{al} is semisimple
without testing it.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt); \\ matrices [*,*; 0,*]
? algissimple(A)
%3 = 0
? algissimple(A,1) \\ incorrectly assume that A is semisimple
%4 = 1
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,b,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt); \\ quaternion algebra (-1,-1)
? algissimple(A)
%10 = 1
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2); \\ direct sum F_4+F_2
? algissimple(A)
%13 = 0
@eprog

The library syntax is \fun{GEN}{algissimple}{GEN al, long ss}.

\subsec{algissplit$(\var{al},\{\var{pl}\})$}\kbdsidx{algissplit}\label{se:algissplit}
Given a central simple algebra \var{al} output by \tet{alginit}, test
whether \var{al} is split, i.e. isomorphic to a matrix algebra over its center.
If \var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
and~$r_1+r_2$, and in that case test whether \var{al} is locally split at the
place \var{pl} instead.

\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algissplit(A, 1)
%3 = 0
? algissplit(A, 2)
%4 = 1
? algissplit(A, idealprimedec(nf,2)[1])
%5 = 0
? algissplit(A, idealprimedec(nf,5)[1])
%6 = 1
? algissplit(A)
%7 = 0
@eprog

The library syntax is \fun{GEN}{algissplit}{GEN al, GEN pl = NULL}.

\subsec{alglathnf$(\var{al},m)$}\kbdsidx{alglathnf}\label{se:alglathnf}
Given an algebra \var{al} and a square invertible matrix \var{m} with size
the dimension of \var{al}, returns the lattice generated by the columns of
\var{m}.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a = [1,1,-1/2,1,1/3,-1,1,1]~;
? mt = algleftmultable(al,a);
? lat = alglathnf(al,mt);
? lat[2]
%5 = 1/6
@eprog

The library syntax is \fun{GEN}{alglathnf}{GEN al, GEN m}.

\subsec{algleftmultable$(\var{al},x)$}\kbdsidx{algleftmultable}\label{se:algleftmultable}
Given an element \var{x} in \var{al}, computes its left multiplication
table. If \var{x} is given in basis form, returns its multiplication table on
the integral basis; if \var{x} is given in algebraic form, returns its
multiplication table on the basis corresponding to the algebraic form of
elements of \var{al}. In every case, if \var{x} is a \typ{COL} of length $n$,
then the output is a $n\times n$ \typ{MAT}.
Also accepts a square matrix with coefficients in \var{al}.

\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algleftmultable(A,[0,1,0,0]~)
%2 =
[0 -1  1  0]

[1  0  1  1]

[0  0  1  1]

[0  0 -2 -1]
@eprog

The library syntax is \fun{GEN}{algleftmultable}{GEN al, GEN x}.

\subsec{algmul$(\var{al},x,y)$}\kbdsidx{algmul}\label{se:algmul}
Given two elements $x$ and $y$ in \var{al}, computes their product $x*y$
in the algebra~\var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algmul(A,[1,1,0,0]~,[0,0,2,1]~)
%2 = [2, 3, 5, -4]~
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algmul}{GEN al, GEN x, GEN y}.

\subsec{algmultable$(\var{al})$}\kbdsidx{algmultable}\label{se:algmultable}
Returns a multiplication table of \var{al} over its
prime subfield ($\Q$ or $\F_p$), as a \typ{VEC} of \typ{MAT}: the left
multiplication tables of basis elements. If \var{al} was output by
\tet{algtableinit}, returns the multiplication table used to define \var{al}.
If \var{al} was output by \tet{alginit}, returns the multiplication table of
the order~${\cal O}_0$ stored in \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? M = algmultable(A);
? #M
%3 = 4
? M[1]  \\ multiplication by e_1 = 1
%4 =
[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

? M[2]
%5 =
[0 -1  1  0]

[1  0  1  1]

[0  0  1  1]

[0  0 -2 -1]
@eprog

The library syntax is \fun{GEN}{algmultable}{GEN al}.

\subsec{algneg$(\var{al},x)$}\kbdsidx{algneg}\label{se:algneg}
Given an element $x$ in \var{al}, computes its opposite $-x$ in the
algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algneg(A,[1,1,0,0]~)
%2 = [-1, -1, 0, 0]~
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algneg}{GEN al, GEN x}.

\subsec{algnorm$(\var{al},x)$}\kbdsidx{algnorm}\label{se:algnorm}
Given an element \var{x} in \var{al}, computes its norm. If \var{al} is
a table algebra output by \tet{algtableinit}, returns the absolute norm of
\var{x}, which is an element of $\F_p$ of~$\Q$; if \var{al} is a central
simple algebra output by \tet{alginit}, returns the reduced norm of \var{x},
which is an element of the center of \var{al}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,19);
? algnorm(A,[0,-2,3]~)
%3 = 18
@eprog

Also accepts a square matrix with coefficients in \var{al}.

The library syntax is \fun{GEN}{algnorm}{GEN al, GEN x}.

\subsec{algpoleval$(\var{al},T,b)$}\kbdsidx{algpoleval}\label{se:algpoleval}
Given an element $b$ in \var{al} and a polynomial $T$ in $K[X]$,
computes $T(b)$ in \var{al}.

The library syntax is \fun{GEN}{algpoleval}{GEN al, GEN T, GEN b}.

\subsec{algpow$(\var{al},x,n)$}\kbdsidx{algpow}\label{se:algpow}
Given an element $x$ in \var{al} and an integer $n$, computes the
power $x^n$ in the algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algpow(A,[1,1,0,0]~,7)
%2 = [8, -8, 0, 0]~
@eprog

Also accepts a square matrix with coefficients in \var{al}.

The library syntax is \fun{GEN}{algpow}{GEN al, GEN x, GEN n}.

\subsec{algprimesubalg$(\var{al})$}\kbdsidx{algprimesubalg}\label{se:algprimesubalg}
\var{al} being the output of \tet{algtableinit} representing a semisimple
algebra of positive characteristic, returns a basis of the prime subalgebra
of~\var{al}. The prime subalgebra of~\var{al} is the subalgebra fixed by the
Frobenius automorphism of the center of \var{al}. It is abstractly isomorphic
to a product of copies of $\F_p$.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algprimesubalg(A)
%3 =
[1 0]

[0 1]

[0 0]
@eprog

The library syntax is \fun{GEN}{algprimesubalg}{GEN al}.

\subsec{algquotient$(\var{al},I,\{\fl=0\})$}\kbdsidx{algquotient}\label{se:algquotient}
\var{al} being a table algebra output by \tet{algtableinit} and \var{I}
being a basis of a two-sided ideal of \var{al} represented by a matrix,
returns the quotient $\var{al}/\var{I}$. When $\var{flag}=1$, returns a
\typ{VEC} $[\var{al}/\var{I},\var{proj},\var{lift}]$ where \var{proj} and
\var{lift} are matrices respectively representing the projection map and a
section of it.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? AQ = algquotient(A,[0;1;0]);
? algdim(AQ)
%4 = 2
@eprog

The library syntax is \fun{GEN}{alg_quotient}{GEN al, GEN I, long flag}.

\subsec{algradical$(\var{al})$}\kbdsidx{algradical}\label{se:algradical}
\var{al} being a table algebra output by \tet{algtableinit}, returns a
basis of the Jacobson radical of the algebra \var{al} over its prime field
($\Q$ or $\F_p$).

Here is an example with $A = \Q[x]/(x^2)$, generated by $(1,x)$:
\bprog
? mt = [matid(2),[0,0;1,0]];
? A = algtableinit(mt);
? algradical(A) \\ = (x)
%3 =
[0]

[1]
@eprog

Another one with $2\times 2$ upper triangular matrices over $\Q$, generated
by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$, such that $a^2 =
0$, $ab = a$, $ba = 0$, $b^2 = b$:
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]

[1]

[0]
@eprog

The library syntax is \fun{GEN}{algradical}{GEN al}.

\subsec{algramifiedplaces$(\var{al})$}\kbdsidx{algramifiedplaces}\label{se:algramifiedplaces}
Given a central simple algebra \var{al} output by \tet{alginit}, return a
\typ{VEC} containing the list of places of the center of \var{al} that are
ramified in \var{al}. Each place is described as an integer between~$1$
and~$r_1$ or as a prime ideal.

\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algramifiedplaces(A)
%3 = [1, [2, [2, 0]~, 1, 2, 1]]
@eprog

The library syntax is \fun{GEN}{algramifiedplaces}{GEN al}.

\subsec{algrandom$(\var{al},b)$}\kbdsidx{algrandom}\label{se:algrandom}
Given an algebra \var{al} and an integer \var{b}, returns a random
element in \var{al} with coefficients in~$[-b,b]$.

The library syntax is \fun{GEN}{algrandom}{GEN al, GEN b}.

\subsec{algrelmultable$(\var{al})$}\kbdsidx{algrelmultable}\label{se:algrelmultable}
Given a central simple algebra \var{al} output by \tet{alginit} defined by a multiplication table over its center (a number field), returns this multiplication table.
\bprog
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
          1,0,0,0;
          0,0,0,a;
          0,0,1,0];}
? {m_j = [0, 0,b, 0;
          0, 0,0,-b;
          1, 0,0, 0;
          0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
          0, 0,b,   0;
          0,-a,0,   0;
          1, 0,0,   0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? M = algrelmultable(A);
? M[2] == m_i
%8 = 1
? M[3] == m_j
%9 = 1
? M[4] == m_k
%10 = 1
@eprog

The library syntax is \fun{GEN}{algrelmultable}{GEN al}.

\subsec{algsimpledec$(\var{al},\{\fl=0\})$}\kbdsidx{algsimpledec}\label{se:algsimpledec}
\var{al} being the output of \tet{algtableinit} representing a semisimple
algebra, returns a \typ{VEC} $[\var{al}_1,\var{al}_2,\dots,\var{al}_n]$ such
that~\var{al} is isomorphic to the direct sum of the simple algebras
$\var{al}_i$. When $\var{flag}=1$, each component is instead a \typ{VEC}
$[\var{al}_i,\var{proj}_i,\var{lift}_i]$ where $\var{proj}_i$
and~$\var{lift}_i$ are matrices respectively representing the projection map
on the $i$-th factor and a section of it. The factors are sorted by
increasing dimension, then increasing dimension of the center. This ensures
that the ordering of the isomorphism classes of the factors is deterministic
over finite fields, but not necessarily over~$\Q$.

\misctitle{Warning} The images of the $\var{lift}_i$ are not guaranteed to form a direct sum.

The library syntax is \fun{GEN}{algsimpledec}{GEN al, long flag}.

\subsec{algsplittingdata$(\var{al})$}\kbdsidx{algsplittingdata}\label{se:algsplittingdata}
Given a central simple algebra \var{al} output by \tet{alginit} defined
by a multiplication table over its center~$K$ (a number field), returns data
stored to compute a splitting of \var{al} over an extension. This data is a
\typ{VEC} \kbd{[t,Lbas,Lbasinv]} with $3$ components:

 \item an element $t$ of \var{al} such that $L=K(t)$ is a maximal subfield
of \var{al};

 \item a matrix \kbd{Lbas} expressing a $L$-basis of \var{al} (given an
$L$-vector space structure by multiplication on the right) on the integral
basis of \var{al};

 \item a matrix \kbd{Lbasinv} expressing the integral basis of \var{al} on
the previous $L$-basis.

\bprog
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
          1,0,0,0;
          0,0,0,a;
          0,0,1,0];}
? {m_j = [0, 0,b, 0;
          0, 0,0,-b;
          1, 0,0, 0;
          0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
          0, 0,b,   0;
          0,-a,0,   0;
          1, 0,0,   0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? [t,Lb,Lbi] = algsplittingdata(A);
? t
%8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;
? matsize(Lb)
%9 = [12, 2]
? matsize(Lbi)
%10 = [2, 12]
@eprog

The library syntax is \fun{GEN}{algsplittingdata}{GEN al}.

\subsec{algsplittingfield$(\var{al})$}\kbdsidx{algsplittingfield}\label{se:algsplittingfield}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
an \kbd{rnf} structure: the splitting field of \var{al} that is stored in
\var{al}, as a relative extension of the center.
\bprog
nf = nfinit(y^3-5);
a = y; b = y^2;
{m_i = [0,a,0,0;
       1,0,0,0;
       0,0,0,a;
       0,0,1,0];}
{m_j = [0, 0,b, 0;
       0, 0,0,-b;
       1, 0,0, 0;
       0,-1,0, 0];}
{m_k = [0, 0,0,-a*b;
       0, 0,b,   0;
       0,-a,0,   0;
       1, 0,0,   0];}
mt = [matid(4), m_i, m_j, m_k];
A = alginit(nf,mt,'x);
algsplittingfield(A).pol
%8 = x^2 - y
@eprog

The library syntax is \fun{GEN}{algsplittingfield}{GEN al}.

\subsec{algsplittingmatrix$(\var{al},x)$}\kbdsidx{algsplittingmatrix}\label{se:algsplittingmatrix}
A central simple algebra \var{al} output by \tet{alginit} contains data
describing an isomorphism~$\phi : A\otimes_K L \to M_d(L)$, where $d$ is the
degree of the algebra and $L$ is an extension of $L$ with~$[L:K]=d$. Returns
the matrix $\phi(x)$.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsplittingmatrix(A,[0,0,0,2]~)
%2 =
[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]

[Mod(x + 1, x^2 + 1)                   Mod(-x + 1, x^2 + 1)]
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algsplittingmatrix}{GEN al, GEN x}.

\subsec{algsqr$(\var{al},x)$}\kbdsidx{algsqr}\label{se:algsqr}
Given an element $x$ in \var{al}, computes its square $x^2$ in the
algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsqr(A,[1,0,2,0]~)
%2 = [-3, 0, 4, 0]~
@eprog

Also accepts a square matrix with coefficients in \var{al}.

The library syntax is \fun{GEN}{algsqr}{GEN al, GEN x}.

\subsec{algsub$(\var{al},x,y)$}\kbdsidx{algsub}\label{se:algsub}
Given two elements $x$ and $y$ in \var{al}, computes their difference
$x-y$ in the algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
%2 = [0, 1, -1, 0]~
@eprog

Also accepts matrices with coefficients in \var{al}.

The library syntax is \fun{GEN}{algsub}{GEN al, GEN x, GEN y}.

\subsec{algsubalg$(\var{al},B)$}\kbdsidx{algsubalg}\label{se:algsubalg}
\var{al} being a table algebra output by \tet{algtableinit} and \var{B}
being a basis of a subalgebra of \var{al} represented by a matrix, returns an
algebra isomorphic to \var{B}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? B = algsubalg(A,[1,0; 0,0; 0,1]);
? algdim(A)
%4 = 3
? algdim(B)
%5 = 2
@eprog

The library syntax is \fun{GEN}{algsubalg}{GEN al, GEN B}.

\subsec{algtableinit$(\var{mt}, \{p=0\})$}\kbdsidx{algtableinit}\label{se:algtableinit}
Initialize the associative algebra over $K = \Q$ (p omitted) or $\F_p$
defined by the multiplication table \var{mt}.
As a $K$-vector space, the algebra is generated by a basis
$(e_1 = 1, e_2, \dots, e_n)$; the table is given as a \typ{VEC} of $n$ matrices in
$M_n(K)$, giving the left multiplication by the basis elements $e_i$, in the
given basis.
Assumes that $e_1=1$, that $K e_1\oplus \dots\oplus K e_n]$ describes an
associative algebra over $K$, and in the case $K=\Q$ that the multiplication
table is integral. If the algebra is already known to be central
and simple, then the case $K = \F_p$ is useless, and one should use
\tet{alginit} directly.

The point of this function is to input a finite dimensional $K$-algebra, so
as to later compute its radical, then to split the quotient algebra as a
product of simple algebras over $K$.

The pari object representing such an algebra $A$ is a \typ{VEC} with the
following data:

 \item The characteristic of $A$, accessed with \kbd{algchar}.

 \item The multiplication table of $A$, accessed with \kbd{algmultable}.

 \item The traces of the elements of the basis.

A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
generated by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$:
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]

[1]

[0]
? algcenter(A) \\ = (I_2)
%7 =
[1]

[0]

[0]
@eprog

The library syntax is \fun{GEN}{algtableinit}{GEN mt, GEN p = NULL}.

\subsec{algtensor$(\var{al1},\var{al2},\{\var{maxord}=1\})$}\kbdsidx{algtensor}\label{se:algtensor}
Given two algebras \var{al1} and \var{al2}, computes their tensor
product. For table algebras output by \tet{algtableinit}, the flag
\var{maxord} is ignored. For central simple algebras output by \tet{alginit},
computes a maximal order by default. Prevent this computation by setting
$\var{maxord}=0$.

Currently only implemented for cyclic algebras of coprime degree over the same
center~$K$, and the tensor product is over~$K$.

The library syntax is \fun{GEN}{algtensor}{GEN al1, GEN al2, long maxord}.

\subsec{algtrace$(\var{al},x)$}\kbdsidx{algtrace}\label{se:algtrace}
Given an element \var{x} in \var{al}, computes its trace. If \var{al} is
a table algebra output by \tet{algtableinit}, returns the absolute trace of
\var{x}, which is an element of $\F_p$ or~$\Q$; if \var{al} is the output of
\tet{alginit}, returns the reduced trace of \var{x}, which is an element of
the center of \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algtrace(A,[5,0,0,1]~)
%2 = 11
@eprog

Also accepts a square matrix with coefficients in \var{al}.

The library syntax is \fun{GEN}{algtrace}{GEN al, GEN x}.

\subsec{algtype$(\var{al})$}\kbdsidx{algtype}\label{se:algtype}
Given an algebra \var{al} output by \tet{alginit} or by \tet{algtableinit}, returns an integer indicating the type of algebra:

\item $0$: not a valid algebra.

\item $1$: table algebra output by \tet{algtableinit}.

\item $2$: central simple algebra output by \tet{alginit} and represented by
a multiplication table over its center.

\item $3$: central simple algebra output by \tet{alginit} and represented by
a cyclic algebra.
\bprog
? algtype([])
%1 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algtype(A)
%4 = 1
? nf = nfinit(y^3-5);
?  a = y; b = y^2;
?  {m_i = [0,a,0,0;
           1,0,0,0;
           0,0,0,a;
           0,0,1,0];}
?  {m_j = [0, 0,b, 0;
           0, 0,0,-b;
           1, 0,0, 0;
           0,-1,0, 0];}
?  {m_k = [0, 0,0,-a*b;
           0, 0,b,   0;
           0,-a,0,   0;
           1, 0,0,   0];}
?  mt = [matid(4), m_i, m_j, m_k];
?  A = alginit(nf,mt,'x);
? algtype(A)
%12 = 2
? A = alginit(nfinit(y), [-1,-1]);
? algtype(A)
%14 = 3
@eprog

The library syntax is \fun{long}{algtype}{GEN al}.
%SECTION: algebras

\section{Polynomials and power series}

We group here all functions which are specific to polynomials or power
series. Many other functions which can be applied on these objects are
described in the other sections. Also, some of the functions described here
can be applied to other types.


\subsec{O$(p\hbox{\kbd{\pow}}e)$}\kbdsidx{O}\label{se:O}
If $p$ is an integer
greater than $2$, returns a $p$-adic $0$ of precision $e$. In all other
cases, returns a power series zero with precision given by $e v$, where $v$
is the $X$-adic valuation of $p$ with respect to its main variable.

The library syntax is \fun{GEN}{ggrando}{}.
\fun{GEN}{zeropadic}{GEN p, long e} for a $p$-adic and
\fun{GEN}{zeroser}{long v, long e} for a power series zero in variable $v$.

\subsec{bezoutres$(A,B,\{v\})$}\kbdsidx{bezoutres}\label{se:bezoutres}
Deprecated alias for \kbd{polresultantext}

The library syntax is \fun{GEN}{polresultantext0}{GEN A, GEN B, long v = -1} where \kbd{v} is a variable number.

\subsec{deriv$(x,\{v\})$}\kbdsidx{deriv}\label{se:deriv}
Derivative of $x$ with respect to the main
variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use $x'$ as a shortcut if the derivative is with
respect to the main variable of $x$.

By definition, the main variable of a \typ{POLMOD} is the main variable among
the coefficients from its two polynomial components (representative and
modulus); in other words, assuming a polmod represents an element of
$R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
taken with respect to the main variable used in the base ring $R$.

The library syntax is \fun{GEN}{deriv}{GEN x, long v = -1} where \kbd{v} is a variable number.

\subsec{diffop$(x,v,d,\{n=1\})$}\kbdsidx{diffop}\label{se:diffop}
Let $v$ be a vector of variables, and $d$ a vector of the same length,
return the image of $x$ by the $n$-power ($1$ if n is not given) of the differential
operator $D$ that assumes the value \kbd{d[i]} on the variable \kbd{v[i]}.
The value of $D$ on a scalar type is zero, and $D$ applies componentwise to a vector
or matrix. When applied to a \typ{POLMOD}, if no value is provided for the variable
of the modulus, such value is derived using the implicit function theorem.

Some examples:
This function can be used to differentiate formal expressions:
If $E=\exp(X^2)$ then we have $E'=2*X*E$. We can derivate $X*exp(X^2)$ as follow:
\bprog
? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
@eprog
Let \kbd{Sin} and \kbd{Cos} be two function such that $\kbd{Sin}^2+\kbd{Cos}^2=1$
and $\kbd{Cos}'=-\kbd{Sin}$. We can differentiate $\kbd{Sin}/\kbd{Cos}$ as follow,
PARI inferring the value of $\kbd{Sin}'$ from the equation:
\bprog
? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))

@eprog
Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:
\bprog
Bell(k,n=-1)=
{
  my(var(i)=eval(Str("X",i)));
  my(x,v,dv);
  v=vector(k,i,if(i==1,'E,var(i-1)));
  dv=vector(k,i,if(i==1,'X*var(1)*'E,var(i)));
  x=diffop('E,v,dv,k)/'E;
  if(n<0,subst(x,'X,1),polcoeff(x,n,'X))
}
@eprog

The library syntax is \fun{GEN}{diffop0}{GEN x, GEN v, GEN d, long n}.

For $n=1$, the function \fun{GEN}{diffop}{GEN x, GEN v, GEN d} is also available.

\subsec{eval$(x)$}\kbdsidx{eval}\label{se:eval}
Replaces in $x$ the formal variables by the values that
have been assigned to them after the creation of $x$. This is mainly useful
in GP, and not in library mode. Do not confuse this with substitution (see
\kbd{subst}).

If $x$ is a character string, \kbd{eval($x$)} executes $x$ as a GP
command, as if directly input from the keyboard, and returns its
output.
\bprog
? x1 = "one"; x2 = "two";
? n = 1; eval(Str("x", n))
%2 = "one"
? f = "exp"; v = 1;
? eval(Str(f, "(", v, ")"))
%4 = 2.7182818284590452353602874713526624978
@eprog\noindent Note that the first construct could be implemented in a
simpler way by using a vector \kbd{x = ["one","two"]; x[n]}, and the second
by using a closure \kbd{f = exp; f(v)}. The final example is more interesting:
\bprog
? genmat(u,v) = matrix(u,v,i,j, eval( Str("x",i,j) ));
? genmat(2,3)   \\ generic 2 x 3 matrix
%2 =
[x11 x12 x13]

[x21 x22 x23]
@eprog

A syntax error in the evaluation expression raises an \kbd{e\_SYNTAX}
exception, which can be trapped as usual:
\bprog
? 1a
 ***   syntax error, unexpected variable name, expecting $end or ';': 1a
 ***                                                                   ^-
? E(expr) =
  {
    iferr(eval(expr),
          e, print("syntax error"),
          errname(e) == "e_SYNTAX");
  }
? E("1+1")
%1 = 2
? E("1a")
syntax error
@eprog
\synt{geval}{GEN x}.

\subsec{factorpadic$(\var{pol},p,r)$}\kbdsidx{factorpadic}\label{se:factorpadic}
$p$-adic factorization
of the polynomial \var{pol} to precision $r$, the result being a
two-column matrix as in \kbd{factor}. Note that this is not the same
as a factorization over $\Z/p^r\Z$ (polynomials over that ring do not form a
unique factorization domain, anyway), but approximations in $\Q/p^r\Z$ of
the true factorization in $\Q_p[X]$.
\bprog
? factorpadic(x^2 + 9, 3,5)
%1 =
[(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]
? factorpadic(x^2 + 1, 5,3)
%2 =
[  (1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]

[(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]
@eprog\noindent
The factors are normalized so that their leading coefficient is a power of
$p$. The method used is a modified version of the \idx{round 4} algorithm of
\idx{Zassenhaus}.

If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
well-defined; in this case, the polynomial is first made integral by dividing
out the $p$-adic content,  then lifted to $\Z$ using \tet{truncate}
coefficientwise.
Hence we actually factor exactly a polynomial which is only $p$-adically
close to the input. To avoid pitfalls, we advise to only factor polynomials
with exact rational coefficients.

\synt{factorpadic}{GEN f,GEN p, long r} . The function \kbd{factorpadic0} is
deprecated, provided for backward compatibility.

\subsec{intformal$(x,\{v\})$}\kbdsidx{intformal}\label{se:intformal}
\idx{formal integration} of $x$ with respect to the variable $v$ (wrt.
the main variable if $v$ is omitted). Since PARI cannot represent
logarithmic or arctangent terms, any such term in the result will yield an
error:
\bprog
 ? intformal(x^2)
 %1 = 1/3*x^3
 ? intformal(x^2, y)
 %2 = y*x^2
 ? intformal(1/x)
   ***   at top-level: intformal(1/x)
   ***                 ^--------------
   *** intformal: domain error in intformal: residue(series, pole) != 0
@eprog
The argument $x$ can be of any type. When $x$ is a rational function, we
assume that the base ring is an integral domain of characteristic zero.

  By  definition,   the main variable of a \typ{POLMOD} is the main variable
among the  coefficients  from  its  two  polynomial  components
(representative and modulus); in other words, assuming a polmod represents an
element of $R[X]/(T(X))$, the variable $X$ is a mute variable and the
integral is taken with respect to the main variable used in the base ring $R$.
In particular, it is meaningless to integrate with respect to the main
variable of \kbd{x.mod}:
\bprog
? intformal(Mod(1,x^2+1), 'x)
*** intformal: incorrect priority in intformal: variable x = x
@eprog

The library syntax is \fun{GEN}{integ}{GEN x, long v = -1} where \kbd{v} is a variable number.

\subsec{padicappr$(\var{pol},a)$}\kbdsidx{padicappr}\label{se:padicappr}
Vector of $p$-adic roots of the
polynomial $pol$ congruent to the $p$-adic number $a$ modulo $p$, and with
the same $p$-adic precision as $a$. The number $a$ can be an ordinary
$p$-adic number (type \typ{PADIC}, i.e.~an element of $\Z_p$) or can be an
integral element of a finite extension of $\Q_p$, given as a \typ{POLMOD}
at least one of whose coefficients is a \typ{PADIC}. In this case, the result
is the vector of roots belonging to the same extension of $\Q_p$ as $a$.

The library syntax is \fun{GEN}{padicappr}{GEN pol, GEN a}.
Also available is \fun{GEN}{Zp_appr}{GEN f, GEN a} when $a$ is a
\typ{PADIC}.

\subsec{padicfields$(p, N, \{\fl=0\})$}\kbdsidx{padicfields}\label{se:padicfields}
Returns a vector of polynomials generating all the extensions of degree
$N$ of the field $\Q_p$ of $p$-adic rational numbers; $N$ is
allowed to be a 2-component vector $[n,d]$, in which case we return the
extensions of degree $n$ and discriminant $p^d$.

The list is minimal in the sense that two different polynomials generate
non-isomorphic extensions; in particular, the number of polynomials is the
number of classes of non-isomorphic extensions. If $P$ is a polynomial in this
list, $\alpha$ is any root of $P$ and $K = \Q_p(\alpha)$, then $\alpha$
is the sum of a uniformizer and a (lift of a) generator of the residue field
of $K$; in particular, the powers of $\alpha$ generate the ring of $p$-adic
integers of $K$.

If $\fl = 1$, replace each polynomial $P$ by a vector $[P, e, f, d, c]$
where $e$ is the ramification index, $f$ the residual degree, $d$ the
valuation of the discriminant, and $c$ the number of conjugate fields.
If $\fl = 2$, only return the \emph{number} of extensions in a fixed
algebraic closure (Krasner's formula), which is much faster.

The library syntax is \fun{GEN}{padicfields0}{GEN p, GEN N, long flag}.
Also available is
\fun{GEN}{padicfields}{GEN p, long n, long d, long flag}, which computes
extensions of $\Q_p$ of degree $n$ and discriminant $p^d$.

\subsec{polchebyshev$(n,\{\fl=1\},\{a='x\})$}\kbdsidx{polchebyshev}\label{se:polchebyshev}
Returns the $n^{\text{th}}$
\idx{Chebyshev} polynomial of the first kind $T_n$ ($\fl=1$) or the second
kind $U_n$ ($\fl=2$), evaluated at $a$ (\kbd{'x} by default). Both series of
polynomials satisfy the 3-term relation
$$ P_{n+1} = 2xP_n - P_{n-1}, $$
and are determined by the initial conditions $U_0 = T_0 = 1$, $T_1 = x$,
$U_1 = 2x$. In fact $T_n' = n U_{n-1}$ and, for all complex numbers $z$, we
have $T_n(\cos z) = \cos (nz)$ and $U_{n-1}(\cos z) = \sin(nz)/\sin z$.
If $n \geq 0$, then these polynomials have degree $n$.  For $n < 0$,
$T_n$ is equal to $T_{-n}$ and $U_n$ is equal to $-U_{-2-n}$.
In particular, $U_{-1} = 0$.

The library syntax is \fun{GEN}{polchebyshev_eval}{long n, long flag, GEN a = NULL}.
Also available are
\fun{GEN}{polchebyshev}{long n, long flag, long v},
\fun{GEN}{polchebyshev1}{long n, long v} and
\fun{GEN}{polchebyshev2}{long n, long v} for $T_n$ and $U_n$ respectively.

\subsec{polclass$(D, \{\var{inv} = 0\}, \{x = 'x\})$}\kbdsidx{polclass}\label{se:polclass}
Return a polynomial in $\Z[x]$ generating the Hilbert class field for the
imaginary quadratic discriminant $D$.  If $inv$ is 0 (the default),
use the modular $j$-function and return the classical Hilbert polynomial,
otherwise use a class invariant. The following invariants correspond to
the different values of $inv$, where $f$ denotes Weber's function
\kbd{weber}, and $w_{p,q}$ the double eta quotient given by
$w_{p,q} = \dfrac{ \eta(x/p)\*\eta(x/q) }{ \eta(x)\*\eta(x/{pq}) }$

The invariants $w_{p,q}$ are not allowed unless they satisfy the following
technical conditions ensuring they do generate the Hilbert class
field and not a strict subfield:

\item if $p\neq q$, we need them both non-inert, prime to the conductor of
$\Z[\sqrt{D}]$. Let $P, Q$ be prime ideals  above $p$ and $q$; if both are
unramified, we further require that $P^{\pm 1} Q^{\pm 1}$ be all distinct in
the class group of $\Z[\sqrt{D}]$; if both are ramified, we require that $PQ
\neq 1$ in the class group.

\item if $p = q$, we want it split and prime to the conductor and
the prime ideal above it must have order $\neq 1, 2, 4$ in the class group.

\noindent Invariants are allowed under the additional conditions on $D$
listed below.

\item 0 : $j$

\item 1 : $f$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;

\item 2 : $f^2$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;

\item 3 : $f^3$, $D = 1 \mod 8$;

\item 4 : $f^4$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;

\item 5 : $\gamma_2= j^{1/3}$, $D = 1,2 \mod 3$;

\item 6 : $w_{2,3}$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;

\item 8 : $f^8$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;

\item 9 : $w_{3,3}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;

\item 10: $w_{2,5}$, $D \neq 60 \mod 80$ and $D = 1,2 \mod 3$;

\item 14: $w_{2,7}$, $D = 1 \mod 8$;

\item 15: $w_{3,5}$, $D = 1,2 \mod 3$;

\item 21: $w_{3,7}$, $D = 1 \mod 2$ and $21$ does not divide $D$

\item 23: $w_{2,3}^2$, $D = 1,2 \mod 3$;

\item 24: $w_{2,5}^2$, $D = 1,2 \mod 3$;

\item 26: $w_{2,13}$, $D \neq 156 \mod 208$;

\item 27: $w_{2,7}^2$, $D\neq 28 \mod 112$;

\item 28: $w_{3,3}^2$, $D = 1,2 \mod 3$;

\item 35: $w_{5,7}$, $D = 1,2 \mod 3$;

\item 39: $w_{3,13}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;

The algorithm for computing the polynomial does not use the floating point
approach, which would evaluate a precise modular function in a precise
complex argument. Instead, it relies on a faster Chinese remainder based
approach modulo small primes, in which the class invariant is only defined
algebraically by the modular polynomial relating the modular function to $j$.
So in fact, any of the several roots of the modular polynomial may actually
be the class invariant, and more precise assertions cannot be made.

For instance, while \kbd{polclass(D)} returns the minimal polynomial of
$j(\tau)$ with $\tau$ (any) quadratic integer for the discriminant $D$,
the polynomial returned by \kbd{polclass(D, 5)} can be the minimal polynomial
of any of $\gamma_2 (\tau)$, $\zeta_3 \gamma_2 (\tau)$ or
$\zeta_3^2 \gamma_2 (\tau)$, the three roots of the modular polynomial
$j = \gamma_2^3$, in which $j$ has been specialised to $j (\tau)$.

The modular polynomial is given by
$j = {(f^{24}-16)^3 \over f^{24}}$ for Weber's function $f$.

For the double eta quotients of level $N = p q$, all functions are covered
such that the modular curve $X_0^+ (N)$, the function field of which is
generated by the functions invariant under $\Gamma^0 (N)$ and the
Fricke--Atkin--Lehner involution, is of genus $0$ with function field
generated by (a power of) the double eta quotient $w$.
This ensures that the full Hilbert class field (and not a proper subfield)
is generated by class invariants from these double eta quotients.
Then the modular polynomial is of degree $2$ in $j$, and
of degree $\psi (N) = (p+1)(q+1)$ in $w$.

\bprog
? polclass(-163)
%1 = x + 262537412640768000
? polclass(-51, , 'z)
%2 = z^2 + 5541101568*z + 6262062317568
? polclass(-151,1)
x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1
@eprog

The library syntax is \fun{GEN}{polclass}{GEN D, long inv, long x = -1} where \kbd{x} is a variable number.

\subsec{polcoeff$(x,n,\{v\})$}\kbdsidx{polcoeff}\label{se:polcoeff}
Coefficient of degree $n$ of the polynomial $x$, with respect to the
main variable if $v$ is omitted, with respect to $v$ otherwise.  If $n$
is greater than the degree, the result is zero.

Naturally applies to scalars (polynomial of degree $0$), as well as to
rational functions whose denominator is a monomial.
It also applies to power series: if $n$ is less than the valuation, the result
is zero. If it is greater than the largest significant degree, then an error
message is issued.

 For greater flexibility, $x$ can be a vector or matrix type and the
 function then returns \kbd{component(x,n)}.

The library syntax is \fun{GEN}{polcoeff0}{GEN x, long n, long v = -1} where \kbd{v} is a variable number.

\subsec{polcyclo$(n,\{a = 'x\})$}\kbdsidx{polcyclo}\label{se:polcyclo}
$n$-th cyclotomic polynomial, evaluated at $a$ (\kbd{'x} by default). The
integer $n$ must be positive.

Algorithm used: reduce to the case where $n$ is squarefree; to compute the
cyclotomic polynomial, use $\Phi_{np}(x)=\Phi_n(x^p)/\Phi(x)$; to compute
it evaluated, use $\Phi_n(x) = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}$. In the
evaluated case, the algorithm assumes that $a^d - 1$ is either $0$ or
invertible, for all $d\mid n$. If this is not the case (the base ring has
zero divisors), use \kbd{subst(polcyclo(n),x,a)}.

The library syntax is \fun{GEN}{polcyclo_eval}{long n, GEN a = NULL}.
The variant \fun{GEN}{polcyclo}{long n, long v} returns the $n$-th
cyclotomic polynomial in variable $v$.

\subsec{polcyclofactors$(f)$}\kbdsidx{polcyclofactors}\label{se:polcyclofactors}
Returns a vector of polynomials, whose product is the product of
distinct cyclotomic polynomials dividing $f$.
\bprog
? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;
? v = polcyclofactors(f)
%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]
? apply(poliscycloprod, v)
%3 = [1, 1, 1]
? apply(poliscyclo, v)
%4 = [4, 3, 10]
@eprog\noindent In general, the polynomials are products of cyclotomic
polynomials and not themselves irreducible:
\bprog
? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;
? polcyclofactors(g)
%2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]
? factor(%[1])
%3 =
[            x^2 + x + 1 1]

[x^4 + x^3 + x^2 + x + 1 1]
@eprog

The library syntax is \fun{GEN}{polcyclofactors}{GEN f}.

\subsec{poldegree$(x,\{v\})$}\kbdsidx{poldegree}\label{se:poldegree}
Degree of the polynomial $x$ in the main variable if $v$ is omitted, in
the variable $v$ otherwise.

The degree of $0$ is \kbd{-oo}. The degree of a non-zero scalar is $0$.
Finally, when $x$ is a non-zero polynomial or rational function, returns the
ordinary degree of $x$. Raise an error otherwise.

The library syntax is \fun{GEN}{gppoldegree}{GEN x, long v = -1} where \kbd{v} is a variable number.
Also available is
\fun{long}{poldegree}{GEN x, long v}, which returns \tet{-LONG_MAX} if $x = 0$
and the degree as a \kbd{long} integer.

\subsec{poldisc$(\var{pol},\{v\})$}\kbdsidx{poldisc}\label{se:poldisc}
Discriminant of the polynomial
\var{pol} in the main variable if $v$ is omitted, in $v$ otherwise. Uses a
modular algorithm over $\Z$ or $\Q$, and the \idx{subresultant algorithm}
otherwise.
\bprog
? T = x^4 + 2*x+1;
? poldisc(T)
%2 = -176
? poldisc(T^2)
%3 = 0
@eprog

For convenience, the function also applies to types \typ{QUAD} and
\typ{QFI}/\typ{QFR}:
\bprog
? z = 3*quadgen(8) + 4;
? poldisc(z)
%2 = 8
? q = Qfb(1,2,3);
? poldisc(q)
%4 = -8
@eprog

The library syntax is \fun{GEN}{poldisc0}{GEN pol, long v = -1} where \kbd{v} is a variable number.

\subsec{poldiscreduced$(f)$}\kbdsidx{poldiscreduced}\label{se:poldiscreduced}
Reduced discriminant vector of the
(integral, monic) polynomial $f$. This is the vector of elementary divisors
of $\Z[\alpha]/f'(\alpha)\Z[\alpha]$, where $\alpha$ is a root of the
polynomial $f$. The components of the result are all positive, and their
product is equal to the absolute value of the discriminant of~$f$.

The library syntax is \fun{GEN}{reduceddiscsmith}{GEN f}.

\subsec{polgraeffe$(f)$}\kbdsidx{polgraeffe}\label{se:polgraeffe}
Returns the \idx{Graeffe} transform $g$ of $f$, such that $g(x^2) = f(x)
f(-x)$.

The library syntax is \fun{GEN}{polgraeffe}{GEN f}.

\subsec{polhensellift$(A, B, p, e)$}\kbdsidx{polhensellift}\label{se:polhensellift}
Given a prime $p$, an integral polynomial $A$ whose leading coefficient
is a $p$-unit, a vector $B$ of integral polynomials that are monic and
pairwise relatively prime modulo $p$, and whose product is congruent to
$A/\text{lc}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose
product is congruent to $A$ modulo $p^e$.

More generally, if $T$ is an integral polynomial irreducible mod $p$, and
$B$ is a factorization of $A$ over the finite field $\F_p[t]/(T)$, you can
lift it to $\Z_p[t]/(T, p^e)$ by replacing the $p$ argument with $[p,T]$:
\bprog
? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
    B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
    r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )
%2 = x^2 + (t + 1)
@eprog

The library syntax is \fun{GEN}{polhensellift}{GEN A, GEN B, GEN p, long e}.

\subsec{polhermite$(n,\{a='x\})$}\kbdsidx{polhermite}\label{se:polhermite}
$n^{\text{th}}$ \idx{Hermite} polynomial $H_n$ evaluated at $a$
(\kbd{'x} by default), i.e.
$$ H_n(x) = (-1)^n\*e^{x^2} \dfrac{d^n}{dx^n}e^{-x^2}.$$

The library syntax is \fun{GEN}{polhermite_eval}{long n, GEN a = NULL}.
The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th
Hermite polynomial in variable $v$.

\subsec{polinterpolate$(X,\{Y\},\{t = 'x\},\{\&e\})$}\kbdsidx{polinterpolate}\label{se:polinterpolate}
Given the data vectors
$X$ and $Y$ of the same length $n$ ($X$ containing the $x$-coordinates,
and $Y$ the corresponding $y$-coordinates), this function finds the
\idx{interpolating polynomial} $P$ of minimal degree passing through these
points and evaluates it at~$t$. If $Y$ is omitted, the polynomial $P$
interpolates the $(i,X[i])$. If present, $e$ will contain an error estimate
on the returned value.

The library syntax is \fun{GEN}{polint}{GEN X, GEN Y = NULL, GEN t = NULL, GEN *e = NULL}.

\subsec{poliscyclo$(f)$}\kbdsidx{poliscyclo}\label{se:poliscyclo}
Returns 0 if $f$ is not a cyclotomic polynomial, and $n > 0$ if $f =
\Phi_n$, the $n$-th cyclotomic polynomial.
\bprog
? poliscyclo(x^4-x^2+1)
%1 = 12
? polcyclo(12)
%2 = x^4 - x^2 + 1
? poliscyclo(x^4-x^2-1)
%3 = 0
@eprog

The library syntax is \fun{long}{poliscyclo}{GEN f}.

\subsec{poliscycloprod$(f)$}\kbdsidx{poliscycloprod}\label{se:poliscycloprod}
Returns 1 if $f$ is a product of cyclotomic polynomial, and $0$
otherwise.
\bprog
? f = x^6+x^5-x^3+x+1;
? poliscycloprod(f)
%2 = 1
? factor(f)
%3 =
[  x^2 + x + 1 1]

[x^4 - x^2 + 1 1]
? [ poliscyclo(T) | T <- %[,1] ]
%4 = [3, 12]
? polcyclo(3) * polcyclo(12)
%5 = x^6 + x^5 - x^3 + x + 1
@eprog

The library syntax is \fun{long}{poliscycloprod}{GEN f}.

\subsec{polisirreducible$(\var{pol})$}\kbdsidx{polisirreducible}\label{se:polisirreducible}
\var{pol} being a polynomial (univariate in the present version \vers),
returns 1 if \var{pol} is non-constant and irreducible, 0 otherwise.
Irreducibility is checked over the smallest base field over which \var{pol}
seems to be defined.

The library syntax is \fun{long}{isirreducible}{GEN pol}.

\subsec{pollead$(x,\{v\})$}\kbdsidx{pollead}\label{se:pollead}
Leading coefficient of the polynomial or power series $x$. This is
 computed with respect to the main variable of $x$ if $v$ is omitted, with
 respect to the variable $v$ otherwise.

The library syntax is \fun{GEN}{pollead}{GEN x, long v = -1} where \kbd{v} is a variable number.

\subsec{pollegendre$(n,\{a='x\})$}\kbdsidx{pollegendre}\label{se:pollegendre}
$n^{\text{th}}$ \idx{Legendre polynomial} evaluated at $a$ (\kbd{'x} by
default).

The library syntax is \fun{GEN}{pollegendre_eval}{long n, GEN a = NULL}.
To obtain the $n$-th Legendre polynomial in variable $v$,
use \fun{GEN}{pollegendre}{long n, long v}.

\subsec{polmodular$(L, \{\var{inv} = 0\}, \{x = 'x\}, \{y = 'y\}, \{\var{derivs} = 0\})$}\kbdsidx{polmodular}\label{se:polmodular}
Return the modular polynomial of prime level $L$ in variables $x$ and $y$
for the modular function specified by \kbd{inv}.  If \kbd{inv} is 0 (the
default), use the modular $j$ function, if \kbd{inv} is 1 use the
Weber-$f$ function, and if \kbd{inv} is 5 use $\gamma_2 =
\sqrt[3]{j}$.
See \kbd{polclass} for the full list of invariants.
If $x$ is given as \kbd{Mod(j, p)} or an element $j$ of
a finite field (as a \typ{FFELT}), then return the modular polynomial of
level $L$ evaluated at $j$.  If $j$ is from a finite field and
\kbd{derivs} is non-zero, then return a triple where the
last two elements are the first and second derivatives of the modular
polynomial evaluated at $j$.
\bprog
? polmodular(3)
%1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ...
? polmodular(7, 1, , 'J)
%2 = x^8 - J^7*x^7 + 7*J^4*x^4 - 8*J*x + J^8
? polmodular(7, 5, 7*ffgen(19)^0, 'j)
%3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18
? polmodular(7, 5, Mod(7,19), 'j)
%4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ...

? u = ffgen(5)^0; T = polmodular(3,0,,'j)*u;
? polmodular(3, 0, u,'j,1)
%6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2]
? subst(T,x,u)
%7 = j^4 + 3*j^2 + 4*j + 1
? subst(T',x,u)
%8 = 3*j^2 + 2*j + 4
? subst(T'',x,u)
%9 = 3*j^3 + 4*j^2 + 4*j + 2
@eprog

The library syntax is \fun{GEN}{polmodular}{long L, long inv, GEN x = NULL, long y = -1, long derivs} where \kbd{y} is a variable number.

\subsec{polrecip$(\var{pol})$}\kbdsidx{polrecip}\label{se:polrecip}
Reciprocal polynomial of \var{pol}, i.e.~the coefficients are in
reverse order. \var{pol} must be a polynomial.

The library syntax is \fun{GEN}{polrecip}{GEN pol}.

\subsec{polresultant$(x,y,\{v\},\{\fl=0\})$}\kbdsidx{polresultant}\label{se:polresultant}
Resultant of the two
polynomials $x$ and $y$ with exact entries, with respect to the main
variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$
otherwise. The algorithm assumes the base ring is a domain. If you also need
the $u$ and $v$ such that $x*u + y*v = \text{Res}(x,y)$, use the
\tet{polresultantext} function.

If $\fl=0$ (default), uses the algorithm best suited to the inputs,
either the \idx{subresultant algorithm} (Lazard/Ducos variant, generic case),
a modular algorithm (inputs in $\Q[X]$) or Sylvester's matrix (inexact
inputs).

If $\fl=1$, uses the determinant of Sylvester's matrix instead; this should
always be slower than the default.

The library syntax is \fun{GEN}{polresultant0}{GEN x, GEN y, long v = -1, long flag} where \kbd{v} is a variable number.

\subsec{polresultantext$(A,B,\{v\})$}\kbdsidx{polresultantext}\label{se:polresultantext}
Finds polynomials $U$ and $V$ such that $A*U + B*V = R$, where $R$ is
the resultant of $U$ and $V$ with respect to the main variables of $A$ and
$B$ if $v$ is omitted, and with respect to $v$ otherwise. Returns the row
vector $[U,V,R]$. The algorithm used (subresultant) assumes that the base
ring is a domain.
\bprog
? A = x*y; B = (x+y)^2;
? [U,V,R] = polresultantext(A, B)
%2 = [-y*x - 2*y^2, y^2, y^4]
? A*U + B*V
%3 = y^4
? [U,V,R] = polresultantext(A, B, y)
%4 = [-2*x^2 - y*x, x^2, x^4]
? A*U+B*V
%5 = x^4
@eprog

The library syntax is \fun{GEN}{polresultantext0}{GEN A, GEN B, long v = -1} where \kbd{v} is a variable number.
Also available is
\fun{GEN}{polresultantext}{GEN x, GEN y}.

\subsec{polroots$(x)$}\kbdsidx{polroots}\label{se:polroots}
Complex roots of the polynomial
\var{x}, given as a column vector where each root is repeated according to
its multiplicity. The precision is given as for transcendental functions: in
GP it is kept in the variable \kbd{realprecision} and is transparent to the
user, but it must be explicitly given as a second argument in library mode.

The algorithm used is a modification of A.~Sch\"onhage\sidx{Sch\"onage}'s
root-finding algorithm, due to and originally implemented by X.~Gourdon.
Barring bugs, it is guaranteed to converge and to give the roots to the
required accuracy.

The library syntax is \fun{GEN}{roots}{GEN x, long prec}.

\subsec{polrootsmod$(\var{pol},p,\{\fl=0\})$}\kbdsidx{polrootsmod}\label{se:polrootsmod}
Row vector of roots modulo $p$ of the polynomial \var{pol}.
Multiple roots are \emph{not} repeated.
\bprog
? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
@eprog\noindent
If $p$ is very small, you may set $\fl=1$, which uses a naive search.

The library syntax is \fun{GEN}{rootmod0}{GEN pol, GEN p, long flag}.

\subsec{polrootspadic$(x,p,r)$}\kbdsidx{polrootspadic}\label{se:polrootspadic}
Vector of $p$-adic roots of the polynomial \var{pol}, given to
$p$-adic precision $r$ $p$ is assumed to be a prime. Multiple roots are
\emph{not} repeated. Note that this is not the same as the roots in
$\Z/p^r\Z$, rather it gives approximations in $\Z/p^r\Z$ of the true roots
living in $\Q_p$.
\bprog
? polrootspadic(x^3 - x^2 + 64, 2, 5)
%1 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~
@eprog
If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
well-defined; in this case, the polynomial is first made integral by dividing
out the $p$-adic content, then lifted
to $\Z$ using \tet{truncate} coefficientwise. Hence the roots given are
approximations of the roots of an exact polynomial which is $p$-adically
close to the input. To avoid pitfalls, we advise to only factor polynomials
with eact rational coefficients.

The library syntax is \fun{GEN}{rootpadic}{GEN x, GEN p, long r}.

\subsec{polrootsreal$(T, \{\var{ab}\})$}\kbdsidx{polrootsreal}\label{se:polrootsreal}
Real roots of the polynomial $T$ with rational coefficients, multiple
roots being included according to their multiplicity. The roots are given
to a relative accuracy of \kbd{realprecision}. If argument \var{ab} is
present, it must be a vector $[a,b]$ with two components (of type
\typ{INT}, \typ{FRAC} or \typ{INFINITY}) and we restrict to roots belonging
to that closed interval.
\bprog
? \p9
? polrootsreal(x^2-2)
%1 = [-1.41421356, 1.41421356]~
? polrootsreal(x^2-2, [1,+oo])
%2 = [1.41421356]~
? polrootsreal(x^2-2, [2,3])
%3 = []~
? polrootsreal((x-1)*(x-2), [2,3])
%4 = [2.00000000]~
@eprog\noindent
The algorithm used is a modification of Uspensky's method (relying on
Descartes's rule of sign), following Rouillier and Zimmerman's article
``Efficient isolation of a polynomial real roots''
(\url{http://hal.inria.fr/inria-00072518/}). Barring bugs, it is guaranteed
to converge and to give the roots to the required accuracy.

\misctitle{Remark} If the polynomial $T$ is of the
form $Q(x^h)$ for some $h\geq 2$ and \var{ab} is omitted, the routine will
apply the algorithm to $Q$ (restricting to non-negative roots when $h$ is
even), then take $h$-th roots. On the other hand, if you want to specify
\var{ab}, you should apply the routine to $Q$ yourself and a suitable
interval $[a',b']$ using approximate $h$-th roots adapted to your problem:
the function will not perform this change of variables if \var{ab} is present.

The library syntax is \fun{GEN}{realroots}{GEN T, GEN ab = NULL, long prec}.

\subsec{polsturm$(T,\{\var{ab}\})$}\kbdsidx{polsturm}\label{se:polsturm}
Number of real roots of the real squarefree polynomial \var{T}. If
the argument \var{ab} is present, it must be a vector $[a,b]$ with
two real components (of type \typ{INT}, \typ{REAL}, \typ{FRAC}
or  \typ{INFINITY}) and we count roots belonging to that closed interval.

If possible, you should stick to exact inputs, that is avoid \typ{REAL}s in
$T$ and the bounds $a,b$: the result is then guaranteed and we use a fast
algorithm (Uspensky's method, relying on Descartes's rule of sign, see
\tet{polrootsreal}); otherwise, we use Sturm's algorithm and the result
may be wrong due to round-off errors.
\bprog
? T = (x-1)*(x-2)*(x-3);
? polsturm(T)
%2 = 3
? polsturm(T, [-oo,2])
%3 = 2
? polsturm(T, [1/2,+oo])
%4 = 3
? polsturm(T, [1, Pi])  \\ Pi inexact: not recommended !
%5 = 3
? polsturm(T*1., [0, 4])  \\ T*1. inexact: not recommended !
%6 = 3
? polsturm(T^2, [0, 4])  \\ not squarefree
 ***   at top-level: polsturm(T^2,[0,4])
 ***                 ^-------------------
 *** polsturm: domain error in polsturm: issquarefree(pol) = 0
? polsturm((T*1.)^2, [0, 4])  \\ not squarefree AND inexact
 ***   at top-level: polsturm((T*1.)^2,[0
 ***                 ^--------------------
 *** polsturm: precision too low in polsturm.
@eprog\noindent In the last example, the input polynomial is not
squarefree but there is no way to ascertain it from the given
floating point approximation: we get a precision error in this case.
%\syn{NO}

The library syntax is \fun{long}{RgX_sturmpart}{GEN T, GEN ab} or
\fun{long}{sturm}{GEN T} (for the case \kbd{ab = NULL}). The function
\fun{long}{sturmpart}{GEN T, GEN a, GEN b} is obsolete and deprecated.

\subsec{polsubcyclo$(n,d,\{v='x\})$}\kbdsidx{polsubcyclo}\label{se:polsubcyclo}
Gives polynomials (in variable $v$) defining the sub-Abelian extensions
of degree $d$ of the cyclotomic field $\Q(\zeta_n)$, where $d\mid \phi(n)$.

If there is exactly one such extension the output is a polynomial, else it is
a vector of polynomials, possibly empty. To get a vector in all cases,
use \kbd{concat([], polsubcyclo(n,d))}.

The function \tet{galoissubcyclo} allows to specify exactly which
sub-Abelian extension should be computed.

The library syntax is \fun{GEN}{polsubcyclo}{long n, long d, long v = -1} where \kbd{v} is a variable number.

\subsec{polsylvestermatrix$(x,y)$}\kbdsidx{polsylvestermatrix}\label{se:polsylvestermatrix}
Forms the Sylvester matrix
corresponding to the two polynomials $x$ and $y$, where the coefficients of
the polynomials are put in the columns of the matrix (which is the natural
direction for solving equations afterwards). The use of this matrix can be
essential when dealing with polynomials with inexact entries, since
polynomial Euclidean division doesn't make much sense in this case.

The library syntax is \fun{GEN}{sylvestermatrix}{GEN x, GEN y}.

\subsec{polsym$(x,n)$}\kbdsidx{polsym}\label{se:polsym}
Creates the column vector of the \idx{symmetric powers} of the roots of the
polynomial $x$ up to power $n$, using Newton's formula.

The library syntax is \fun{GEN}{polsym}{GEN x, long n}.

\subsec{poltchebi$(n,\{v='x\})$}\kbdsidx{poltchebi}\label{se:poltchebi}
Deprecated alias for \kbd{polchebyshev}

The library syntax is \fun{GEN}{polchebyshev1}{long n, long v = -1} where \kbd{v} is a variable number.

\subsec{polzagier$(n,m)$}\kbdsidx{polzagier}\label{se:polzagier}
Creates Zagier's polynomial $P_n^{(m)}$ used in
the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$), see
``Convergence acceleration of alternating series'', Cohen et al.,
\emph{Experiment.~Math.}, vol.~9, 2000, pp.~3--12.

If $m < 0$ or $m \ge n$, $P_n^{(m)} = 0$.
We have
$P_n := P_n^{(0)}$ is $T_n(2x-1)$, where $T_n$ is the Legendre polynomial of
the second kind. For $n > m > 0$, $P_n^{(m)}$ is the $m$-th difference with
step $2$ of the sequence $n^{m+1}P_n$; in this case, it satisfies
$$2 P_n^{(m)}(sin^2 t) = \dfrac{d^{m+1}}{dt^{m+1}}(\sin(2t)^m \sin(2(n-m)t)).$$

%@article {MR2001m:11222,
%    AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
%     TITLE = {Convergence acceleration of alternating series},
%   JOURNAL = {Experiment. Math.},
%    VOLUME = {9},
%      YEAR = {2000},
%    NUMBER = {1},
%     PAGES = {3--12},
%}

The library syntax is \fun{GEN}{polzag}{long n, long m}.

\subsec{serconvol$(x,y)$}\kbdsidx{serconvol}\label{se:serconvol}
Convolution (or \idx{Hadamard product}) of the
two power series $x$ and $y$; in other words if $x=\sum a_k*X^k$ and $y=\sum
b_k*X^k$ then $\kbd{serconvol}(x,y)=\sum a_k*b_k*X^k$.

The library syntax is \fun{GEN}{convol}{GEN x, GEN y}.

\subsec{serlaplace$(x)$}\kbdsidx{serlaplace}\label{se:serlaplace}
$x$ must be a power series with non-negative
exponents or a polynomial. If $x=\sum (a_k/k!)*X^k$ then the result is $\sum
a_k*X^k$.

The library syntax is \fun{GEN}{laplace}{GEN x}.

\subsec{serreverse$(s)$}\kbdsidx{serreverse}\label{se:serreverse}
Reverse power series of $s$, i.e. the series $t$ such that $t(s) = x$;
$s$ must be a power series whose valuation is exactly equal to one.
\bprog
? \ps 8
? t = serreverse(tan(x))
%2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)
? tan(t)
%3 = x + O(x^8)
@eprog

The library syntax is \fun{GEN}{serreverse}{GEN s}.

\subsec{subst$(x,y,z)$}\kbdsidx{subst}\label{se:subst}
Replace the simple variable $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but if it is not a genuine
polynomial (or power series, or rational function), the substitution will be
done as if the scalar components were polynomials of degree zero. In
particular, beware that:

\bprog
? subst(1, x, [1,2; 3,4])
%1 =
[1 0]

[0 1]

? subst(1, x, Mat([0,1]))
  ***   at top-level: subst(1,x,Mat([0,1])
  ***                 ^--------------------
  *** subst: forbidden substitution by a non square matrix.
@eprog\noindent
If $x$ is a power series, $z$ must be either a polynomial, a power
series, or a rational function. Finally, if $x$ is a vector,
matrix or list, the substitution is applied to each individual entry.

Use the function \kbd{substvec} to replace several variables at once,
or the function \kbd{substpol} to replace a polynomial expression.

The library syntax is \fun{GEN}{gsubst}{GEN x, long y, GEN z} where \kbd{y} is a variable number.

\subsec{substpol$(x,y,z)$}\kbdsidx{substpol}\label{se:substpol}
Replace the ``variable'' $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but the same behavior
as \kbd{subst} above apply.

The difference with \kbd{subst} is that $y$ is allowed to be any polynomial
here. The substitution is done moding out all components of $x$
(recursively) by $y - t$, where $t$ is a new free variable of lowest
priority. Then substituting $t$ by $z$ in the resulting expression. For
instance
\bprog
? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
@eprog

The library syntax is \fun{GEN}{gsubstpol}{GEN x, GEN y, GEN z}.
Further, \fun{GEN}{gdeflate}{GEN T, long v, long d} attempts to
write $T(x)$ in the form $t(x^d)$, where $x=$\kbd{pol\_x}$(v)$, and returns
\kbd{NULL} if the substitution fails (for instance in the example \kbd{\%2}
above).

\subsec{substvec$(x,v,w)$}\kbdsidx{substvec}\label{se:substvec}
$v$ being a vector of monomials of degree 1 (variables),
$w$ a vector of expressions of the same length, replace in the expression
$x$ all occurrences of $v_i$ by $w_i$. The substitutions are done
simultaneously; more precisely, the $v_i$ are first replaced by new
variables in $x$, then these are replaced by the $w_i$:

\bprog
? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y]     \\ not [y, 2*y]
@eprog

The library syntax is \fun{GEN}{gsubstvec}{GEN x, GEN v, GEN w}.

\subsec{sumformal$(f,\{v\})$}\kbdsidx{sumformal}\label{se:sumformal}
\idx{formal sum} of the polynomial expression $f$ with respect to the
main variable if $v$ is omitted, with respect to the variable $v$ otherwise;
it is assumed that the base ring has characteristic zero. In other words,
considering $f$ as a polynomial function in the variable $v$,
returns $F$, a polynomial in $v$ vanishing at $0$, such that $F(b) - F(a)
= sum_{v = a+1}^b f(v)$:
\bprog
? sumformal(n)  \\ 1 + ... + n
%1 = 1/2*n^2 + 1/2*n
? f(n) = n^3+n^2+1;
? F = sumformal(f(n))  \\ f(1) + ... + f(n)
%3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n
? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)
%4 = 1
? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)
%5 = 1
? sumformal(x^2 + x*y + y^2, y)
%6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)
? x^2 * y + x * sumformal(y) + sumformal(y^2) == %
%7 = 1
@eprog

The library syntax is \fun{GEN}{sumformal}{GEN f, long v = -1} where \kbd{v} is a variable number.

\subsec{taylor$(x,t,\{d=\var{seriesprecision}\})$}\kbdsidx{taylor}\label{se:taylor}
Taylor expansion around $0$ of $x$ with respect to
the simple variable $t$. $x$ can be of any reasonable type, for example a
rational function. Contrary to \tet{Ser}, which takes the valuation into
account, this function adds $O(t^d)$ to all components of $x$.
\bprog
? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
? Ser(x/(1+y), y, 5)
 ***   at top-level: Ser(x/(1+y),y,5)
 ***                 ^----------------
 *** Ser: main variable must have higher priority in gtoser.
@eprog

The library syntax is \fun{GEN}{tayl}{GEN x, long t, long precdl} where \kbd{t} is a variable number.

\subsec{thue$(\var{tnf},a,\{\var{sol}\})$}\kbdsidx{thue}\label{se:thue}
Returns all solutions of the equation
$P(x,y)=a$ in integers $x$ and $y$, where \var{tnf} was created with
$\kbd{thueinit}(P)$. If present, \var{sol} must contain the solutions of
$\Norm(x)=a$ modulo units of positive norm in the number field
defined by $P$ (as computed by \kbd{bnfisintnorm}). If there are infinitely
many solutions, an error is issued.

It is allowed to input directly the polynomial $P$ instead of a \var{tnf},
in which case, the function first performs \kbd{thueinit(P,0)}. This is
very wasteful if more than one value of $a$ is required.

If \var{tnf} was computed without assuming GRH (flag $1$ in \tet{thueinit}),
then the result is unconditional. Otherwise, it depends in principle of the
truth of the GRH, but may still be unconditionally correct in some
favorable cases. The result is conditional on the GRH if
$a\neq \pm 1$ and, $P$ has a single irreducible rational factor, whose
attached tentative class number $h$ and regulator $R$ (as computed
assuming the GRH) satisfy

\item $h > 1$,

\item $R/0.2 > 1.5$.

Here's how to solve the Thue equation $x^{13} - 5y^{13} = - 4$:
\bprog
? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]
@eprog\noindent In this case, one checks that \kbd{bnfinit(x\pow13 -5).no}
is $1$. Hence, the only solution is $(x,y) = (1,1)$, and the result is
unconditional. On the other hand:
\bprog
? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)
%2 = [[1, 1]]  \\ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.reg
%4 = 2.8682185139262873674706034475498755834
@eprog
This time the result is conditional. All results computed using this
particular \var{tnf} are likewise conditional, \emph{except} for a right-hand
side of $\pm 1$.
The above result is in fact correct, so we did not just disprove the GRH:
\bprog
? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]
@eprog
Note that reducible or non-monic polynomials are allowed:
\bprog
? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]
@eprog\noindent Reducible polynomials are in fact much easier to handle.

The library syntax is \fun{GEN}{thue}{GEN tnf, GEN a, GEN sol = NULL}.

\subsec{thueinit$(P,\{\fl=0\})$}\kbdsidx{thueinit}\label{se:thueinit}
Initializes the \var{tnf} corresponding to $P$, a non-constant
univariate polynomial with integer coefficients.
The result is meant to be used in conjunction with \tet{thue} to solve Thue
equations $P(X / Y)Y^{\deg P} = a$, where $a$ is an integer. Accordingly,
$P$ must either have at least two distinct irreducible factors over $\Q$,
or have one irreducible factor $T$ with degree $>2$ or two conjugate
complex roots: under these (necessary and sufficient) conditions, the
equation has finitely many integer solutions.
\bprog
? S = thueinit(t^2+1);
? thue(S, 5)
%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]
? S = thueinit(t+1);
 ***   at top-level: thueinit(t+1)
 ***                 ^-------------
 *** thueinit: domain error in thueinit: P = t + 1
@eprog\noindent The hardest case is when $\deg P > 2$ and $P$ is irreducible
with at least one real root. The routine then uses Bilu-Hanrot's algorithm.

If $\fl$ is non-zero, certify results unconditionally. Otherwise, assume
\idx{GRH}, this being much faster of course. In the latter case, the result
may still be unconditionally correct, see \tet{thue}. For instance in most
cases where $P$ is reducible (not a pure power of an irreducible), \emph{or}
conditional computed class groups are trivial \emph{or} the right hand side
is $\pm1$, then results are unconditional.

\misctitle{Note} The general philosophy is to disprove the existence of large
solutions then to enumerate bounded solutions naively. The implementation
will overflow when there exist huge solutions and the equation has degree
$> 2$ (the quadratic imaginary case is special, since we can use
\kbd{bnfisintnorm}):
\bprog
? thue(t^3+2, 10^30)
 ***   at top-level: L=thue(t^3+2,10^30)
 ***                   ^-----------------
 *** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.
? thue(x^2+2, 10^30)  \\ quadratic case much easier
%1 = [[-1000000000000000, 0], [1000000000000000, 0]]
@eprog

\misctitle{Note} It is sometimes possible to circumvent the above, and in any
case obtain an important speed-up, if you can write $P = Q(x^d)$ for some $d >
1$ and $Q$ still satisfying the \kbd{thueinit} hypotheses. You can then solve
the equation attached to $Q$ then eliminate all solutions $(x,y)$ such that
either $x$ or $y$ is not a $d$-th power.
\bprog
? thue(x^4+1, 10^40); \\ stopped after 10 hours
? filter(L,d) =
    my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];
? L = thue(x^2+1, 10^40);
? filter(L, 2)
%4 = [[0, 10000000000], [10000000000, 0]]
@eprog\noindent The last 2 commands use less than 20ms.

The library syntax is \fun{GEN}{thueinit}{GEN P, long flag, long prec}.
%SECTION: polynomials

\section{Vectors, matrices, linear algebra and sets}
\label{se:linear_algebra}

Note that most linear algebra functions operating on subspaces defined by
generating sets (such as \tet{mathnf}, \tet{qflll}, etc.) take matrices as
arguments. As usual, the generating vectors are taken to be the
\emph{columns} of the given matrix.

Since PARI does not have a strong typing system, scalars live in
unspecified commutative base rings. It is very difficult to write
robust linear algebra routines in such a general setting. We thus
assume that the base ring is a domain and work over its field of
fractions. If the base ring is \emph{not} a domain, one gets an error as soon
as a non-zero pivot turns out to be non-invertible. Some functions,
e.g.~\kbd{mathnf} or \kbd{mathnfmod}, specifically assume that the base ring is
$\Z$.


\subsec{algdep$(z,k,\{\fl=0\})$}\kbdsidx{algdep}\label{se:algdep}
\sidx{algebraic dependence}
$z$ being real/complex, or $p$-adic, finds a polynomial (in the variable
\kbd{'x}) of degree at most
$k$, with integer coefficients, having $z$ as approximate root. Note that the
polynomial which is obtained is not necessarily the ``correct'' one. In fact
it is not even guaranteed to be irreducible. One can check the closeness
either by a polynomial evaluation (use \tet{subst}), or by computing the
roots of the polynomial given by \kbd{algdep} (use \tet{polroots} or
\tet{polrootspadic}).

Internally, \tet{lindep}$([1,z,\ldots,z^k], \fl)$ is used. A non-zero value of
$\fl$ may improve on the default behavior if the input number is known to a
\emph{huge} accuracy, and you suspect the last bits are incorrect: if $\fl > 0$
the computation is done with an accuracy of $\fl$ decimal  digits; to get
meaningful results,  the parameter $\fl$ should be smaller than the number of
correct decimal digits in the input.
But default values are usually sufficient, so try without $\fl$ first:
\bprog
? \p200
? z = 2^(1/6)+3^(1/5);
? algdep(z, 30);      \\ right in 280ms
? algdep(z, 30, 100); \\ wrong in 169ms
? algdep(z, 30, 170); \\ right in 288ms
? algdep(z, 30, 200); \\ wrong in 320ms
? \p250
? z = 2^(1/6)+3^(1/5); \\ recompute to new, higher, accuracy !
? algdep(z, 30);      \\ right in 329ms
? algdep(z, 30, 200); \\ right in 324ms
? \p500
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 677ms
? \p1000
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.5s
@eprog\noindent
The changes in \kbd{realprecision} only affect the quality of the
initial approximation to $2^{1/6} + 3^{1/5}$, \kbd{algdep} itself uses
exact operations. The size of its operands depend on the accuracy of the
input of course: more accurate input means slower operations.

Proceeding by increments of 5 digits of accuracy, \kbd{algdep} with default
flag produces its first correct result at 195 digits, and from then on a
steady stream of correct results:
\bprog
  \\ assume T contains the correct result, for comparison
  forstep(d=100, 250, 5, localprec(d);\
    print(d, " ", algdep(2^(1/6)+3^(1/5),30) == T))
@eprog

The above example is the test case studied in a 2000 paper by Borwein and
Lisonek: Applications of integer relation algorithms, \emph{Discrete Math.},
{\bf 217}, p.~65--82. The version of PARI tested there was 1.39, which
succeeded reliably from precision 265 on, in about 200 as much time as the
current version.

The library syntax is \fun{GEN}{algdep0}{GEN z, long k, long flag}.
Also available is \fun{GEN}{algdep}{GEN z, long k} ($\fl=0$).

\subsec{charpoly$(A,\{v='x\},\{\fl=5\})$}\kbdsidx{charpoly}\label{se:charpoly}
\idx{characteristic polynomial}
of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
is a square matrix.
\bprog
? charpoly([1,2;3,4]);
%1 = x^2 - 5*x - 2
? charpoly([1,2;3,4],, 't)
%2 = t^2 - 5*t - 2
@eprog\noindent
If $A$ is not a square matrix, the function returns the characteristic
polynomial of the map ``multiplication by $A$'' if $A$ is a scalar:
\bprog
? charpoly(Mod(x+2, x^3-2))
%1 = x^3 - 6*x^2 + 12*x - 10
? charpoly(I)
%2 = x^2 + 1
? charpoly(quadgen(5))
%3 = x^2 - x - 1
? charpoly(ffgen(ffinit(2,4)))
%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
@eprog

The value of $\fl$ is only significant for matrices, and we advise to stick
to the default value. Let $n$ be the dimension of $A$.

If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
invertible; uses $O(n^4)$ scalar operations.

If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.

If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion
unless the base field is finite or $\R$.

If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
ring (commutative, with unit). Uses $O(n^4)$ scalar operations.

If $\fl=4$, $x$ must be integral. Uses a modular algorithm: Hessenberg form
for various small primes, then Chinese remainders.

If $\fl=5$ (default), uses the ``best'' method given $x$.
This means we use Berkowitz unless the base ring is $\Z$ (use $\fl=4$)
or a field where coefficient explosion does not occur,
e.g.~a finite field or the reals (use $\fl=2$).

The library syntax is \fun{GEN}{charpoly0}{GEN A, long v = -1, long flag} where \kbd{v} is a variable number.
Also available are
\fun{GEN}{charpoly}{GEN x, long v} ($\fl=5$),
\fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
\fun{GEN}{carhess}{GEN A, long v} ($\fl=2$),
\fun{GEN}{carberkowitz}{GEN A, long v} ($\fl=3$) and
\fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
once.

\subsec{concat$(x,\{y\})$}\kbdsidx{concat}\label{se:concat}
Concatenation of $x$ and $y$. If $x$ or $y$ is
not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for $x$ and $y$, but the sizes must be compatible. Note
that matrices are concatenated horizontally, i.e.~the number of rows stays
the same. Using transpositions, one can concatenate them vertically,
but it is often simpler to use \tet{matconcat}.
\bprog
? x = matid(2); y = 2*matid(2);
? concat(x,y)
%2 =
[1 0 2 0]

[0 1 0 2]
? concat(x~,y~)~
%3 =
[1 0]

[0 1]

[2 0]

[0 2]
? matconcat([x;y])
%4 =
[1 0]

[0 1]

[2 0]

[0 2]
@eprog\noindent
To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
matrix), use \tet{Mat} instead, or \tet{matconcat}:
\bprog
? x = [1,2];
? y = [3,4];
? concat(x,y)
%3 = [1, 2, 3, 4]

? Mat([x,y]~)
%4 =
[1 2]

[3 4]
? matconcat([x;y])
%5 =
[1 2]

[3 4]
@eprog
Concatenating a row vector to a matrix having the same number of columns will
add the row to the matrix (top row if the vector is $x$, i.e.~comes first, and
bottom row otherwise).

The empty matrix \kbd{[;]} is considered to have a number of rows compatible
with any operation, in particular concatenation. (Note that this is
\emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)

If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
elements are concatenated, from left to right, using the above rules.
\bprog
? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 =
[1 3]

[2 4]

? concat([1,2; 3,4], [5,6]~)
%3 =
[1 2 5]

[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =
[1 2 5 7]

[3 4 6 8]

[1 2 3 4]
@eprog

The library syntax is \fun{GEN}{gconcat}{GEN x, GEN y = NULL}.
\fun{GEN}{gconcat1}{GEN x} is a shortcut for \kbd{gconcat(x,NULL)}.

\subsec{forqfvec$(v,q,b,\var{expr})$}\kbdsidx{forqfvec}\label{se:forqfvec}
$q$ being a square and symmetric integral matrix representing a positive
definite
quadratic form, evaluate \kbd{expr} for all vector $v$ such that $q(v)\leq b$.
The formal variable $v$ runs through all such vectors in turn.
\bprog
? forqfvec(v, [3,2;2,3], 3, print(v))
[0, 1]~
[1, 0]~
[-1, 1]~
@eprog

The library syntax is \fun{void}{forqfvec0}{GEN v, GEN q = NULL, GEN b}.
The following function is also available:
\fun{void}{forqfvec}{void *E, long (*fun)(void *, GEN, GEN, double), GEN q, GEN b}:
Evaluate \kbd{fun(E,w,v,m)} on all $v$ such that $q(v)<b$, where $v$ is a
\typ{VECSMALL} and $m=q(v)$ is a C double. The function \kbd{fun} must
return $0$, unless \kbd{forqfvec} should stop, in which case, it should
return $1$.

\subsec{lindep$(v,\{\fl=0\})$}\kbdsidx{lindep}\label{se:lindep}
\sidx{linear dependence} finds a small non-trivial integral linear
combination between components of $v$. If none can be found return an empty
vector.

If $v$ is a vector with real/complex entries we use a floating point
(variable precision) LLL algorithm. If $\fl = 0$ the accuracy is chosen
internally using a crude heuristic. If $\fl > 0$ the computation is done with
an accuracy of $\fl$ decimal digits. To get meaningful results in the latter
case, the parameter $\fl$ should be smaller than the number of correct
decimal digits in the input.

\bprog
? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
%1 = [-1, -1, 1]~
@eprog

If $v$ is $p$-adic, $\fl$ is ignored and the algorithm LLL-reduces a
suitable (dual) lattice.
\bprog
? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])
%2 = [1, -2]~
@eprog

If $v$ is a matrix (or a vector of column vectors, or a vector of row
vectors), $\fl$ is ignored and the function returns a non trivial kernel
vector if one exists, else an empty vector.
\bprog
? lindep([1,2,3;4,5,6;7,8,9])
%3 = [1, -2, 1]~
? lindep([[1,0], [2,0]])
%4 = [2, -1]~
? lindep([[1,0], [0,1]])
%5 = []~
@eprog

If $v$ contains polynomials or power series over some base field, finds a
linear relation with coefficients in the field.
\bprog
? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])
%4 = [y, y, -1, -y^2]~
@eprog\noindent For better control, it is preferable to use \typ{POL} rather
than \typ{SER} in the input, otherwise one gets a linear combination which is
$t$-adically small, but not necessarily $0$. Indeed, power series are first
converted to the minimal absolute accuracy occurring among the entries of $v$
(which can cause some coefficients to be ignored), then truncated to
polynomials:
\bprog
? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)
%1 = [1, 0]~
? v*L
%2 = t^2+O(t^4)  \\ small but not 0
@eprog

The library syntax is \fun{GEN}{lindep0}{GEN v, long flag}.
Also available are \fun{GEN}{lindep}{GEN v} (real/complex entries,
$\fl=0$), \fun{GEN}{lindep2}{GEN v, long flag} (real/complex entries)
\fun{GEN}{padic_lindep}{GEN v} ($p$-adic entries) and
\fun{GEN}{Xadic_lindep}{GEN v} (polynomial entries).
Finally \fun{GEN}{deplin}{GEN v} returns a non-zero kernel vector for a
\typ{MAT} input.

\subsec{matadjoint$(M,\{\fl=0\})$}\kbdsidx{matadjoint}\label{se:matadjoint}
\idx{adjoint matrix} of $M$, i.e.~a matrix $N$
of cofactors of $M$, satisfying $M*N=\det(M)*\Id$. $M$ must be a
(non-necessarily invertible) square matrix of dimension $n$.
If $\fl$ is 0 or omitted, we try to use Leverrier-Faddeev's algorithm,
which assumes that $n!$ invertible. If it fails or $\fl = 1$,
compute $T = \kbd{charpoly}(M)$ independently first and return
$(-1)^{n-1} (T(x)-T(0))/x$ evaluated at $M$.
\bprog
? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);
%2 =
[Mod(1, 4) Mod(2, 4) Mod(3, 4)]

[Mod(3, 4) Mod(0, 4) Mod(1, 4)]

[Mod(2, 4) Mod(3, 4) Mod(0, 4)]
@eprog\noindent
Both algorithms use $O(n^4)$ operations in the base ring, and are usually
slower than computing the characteristic polynomial or the inverse of $M$
directly.

The library syntax is \fun{GEN}{matadjoint0}{GEN M, long flag}.
Also available are
\fun{GEN}{adj}{GEN x} (\fl=0) and
\fun{GEN}{adjsafe}{GEN x} (\fl=1).

\subsec{matcompanion$(x)$}\kbdsidx{matcompanion}\label{se:matcompanion}
The left companion matrix to the non-zero polynomial $x$.

The library syntax is \fun{GEN}{matcompanion}{GEN x}.

\subsec{matconcat$(v)$}\kbdsidx{matconcat}\label{se:matconcat}
Returns a \typ{MAT} built from the entries of $v$, which may
be a \typ{VEC} (concatenate horizontally), a \typ{COL} (concatenate
vertically), or a \typ{MAT} (concatenate vertically each column, and
concatenate vertically the resulting matrices). The entries of $v$ are always
considered as matrices: they can themselves be \typ{VEC} (seen as a row
matrix), a \typ{COL} seen as a column matrix), a \typ{MAT}, or a scalar (seen
as an $1 \times 1$ matrix).
\bprog
? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;
? matconcat([A, B]) \\ horizontal
%1 =
[1 2 5]

[3 4 6]
? matconcat([A, C]~) \\ vertical
%2 =
[1 2]

[3 4]

[7 8]
? matconcat([A, B; C, D]) \\ block matrix
%3 =
[1 2 5]

[3 4 6]

[7 8 9]
@eprog\noindent
If the dimensions of the entries to concatenate do not match up, the above
rules are extended as follows:

\item each entry $v_{i,j}$ of $v$ has a natural length and height: $1 \times
1$ for a scalar, $1 \times n$ for a \typ{VEC} of length $n$, $n \times 1$
for a \typ{COL}, $m \times n$ for an $m\times n$ \typ{MAT}

\item let $H_i$ be the maximum over $j$ of the lengths of the $v_{i,j}$,
let $L_j$ be the maximum over $i$ of the heights of the $v_{i,j}$.
The dimensions of the $(i,j)$-th block in the concatenated matrix are
$H_i \times L_j$.

\item a scalar $s = v_{i,j}$ is considered as $s$ times an identity matrix
of the block dimension $\min (H_i,L_j)$

\item blocks are extended by 0 columns on the right and 0 rows at the
bottom, as needed.

\bprog
? matconcat([1, [2,3]~, [4,5,6]~]) \\ horizontal
%4 =
[1 2 4]

[0 3 5]

[0 0 6]
? matconcat([1, [2,3], [4,5,6]]~) \\ vertical
%5 =
[1 0 0]

[2 3 0]

[4 5 6]
? matconcat([B, C; A, D]) \\ block matrix
%6 =
[5 0 7 8]

[6 0 0 0]

[1 2 9 0]

[3 4 0 9]
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V])) \\ block diagonal
%7 =
[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]
@eprog

The library syntax is \fun{GEN}{matconcat}{GEN v}.

\subsec{matdet$(x,\{\fl=0\})$}\kbdsidx{matdet}\label{se:matdet}
Determinant of the square matrix $x$.

If $\fl=0$, uses an appropriate algorithm depending on the coefficients:

\item integer entries: modular method due to Dixon, Pernet and Stein.

\item real or $p$-adic entries: classical Gaussian elimination using maximal
pivot.

\item intmod entries: classical Gaussian elimination using first non-zero
pivot.

\item other cases: Gauss-Bareiss.

If $\fl=1$, uses classical Gaussian elimination with appropriate pivoting
strategy (maximal pivot for real or $p$-adic coefficients). This is usually
worse than the default.

The library syntax is \fun{GEN}{det0}{GEN x, long flag}.
Also available are \fun{GEN}{det}{GEN x} ($\fl=0$),
\fun{GEN}{det2}{GEN x} ($\fl=1$) and \fun{GEN}{ZM_det}{GEN x} for integer
entries.

\subsec{matdetint$(B)$}\kbdsidx{matdetint}\label{se:matdetint}
Let $B$ be an $m\times n$ matrix with integer coefficients. The
\emph{determinant} $D$ of the lattice generated by the columns of $B$ is
the square root of $\det(B^T B)$ if $B$ has maximal rank $m$, and $0$
otherwise.

This function uses the Gauss-Bareiss algorithm to compute a positive
\emph{multiple} of $D$. When $B$ is square, the function actually returns
$D = |\det B|$.

This function is useful in conjunction with \kbd{mathnfmod}, which needs to
know such a multiple. If the rank is maximal and the matrix non-square,
you can obtain $D$ exactly using
\bprog
  matdet( mathnfmod(B, matdetint(B)) )
@eprog\noindent
Note that as soon as one of the dimensions gets large ($m$ or $n$ is larger
than 20, say), it will often be much faster to use \kbd{mathnf(B, 1)} or
\kbd{mathnf(B, 4)} directly.

The library syntax is \fun{GEN}{detint}{GEN B}.

\subsec{matdiagonal$(x)$}\kbdsidx{matdiagonal}\label{se:matdiagonal}
$x$ being a vector, creates the diagonal matrix
whose diagonal entries are those of $x$.
\bprog
? matdiagonal([1,2,3]);
%1 =
[1 0 0]

[0 2 0]

[0 0 3]
@eprog\noindent Block diagonal matrices are easily created using
\tet{matconcat}:
\bprog
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V]))
%1 =
[1 2 0 0 0]

[3 4 0 0 0]

[0 0 1 2 3]

[0 0 4 5 6]

[0 0 7 8 9]
@eprog

The library syntax is \fun{GEN}{diagonal}{GEN x}.

\subsec{mateigen$(x,\{\fl=0\})$}\kbdsidx{mateigen}\label{se:mateigen}
Returns the (complex) eigenvectors of $x$ as columns of a matrix.
If $\fl=1$, return $[L,H]$, where $L$ contains the
eigenvalues and $H$ the corresponding eigenvectors; multiple eigenvalues are
repeated according to the eigenspace dimension (which may be less
than the eigenvalue multiplicity in the characteristic polynomial).

This function first computes the characteristic polynomial of $x$ and
approximates its complex roots $(\lambda_i)$, then tries to compute the
eigenspaces as kernels of the $x - \lambda_i$. This algorithm is
ill-conditioned and is likely to miss kernel vectors if some roots of the
characteristic polynomial are close, in particular if it has multiple roots.
\bprog
? A = [13,2; 10,14]; mateigen(A)
%1 =
[-1/2 2/5]

[   1   1]
? [L,H] = mateigen(A, 1);
? L
%3 = [9, 18]
? H
%4 =
[-1/2 2/5]

[   1   1]
@eprog\noindent
For symmetric matrices, use \tet{qfjacobi} instead; for Hermitian matrices,
compute
\bprog
 A = real(x);
 B = imag(x);
 y = matconcat([A, -B; B, A]);
@eprog\noindent and apply \kbd{qfjacobi} to $y$.

The library syntax is \fun{GEN}{mateigen}{GEN x, long flag, long prec}.
Also available is \fun{GEN}{eigen}{GEN x, long prec} ($\fl = 0$)

\subsec{matfrobenius$(M,\{\fl\},\{v='x\})$}\kbdsidx{matfrobenius}\label{se:matfrobenius}
Returns the Frobenius form of
the square matrix \kbd{M}. If $\fl=1$, returns only the elementary divisors as
a vector of polynomials in the variable \kbd{v}.  If $\fl=2$, returns a
two-components vector [F,B] where \kbd{F} is the Frobenius form and \kbd{B} is
the basis change so that $M=B^{-1}FB$.

The library syntax is \fun{GEN}{matfrobenius}{GEN M, long flag, long v = -1} where \kbd{v} is a variable number.

\subsec{mathess$(x)$}\kbdsidx{mathess}\label{se:mathess}
Returns a matrix similar to the square matrix $x$, which is in upper Hessenberg
form (zero entries below the first subdiagonal).

The library syntax is \fun{GEN}{hess}{GEN x}.

\subsec{mathilbert$(n)$}\kbdsidx{mathilbert}\label{se:mathilbert}
$x$ being a \kbd{long}, creates the
\idx{Hilbert matrix}of order $x$, i.e.~the matrix whose coefficient
($i$,$j$) is $1/ (i+j-1)$.

The library syntax is \fun{GEN}{mathilbert}{long n}.

\subsec{mathnf$(M,\{\fl=0\})$}\kbdsidx{mathnf}\label{se:mathnf}
Let $R$ be a Euclidean ring, equal to $\Z$ or to $K[X]$ for some field
$K$. If $M$ is a (not necessarily square) matrix with entries in $R$, this
routine finds the \emph{upper triangular} \idx{Hermite normal form} of $M$.
If the rank of $M$ is equal to its number of rows, this is a square
matrix. In general, the columns of the result form a basis of the $R$-module
spanned by the columns of $M$.

The values $0,1,2,3$ of $\fl$ have a binary meaning, analogous to the one
in \tet{matsnf}; in this case, binary digits of $\fl$ mean:

\item 1 (complete output): if set, outputs $[H,U]$, where $H$ is the Hermite
normal form of $M$, and $U$ is a transformation matrix such that $MU=[0|H]$.
The matrix $U$ belongs to $\text{GL}(R)$. When $M$ has a large kernel, the
entries of $U$ are in general huge.

\item 2 (generic input): \emph{Deprecated}. If set, assume that $R = K[X]$ is
a polynomial ring; otherwise, assume that $R = \Z$. This flag is now useless
since the routine always checks whether the matrix has integral entries.

\noindent For these 4 values, we use a naive algorithm, which behaves well
in small dimension only. Larger values correspond to different algorithms,
are restricted to \emph{integer} matrices, and all output the unimodular
matrix $U$. From now on all matrices have integral entries.

\item $\fl=4$, returns $[H,U]$ as in ``complete output'' above, using a
variant of \idx{LLL} reduction along the way. The matrix $U$ is provably
small in the $L_2$ sense, and in general close to optimal; but the
reduction is in general slow, although provably polynomial-time.

If $\fl=5$, uses Batut's algorithm and output $[H,U,P]$, such that $H$ and
$U$ are as before and $P$ is a permutation of the rows such that $P$ applied
to $MU$ gives $H$. This is in general faster than $\fl=4$ but the matrix $U$
is usually worse; it is heuristically smaller than with the default algorithm.

When the matrix is dense and the dimension is large (bigger than 100, say),
$\fl = 4$ will be fastest. When $M$ has maximal rank, then
\bprog
  H = mathnfmod(M, matdetint(M))
@eprog\noindent will be even faster. You can then recover $U$ as $M^{-1}H$.

\bprog
? M = matrix(3,4,i,j,random([-5,5]))
%1 =
[ 0 2  3  0]

[-5 3 -5 -5]

[ 4 3 -5  4]

? [H,U] = mathnf(M, 1);
? U
%3 =
[-1 0 -1 0]

[ 0 5  3 2]

[ 0 3  1 1]

[ 1 0  0 0]

? H
%5 =
[19 9 7]

[ 0 9 1]

[ 0 0 1]

? M*U
%6 =
[0 19 9 7]

[0  0 9 1]

[0  0 0 1]
@eprog

For convenience, $M$ is allowed to be a \typ{VEC}, which is then
automatically converted to a \typ{MAT}, as per the \tet{Mat} function.
For instance to solve the generalized extended gcd problem, one may use
\bprog
? v = [116085838, 181081878, 314252913,10346840];
? [H,U] = mathnf(v, 1);
? U
%2 =
[ 103 -603    15  -88]

[-146   13 -1208  352]

[  58  220   678 -167]

[-362 -144   381 -101]
? v*U
%3 = [0, 0, 0, 1]
@eprog\noindent This also allows to input a matrix as a \typ{VEC} of
\typ{COL}s of the same length (which \kbd{Mat} would concatenate to
the \typ{MAT} having those columns):
\bprog
? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)
%1 =
[47 32 12]

[ 0  1  0]

[ 0  0  1]
@eprog

The library syntax is \fun{GEN}{mathnf0}{GEN M, long flag}.
Also available are \fun{GEN}{hnf}{GEN M} ($\fl=0$) and
\fun{GEN}{hnfall}{GEN M} ($\fl=1$). To reduce \emph{huge} relation matrices
(sparse with small entries, say dimension $400$ or more), you can use the
pair \kbd{hnfspec} / \kbd{hnfadd}. Since this is quite technical and the
calling interface may change, they are not documented yet. Look at the code
in \kbd{basemath/hnf\_snf.c}.

\subsec{mathnfmod$(x,d)$}\kbdsidx{mathnfmod}\label{se:mathnfmod}
If $x$ is a (not necessarily square) matrix of
maximal rank with integer entries, and $d$ is a multiple of the (non-zero)
determinant of the lattice spanned by the columns of $x$, finds the
\emph{upper triangular} \idx{Hermite normal form} of $x$.

If the rank of $x$ is equal to its number of rows, the result is a square
matrix. In general, the columns of the result form a basis of the lattice
spanned by the columns of $x$. Even when $d$ is known, this is in general
slower than \kbd{mathnf} but uses much less memory.

The library syntax is \fun{GEN}{hnfmod}{GEN x, GEN d}.

\subsec{mathnfmodid$(x,d)$}\kbdsidx{mathnfmodid}\label{se:mathnfmodid}
Outputs the (upper triangular)
\idx{Hermite normal form} of $x$ concatenated with the diagonal
matrix with diagonal $d$. Assumes that $x$ has integer entries.
Variant: if $d$ is an integer instead of a vector, concatenate $d$ times the
identity matrix.
\bprog
? m=[0,7;-1,0;-1,-1]
%1 =
[ 0  7]

[-1  0]

[-1 -1]
? mathnfmodid(m, [6,2,2])
%2 =
[2 1 1]

[0 1 0]

[0 0 1]
? mathnfmodid(m, 10)
%3 =
[10 7 3]

[ 0 1 0]

[ 0 0 1]
@eprog

The library syntax is \fun{GEN}{hnfmodid}{GEN x, GEN d}.

\subsec{mathouseholder$(Q,v)$}\kbdsidx{mathouseholder}\label{se:mathouseholder}
\sidx{Householder transform}applies a sequence $Q$ of Householder
transforms, as returned by \kbd{matqr}$(M,1)$ to the vector or matrix $v$.

The library syntax is \fun{GEN}{mathouseholder}{GEN Q, GEN v}.

\subsec{matid$(n)$}\kbdsidx{matid}\label{se:matid}
Creates the $n\times n$ identity matrix.

The library syntax is \fun{GEN}{matid}{long n}.

\subsec{matimage$(x,\{\fl=0\})$}\kbdsidx{matimage}\label{se:matimage}
Gives a basis for the image of the
matrix $x$ as columns of a matrix. A priori the matrix can have entries of
any type. If $\fl=0$, use standard Gauss pivot. If $\fl=1$, use
\kbd{matsupplement} (much slower: keep the default flag!).

The library syntax is \fun{GEN}{matimage0}{GEN x, long flag}.
Also available is \fun{GEN}{image}{GEN x} ($\fl=0$).

\subsec{matimagecompl$(x)$}\kbdsidx{matimagecompl}\label{se:matimagecompl}
Gives the vector of the column indices which
are not extracted by the function \kbd{matimage}, as a permutation
(\typ{VECSMALL}). Hence the number of
components of \kbd{matimagecompl(x)} plus the number of columns of
\kbd{matimage(x)} is equal to the number of columns of the matrix $x$.

The library syntax is \fun{GEN}{imagecompl}{GEN x}.

\subsec{matindexrank$(x)$}\kbdsidx{matindexrank}\label{se:matindexrank}
$x$ being a matrix of rank $r$, returns a vector with two
\typ{VECSMALL} components $y$ and $z$ of length $r$ giving a list of rows
and columns respectively (starting from 1) such that the extracted matrix
obtained from these two vectors using $\tet{vecextract}(x,y,z)$ is
invertible.

The library syntax is \fun{GEN}{indexrank}{GEN x}.

\subsec{matintersect$(x,y)$}\kbdsidx{matintersect}\label{se:matintersect}
$x$ and $y$ being two matrices with the same
number of rows each of whose columns are independent, finds a basis of the
$\Q$-vector space equal to the intersection of the spaces spanned by the
columns of $x$ and $y$ respectively. The faster function
\tet{idealintersect} can be used to intersect fractional ideals (projective
$\Z_K$ modules of rank $1$); the slower but much more general function
\tet{nfhnf} can be used to intersect general $\Z_K$-modules.

The library syntax is \fun{GEN}{intersect}{GEN x, GEN y}.

\subsec{matinverseimage$(x,y)$}\kbdsidx{matinverseimage}\label{se:matinverseimage}
Given a matrix $x$ and
a column vector or matrix $y$, returns a preimage $z$ of $y$ by $x$ if one
exists (i.e such that $x z = y$), an empty vector or matrix otherwise. The
complete inverse image is $z + \text{Ker} x$, where a basis of the kernel of
$x$ may be obtained by \kbd{matker}.
\bprog
? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~    \\@com no solution
? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]

[0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [;]    \\@com no solution
? K = matker(M)
%6 =
[-2]

[1]
@eprog

The library syntax is \fun{GEN}{inverseimage}{GEN x, GEN y}.

\subsec{matisdiagonal$(x)$}\kbdsidx{matisdiagonal}\label{se:matisdiagonal}
Returns true (1) if $x$ is a diagonal matrix, false (0) if not.

The library syntax is \fun{GEN}{isdiagonal}{GEN x}.

\subsec{matker$(x,\{\fl=0\})$}\kbdsidx{matker}\label{se:matker}
Gives a basis for the kernel of the matrix $x$ as columns of a matrix.
The matrix can have entries of any type, provided they are compatible with
the generic arithmetic operations ($+$, $\times$ and $/$).

If $x$ is known to have integral entries, set $\fl=1$.

The library syntax is \fun{GEN}{matker0}{GEN x, long flag}.
Also available are \fun{GEN}{ker}{GEN x} ($\fl=0$),
\fun{GEN}{keri}{GEN x} ($\fl=1$).

\subsec{matkerint$(x,\{\fl=0\})$}\kbdsidx{matkerint}\label{se:matkerint}
Gives an \idx{LLL}-reduced $\Z$-basis
for the lattice equal to the kernel of the matrix $x$ with rational entries.

\fl is deprecated, kept for backward compatibility.

The library syntax is \fun{GEN}{matkerint0}{GEN x, long flag}.
Use directly \fun{GEN}{kerint}{GEN x} if $x$ is known to have
integer entries, and \tet{Q_primpart} first otherwise.

\subsec{matmuldiagonal$(x,d)$}\kbdsidx{matmuldiagonal}\label{se:matmuldiagonal}
Product of the matrix $x$ by the diagonal
matrix whose diagonal entries are those of the vector $d$. Equivalent to,
but much faster than $x*\kbd{matdiagonal}(d)$.

The library syntax is \fun{GEN}{matmuldiagonal}{GEN x, GEN d}.

\subsec{matmultodiagonal$(x,y)$}\kbdsidx{matmultodiagonal}\label{se:matmultodiagonal}
Product of the matrices $x$ and $y$ assuming that the result is a
diagonal matrix. Much faster than $x*y$ in that case. The result is
undefined if $x*y$ is not diagonal.

The library syntax is \fun{GEN}{matmultodiagonal}{GEN x, GEN y}.

\subsec{matpascal$(n,\{q\})$}\kbdsidx{matpascal}\label{se:matpascal}
Creates as a matrix the lower triangular
\idx{Pascal triangle} of order $x+1$ (i.e.~with binomial coefficients
up to $x$). If $q$ is given, compute the $q$-Pascal triangle (i.e.~using
$q$-binomial coefficients).

The library syntax is \fun{GEN}{matqpascal}{long n, GEN q = NULL}.
Also available is \fun{GEN}{matpascal}{GEN x}.

\subsec{matqr$(M,\{\fl=0\})$}\kbdsidx{matqr}\label{se:matqr}
Returns $[Q,R]$, the \idx{QR-decomposition} of the square invertible
matrix $M$ with real entries: $Q$ is orthogonal and $R$ upper triangular. If
$\fl=1$, the orthogonal matrix is returned as a sequence of Householder
transforms: applying such a sequence is stabler and faster than
multiplication by the corresponding $Q$ matrix.\sidx{Householder transform}
More precisely, if
\bprog
  [Q,R] = matqr(M);
  [q,r] = matqr(M, 1);
@eprog\noindent then $r = R$ and \kbd{mathouseholder}$(q, M)$ is
(close to) $R$; furthermore
\bprog
  mathouseholder(q, matid(#M)) == Q~
@eprog\noindent the inverse of $Q$. This function raises an error if the
precision is too low or $x$ is singular.

The library syntax is \fun{GEN}{matqr}{GEN M, long flag, long prec}.

\subsec{matrank$(x)$}\kbdsidx{matrank}\label{se:matrank}
Rank of the matrix $x$.

The library syntax is \fun{long}{rank}{GEN x}.

\subsec{matrix$(m,n,\{X\},\{Y\},\{\var{expr}=0\})$}\kbdsidx{matrix}\label{se:matrix}
Creation of the
$m\times n$ matrix whose coefficients are given by the expression
\var{expr}. There are two formal parameters in \var{expr}, the first one
($X$) corresponding to the rows, the second ($Y$) to the columns, and $X$
goes from 1 to $m$, $Y$ goes from 1 to $n$. If one of the last 3 parameters
is omitted, fill the matrix with zeroes.
%\syn{NO}

\subsec{matrixqz$(A,\{p=0\})$}\kbdsidx{matrixqz}\label{se:matrixqz}
$A$ being an $m\times n$ matrix in $M_{m,n}(\Q)$, let
$\text{Im}_\Q A$ (resp.~$\text{Im}_\Z A$) the $\Q$-vector space
(resp.~the $\Z$-module) spanned by the columns of $A$. This function has
varying behavior depending on the sign of $p$:

If $p \geq 0$, $A$ is assumed to have maximal rank $n\leq m$. The function
returns a matrix $B\in M_{m,n}(\Z)$, with $\text{Im}_\Q B = \text{Im}_\Q A$,
such that the GCD of all its $n\times n$ minors is coprime to
$p$; in particular, if $p = 0$ (default), this GCD is $1$.
\bprog
? minors(x) = vector(#x[,1], i, matdet(x[^i,]));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7]   \\ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]

[5 2]

[7 3]
? minors(%)
%3 = [1, 2, 1]   \\ B integral with coprime minors
@eprog

If $p=-1$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Z A$.

If $p=-2$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Q A$.
\bprog
? matrixqz(A,-1)
%4 =
[8 5]

[4 3]

[0 1]

? matrixqz(A,-2)
%5 =
[2 -1]

[1 0]

[0 1]
@eprog

The library syntax is \fun{GEN}{matrixqz0}{GEN A, GEN p = NULL}.

\subsec{matsize$(x)$}\kbdsidx{matsize}\label{se:matsize}
$x$ being a vector or matrix, returns a row vector
with two components, the first being the number of rows (1 for a row vector),
the second the number of columns (1 for a column vector).

The library syntax is \fun{GEN}{matsize}{GEN x}.

\subsec{matsnf$(X,\{\fl=0\})$}\kbdsidx{matsnf}\label{se:matsnf}
If $X$ is a (singular or non-singular) matrix outputs the vector of
\idx{elementary divisors} of $X$, i.e.~the diagonal of the
\idx{Smith normal form} of $X$, normalized so that $d_n \mid d_{n-1} \mid
\ldots \mid d_1$.

The binary digits of \fl\ mean:

1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
will be a square diagonal matrix padded with zeros on the left or the top.

2 (generic input): if set, allows polynomial entries, in which case the
input matrix must be square. Otherwise, assume that $X$ has integer
coefficients with arbitrary shape.

4 (cleanup): if set, cleans up the output. This means that elementary
divisors equal to $1$ will be deleted, i.e.~outputs a shortened vector $D'$
instead of $D$. If complete output was required, returns $[U',V',D']$ so
that $U'XV' = D'$ holds. If this flag is set, $X$ is allowed to be of the
form `vector of elementary divisors' or $[U,V,D]$ as would normally be output with the cleanup flag
unset.

The library syntax is \fun{GEN}{matsnf0}{GEN X, long flag}.

\subsec{matsolve$(M,B)$}\kbdsidx{matsolve}\label{se:matsolve}
$M$ being an invertible matrix and $B$ a column
vector, finds the solution $X$ of $MX=B$, using Dixon $p$-adic lifting method
if $M$ and $B$ are integral and Gaussian elimination otherwise. This
has the same effect as, but is faster, than $M^{-1}*B$.

The library syntax is \fun{GEN}{gauss}{GEN M, GEN B}.
For integral input, the function
\fun{GEN}{ZM_gauss}{GEN M,GEN B} is also available.

\subsec{matsolvemod$(M,D,B,\{\fl=0\})$}\kbdsidx{matsolvemod}\label{se:matsolvemod}
$M$ being any integral matrix,
$D$ a column vector of non-negative integer moduli, and $B$ an integral
column vector, gives a small integer solution to the system of congruences
$\sum_i m_{i,j}x_j\equiv b_i\pmod{d_i}$ if one exists, otherwise returns
zero. Shorthand notation: $B$ (resp.~$D$) can be given as a single integer,
in which case all the $b_i$ (resp.~$d_i$) above are taken to be equal to $B$
(resp.~$D$).
\bprog
? M = [1,2;3,4];
? matsolvemod(M, [3,4]~, [1,2]~)
%2 = [-2, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
%3 = [-1, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
%4 = [6, -4]~
@eprog
If $\fl=1$, all solutions are returned in the form of a two-component row
vector $[x,u]$, where $x$ is a small integer solution to the system of
congruences and $u$ is a matrix whose columns give a basis of the homogeneous
system (so that all solutions can be obtained by adding $x$ to any linear
combination of columns of $u$). If no solution exists, returns zero.

The library syntax is \fun{GEN}{matsolvemod0}{GEN M, GEN D, GEN B, long flag}.
Also available are \fun{GEN}{gaussmodulo}{GEN M, GEN D, GEN B}
($\fl=0$) and \fun{GEN}{gaussmodulo2}{GEN M, GEN D, GEN B} ($\fl=1$).

\subsec{matsupplement$(x)$}\kbdsidx{matsupplement}\label{se:matsupplement}
Assuming that the columns of the matrix $x$
are linearly independent (if they are not, an error message is issued), finds
a square invertible matrix whose first columns are the columns of $x$,
i.e.~supplement the columns of $x$ to a basis of the whole space.
\bprog
? matsupplement([1;2])
%1 =
[1 0]

[2 1]
@eprog
Raises an error if $x$ has 0 columns, since (due to a long standing design
bug), the dimension of the ambient space (the number of rows) is unknown in
this case:
\bprog
? matsupplement(matrix(2,0))
  ***   at top-level: matsupplement(matrix
  ***                 ^--------------------
  *** matsupplement: sorry, suppl [empty matrix] is not yet implemented.
@eprog

The library syntax is \fun{GEN}{suppl}{GEN x}.

\subsec{mattranspose$(x)$}\kbdsidx{mattranspose}\label{se:mattranspose}
Transpose of $x$ (also $x\til$).
This has an effect only on vectors and matrices.

The library syntax is \fun{GEN}{gtrans}{GEN x}.

\subsec{minpoly$(A,\{v='x\})$}\kbdsidx{minpoly}\label{se:minpoly}
\idx{minimal polynomial}
of $A$ with respect to the variable $v$., i.e. the monic polynomial $P$
of minimal degree (in the variable $v$) such that $P(A) = 0$.

The library syntax is \fun{GEN}{minpoly}{GEN A, long v = -1} where \kbd{v} is a variable number.

\subsec{norml2$(x)$}\kbdsidx{norml2}\label{se:norml2}
Square of the $L^2$-norm of $x$. More precisely,
if $x$ is a scalar, $\kbd{norml2}(x)$ is defined to be the square
of the complex modulus of $x$ (real \typ{QUAD}s are not supported).
If $x$ is a polynomial, a (row or column) vector or a matrix, \kbd{norml2($x$)} is
defined recursively as $\sum_i \kbd{norml2}(x_i)$, where $(x_i)$ run through
the components of $x$. In particular, this yields the usual $\sum |x_i|^2$
(resp.~$\sum |x_{i,j}|^2$) if $x$ is a polynomial or vector (resp.~matrix) with
complex components.

\bprog
? norml2( [ 1, 2, 3 ] )      \\ vector
%1 = 14
? norml2( [ 1, 2; 3, 4] )   \\ matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] )   \\ recursively defined
%4 = 91
@eprog

The library syntax is \fun{GEN}{gnorml2}{GEN x}.

\subsec{normlp$(x,\{p=\var{oo}\})$}\kbdsidx{normlp}\label{se:normlp}
$L^p$-norm of $x$; sup norm if $p$ is omitted or \kbd{+oo}. More precisely,
if $x$ is a scalar, \kbd{normlp}$(x, p)$ is defined to be \kbd{abs}$(x)$.
If $x$ is a polynomial, a (row or column) vector or a matrix:

\item  if $p$ is omitted or \kbd{+oo}, then \kbd{normlp($x$)} is defined
recursively as $\max_i \kbd{normlp}(x_i))$, where $(x_i)$ run through the
components of~$x$. In particular, this yields the usual sup norm if $x$ is a
polynomial or vector with complex components.

\item otherwise, \kbd{normlp($x$, $p$)} is defined recursively as $(\sum_i
\kbd{normlp}^p(x_i,p))^{1/p}$. In particular, this yields the usual $(\sum
|x_i|^p)^{1/p}$ if $x$ is a polynomial or vector with complex components.

\bprog
? v = [1,-2,3]; normlp(v)      \\ vector
%1 = 3
? normlp(v, +oo)               \\ same, more explicit
%2 = 3
? M = [1,-2;-3,4]; normlp(M)   \\ matrix
%3 = 4
? T = (1+I) + I*x^2; normlp(T)
%4 = 1.4142135623730950488016887242096980786
? normlp([[1,2], [3,4], 5, 6])   \\ recursively defined
%5 = 6

? normlp(v, 1)
%6 = 6
? normlp(M, 1)
%7 = 10
? normlp(T, 1)
%8 = 2.4142135623730950488016887242096980786
@eprog

The library syntax is \fun{GEN}{gnormlp}{GEN x, GEN p = NULL, long prec}.

\subsec{qfauto$(G,\{\var{fl}\})$}\kbdsidx{qfauto}\label{se:qfauto}
$G$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, outputs the automorphism group of the
associate lattice.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension grows. $G$ can also be given by an
\kbd{qfisominit} structure.
See \kbd{qfisominit} for the meaning of \var{fl}.

The output is a two-components vector $[o,g]$ where $o$ is the group order
and $g$ is the list of generators (as a vector). For each generator $H$,
the equality $G={^t}H\*G\*H$ holds.

The interface of this function is experimental and will likely change in the
future.

This function implements an algorithm of Plesken and Souvignier, following
Souvignier's implementation.

The library syntax is \fun{GEN}{qfauto0}{GEN G, GEN fl = NULL}.
The function \fun{GEN}{qfauto}{GEN G, GEN fl} is also available
where $G$ is a vector of \kbd{zm} matrices.

\subsec{qfautoexport$(\var{qfa},\{\fl\})$}\kbdsidx{qfautoexport}\label{se:qfautoexport}
\var{qfa} being an automorphism group as output by
\tet{qfauto}, export the underlying matrix group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
computes the size of the matrix group using GAP:
\bprog
? G = qfauto([2,1;1,2])
%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
? s = qfautoexport(G)
%2 = "Group([[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]])"
? extern("echo \"Order("s");\" | gap -q")
%3 = 12
@eprog

The library syntax is \fun{GEN}{qfautoexport}{GEN qfa, long flag}.

\subsec{qfbil$(x,y,\{q\})$}\kbdsidx{qfbil}\label{se:qfbil}
This function is obsolete, use \kbd{qfeval}.

The library syntax is \fun{GEN}{qfbil}{GEN x, GEN y, GEN q = NULL}.

\subsec{qfeval$(\{q\},x,\{y\})$}\kbdsidx{qfeval}\label{se:qfeval}
Evaluate the binary quadratic form $q$ (given by a symmetric matrix)
at the vector $x$; if $y$ is present, evaluate the polar form at $(x,y)$;
if $q$ omitted, use the standard Euclidean scalar product, corresponding to
the identity matrix.

Roughly equivalent to \kbd{x\til * q * y}, but a little faster and
more convenient (does not distinguish between column and row vectors):
\bprog
? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];
? qfeval(q,x,y)
%2 = 23
? for(i=1,10^6, qfeval(q,x,y))
time = 661ms
? for(i=1,10^6, x~*q*y)
time = 697ms
@eprog\noindent The speedup is noticeable for the quadratic form,
compared to \kbd{x\til * q * x}, since we save almost half the
operations:
\bprog
? for(i=1,10^6, qfeval(q,x))
time = 487ms
@eprog\noindent The special case $q = \text{Id}$ is handled faster if we
omit $q$ altogether:
\bprog
? qfeval(,x,y)
%1 = 2
? q = matid(#x);
? for(i=1,10^6, qfeval(q,x,y))
time = 529 ms.
? for(i=1,10^6, qfeval(,x,y))
time = 228 ms.
? for(i=1,10^6, x~*y)
time = 274 ms.
@eprog

We also allow \typ{MAT}s of compatible dimensions for $x$,
and return \kbd{x\til * q * x} in this case as well:
\bprog
? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \\ Gram matrix
%5 =
[66  78  90]

[78  93 108]

[90 108 126]

? q = [1,2,3;2,2,-1;3,-1,9];
? for(i=1,10^6, qfeval(q,M))
time = 2,008 ms.
? for(i=1,10^6, M~*q*M)
time = 2,368 ms.

? for(i=1,10^6, qfeval(,M))
time = 1,053 ms.
? for(i=1,10^6, M~*M)
time = 1,171 ms.
@eprog

If $q$ is a \typ{QFI} or \typ{QFR}, it is implicitly converted to the
attached symmetric \typ{MAT}. This is done more
efficiently than by direct conversion, since we avoid introducing a
denominator $2$ and rational arithmetic:
\bprog
? q = Qfb(2,3,4); x = [2,3];
? qfeval(q, x)
%2 = 62
? Q = Mat(q)
%3 =
 [  2 3/2]

 [3/2   4]
? qfeval(Q, x)
%4 = 62
? for (i=1, 10^6, qfeval(q,x))
time = 758 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,110 ms.
@eprog
Finally, when $x$ is a \typ{MAT} with \emph{integral} coefficients, we allow
a \typ{QFI} or \typ{QFR} for $q$ and return the binary
quadratic form $q \circ M$. Again, the conversion to \typ{MAT} is less
efficient in this case:
\bprog
? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];
? qfeval(q, x)
%2 = Qfb(47, 134, 96)
? qfeval(Q,x)
%3 =
[47 67]

[67 96]
? for (i=1, 10^6, qfeval(q,x))
time = 701 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,639 ms.
@eprog

The library syntax is \fun{GEN}{qfeval0}{GEN q = NULL, GEN x, GEN y = NULL}.

\subsec{qfgaussred$(q)$}\kbdsidx{qfgaussred}\label{se:qfgaussred}
\idx{decomposition into squares} of the
quadratic form represented by the symmetric matrix $q$. The result is a
matrix whose diagonal entries are the coefficients of the squares, and the
off-diagonal entries on each line represent the bilinear forms. More
precisely, if $(a_{ij})$ denotes the output, one has
$$ q(x) = \sum_i a_{ii} (x_i + \sum_{j \neq i} a_{ij} x_j)^2 $$
\bprog
? qfgaussred([0,1;1,0])
%1 =
[1/2 1]

[-1 -1/2]
@eprog\noindent This means that $2xy = (1/2)(x+y)^2 - (1/2)(x-y)^2$.
Singular matrices are supported, in which case some diagonal coefficients
will vanish:
\bprog
? qfgaussred([1,1;1,1])
%1 =
[1 1]

[1 0]
@eprog\noindent This means that $x^2 + 2xy + y^2 = (x+y)^2$.

The library syntax is \fun{GEN}{qfgaussred}{GEN q}.
\fun{GEN}{qfgaussred_positive}{GEN q} assumes that $q$ is
 positive definite and is a little faster; returns \kbd{NULL} if a vector
 with negative norm occurs (non positive matrix or too many rounding errors).

\subsec{qfisom$(G,H,\{\var{fl}\})$}\kbdsidx{qfisom}\label{se:qfisom}
$G$, $H$ being square and symmetric matrices with integer entries representing
positive definite quadratic forms, return an invertible matrix $S$ such that
$G={^t}S\*H\*S$. This defines a isomorphism between the corresponding lattices.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension grows.
See \kbd{qfisominit} for the meaning of \var{fl}.

$G$ can also be given by an \kbd{qfisominit} structure which is preferable if
several forms $H$ need to be compared to $G$.

This function implements an algorithm of Plesken and Souvignier, following
Souvignier's implementation.

The library syntax is \fun{GEN}{qfisom0}{GEN G, GEN H, GEN fl = NULL}.
Also available is \fun{GEN}{qfisom}{GEN G, GEN H, GEN fl}
where $G$ is a vector of \kbd{zm}, and $H$ is a \kbd{zm}.

\subsec{qfisominit$(G,\{\var{fl}\},\{m\})$}\kbdsidx{qfisominit}\label{se:qfisominit}
$G$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, return an \kbd{isom} structure allowing to
compute isomorphisms between $G$ and other quadratic forms faster.

The interface of this function is experimental and will likely change in future
release.

If present, the optional parameter \var{fl} must be a \typ{VEC} with two
components. It allows to specify the invariants used, which can make the
computation faster or slower. The components are

\item \kbd{fl[1]} Depth of scalar product combination to use.

\item \kbd{fl[2]} Maximum level of Bacher polynomials to use.

If present, $m$ must be the set of vectors of norm up to the maximal of the
diagonal entry of $G$, either as a matrix or as given by \kbd{qfminim}.
Otherwise this function computes the minimal vectors so it become very
lengthy as the dimension of $G$ grows.

The library syntax is \fun{GEN}{qfisominit0}{GEN G, GEN fl = NULL, GEN m = NULL}.
Also available is
\fun{GEN}{qfisominit}{GEN F, GEN fl}
where $F$ is a vector of \kbd{zm}.

\subsec{qfjacobi$(A)$}\kbdsidx{qfjacobi}\label{se:qfjacobi}
Apply Jacobi's eigenvalue algorithm to the real symmetric matrix $A$.
This returns $[L, V]$, where

\item $L$ is the vector of (real) eigenvalues of $A$, sorted in increasing
order,

\item $V$ is the corresponding orthogonal matrix of eigenvectors of $A$.

\bprog
? \p19
? A = [1,2;2,1]; mateigen(A)
%1 =
[-1 1]

[ 1 1]
? [L, H] = qfjacobi(A);
? L
%3 = [-1.000000000000000000, 3.000000000000000000]~
? H
%4 =
[ 0.7071067811865475245 0.7071067811865475244]

[-0.7071067811865475244 0.7071067811865475245]
? norml2( (A-L[1])*H[,1] )       \\ approximate eigenvector
%5 = 9.403954806578300064 E-38
? norml2(H*H~ - 1)
%6 = 2.350988701644575016 E-38   \\ close to orthogonal
@eprog

The library syntax is \fun{GEN}{jacobi}{GEN A, long prec}.

\subsec{qflll$(x,\{\fl=0\})$}\kbdsidx{qflll}\label{se:qflll}
\idx{LLL} algorithm applied to the
\emph{columns} of the matrix $x$. The columns of $x$ may be linearly
dependent. The result is a unimodular transformation matrix $T$ such that $x
\cdot T$ is an LLL-reduced basis of the lattice generated by the column
vectors of $x$. Note that if $x$ is not of maximal rank $T$ will not be
square. The LLL parameters are $(0.51,0.99)$, meaning that the Gram-Schmidt
coefficients for the final basis satisfy $\mu_{i,j} \leq |0.51|$, and the
Lov\'{a}sz's constant is $0.99$.

If $\fl=0$ (default), assume that $x$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.

If $\fl=1$, assume that $x$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).

If $\fl=2$, $x$ should be an integer matrix whose columns are linearly
independent. Returns a partially reduced basis for $x$, using an unpublished
algorithm by Peter Montgomery: a basis is said to be \emph{partially reduced}
if $|v_i \pm v_j| \geq |v_i|$ for any two distinct basis vectors $v_i, \,
v_j$.

This is faster than $\fl=1$, esp. when one row is huge compared
to the other rows (knapsack-style), and should quickly produce relatively
short vectors. The resulting basis is \emph{not} LLL-reduced in general.
If LLL reduction is eventually desired, avoid this partial reduction:
applying LLL to the partially reduced matrix is significantly \emph{slower}
than starting from a knapsack-type lattice.

If $\fl=4$, as $\fl=1$, returning a vector $[K, T]$ of matrices: the
columns of $K$ represent a basis of the integer kernel of $x$
(not LLL-reduced in general) and $T$ is the transformation
matrix such that $x\cdot T$ is an LLL-reduced $\Z$-basis of the image
of the matrix $x$.

If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.

If $\fl=8$, same as case $0$, but $x$ may have polynomial coefficients.

The library syntax is \fun{GEN}{qflll0}{GEN x, long flag}.
Also available are \fun{GEN}{lll}{GEN x} ($\fl=0$),
\fun{GEN}{lllint}{GEN x} ($\fl=1$), and \fun{GEN}{lllkerim}{GEN x} ($\fl=4$).

\subsec{qflllgram$(G,\{\fl=0\})$}\kbdsidx{qflllgram}\label{se:qflllgram}
Same as \kbd{qflll}, except that the
matrix $G = \kbd{x\til * x}$ is the Gram matrix of some lattice vectors $x$,
and not the coordinates of the vectors themselves. In particular, $G$ must
now be a square symmetric real matrix, corresponding to a positive
quadratic form (not necessarily definite: $x$ needs not have maximal rank).
The result is a unimodular
transformation matrix $T$ such that $x \cdot T$ is an LLL-reduced basis of
the lattice generated by the column vectors of $x$. See \tet{qflll} for
further details about the LLL implementation.

If $\fl=0$ (default), assume that $G$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.

If $\fl=1$, assume that $G$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).

$\fl=4$: $G$ has integer entries, gives the kernel and reduced image of $x$.

$\fl=5$: same as $4$, but $G$ may have polynomial coefficients.

The library syntax is \fun{GEN}{qflllgram0}{GEN G, long flag}.
Also available are \fun{GEN}{lllgram}{GEN G} ($\fl=0$),
\fun{GEN}{lllgramint}{GEN G} ($\fl=1$), and \fun{GEN}{lllgramkerim}{GEN G}
($\fl=4$).

\subsec{qfminim$(x,\{b\},\{m\},\{\fl=0\})$}\kbdsidx{qfminim}\label{se:qfminim}
$x$ being a square and symmetric matrix representing a positive definite
quadratic form, this function deals with the vectors of $x$ whose norm is
less than or equal to $b$, enumerated using the Fincke-Pohst algorithm,
storing at most $m$ vectors (no limit if $m$ is omitted). The function
searches for the minimal non-zero vectors if $b$ is omitted. The behavior is
undefined if $x$ is not positive definite (a ``precision too low'' error is
most likely, although more precise error messages are possible). The precise
behavior depends on $\fl$.

If $\fl=0$ (default), returns at most $2m$ vectors. The result is a
three-component vector, the first component being the number of vectors
enumerated (which may be larger than $2m$), the second being the maximum
norm found, and the last vector
is a matrix whose columns are found vectors, only one being given for each
pair $\pm v$ (at most $m$ such pairs, unless $m$ was omitted). The vectors
are returned in no particular order.

If $\fl=1$, ignores $m$ and returns $[N,v]$, where $v$ is a non-zero vector
of length $N \leq b$, or $[]$ if no non-zero vector has length $\leq b$.
If no explicit $b$ is provided, return a vector of smallish norm
(smallest vector in an LLL-reduced basis).

In these two cases, $x$ must have \emph{integral} entries. The
implementation uses low precision floating point computations for maximal
speed, which gives incorrect result when $x$ has large entries. (The
condition is checked in the code and the routine raises an error if
large rounding errors occur.) A more robust, but much slower,
implementation is chosen if the following flag is used:

If $\fl=2$, $x$ can have non integral real entries. In this case, if $b$
is omitted, the ``minimal'' vectors only have approximately the same norm.
If $b$ is omitted, $m$ is an upper bound for the number of vectors that
will be stored and returned, but all minimal vectors are nevertheless
enumerated. If $m$ is omitted, all vectors found are stored and returned;
note that this may be a huge vector!

\bprog
? x = matid(2);
? qfminim(x)  \\@com 4 minimal vectors of norm 1: $\pm[0,1]$, $\pm[1,0]$
%2 = [4, 1, [0, 1; 1, 0]]
? { x =
[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
 2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
 0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
 0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
 0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
 0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
 0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
 0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
 1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
 0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
 0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
 1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
 0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
 0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
 0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
 0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
? qfminim(x,,0)  \\ the Leech lattice has 196560 minimal vectors of norm 4
time = 648 ms.
%4 = [196560, 4, [;]]
? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
time = 18,161 ms.
%5 = [196560, 4.000061035156250000, [;]]
@eprog\noindent\sidx{Leech lattice}\sidx{minimal vector}
In the last example, we store 0 vectors to limit memory use. All minimal
vectors are nevertheless enumerated. Provided \kbd{parisize} is about 50MB,
\kbd{qfminim(x)} succeeds in 2.5 seconds.

The library syntax is \fun{GEN}{qfminim0}{GEN x, GEN b = NULL, GEN m = NULL, long flag, long prec}.
Also available are
\fun{GEN}{minim}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=0$),
\fun{GEN}{minim2}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=1$).
\fun{GEN}{minim_raw}{GEN x, GEN b = NULL, GEN m = NULL} (do not perform LLL
reduction on x and return \kbd{NULL} on accuracy error).

\subsec{qfnorm$(x,\{q\})$}\kbdsidx{qfnorm}\label{se:qfnorm}
This function is obsolete, use \kbd{qfeval}.

The library syntax is \fun{GEN}{qfnorm}{GEN x, GEN q = NULL}.

\subsec{qforbits$(G,V)$}\kbdsidx{qforbits}\label{se:qforbits}
Return the orbits of $V$ under the action of the group
of linear transformation generated by the set $G$.
It is assumed that $G$ contains minus identity, and only one vector
in $\{v, -v\}$ should be given.
If $G$ does not stabilize $V$, the function return $0$.

In the example below, we compute representatives and lengths of the orbits of
the vectors of norm $\leq 3$ under the automorphisms of the lattice $A_1^6$.
\bprog
?  Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);
?  apply(x->[x[1],#x],qforbits(G,V))
%2 = [[[0,0,0,0,0,1]~,6],[[0,0,0,0,1,-1]~,30],[[0,0,0,1,-1,-1]~,80]]
@eprog

The library syntax is \fun{GEN}{qforbits}{GEN G, GEN V}.

\subsec{qfparam$(G, \var{sol}, \{\fl = 0\})$}\kbdsidx{qfparam}\label{se:qfparam}
Coefficients of binary quadratic forms that parametrize the
solutions of the ternary quadratic form $G$, using the particular
solution~\var{sol}.
\fl is optional and can be 1, 2, or 3, in which case the \fl-th form is
reduced. The default is \fl=0 (no reduction).
\bprog
? G = [1,0,0;0,1,0;0,0,-34];
? M = qfparam(G, qfsolve(G))
%2 =
[ 3 -10 -3]

[-5  -6  5]

[ 1   0  1]
@eprog
Indeed, the solutions can be parametrized as
$$(3x^2 - 10xy - 3y^2)^2  + (-5x^2 - 6xy + 5y^2)^2 -34(x^2 + y^2)^2 = 0.$$
\bprog
? v = y^2 * M*[1,x/y,(x/y)^2]~
%3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
? v~*G*v
%4 = 0
@eprog

The library syntax is \fun{GEN}{qfparam}{GEN G, GEN sol, long flag}.

\subsec{qfperfection$(G)$}\kbdsidx{qfperfection}\label{se:qfperfection}
$G$ being a square and symmetric matrix with
integer entries representing a positive definite quadratic form, outputs the
perfection rank of the form. That is, gives the rank of the family of the $s$
symmetric matrices $v_iv_i^t$, where $s$ is half the number of minimal
vectors and the $v_i$ ($1\le i\le s$) are the minimal vectors.

Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension of $x$ grows.

The library syntax is \fun{GEN}{perf}{GEN G}.

\subsec{qfrep$(q,B,\{\fl=0\})$}\kbdsidx{qfrep}\label{se:qfrep}
$q$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, count the vectors representing successive
integers.

\item If $\fl = 0$, count all vectors. Outputs the vector whose $i$-th
entry, $1 \leq i \leq B$ is half the number of vectors $v$ such that $q(v)=i$.

\item If $\fl = 1$, count vectors of even norm. Outputs the vector
whose $i$-th entry, $1 \leq i \leq B$ is half the number of vectors such
that $q(v) = 2i$.

\bprog
? q = [2, 1; 1, 3];
? qfrep(q, 5)
%2 = Vecsmall([0, 1, 2, 0, 0]) \\ 1 vector of norm 2, 2 of norm 3, etc.
? qfrep(q, 5, 1)
%3 = Vecsmall([1, 0, 0, 1, 0]) \\ 1 vector of norm 2, 0 of norm 4, etc.
@eprog\noindent
This routine uses a naive algorithm based on \tet{qfminim}, and
will fail if any entry becomes larger than $2^{31}$ (or $2^{63}$).

The library syntax is \fun{GEN}{qfrep0}{GEN q, GEN B, long flag}.

\subsec{qfsign$(x)$}\kbdsidx{qfsign}\label{se:qfsign}
Returns $[p,m]$ the signature of the quadratic form represented by the
symmetric matrix $x$. Namely, $p$ (resp.~$m$) is the number of positive
(resp.~negative) eigenvalues of $x$. The result is computed using Gaussian
reduction.

The library syntax is \fun{GEN}{qfsign}{GEN x}.

\subsec{qfsolve$(G)$}\kbdsidx{qfsolve}\label{se:qfsolve}
Given a square symmetric matrix $G$ of dimension $n \geq 1$, solve over
$\Q$ the quadratic equation $X^tGX = 0$. The matrix $G$ must have rational
coefficients. The solution might be a single non-zero vector (vectorv) or a
matrix (whose columns generate a totally isotropic subspace).

If no solution exists, returns an integer, that can be a prime $p$ such that
there is no local solution at $p$, or $-1$ if there is no real solution,
or $-2$ if $n = 2$ and $-\det G$ is positive but not a square (which implies
there is a real solution, but no local solution at some $p$ dividing $\det G$).
\bprog
? G = [1,0,0;0,1,0;0,0,-34];
? qfsolve(G)
%1 = [-3, -5, 1]~
? qfsolve([1,0; 0,2])
%2 = -1   \\ no real solution
? qfsolve([1,0,0;0,3,0; 0,0,-2])
%3 = 3    \\ no solution in Q_3
? qfsolve([1,0; 0,-2])
%4 = -2   \\ no solution, n = 2
@eprog

The library syntax is \fun{GEN}{qfsolve}{GEN G}.

\subsec{seralgdep$(s,p,r)$}\kbdsidx{seralgdep}\label{se:seralgdep}
\sidx{algebraic dependence} finds a linear relation between powers $(1,s,
\dots, s^p)$ of the series $s$, with polynomial coefficients of degree
$\leq r$. In case no relation is found, return $0$.
\bprog
? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);
? seralgdep(s, 2, 2)
%2 = -x^2 + (8*y^2 + 20*y + 1)
? subst(%, x, s)
%3 = O(y^6)
? seralgdep(s, 1, 3)
%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
? seralgdep(s, 1, 2)
%5 = 0
@eprog\noindent The series main variable must not be $x$, so as to be able
to express the result as a polynomial in $x$.

The library syntax is \fun{GEN}{seralgdep}{GEN s, long p, long r}.

\subsec{setbinop$(f,X,\{Y\})$}\kbdsidx{setbinop}\label{se:setbinop}
The set whose elements are the f(x,y), where x,y run through X,Y.
respectively. If $Y$ is omitted, assume that $X = Y$ and that $f$ is symmetric:
$f(x,y) = f(y,x)$ for all $x,y$ in $X$.
\bprog
? X = [1,2,3]; Y = [2,3,4];
? setbinop((x,y)->x+y, X,Y) \\ set X + Y
%2 = [3, 4, 5, 6, 7]
? setbinop((x,y)->x-y, X,Y) \\ set X - Y
%3 = [-3, -2, -1, 0, 1]
? setbinop((x,y)->x+y, X)   \\ set 2X = X + X
%2 = [2, 3, 4, 5, 6]
@eprog

The library syntax is \fun{GEN}{setbinop}{GEN f, GEN X, GEN Y = NULL}.

\subsec{setintersect$(x,y)$}\kbdsidx{setintersect}\label{se:setintersect}
Intersection of the two sets $x$ and $y$ (see \kbd{setisset}).
If $x$ or $y$ is not a set, the result is undefined.

The library syntax is \fun{GEN}{setintersect}{GEN x, GEN y}.

\subsec{setisset$(x)$}\kbdsidx{setisset}\label{se:setisset}
Returns true (1) if $x$ is a set, false (0) if
not. In PARI, a set is a row vector whose entries are strictly
increasing with respect to a (somewhat arbitrary) universal comparison
function. To convert any object into a set (this is most useful for
vectors, of course), use the function \kbd{Set}.
\bprog
? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = [1, 2, 3]
@eprog

The library syntax is \fun{long}{setisset}{GEN x}.

\subsec{setminus$(x,y)$}\kbdsidx{setminus}\label{se:setminus}
Difference of the two sets $x$ and $y$ (see \kbd{setisset}),
i.e.~set of elements of $x$ which do not belong to $y$.
If $x$ or $y$ is not a set, the result is undefined.

The library syntax is \fun{GEN}{setminus}{GEN x, GEN y}.

\subsec{setsearch$(S,x,\{\fl=0\})$}\kbdsidx{setsearch}\label{se:setsearch}
Determines whether $x$ belongs to the set $S$ (see \kbd{setisset}).

We first describe the default behaviour, when $\fl$ is zero or omitted. If $x$
belongs to the set $S$, returns the index $j$ such that $S[j]=x$, otherwise
returns 0.
\bprog
? T = [7,2,3,5]; S = Set(T);
? setsearch(S, 2)
%2 = 1
? setsearch(S, 4)      \\ not found
%3 = 0
? setsearch(T, 7)      \\ search in a randomly sorted vector
%4 = 0 \\ WRONG !
@eprog\noindent
If $S$ is not a set, we also allow sorted lists with
respect to the \tet{cmp} sorting function, without repeated entries,
as per \tet{listsort}$(L,1)$; otherwise the result is undefined.
\bprog
? L = List([1,4,2,3,2]); setsearch(L, 4)
%1 = 0 \\ WRONG !
? listsort(L, 1); L    \\ sort L first
%2 = List([1, 2, 3, 4])
? setsearch(L, 4)
%3 = 4                 \\ now correct
@eprog\noindent
If $\fl$ is non-zero, this function returns the index $j$ where $x$ should be
inserted, and $0$ if it already belongs to $S$. This is meant to be used for
dynamically growing (sorted) lists, in conjunction with \kbd{listinsert}.
\bprog
? L = List([1,5,2,3,2]); listsort(L,1); L
%1 = List([1,2,3,5])
? j = setsearch(L, 4, 1)  \\ 4 should have been inserted at index j
%2 = 4
? listinsert(L, 4, j); L
%3 = List([1, 2, 3, 4, 5])
@eprog

The library syntax is \fun{long}{setsearch}{GEN S, GEN x, long flag}.

\subsec{setunion$(x,y)$}\kbdsidx{setunion}\label{se:setunion}
Union of the two sets $x$ and $y$ (see \kbd{setisset}).
If $x$ or $y$ is not a set, the result is undefined.

The library syntax is \fun{GEN}{setunion}{GEN x, GEN y}.

\subsec{trace$(x)$}\kbdsidx{trace}\label{se:trace}
This applies to quite general $x$. If $x$ is not a
matrix, it is equal to the sum of $x$ and its conjugate, except for polmods
where it is the trace as an algebraic number.

For $x$ a square matrix, it is the ordinary trace. If $x$ is a
non-square matrix (but not a vector), an error occurs.

The library syntax is \fun{GEN}{gtrace}{GEN x}.

\subsec{vecextract$(x,y,\{z\})$}\kbdsidx{vecextract}\label{se:vecextract}
Extraction of components of the vector or matrix $x$ according to $y$.
In case $x$ is a matrix, its components are the \emph{columns} of $x$. The
parameter $y$ is a component specifier, which is either an integer, a string
describing a range, or a vector.

If $y$ is an integer, it is considered as a mask: the binary bits of $y$ are
read from right to left, but correspond to taking the components from left to
right. For example, if $y=13=(1101)_2$ then the components 1,3 and 4 are
extracted.

If $y$ is a vector (\typ{VEC}, \typ{COL} or \typ{VECSMALL}), which must have
integer entries, these entries correspond to the component numbers to be
extracted, in the order specified.

If $y$ is a string, it can be

\item a single (non-zero) index giving a component number (a negative
index means we start counting from the end).

\item a range of the form \kbd{"$a$..$b$"}, where $a$ and $b$ are
indexes as above. Any of $a$ and $b$ can be omitted; in this case, we take
as default values $a = 1$ and $b = -1$, i.e.~ the first and last components
respectively. We then extract all components in the interval $[a,b]$, in
reverse order if $b < a$.

In addition, if the first character in the string is \kbd{\pow}, the
complement of the given set of indices is taken.

If $z$ is not omitted, $x$ must be a matrix. $y$ is then the \emph{row}
specifier, and $z$ the \emph{column} specifier, where the component specifier
is as explained above.

\bprog
? v = [a, b, c, d, e];
? vecextract(v, 5)         \\@com mask
%1 = [a, c]
? vecextract(v, [4, 2, 1]) \\@com component list
%2 = [d, b, a]
? vecextract(v, "2..4")    \\@com interval
%3 = [b, c, d]
? vecextract(v, "-1..-3")  \\@com interval + reverse order
%4 = [e, d, c]
? vecextract(v, "^2")      \\@com complement
%5 = [a, c, d, e]
? vecextract(matid(3), "2..", "..")
%6 =
[0 1 0]

[0 0 1]
@eprog
The range notations \kbd{v[i..j]} and \kbd{v[\pow i]} (for \typ{VEC} or
\typ{COL}) and \kbd{M[i..j, k..l]} and friends (for \typ{MAT}) implement a
subset of the above, in a simpler and \emph{faster} way, hence should be
preferred in most common situations. The following features are not
implemented in the range notation:

\item reverse order,

\item omitting either $a$ or $b$ in \kbd{$a$..$b$}.

The library syntax is \fun{GEN}{extract0}{GEN x, GEN y, GEN z = NULL}.

\subsec{vecsearch$(v,x,\{\var{cmpf}\})$}\kbdsidx{vecsearch}\label{se:vecsearch}
Determines whether $x$ belongs to the sorted vector or list $v$: return
the (positive) index where $x$ was found, or $0$ if it does not belong to
$v$.

If the comparison function cmpf is omitted, we assume that $v$ is sorted in
increasing order, according to the standard comparison function \kbd{lex},
thereby restricting the possible types for $x$ and the elements of $v$
(integers, fractions, reals, and vectors of such).

If \kbd{cmpf} is present, it is understood as a comparison function and we
assume that $v$ is sorted according to it, see \tet{vecsort} for how to
encode comparison functions.
\bprog
? v = [1,3,4,5,7];
? vecsearch(v, 3)
%2 = 2
? vecsearch(v, 6)
%3 = 0 \\ not in the list
? vecsearch([7,6,5], 5) \\ unsorted vector: result undefined
%4 = 0
@eprog

By abuse of notation, $x$ is also allowed to be a matrix, seen as a vector
of its columns; again by abuse of notation, a \typ{VEC} is considered
as part of the matrix, if its transpose is one of the matrix columns.
\bprog
? v = vecsort([3,0,2; 1,0,2]) \\ sort matrix columns according to lex order
%1 =
[0 2 3]

[0 2 1]
? vecsearch(v, [3,1]~)
%2 = 3
? vecsearch(v, [3,1])  \\ can search for x or x~
%3 = 3
? vecsearch(v, [1,2])
%4 = 0 \\ not in the list
@eprog\noindent

The library syntax is \fun{long}{vecsearch}{GEN v, GEN x, GEN cmpf = NULL}.

\subsec{vecsort$(x,\{\var{cmpf}\},\{\fl=0\})$}\kbdsidx{vecsort}\label{se:vecsort}
Sorts the vector $x$ in ascending order, using a mergesort method.
$x$ must be a list, vector or matrix (seen as a vector of its columns).
Note that mergesort is stable, hence the initial ordering of ``equal''
entries (with respect to the sorting criterion) is not changed.

If \kbd{cmpf} is omitted, we use the standard comparison function
\kbd{lex}, thereby restricting the possible types for the elements of $x$
(integers, fractions or reals and vectors of those). If \kbd{cmpf} is
present, it is understood as a comparison function and we sort according to
it. The following possibilities exist:

\item an integer $k$: sort according to the value of the $k$-th
subcomponents of the components of~$x$.

\item a vector: sort lexicographically according to the components listed in
the vector. For example, if $\kbd{cmpf}=\kbd{[2,1,3]}$, sort with respect to
the second component, and when these are equal, with respect to the first,
and when these are equal, with respect to the third.

\item a comparison function (\typ{CLOSURE}), with two arguments $x$ and $y$,
and returning an integer which is $<0$, $>0$ or $=0$ if $x<y$, $x>y$ or
$x=y$ respectively. The \tet{sign} function is very useful in this context:
\bprog
? vecsort([3,0,2; 1,0,2]) \\ sort columns according to lex order
%1 =
[0 2 3]

[0 2 1]
? vecsort(v, (x,y)->sign(y-x))            \\@com reverse sort
? vecsort(v, (x,y)->sign(abs(x)-abs(y)))  \\@com sort by increasing absolute value
? cmpf(x,y) = my(dx = poldisc(x), dy = poldisc(y)); sign(abs(dx) - abs(dy))
? vecsort([x^2+1, x^3-2, x^4+5*x+1], cmpf)
@eprog\noindent
The last example used the named \kbd{cmpf} instead of an anonymous function,
and sorts polynomials with respect to the absolute value of their
discriminant. A more efficient approach would use precomputations to ensure
a given discriminant is computed only once:
\bprog
? DISC = vector(#v, i, abs(poldisc(v[i])));
? perm = vecsort(vector(#v,i,i), (x,y)->sign(DISC[x]-DISC[y]))
? vecextract(v, perm)
@eprog\noindent Similar ideas apply whenever we sort according to the values
of a function which is expensive to compute.

\noindent The binary digits of \fl\ mean:

\item 1: indirect sorting of the vector $x$, i.e.~if $x$ is an
$n$-component vector, returns a permutation of $[1,2,\dots,n]$ which
applied to the components of $x$ sorts $x$ in increasing order.
For example, \kbd{vecextract(x, vecsort(x,,1))} is equivalent to
\kbd{vecsort(x)}.

\item 4: use descending instead of ascending order.

\item 8: remove ``duplicate'' entries with respect to the sorting function
(keep the first occurring entry).  For example:
\bprog
  ? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8)   \\@com make everything compare equal
  %1 = [3.141592653589793238462643383]
  ? vecsort([[2,3],[0,1],[0,3]], 2, 8)
  %2 = [[0, 1], [2, 3]]
@eprog

The library syntax is \fun{GEN}{vecsort0}{GEN x, GEN cmpf = NULL, long flag}.

\subsec{vecsum$(v)$}\kbdsidx{vecsum}\label{se:vecsum}
Return the sum of the components of the vector $v$. Return $0$ on an
empty vector.
\bprog
? vecsum([1,2,3])
%1 = 6
? vecsum([])
%2 = 0
@eprog

The library syntax is \fun{GEN}{vecsum}{GEN v}.

\subsec{vector$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vector}\label{se:vector}
Creates a row vector (type
\typ{VEC}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
\bprog
? vector(3,i, 5*i)
%1 = [5, 10, 15]
? vector(3)
%2 = [0, 0, 0]
@eprog

The variable $X$ is lexically scoped to each evaluation of \var{expr}.  Any
change to $X$ within \var{expr} does not affect subsequent evaluations, it
still runs 1 to $n$.  A local change allows for example different indexing:
\bprog
vector(10, i, i=i-1; f(i)) \\ i = 0, ..., 9
vector(10, i, i=2*i; f(i)) \\ i = 2, 4, ..., 20
@eprog\noindent
This per-element scope for $X$ differs from \kbd{for} loop evaluations,
as the following example shows:
\bprog
n = 3
v = vector(n); vector(n, i, i++)            ----> [2, 3, 4]
v = vector(n); for (i = 1, n, v[i] = i++)   ----> [2, 0, 4]
@eprog\noindent
%\syn{NO}

\subsec{vectorsmall$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vectorsmall}\label{se:vectorsmall}
Creates a row vector of small integers (type
\typ{VECSMALL}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
%\syn{NO}

\subsec{vectorv$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vectorv}\label{se:vectorv}
As \tet{vector}, but returns a column vector (type \typ{COL}).
%\syn{NO}
%SECTION: linear_algebra

\section{Sums, products, integrals and similar functions}
\label{se:sums}

Although the \kbd{gp} calculator is programmable, it is useful to have
a number of preprogrammed loops, including sums, products, and a certain
number of recursions. Also, a number of functions from numerical analysis
like numerical integration and summation of series will be described here.

One of the parameters in these loops must be the control variable, hence a
simple variable name. In the descriptions, the letter $X$ will always denote
any simple variable name, and represents the formal parameter used in the
function. The expression to be summed, integrated, etc. is any legal PARI
expression, including of course expressions using loops.

\misctitle{Library mode}
Since it is easier to program directly the loops in library mode, these
functions are mainly useful for GP programming. On the other hand, numerical
routines code a function (to be integrated, summed, etc.) with two parameters
named
\bprog
  GEN (*eval)(void*,GEN)
  void *E;  \\ context: eval(E, x) must evaluate your function at x.
@eprog\noindent
see the Libpari manual for details.

\misctitle{Numerical integration}\sidx{numerical integration}
Starting with version 2.2.9 the ``double exponential'' univariate
integration method is implemented in \tet{intnum} and its variants. Romberg
integration is still available under the name \kbd{intnumromb}, but
superseded. It is possible to compute numerically integrals to thousands of
decimal places in reasonable time, as long as the integrand is regular. It is
also reasonable to compute numerically integrals in several variables,
although more than two becomes lengthy. The integration domain may be
non-compact, and the integrand may have reasonable singularities at
endpoints. To use \kbd{intnum}, you must split the integral into a sum
of subintegrals where the function has no singularities except at the
endpoints. Polynomials in logarithms are not considered singular, and
neglecting these logs, singularities are assumed to be algebraic (asymptotic
to $C(x-a)^{-\alpha}$ for some $\alpha > -1$ when $x$ is
close to $a$), or to correspond to simple discontinuities of some (higher)
derivative of the function. For instance, the point $0$ is a singularity of
$\text{abs}(x)$.

See also the discrete summation methods below, sharing the prefix \kbd{sum}.


\subsec{asympnum$(\var{expr},\{k={20}\},\{\var{alpha} = 1\})$}\kbdsidx{asympnum}\label{se:asympnum}
Asymptotic expansion of \var{expr}, corresponding to a sequence $u(n)$,
assuming it has the shape
$$u(n) \approx \sum_{i \geq 0} a_i n^{-i\alpha}$$
with rational coefficients $a_i$ with reasonable height; the algorithm
is heuristic and performs repeated calls to limitnum, with
\kbd{k} and \kbd{alpha} are as in \kbd{limitnum}
\bprog
? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = []   \\ failure !
? l = limitnum(f)
%3 = 2.5066282746310005024157652848110452530
? asympnum(n->f(n)/l) \\ normalize
%4 = [1, 1/12, 1/288, -139/51840]
@eprog\noindent and we indeed get a few terms of Stirling's expansion. Note
that it helps to normalize with a limit computed to higher accuracy:
\bprog
? \p100
? L = limitnum(f)
? \p38
? asympnum(n->f(n)/L) \\ we get more terms!
%6 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,\
      5246819/75246796800, -534703531/902961561600]
@eprog\noindent If \kbd{alpha} is not an integer, loss of accuracy is
expected, so it should be precomputed to double accuracy, say:
\bprog
? \p38
? asympnum(n->-log(1-1/n^Pi),,Pi)
%1 = [0, 1, 1/2, 1/3]
? asympnum(n->-log(1-1/sqrt(n)),,1/2)
%2 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, \
  1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20, 1/21, 1/22]

? localprec(100); a = Pi;
? asympnum(n->-log(1-1/n^a),,a) \\ better !
%4 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12]
@eprog

\synt{asympnum}{void *E, GEN (*u)(void *,GEN,long), long muli, GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return $u(n)$ in precision \kbd{prec}.
Also available is
\fun{GEN}{asympnum0}{GEN u, long muli, GEN alpha, long prec}, where $u$
must be a vector of sufficient length as above.

\subsec{contfraceval$(\var{CF},t,\{\var{lim}=-1\})$}\kbdsidx{contfraceval}\label{se:contfraceval}
Given a continued fraction \kbd{CF} output by \kbd{contfracinit}, evaluate
the first \kbd{lim} terms of the continued fraction at \kbd{t} (all
terms if \kbd{lim} is negative or omitted; if positive, \kbd{lim} must be
less than or equal to the length of \kbd{CF}.

The library syntax is \fun{GEN}{contfraceval}{GEN CF, GEN t, long lim}.

\subsec{contfracinit$(M,\{\var{lim} = -1\})$}\kbdsidx{contfracinit}\label{se:contfracinit}
Given $M$ representing the power series $S=\sum_{n\ge0} M[n+1]z^n$,
transform it into a continued fraction; restrict to $n\leq \kbd{lim}$
if latter is non-negative. $M$ can be a vector, a power
series, a polynomial, or a rational function.
The result is a 2-component vector $[A,B]$ such that
$S = M[1] / (1+A[1]z+B[1]z^2/(1+A[2]z+B[2]z^2/(1+...1/(1+A[lim/2]z))))$.
Does not work if any coefficient of $M$ vanishes, nor for series for
which certain partial denominators vanish.

The library syntax is \fun{GEN}{contfracinit}{GEN M, long lim}.

\subsec{derivnum$(X=a,\var{expr})$}\kbdsidx{derivnum}\label{se:derivnum}
Numerical derivation of \var{expr} with respect to $X$ at $X=a$.

\bprog
? derivnum(x=0,sin(exp(x))) - cos(1)
%1 = -1.262177448 E-29
@eprog
A clumsier approach, which would not work in library mode, is
\bprog
? f(x) = sin(exp(x))
? f'(0) - cos(1)
%1 = -1.262177448 E-29
@eprog
When $a$ is a power series, compute \kbd{derivnum(t=a,f)} as $f'(a) =
(f(a))'/a'$.

\synt{derivnum}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}. Also
available is \fun{GEN}{derivfun}{void *E, GEN (*eval)(void *, GEN), GEN a, long prec}, which also allows power series for $a$.

\subsec{intcirc$(X=a,R,\var{expr},\{\var{tab}\})$}\kbdsidx{intcirc}\label{se:intcirc}
Numerical
integration of $(2i\pi)^{-1}\var{expr}$ with respect to $X$ on the circle
$|X-a| = R$.
In other words, when \var{expr} is a meromorphic
function, sum of the residues in the corresponding disk; \var{tab} is as in
\kbd{intnum}, except that if computed with \kbd{intnuminit} it should be with
the endpoints \kbd{[-1, 1]}.

\bprog
? \p105
? intcirc(s=1, 0.5, zeta(s)) - 1
time = 496 ms.
%1 = 1.2883911040127271720 E-101 + 0.E-118*I
@eprog

\synt{intcirc}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab, long prec}.

\subsec{intfuncinit$(t=a,b,f,\{m=0\})$}\kbdsidx{intfuncinit}\label{se:intfuncinit}
Initialize tables for use with integral transforms such Fourier,
Laplace or Mellin transforms, in order to compute
$$ \int_a^b f(t) k(t,z) \, dt $$
for some kernel $k(t,z)$.
The endpoints $a$ and $b$ are coded as in \kbd{intnum}, $f$ is the
function to which the integral transform is to be applied and the
non-negative integer $m$ is as in \kbd{intnum}: multiply the number of
sampling points roughly by $2^m$, hopefully increasing the accuracy. This
function is particularly useful when the function $f$ is hard to compute,
such as a gamma product.

\misctitle{Limitation} the endpoints $a$ and $b$ must be at infinity,
with the same asymptotic behaviour. Oscillating types are not supported.
This is easily overcome by integrating vectors of functions, see example
below.

\misctitle{Examples}

\item numerical Fourier transform
$$F(z) = \int_{-\infty}^{+\infty} f(t)e^{-2i\pi z t}\, dt. $$
First the easy case, assume that $f$ decrease exponentially:
\bprog
   f(t) = exp(-t^2);
   A = [-oo,1];
   B = [+oo,1];
   \p200
   T = intfuncinit(t = A,B , f(t));
   F(z) =
   { my(a = -2*I*Pi*z);
     intnum(t = A,B, exp(a*t), T);
   }
   ? F(1) - sqrt(Pi)*exp(-Pi^2)
   %1 = -1.3... E-212
@eprog\noindent
Now the harder case, $f$ decrease slowly: we must specify the oscillating
behaviour. Thus, we cannot precompute usefully since everything depends on
the point we evaluate at:
\bprog
   f(t) = 1 / (1+ abs(t));
   \p200
   \\ Fourier cosine transform
   FC(z) =
   { my(a = 2*Pi*z);
     intnum(t = [-oo, a*I], [+oo, a*I], cos(a*t)*f(t));
   }
   FC(1)
@eprog
\item Fourier coefficients: we must integrate over a period, but
\kbd{intfuncinit} does not support finite endpoints.
The solution is to integrate a vector of functions !
\bprog
FourierSin(f, T, k) =  \\ first k sine Fourier coeffs
{
  my (w = 2*Pi/T);
  my (v = vector(k+1));
  intnum(t = -T/2, T/2,
     my (z = exp(I*w*t));
     v[1] = z;
     for (j = 2, k, v[j] = v[j-1]*z);
     f(t) * imag(v)) * 2/T;
}
FourierSin(t->sin(2*t), 2*Pi, 10)
@eprog\noindent The same technique can be used instead of \kbd{intfuncinit}
to integrate $f(t) k(t,z)$ whenever the list of $z$-values is known
beforehand.

Note that the above code includes an unrelated optimization: the
$\sin(j w t)$ are computed as imaginary parts of $\exp(i j w t)$ and the
latter by successive multiplications.

\item numerical Mellin inversion
$$F(z) = (2i\pi)^{-1} \int_{c -i\infty}^{c+i\infty} f(s)z^{-s}\, ds
 = (2\pi)^{-1} \int_{-\infty}^{+\infty}
    f(c + i t)e^{-\log z(c + it)}\, dt. $$
We take $c = 2$ in the program below:
\bprog
   f(s) = gamma(s)^3;  \\ f(c+it) decrease as exp(-3Pi|t|/2)
   c = 2; \\ arbitrary
   A = [-oo,3*Pi/2];
   B = [+oo,3*Pi/2];
   T = intfuncinit(t=A,B, f(c + I*t));
   F(z) =
   { my (a = -log(z));
     intnum(t=A,B, exp(a*I*t), T)*exp(a*c) / (2*Pi);
   }
@eprog

\synt{intfuncinit}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long m, long prec}.

\subsec{intnum$(X=a,b,\var{expr},\{\var{tab}\})$}\kbdsidx{intnum}\label{se:intnum}
Numerical integration
of \var{expr} on $]a,b[$ with respect to $X$, using the
double-exponential method, and thus $O(D\log D)$ evaluation of
the integrand in precision $D$. The integrand may have values
belonging to a vector space over the real numbers; in particular, it can be
complex-valued or vector-valued. But it is assumed that the function is
regular on $]a,b[$. If the endpoints $a$ and $b$ are finite and the
function is regular there, the situation is simple:
\bprog
? intnum(x = 0,1, x^2)
%1 = 0.3333333333333333333333333333
? intnum(x = 0,Pi/2, [cos(x), sin(x)])
%2 = [1.000000000000000000000000000, 1.000000000000000000000000000]
@eprog\noindent
An endpoint equal to $\pm\infty$ is coded as \kbd{+oo} or \kbd{-oo}, as
expected:
\bprog
? intnum(x = 1,+oo, 1/x^2)
%3 = 1.000000000000000000000000000
@eprog\noindent
In basic usage, it is assumed that the function does not decrease
exponentially fast at infinity:
\bprog
? intnum(x=0,+oo, exp(-x))
  ***   at top-level: intnum(x=0,+oo,exp(-
  ***                 ^--------------------
  *** exp: overflow in expo().
@eprog\noindent
We shall see in a moment how to avoid that last problem, after describing
the last \emph{optional} argument \var{tab}.

\misctitle{The \var{tab} argument}
The routine uses weights $w_i$, which are mostly independent of the function
being integrated, evaluated at many sampling points $x_i$ and
approximates the integral by $\sum w_i f(x_i)$. If \var{tab} is

\item a non-negative integer $m$, we multiply the number of sampling points
by $2^m$, hopefully increasing accuracy. Note that the running time
increases roughly by a factor $2^m$. One may try consecutive values of $m$
until they give the same value up to an accepted error.

\item a set of integration tables containing precomputed $x_i$ and $w_i$
as output by \tet{intnuminit}. This is useful if several integrations of
the same type are performed (on the same kind of interval and functions,
for a given accuracy): we skip a precomputation of $O(D\log D)$
elementary functions in accuracy $D$, whose running time has the same order
of magnitude as the evaluation of the integrand. This is in particular
usefule for multivariate integrals.

\misctitle{Specifying the behavior at endpoints}
This is done as follows. An endpoint $a$ is either given as such (a scalar,
real or complex, \kbd{oo} or \kbd{-oo} for $\pm\infty$), or as a two
component vector $[a,\alpha]$, to indicate the behavior of the integrand in a
neighborhood of $a$.

If $a$ is finite, the code $[a,\alpha]$ means the function has a
singularity of the form $(x-a)^{\alpha}$, up to logarithms. (If $\alpha \ge
0$, we only assume the function is regular, which is the default assumption.)
If a wrong singularity exponent is used, the result will lose a catastrophic
number of decimals:
\bprog
? intnum(x=0, 1, x^(-1/2))         \\@com assume $x^{-1/2}$ is regular at 0
%1 = 1.9999999999999999999999999999827931660
? intnum(x=[0,-1/2], 1, x^(-1/2))  \\@com no, it's not
%2 = 2.0000000000000000000000000000000000000
? intnum(x=[0,-1/10], 1, x^(-1/2)) \\@com using a wrong exponent is bad
%3 = 1.9999999999999999999999999999999901912
@eprog

If $a$ is $\pm\infty$, which is coded as \kbd{+oo} or \kbd{-oo},
the situation is more complicated, and $[\pm\kbd{oo},\alpha]$ means:

\item $\alpha=0$ (or no $\alpha$ at all, i.e. simply $\pm\kbd{oo}$)
assumes that the integrand tends to zero moderately quickly, at least as
$O(x^{-2})$ but not exponentially fast.

\item $\alpha>0$ assumes that the function tends to zero exponentially fast
approximately as $\exp(-\alpha x)$. This includes oscillating but quickly
decreasing functions such as $\exp(-x)\sin(x)$.
\bprog
? intnum(x=0, +oo, exp(-2*x))
  ***   at top-level: intnum(x=0,+oo,exp(-
  ***                 ^--------------------
  *** exp: exponent (expo) overflow
? intnum(x=0, [+oo, 2], exp(-2*x))  \\@com OK!
%1 = 0.50000000000000000000000000000000000000
? intnum(x=0, [+oo, 3], exp(-2*x))  \\@com imprecise exponent, still OK !
%2 = 0.50000000000000000000000000000000000000
? intnum(x=0, [+oo, 10], exp(-2*x)) \\@com wrong exponent $\Rightarrow$ disaster
%3 = 0.49999999999952372962457451698256707393
@eprog\noindent As the last exemple shows, the exponential decrease rate
\emph{must} be indicated to avoid overflow, but the method is robust enough
for a rough guess to be acceptable.

\item $\alpha<-1$ assumes that the function tends to $0$ slowly, like
$x^{\alpha}$. Here the algorithm is less robust and it is essential to give a
sharp $\alpha$, unless $\alpha \le -2$ in which case we use
the default algorithm as if $\alpha$ were missing (or equal to $0$).
\bprog
? intnum(x=1, +oo, x^(-3/2))         \\ default
%1 = 1.9999999999999999999999999999646391207
? intnum(x=1, [+oo,-3/2], x^(-3/2))  \\ precise decrease rate
%2 = 2.0000000000000000000000000000000000000
? intnum(x=1, [+oo,-11/10], x^(-3/2)) \\ worse than default
%3 = 2.0000000000000000000000000089298011973
@eprog

\smallskip The last two codes are reserved for oscillating functions.
Let $k > 0$ real, and $g(x)$ a non-oscillating function tending slowly to $0$
(e.g. like a negative power of $x$), then

\item $\alpha=k * I$ assumes that the function behaves like $\cos(kx)g(x)$.

\item $\alpha=-k* I$ assumes that the function behaves like $\sin(kx)g(x)$.

\noindent Here it is critical to give the exact value of $k$. If the
oscillating part is not a pure sine or cosine, one must expand it into a
Fourier series, use the above codings, and sum the resulting contributions.
Otherwise you will get nonsense. Note that $\cos(kx)$, and similarly
$\sin(kx)$, means that very function, and not a translated version such as
$\cos(kx+a)$.

\misctitle{Note} If $f(x)=\cos(kx)g(x)$ where $g(x)$ tends to zero
exponentially fast as $\exp(-\alpha x)$, it is up to the user to choose
between $[\pm\kbd{oo},\alpha]$ and $[\pm\kbd{oo},k* I]$, but a good rule of
thumb is that
if the oscillations are weaker than the exponential decrease, choose
$[\pm\kbd{oo},\alpha]$, otherwise choose $[\pm\kbd{oo},k*I]$, although the
latter can
reasonably be used in all cases, while the former cannot. To take a specific
example, in the inverse Mellin transform, the integrand is almost always a
product of an exponentially decreasing and an oscillating factor. If we
choose the oscillating type of integral we perhaps obtain the best results,
at the expense of having to recompute our functions for a different value of
the variable $z$ giving the transform, preventing us to use a function such
as \kbd{intfuncinit}. On the other hand using the exponential type of
integral, we obtain less accurate results, but we skip expensive
recomputations. See \kbd{intfuncinit} for more explanations.

\smallskip

We shall now see many examples to get a feeling for what the various
parameters achieve. All examples below assume precision is set to $115$
decimal digits. We first type
\bprog
? \p 115
@eprog

\misctitle{Apparent singularities} In many cases, apparent singularities
can be ignored. For instance, if $f(x) = 1
/(\exp(x)-1) - \exp(-x)/x$, then $\int_0^\infty f(x)\,dx=\gamma$, Euler's
constant \kbd{Euler}. But

\bprog
? f(x) = 1/(exp(x)-1) - exp(-x)/x
? intnum(x = 0, [oo,1],  f(x)) - Euler
%1 = 0.E-115
@eprog\noindent
But close to $0$ the function $f$ is computed with an enormous loss of
accuracy, and we are in fact lucky that it get multiplied by weights which are
sufficiently close to $0$ to hide this:
\bprog
? f(1e-200)
%2 = -3.885337784451458142 E84
@eprog

A more robust solution is to define the function differently near special
points, e.g. by a Taylor expansion
\bprog
? F = truncate( f(t + O(t^10)) ); \\@com expansion around t = 0
? poldegree(F)
%4 = 7
? g(x) = if (x > 1e-18, f(x), subst(F,t,x)); \\@com note that $7 \cdot 18 > 105$
? intnum(x = 0, [oo,1],  g(x)) - Euler
%2 = 0.E-115
@eprog\noindent It is up to the user to determine constants such as the
$10^{-18}$ and $10$ used above.

\misctitle{True singularities} With true singularities the result is worse.
For instance

\bprog
? intnum(x = 0, 1,  x^(-1/2)) - 2
%1 = -3.5... E-68 \\@com only $68$ correct decimals

? intnum(x = [0,-1/2], 1,  x^(-1/2)) - 2
%2 = 0.E-114 \\@com better
@eprog

\misctitle{Oscillating functions}

\bprog
? intnum(x = 0, oo, sin(x) / x) - Pi/2
%1 = 16.19.. \\@com nonsense
? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2
%2 = -0.006.. \\@com bad
? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2
%3 = 0.E-115 \\@com perfect
? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2  \\@com oops, wrong $k$
%4 = 0.06...
? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2
%5 = 0.E-115 \\@com perfect

? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4
%6 = -0.0008... \\@com bad
? sin(x)^3 - (3*sin(x)-sin(3*x))/4
%7 = O(x^17)
@eprog\noindent
We may use the above linearization and compute two oscillating integrals with
endpoints \kbd{[oo, -I]} and \kbd{[oo, -3*I]} respectively, or
notice the obvious change of variable, and reduce to the single integral
${1\over 2}\int_0^\infty \sin(x)/x\,dx$. We finish with some more complicated
examples:

\bprog
? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
%1 = -0.0003... \\@com bad
? intnum(x = 0, 1, (1-cos(x))/x^2) \
+ intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2
%2 = 0.E-115 \\@com perfect

? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3
%3 = -7.34... E-55 \\@com bad
? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3
%4 = 8.9... E-103 \\@com better. Try higher $m$
? tab = intnuminit(0,[oo,-I], 1); \\@com double number of sampling points
? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3
%6 = 0.E-115 \\@com perfect
@eprog

\misctitle{Warning} Like \tet{sumalt}, \kbd{intnum} often assigns a
reasonable value to diverging integrals. Use these values at your own risk!
For example:

\bprog
? intnum(x = 0, [oo, -I], x^2*sin(x))
%1 = -2.0000000000...
@eprog\noindent
Note the formula
$$ \int_0^\infty \sin(x)/x^s\,dx = \cos(\pi s/2) \Gamma(1-s)\;, $$
a priori valid only for $0 < \Re(s) < 2$, but the right hand side provides an
analytic continuation which may be evaluated at $s = -2$\dots

\misctitle{Multivariate integration}
Using successive univariate integration with respect to different formal
parameters, it is immediate to do naive multivariate integration. But it is
important to use a suitable \kbd{intnuminit} to precompute data for the
\emph{internal} integrations at least!

For example, to compute the double integral on the unit disc $x^2+y^2\le1$
of the function $x^2+y^2$, we can write
\bprog
? tab = intnuminit(-1,1);
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab),tab) - Pi/2
%2 = -7.1... E-115 \\@com OK

@eprog\noindent
The first \var{tab} is essential, the second optional. Compare:

\bprog
? tab = intnuminit(-1,1);
time = 4 ms.
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));
time = 3,092 ms. \\@com slow
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);
time = 252 ms.  \\@com faster
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab));
time = 261 ms.  \\@com the \emph{internal} integral matters most
@eprog

\synt{intnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab, long prec},
where an omitted \var{tab} is coded as \kbd{NULL}.

\subsec{intnumgauss$(X=a,b,\var{expr},\{\var{tab}\})$}\kbdsidx{intnumgauss}\label{se:intnumgauss}
Numerical integration of \var{expr} on the compact interval $[a,b]$ with
respect to $X$ using Gauss-Legendre quadrature; \kbd{tab} is either omitted
or precomputed with \kbd{intnumgaussinit}. As a convenience, it can be an
integer $n$ in which case we call
\kbd{intnumgaussinit}$(n)$ and use $n$-point quadrature.
\bprog
? test(n, b = 1) = T=intnumgaussinit(n);\
    intnumgauss(x=-b,b, 1/(1+x^2),T) - 2*atan(b);
? test(0) \\ default
%1 = -9.490148553624725335 E-22
? test(40)
%2 = -6.186629001816965717 E-31
? test(50)
%3 = -1.1754943508222875080 E-38
? test(50, 2) \\ double interval length
%4 = -4.891779568527713636 E-21
? test(90, 2) \\ n must almost be doubled as well!
%5 = -9.403954806578300064 E-38
@eprog\noindent On the other hand, we recommend to split the integral
and change variables rather than increasing $n$ too much:
\bprog
? f(x) = 1/(1+x^2);
? b = 100;
? intnumgauss(x=0,1, f(x)) + intnumgauss(x=1,1/b, f(1/x)*(-1/x^2)) - atan(b)
%3 = -1.0579449157400587572 E-37
@eprog

The library syntax is \fun{GEN}{intnumgauss0}{GEN X, GEN b, GEN expr, GEN tab = NULL, long prec}.

\subsec{intnumgaussinit$(\{n\})$}\kbdsidx{intnumgaussinit}\label{se:intnumgaussinit}
Initialize tables for $n$-point Gauss-Legendre integration of
a smooth function $f$ lon a compact
interval $[a,b]$ at current \kbd{realprecision}. If $n$ is omitted, make a
default choice $n \approx \kbd{realprecision}$, suitable for analytic
functions on $[-1,1]$. The error is bounded by
$$
   \dfrac{(b-a)^{2n+1} (n!)^4}{(2n+1)[(2n)!]^3} f^{(2n)} (\xi) ,
   \qquad a < \xi < b
$$
so, if the interval length increases, $n$ should be increased as well.
\bprog
? T = intnumgaussinit();
? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)
%1 = -5.877471754111437540 E-39
? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)
%2 = -8.358367809712546836 E-35
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
%3 = -9.490148553624725335 E-22

? T = intnumgaussinit(50);
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
%5 = -1.1754943508222875080 E-38
? intnumgauss(t=-5,5,1/(1+t^2), T) - 2*atan(5)
%6 = -1.2[...]E-8
@eprog
On the other hand, we recommend to split the integral and change variables
rather than increasing $n$ too much, see \tet{intnumgauss}.

The library syntax is \fun{GEN}{intnumgaussinit}{long n, long prec}.

\subsec{intnuminit$(a,b,\{m=0\})$}\kbdsidx{intnuminit}\label{se:intnuminit}
Initialize tables for integration from
$a$ to $b$, where $a$ and $b$ are coded as in \kbd{intnum}. Only the
compactness, the possible existence of singularities, the speed of decrease
or the oscillations at infinity are taken into account, and not the values.
For instance {\tt intnuminit(-1,1)} is equivalent to {\tt intnuminit(0,Pi)},
and {\tt intnuminit([0,-1/2],oo)} is equivalent to
{\tt intnuminit([-1,-1/2], -oo)}; on the other hand, the order matters
and
{\tt intnuminit([0,-1/2], [1,-1/3])} is \emph{not} equivalent to
{\tt intnuminit([0,-1/3], [1,-1/2])} !

If $m$ is present, it must be non-negative and we multiply the default
number of sampling points by $2^m$ (increasing the running time by a
similar factor).

The result is technical and liable to change in the future, but we document
it here for completeness. Let $x=\phi(t)$, $t\in ]-\infty,\infty[$ be an
internally chosen change of variable, achieving double exponential decrease of
the integrand at infinity. The integrator \kbd{intnum} will compute
$$ h \sum_{|n| < N} \phi'(nh) F(\phi(nh)) $$
for some integration step $h$ and truncation parameter $N$.
In basic use, let
\bprog
[h, x0, w0, xp, wp, xm, wm] = intnuminit(a,b);
@eprog

\item $h$ is the integration step

\item $x_0 = \phi(0)$  and $w_0 = \phi'(0)$,

\item \var{xp} contains the $\phi(nh)$, $0 < n < N$,

\item \var{xm} contains the $\phi(nh)$, $0 < -n < N$, or is empty.

\item \var{wp} contains the $\phi'(nh)$, $0 < n < N$,

\item \var{wm} contains the $\phi'(nh)$, $0 < -n < N$, or is empty.

The arrays \var{xm} and \var{wm} are left empty when $\phi$ is an odd
function. In complicated situations when non-default behaviour is specified at
end points, \kbd{intnuminit} may return up to $3$ such arrays, corresponding
to a splitting of up to $3$ integrals of basic type.

If the functions to be integrated later are of the form $F = f(t) k(t,z)$
for some kernel $k$ (e.g. Fourier, Laplace, Mellin, \dots), it is
useful to also precompute the values of $f(\phi(nh))$, which is accomplished
by \tet{intfuncinit}. The hard part is to determine the behaviour
of $F$ at endpoints, depending on $z$.

The library syntax is \fun{GEN}{intnuminit}{GEN a, GEN b, long m, long prec}.

\subsec{intnumromb$(X=a,b,\var{expr},\{\fl=0\})$}\kbdsidx{intnumromb}\label{se:intnumromb}
Numerical integration of \var{expr} (smooth in $]a,b[$), with respect to
$X$. Suitable for low accuracy; if \var{expr} is very regular (e.g. analytic
in a large region) and high accuracy is desired, try \tet{intnum} first.

Set $\fl=0$ (or omit it altogether) when $a$ and $b$ are not too large, the
function is smooth, and can be evaluated exactly everywhere on the interval
$[a,b]$.

If $\fl=1$, uses a general driver routine for doing numerical integration,
making no particular assumption (slow).

$\fl=2$ is tailored for being used when $a$ or $b$ are infinite using the
change of variable $t = 1/X$. One \emph{must} have $ab>0$, and in fact if
for example $b=+\infty$, then it is preferable to have $a$ as large as
possible, at least $a\ge1$.

If $\fl=3$, the function is allowed to be undefined
at $a$ (but right continuous) or $b$ (left continuous),
for example the function $\sin(x)/x$ between $x=0$ and $1$.

The user should not require too much accuracy: \tet{realprecision} about
30 decimal digits (\tet{realbitprecision} about 100 bits) is OK,
but not much more. In addition, analytical cleanup of the integral must have
been done: there must be no singularities in the interval or at the
boundaries. In practice this can be accomplished with a change of
variable. Furthermore, for improper integrals, where one or both of the
limits of integration are plus or minus infinity, the function must decrease
sufficiently rapidly at infinity, which can often be accomplished through
integration by parts. Finally, the function to be integrated should not be
very small (compared to the current precision) on the entire interval. This
can of course be accomplished by just multiplying by an appropriate constant.

Note that \idx{infinity} can be represented with essentially no loss of
accuracy by an appropriate huge number. However beware of real underflow
when dealing with rapidly decreasing functions. For example, in order to
compute the $\int_0^\infty e^{-x^2}\,dx$ to 28 decimal digits, then one can
set infinity equal to 10 for example, and certainly not to \kbd{1e1000}.

\synt{intnumromb_bitprec}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long flag, long bitprec},
where $\kbd{eval}(x, E)$ returns the value of the function at $x$.
You may store any additional information required by \kbd{eval} in $E$, or set
it to \kbd{NULL}. The historical variant
\synt{intnumromb}{\dots, long prec}, where \kbd{prec} is expressed in words,
not bits, is obsolete and should no longer be used.

\subsec{limitnum$(\var{expr},\{k = {20}\},\{\var{alpha}=1\})$}\kbdsidx{limitnum}\label{se:limitnum}
Lagrange-Zagier numerical extrapolation of \var{expr}, corresponding to a
sequence
$u_n$, either given by a closure \kbd{n->u(n)} or by a vector of values
I.e., assuming that $u_n$ tends to a finite limit $\ell$, try to determine
$\ell$. This routine is purely numerical and heuristic, thus may or may not
work on your examples; $k$ is ignored if $u$ is given by a vector,
and otherwise is a multiplier such that we extrapolate from $u(kn)$.

Assume that $u_n$ has an asymptotic expansion in $n^{-\alpha}$ :
$$u_n = \ell + \sum_{i\geq 1} a_i n^{-i\alpha}$$
for some $a_i$.
\bprog
? limitnum(n -> n*sin(1/n))
%1 = 1.0000000000000000000000000000000000000

? limitnum(n -> (1+1/n)^n) - exp(1)
%2 = 0.E-37

? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! )
%3 = 3.1415926535897932384626433832795028842
? Pi
%4 = 3.1415926535897932384626433832795028842
@eprog\noindent
If $u_n$ is given by a vector, it must be long enough for the extrapolation
to make sense: at least $k$ times the current \kbd{realprecision}. The
preferred format is thus a closure, although it becomes inconvenient
when $u_n$ cannot be directly computed in time polynomial in $\log n$,
for instance if it is defined as a sum or by induction. In that case,
passing a vector of values is the best option. It usually pays off to
interpolate $u(kn)$ for some $k > 1$:
\bprog
? limitnum(vector(10,n,(1+1/n)^n))
 ***                 ^--------------------
 *** limitnum: non-existent component in limitnum: index < 20
\\ at this accuracy, we must have at least 20 values
? limitnum(vector(20,n,(1+1/n)^n)) - exp(1)
%5 = -2.05... E-20
? limitnum(vector(20,n, m=10*n;(1+1/m)^m)) - exp(1) \\ better accuracy
%6 = 0.E-37

? v = vector(20); s = 0;
? for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%9 = -1.6... E-19

? V = vector(200); s = 0;
? for(i=1,#V, s += 1/i; V[i]= s);
? v = vector(#V \ 10, i, V[10*i] - log(10*i));
? limitnum(v) - Euler
%13 = 6.43... E-29
@eprog

\synt{limitnum}{void *E, GEN (*u)(void *,GEN,long), long muli, GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return $u(n)$ in precision \kbd{prec}.
Also available is
\fun{GEN}{limitnum0}{GEN u, long muli, GEN alpha, long prec}, where $u$
must be a vector of sufficient length as above.

\subsec{prod$(X=a,b,\var{expr},\{x=1\})$}\kbdsidx{prod}\label{se:prod}
Product of expression
\var{expr}, initialized at $x$, the formal parameter $X$ going from $a$ to
$b$. As for \kbd{sum}, the main purpose of the initialization parameter $x$
is to force the type of the operations being performed. For example if it is
set equal to the integer 1, operations will start being done exactly. If it
is set equal to the real $1.$, they will be done using real numbers having
the default precision. If it is set equal to the power series $1+O(X^k)$ for
a certain $k$, they will be done using power series of precision at most $k$.
These are the three most common initializations.

\noindent As an extreme example, compare

\bprog
? prod(i=1, 100, 1 - X^i);  \\@com this has degree $5050$ !!
time = 128 ms.
? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
time = 8 ms.
%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)
@eprog\noindent
Of course, in  this specific case, it is faster to use \tet{eta},
which is computed using Euler's formula.
\bprog
? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));
time = 589 ms.
? \ps1000
seriesprecision = 1000 significant terms
? eta(X) - %
time = 8ms.
%4 = O(X^1001)
@eprog

\synt{produit}{GEN a, GEN b, char *expr, GEN x}.

\subsec{prodeuler$(X=a,b,\var{expr})$}\kbdsidx{prodeuler}\label{se:prodeuler}
Product of expression \var{expr},
initialized at 1. (i.e.~to a \emph{real} number equal to 1 to the current
\kbd{realprecision}), the formal parameter $X$ ranging over the prime numbers
between $a$ and $b$.\sidx{Euler product}

\synt{prodeuler}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long prec}.

\subsec{prodinf$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{prodinf}\label{se:prodinf}
\idx{infinite product} of
expression \var{expr}, the formal parameter $X$ starting at $a$. The evaluation
stops when the relative error of the expression minus 1 is less than the
default precision. In particular, non-convergent products result in infinite
loops. The expressions must always evaluate to an element of $\C$.

If $\fl=1$, do the product of the ($1+\var{expr}$) instead.

\synt{prodinf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}
($\fl=0$), or \tet{prodinf1} with the same arguments ($\fl=1$).

\subsec{solve$(X=a,b,\var{expr})$}\kbdsidx{solve}\label{se:solve}
Find a real root of expression
\var{expr} between $a$ and $b$, under the condition
$\var{expr}(X=a) * \var{expr}(X=b) \le 0$. (You will get an error message
\kbd{roots must be bracketed in solve} if this does not hold.)
This routine uses Brent's method and can fail miserably if \var{expr} is
not defined in the whole of $[a,b]$ (try \kbd{solve(x=1, 2, tan(x))}).

\synt{zbrent}{void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec}.

\subsec{solvestep$(X=a,b,\var{step},\var{expr},\{\fl=0\})$}\kbdsidx{solvestep}\label{se:solvestep}
Find zeros of a continuous function in the real interval $[a,b]$ by naive
interval splitting. This function is heuristic and may or may not find the
intended zeros. Binary digits of \fl\ mean

\item 1: return as soon as one zero is found, otherwise return all
zeros found;

\item 2: refine the splitting until at least one zero is found
(may loop indefinitely if there are no zeros);

\item 4: do a multiplicative search (we must have $a > 0$ and $\var{step} >
1$), otherwise an additive search; \var{step} is the multiplicative or
additive step.

\item 8: refine the splitting until at least one zero is very close to an
integer.

\bprog
? solvestep(X=0,10,1,sin(X^2),1)
%1 = 1.7724538509055160272981674833411451828
? solvestep(X=1,12,2,besselj(4,X),4)
%2 = [7.588342434..., 11.064709488...]
@eprog\noindent

\synt{solvestep}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, GEN step,long flag,long prec}.

\subsec{sum$(X=a,b,\var{expr},\{x=0\})$}\kbdsidx{sum}\label{se:sum}
Sum of expression \var{expr},
initialized at $x$, the formal parameter going from $a$ to $b$. As for
\kbd{prod}, the initialization parameter $x$ may be given to force the type
of the operations being performed.

\noindent As an extreme example, compare

\bprog
? sum(i=1, 10^4, 1/i); \\@com rational number: denominator has $4345$ digits.
time = 236 ms.
? sum(i=1, 5000, 1/i, 0.)
time = 8 ms.
%2 = 9.787606036044382264178477904
@eprog

\synt{somme}{GEN a, GEN b, char *expr, GEN x}.

\subsec{sumalt$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{sumalt}\label{se:sumalt}
Numerical summation of the series \var{expr}, which should be an
\idx{alternating series} $(-1)^k a_k$, the formal variable $X$ starting at
$a$. Use an algorithm of Cohen, Villegas and Zagier (\emph{Experiment. Math.}
{\bf 9} (2000), no.~1, 3--12).

If $\fl=0$, assuming that the $a_k$ are the moments of a positive
measure on $[0,1]$, the relative error is $O(3+\sqrt8)^{-n}$ after using
$a_k$ for $k\leq n$. If \kbd{realprecision} is $p$, we thus set
$n = \log(10)p/\log(3+\sqrt8)\approx 1.3 p$; besides the time needed to
compute the $a_k$, $k\leq n$, the algorithm overhead is negligible: time
$O(p^2)$ and space $O(p)$.

If $\fl=1$, use a variant with more complicated polynomials, see
\tet{polzagier}. If the $a_k$ are the moments of $w(x)dx$ where $w$
(or only $xw(x^2)$) is a smooth function extending analytically to the whole
complex plane, convergence is in $O(14.4^{-n})$. If $xw(x^2)$ extends
analytically to a smaller region, we still have exponential convergence,
with worse constants. Usually faster when the computation of $a_k$ is
expensive. If \kbd{realprecision} is $p$, we thus set
$n = \log(10)p/\log(14.4)\approx 0.86 p$; besides the time needed to
compute the $a_k$, $k\leq n$, the algorithm overhead is \emph{not}
negligible: time $O(p^3)$ and space $O(p^2)$. Thus, even if the analytic
conditions for rigorous use are met, this variant is only worthwile if the
$a_k$ are hard to compute, at least $O(p^2)$ individually on average:
otherwise we gain a small constant factor (1.5, say) in the number of
needed $a_k$ at the expense of a large overhead.

The conditions for rigorous use are hard to check but the routine is best used
heuristically: even divergent alternating series can sometimes be summed by
this method, as well as series which are not exactly alternating (see for
example \secref{se:user_defined}). It should be used to try and guess the
value of an infinite sum. (However, see the example at the end of
\secref{se:userfundef}.)

If the series already converges geometrically,
\tet{suminf} is often a better choice:
\bprog
? \p28
? sumalt(i = 1, -(-1)^i / i)  - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
? suminf(i = 1, -(-1)^i / i)   \\@com Had to hit \kbd{C-C}
  ***   at top-level: suminf(i=1,-(-1)^i/i)
  ***                                ^------
  *** suminf: user interrupt after 10min, 20,100 ms.
? \p1000
? sumalt(i = 1, -(-1)^i / i)  - log(2)
time = 90 ms.
%2 = 4.459597722 E-1002

? sumalt(i = 0, (-1)^i / i!) - exp(-1)
time = 670 ms.
%3 = -4.03698781490633483156497361352190615794353338591897830587 E-944
? suminf(i = 0, (-1)^i / i!) - exp(-1)
time = 110 ms.
%4 = -8.39147638 E-1000   \\ @com faster and more accurate
@eprog

\synt{sumalt}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumalt2} with the same arguments ($\fl = 1$).

\subsec{sumdiv$(n,X,\var{expr})$}\kbdsidx{sumdiv}\label{se:sumdiv}
Sum of expression \var{expr} over the positive divisors of $n$.
This function is a trivial wrapper essentially equivalent to
\bprog
  D = divisors(n);
  for (i = 1, #D, X = D[i]; eval(expr))
@eprog\noindent (except that \kbd{X} is lexically scoped to the \kbd{sumdiv}
loop). If \var{expr} is a multiplicative function, use \tet{sumdivmult}.
%\syn{NO}

\subsec{sumdivmult$(n,d,\var{expr})$}\kbdsidx{sumdivmult}\label{se:sumdivmult}
Sum of \emph{multiplicative} expression \var{expr} over the positive
divisors $d$ of $n$. Assume that \var{expr} evaluates to $f(d)$
where $f$ is multiplicative: $f(1) = 1$ and $f(ab) = f(a)f(b)$ for coprime
$a$ and $b$.
%\syn{NO}

\subsec{suminf$(X=a,\var{expr})$}\kbdsidx{suminf}\label{se:suminf}
\idx{infinite sum} of expression
\var{expr}, the formal parameter $X$ starting at $a$. The evaluation stops
when the relative error of the expression is less than the default precision
for 3 consecutive evaluations. The expressions must always evaluate to a
complex number.

If the series converges slowly, make sure \kbd{realprecision} is low (even 28
digits may be too much). In this case, if the series is alternating or the
terms have a constant sign, \tet{sumalt} and \tet{sumpos} should be used
instead.

\bprog
? \p28
? suminf(i = 1, -(-1)^i / i)   \\@com Had to hit \kbd{C-C}
  ***   at top-level: suminf(i=1,-(-1)^i/i)
  ***                                ^------
  *** suminf: user interrupt after 10min, 20,100 ms.
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
@eprog

\synt{suminf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}.

\subsec{sumnum$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnum}\label{se:sumnum}
Numerical summation of $f(n)$ at high accuracy using Euler-MacLaurin,
the variable $n$ taking values from $a$ to $+\infty$, where $f$ is assumed to
have positive values and is a $C^\infty$ function; \kbd{a} must be an integer
and \kbd{tab}, if given, is the output of \kbd{sumnuminit}. The latter
precomputes abcissas and weights, speeding up the computation; it also allows
to specify the behaviour at infinity via \kbd{sumnuminit([+oo, asymp])}.
\bprog
? \p500
? z3 = zeta(3);
? sumpos(n = 1, n^-3) - z3
time = 2,332 ms.
%2 = 2.438468843 E-501
? sumnum(n = 1, n^-3) - z3 \\ here slower than sumpos
time = 2,752 ms.
%3 = 0.E-500
@eprog

\misctitle{Complexity}
The function $f$ will be evaluated at $O(D \log D)$ real arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$. The routine is geared
towards slowly decreasing functions: if $f$ decreases exponentially fast,
then one of \kbd{suminf} or \kbd{sumpos} should be preferred.
If $f$ satisfies the stronger hypotheses required for Monien summation,
i.e. if $f(1/z)$ is holomorphic in a complex neighbourhood of $[0,1]$,
then \tet{sumnummonien} will be faster since it only requires $O(D/\log D)$
evaluations:
\bprog
? sumnummonien(n = 1, 1/n^3) - z3
time = 1,985 ms.
%3 = 0.E-500
@eprog\noindent The \kbd{tab} argument precomputes technical data
not depending on the expression being summed and valid for a given accuracy,
speeding up immensely later calls:
\bprog
? tab = sumnuminit();
time = 2,709 ms.
? sumnum(n = 1, 1/n^3, tab) - z3 \\ now much faster than sumpos
time = 40 ms.
%5 = 0.E-500

? tabmon = sumnummonieninit(); \\ Monien summation allows precomputations too
time = 1,781 ms.
? sumnummonien(n = 1, 1/n^3, tabmon) - z3
time = 2 ms.
%7 = 0.E-500
@eprog\noindent The speedup due to precomputations becomes less impressive
when the function $f$ is expensive to evaluate, though:
\bprog
? sumnum(n = 1, lngamma(1+1/n)/n, tab);
time = 14,180 ms.

? sumnummonien(n = 1, lngamma(1+1/n)/n, tabmon); \\ fewer evaluations
time = 717 ms.
@eprog

\misctitle{Behaviour at infinity}
By default, \kbd{sumnum} assumes that \var{expr} decreases slowly at infinity,
but at least like $O(n^{-2})$. If the function decreases like $n^{\alpha}$
for some $-2 < \alpha < -1$, then it must be indicated via
\bprog
  tab = sumnuminit([+oo, alpha]); /* alpha < 0 slow decrease */
@eprog\noindent otherwise loss of accuracy is expected.
If the functions decreases quickly, like $\exp(-\alpha n)$ for some
$\alpha > 0$, then it must be indicated via
\bprog
  tab = sumnuminit([+oo, alpha]); /* alpha  > 0 exponential decrease */
@eprog\noindent otherwise exponent overflow will occur.
\bprog
? sumnum(n=1,2^-n)
 ***   at top-level: sumnum(n=1,2^-n)
 ***                             ^----
 *** _^_: overflow in expo().
? tab = sumnuminit([+oo,log(2)]); sumnum(n=1,2^-n, tab)
%1 = 1.000[...]
@eprog

As a shortcut, one can also input
\bprog
  sumnum(n = [a, asymp], f)
@eprog\noindent instead of
\bprog
  tab = sumnuminit(asymp);
  sumnum(n = a, f, tab)
@eprog

\misctitle{Further examples}
\bprog
? \p200
? sumnum(n = 1, n^(-2)) - zeta(2) \\ accurate, fast
time = 200 ms.
%1 = -2.376364457868949779 E-212
? sumpos(n = 1, n^(-2)) - zeta(2)  \\ even faster
time = 96 ms.
%2 = 0.E-211
? sumpos(n=1,n^(-4/3)) - zeta(4/3)   \\ now much slower
time = 13,045 ms.
%3 = -9.980730723049589073 E-210
? sumnum(n=1,n^(-4/3)) - zeta(4/3)  \\ fast but inaccurate
time = 365 ms.
%4 = -9.85[...]E-85
? sumnum(n=[1,-4/3],n^(-4/3)) - zeta(4/3) \\ with decrease rate, now accurate
time = 416 ms.
%5 = -4.134874156691972616 E-210

? tab = sumnuminit([+oo,-4/3]);
time = 196 ms.
? sumnum(n=1, n^(-4/3), tab) - zeta(4/3) \\ faster with precomputations
time = 216 ms.
%5 = -4.134874156691972616 E-210
? sumnum(n=1,-log(n)*n^(-4/3), tab) - zeta'(4/3)
time = 321 ms.
%7 = 7.224147951921607329 E-210
@eprog

Note that in the case of slow decrease ($\alpha < 0$), the exact
decrease rate must be indicated, while in the case of exponential decrease,
a rough value will do. In fact, for exponentially decreasing functions,
\kbd{sumnum} is given for completeness and comparison purposes only: one
of \kbd{suminf} or \kbd{sumpos} should always be preferred.
\bprog
? sumnum(n=[1, 1], 2^-n) \\ pretend we decrease as exp(-n)
time = 240 ms.
%8 = 1.000[...] \\ perfect
? sumpos(n=1, 2^-n)
%9 = 1.000[...] \\ perfect and instantaneous
@eprog

\synt{sumnum}{(void *E, GEN (*eval)(void*, GEN), GEN a, GEN tab, long prec)}
where an omitted \var{tab} is coded as \kbd{NULL}.

\subsec{sumnuminit$(\{\var{asymp}\})$}\kbdsidx{sumnuminit}\label{se:sumnuminit}
Initialize tables for Euler--MacLaurin delta summation of a series with
positive terms. If given, \kbd{asymp} is of the form $[\kbd{+oo}, \alpha]$,
as in \tet{intnum} and indicates the decrease rate at infinity of functions
to be summed. A positive
$\alpha > 0$ encodes an exponential decrease of type $\exp(-\alpha n)$ and
a negative $-2 < \alpha < -1$ encodes a slow polynomial decrease of type
$n^{\alpha}$.
\bprog
? \p200
? sumnum(n=1, n^-2);
time = 200 ms.
? tab = sumnuminit();
time = 188 ms.
? sumnum(n=1, n^-2, tab); \\ faster
time = 8 ms.

? tab = sumnuminit([+oo, log(2)]); \\ decrease like 2^-n
time = 200 ms.
? sumnum(n=1, 2^-n, tab)
time = 44 ms.

? tab = sumnuminit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 200 ms.
? sumnum(n=1, n^(-4/3), tab);
time = 221 ms.
@eprog

The library syntax is \fun{GEN}{sumnuminit}{GEN asymp = NULL, long prec}.

\subsec{sumnummonien$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnummonien}\label{se:sumnummonien}
Numerical summation $\sum_{n\geq a} f(n)$ at high accuracy, the variable
$n$ taking values from the integer $a$ to $+\infty$ using Monien summation,
which assumes that $f(1/z)$ has a complex analytic continuation in a (complex)
neighbourhood of the segment $[0,1]$.

The function $f$ is evaluated at $O(D / \log D)$ real arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$.
By default, assume that $f(n) = O(n^{-2})$ and has a non-zero asymptotic
expansion
$$f(n) = \sum_{i\geq 2} a_i n^{-i}$$
at infinity. To handle more complicated behaviours and allow time-saving
precomputations (for a given \kbd{realprecision}), see \kbd{sumnummonieninit}.

The library syntax is \fun{GEN}{sumnummonien0}{GEN n, GEN f, GEN tab = NULL, long prec}.

\subsec{sumnummonieninit$(\{\var{asymp}\},\{w\},\{\var{n0} = 1\})$}\kbdsidx{sumnummonieninit}\label{se:sumnummonieninit}
Initialize tables for Monien summation of a series $\sum_{n\geq n_0}
f(n)$ where $f(1/z)$ has a complex analytic continuation in a (complex)
neighbourhood of the segment $[0,1]$.

By default, assume that $f(n) = O(n^{-2})$ and has a non-zero asymptotic
expansion
$$f(n) = \sum_{i\geq 2} a_i / n^i$$
at infinity. Note that the sum starts at $i = 2$! The argument \kbd{asymp}
allows to specify different expansions:

\item a real number $\alpha > 1$ means
 $$f(n) = \sum_{i\geq 1} a_i / n^{\alpha i}$$
(Now the summation starts at $1$.)

\item a vector $[\alpha,\beta]$ of reals, where we must have $\alpha > 0$
and $\alpha + \beta > 1$ to ensure convergence, means that
 $$f(n) = \sum_{i\geq 1} a_i / n^{\alpha i + \beta}$$
Note that $\kbd{asymp} = [\alpha, \alpha]$ is equivalent to
$\kbd{asymp}=\alpha$.

\bprog
? \p38
? s = sumnum(n = 1, sin(1/sqrt(n)) / n)
%1 = 2.3979771206715998375659850036324914714

? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s
%2 = -0.001[...] \\ completely wrong !

? t = sumnummonieninit([1/2,1]);  \\ f(n) = sum_i 1 / n^(i/2+1)
? sumnummonien(n = 1, sin(1/sqrt(n)) / n, t) - s
%3 = 0.E-37  \\ now correct
@eprog

The argument $w$ is used to sum expressions of the form
$$ \sum_{n\geq n_0} f(n) w(n),$$
for varying $f$ \emph{as above}, and fixed weight function $w$, where we
further assume that the auxiliary sums
$$g_w(m) = \sum_{n\geq n_0} w(n) / n^{\alpha m + \beta} $$
converge for all $m\geq 1$. Note that for non-negative integers $k$,
and weight $w(n) = (\log n)^k$, the function $g_w(m) = \zeta^{(k)}(\alpha m +
\beta)$ has a simple expression; for general weights, $g_w$ is
computed using \kbd{sumnum}. The following variants are available

\item an integer $k \geq 0$, to code $w(n) = (\log n)^k$;
only the cases $k = 0,1$ are presently implemented; due to a poor
implementation of $\zeta$ derivatives, it is not currently worth it
to exploit the special shape of $g_w$ when $k > 0$;

\item a \typ{CLOSURE} computing the values $w(n)$, where we
assume that $w(n) = O(n^\epsilon)$ for all $\epsilon > 0$;

\item a vector $[w, \kbd{fast}]$, where $w$ is a closure as above
and \kbd{fast} is a scalar;
we assume that $w(n) = O(n^{\kbd{fast}+\epsilon})$; note that
$\kbd{w} = [w, 0]$ is equivalent to $\kbd{w} = w$.

\item a vector $[w, \kbd{oo}]$, where $w$ is a closure as above;
we assume that $w(n)$ decreases exponentially. Note that in this case,
\kbd{sumnummonien} is provided for completeness and comparison purposes only:
one of \kbd{suminf} or \kbd{sumpos} should be preferred in practice.

The cases where $w$ is a closure or $w(n) = \log n$ are the only ones where
$n_0$ is taken into account and stored in the result. The subsequent call to
\kbd{sumnummonien} \emph{must} use the same value.

\bprog
? \p300
? sumnummonien(n = 1, n^-2*log(n)) + zeta'(2)
time = 536 ms.
%1 = -1.323[...]E-6 \\ completely wrong, f does not satisfy hypotheses !
? tab = sumnummonieninit(, 1); \\ codes w(n) = log(n)
time = 18,316 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 44 ms.
%3 = -5.562684646268003458 E-309  \\ now perfect

? tab = sumnummonieninit(, n->log(n)); \\ generic, about as fast
time = 18,693 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 40 ms.
%5 = -5.562684646268003458 E-309  \\ identical result
@eprog

The library syntax is \fun{GEN}{sumnummonieninit}{GEN asymp = NULL, GEN w = NULL, GEN n0 = NULL, long prec}.

\subsec{sumpos$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{sumpos}\label{se:sumpos}
Numerical summation of the series \var{expr}, which must be a series of
terms having the same sign, the formal variable $X$ starting at $a$. The
algorithm used is Van Wijngaarden's trick for converting such a series into
an alternating one, then we use \tet{sumalt}. For regular functions, the
function \kbd{sumnum} is in general much faster once the initializations
have been made using \kbd{sumnuminit}.

The routine is heuristic and assumes that \var{expr} is more or less a
decreasing function of $X$. In particular, the result will be completely
wrong if \var{expr} is 0 too often. We do not check either that all terms
have the same sign. As \tet{sumalt}, this function should be used to
try and guess the value of an infinite sum.

If $\fl=1$, use \kbd{sumalt}$(,1)$ instead of \kbd{sumalt}$(,0)$, see
\secref{se:sumalt}. Requiring more stringent analytic properties for
rigorous use, but allowing to compute fewer series terms.

To reach accuracy $10^{-p}$, both algorithms require $O(p^2)$ space;
furthermore, assuming the terms decrease polynomially (in $O(n^{-C})$), both
need to compute $O(p^2)$ terms. The \kbd{sumpos}$(,1)$ variant has a smaller
implied constant (roughly 1.5 times smaller). Since the \kbd{sumalt}$(,1)$
overhead is now small compared to the time needed to compute series terms,
this last variant should be about 1.5 faster. On the other hand, the
achieved accuracy may be much worse: as for \tet{sumalt}, since
conditions for rigorous use are hard to check, the routine is best used
heuristically.

\synt{sumpos}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumpos2} with the same arguments ($\fl = 1$).
%SECTION: sums

\section{Plotting functions}

  Although plotting is not even a side purpose of PARI, a number of plotting
functions are provided. Moreover, a lot of people suggested ideas or
submitted patches for this section of the code. There are three types of
graphic functions.

\subsec{High-level plotting functions} (all the functions starting with
\kbd{ploth}) in which the user has little to do but explain what type of plot
he wants, and whose syntax is similar to the one used in the preceding
section.

\subsec{Low-level plotting functions} (called \var{rectplot} functions,
sharing the prefix \kbd{plot}), where every drawing primitive (point, line,
box, etc.) is specified by the user. These low-level functions work as
follows. You have at your disposal 16 virtual windows which are filled
independently, and can then be physically ORed on a single window at
user-defined positions. These windows are numbered from 0 to 15, and must be
initialized before being used by the function \kbd{plotinit}, which specifies
the height and width of the virtual window (called a \var{rectwindow} in the
sequel). At all times, a virtual cursor (initialized at $[0,0]$) is attached
to the window, and its current value can be obtained using the function
\kbd{plotcursor}.

A number of primitive graphic objects (called \var{rect} objects) can then
be drawn in these windows, using a default color attached to that window
(which can be changed using the \kbd{plotcolor} function) and only the part
of the object which is inside the window will be drawn, with the exception of
polygons and strings which are drawn entirely. The ones sharing the prefix
\kbd{plotr} draw relatively to the current position of the virtual cursor,
the others use absolute coordinates. Those having the prefix \kbd{plotrecth}
put in the rectwindow a large batch of rect objects corresponding to the
output of the related \kbd{ploth} function.

   Finally, the actual physical drawing is done using \kbd{plotdraw}. The
rectwindows are preserved so that further drawings using the same windows at
different positions or different windows can be done without extra work. To
erase a window, use \kbd{plotkill}. It is not possible to partially erase a
window: erase it completely, initialize it again, then fill it with the
graphic objects that you want to keep.

   In addition to initializing the window, you may use a scaled window to
avoid unnecessary conversions. For this, use \kbd{plotscale}. As long as this
function is not called, the scaling is simply the number of pixels, the
origin being at the upper left and the $y$-coordinates going downwards.

   Plotting functions are platform independent, but a number of graphical
drivers are available for screen output: X11-windows (hence also for GUI's
based on X11 such as Openwindows and Motif), and the Qt and FLTK graphical
libraries. The physical window opened by \kbd{plotdraw} or any of the
\kbd{ploth*} functions is completely separated from \kbd{gp} (technically, a
\kbd{fork} is done, and the non-graphical memory is immediately freed in the
child process), which means you can go on working in the current \kbd{gp}
session, without having to kill the window first. This window can be closed,
enlarged or reduced using the standard window manager functions. No zooming
procedure is implemented though (yet).

\subsec{Functions for PostScript output} in the same way that \kbd{printtex} allows you to have a \TeX\ output
corresponding to printed results, the functions starting with \kbd{ps} allow
you to have \tet{PostScript} output of the plots. This will not be identical
with the screen output, but sufficiently close. Note that you can use
PostScript output even if you do not have the plotting routines enabled. The
PostScript output is written in a file whose name is derived from the
\tet{psfile} default (\kbd{./pari.ps} if you did not tamper with it). Each
time a new PostScript output is asked for, the PostScript output is appended
to that file. Hence you probably want to remove this file, or change the
value of \kbd{psfile}, in between plots. On the other hand, in this manner,
as many plots as desired can be kept in a single file. \smallskip

\subsec{Library mode} \emph{None of the graphic functions are available
within the PARI library, you must be under \kbd{gp} to use them}. The reason
for that is that you really should not use PARI for heavy-duty graphical work,
there are better specialized alternatives around. This whole set of routines
was only meant as a convenient, but simple-minded, visual aid. If you really
insist on using these in your program (we warned you), the source
(\kbd{plot*.c}) should be readable enough for you to achieve something.


\subsec{plot$(X=a,b,\var{expr},\{\var{Ymin}\},\{\var{Ymax}\})$}\kbdsidx{plot}\label{se:plot}
Crude ASCII plot of the function represented by expression \var{expr}
from $a$ to $b$, with \var{Y} ranging from \var{Ymin} to \var{Ymax}. If
\var{Ymin} (resp. \var{Ymax}) is not given, the minimum (resp. the maximum)
of the computed values of the expression is used instead.

The library syntax is \fun{void}{pariplot}{GEN X, GEN b, GEN expr, GEN Ymin = NULL, GEN Ymax = NULL, long prec}.

\subsec{plotbox$(w,\var{x2},\var{y2})$}\kbdsidx{plotbox}\label{se:plotbox}
Let $(x1,y1)$ be the current position of the virtual cursor. Draw in the
rectwindow $w$ the outline of the rectangle which is such that the points
$(x1,y1)$ and $(x2,y2)$ are opposite corners. Only the part of the rectangle
which is in $w$ is drawn. The virtual cursor does \emph{not} move.

\subsec{plotclip$(w)$}\kbdsidx{plotclip}\label{se:plotclip}
`clips' the content of rectwindow $w$, i.e remove all parts of the
drawing that would not be visible on the screen. Together with
\tet{plotcopy} this function enables you to draw on a scratchpad before
committing the part you're interested in to the final picture.

\subsec{plotcolor$(w,c)$}\kbdsidx{plotcolor}\label{se:plotcolor}
Set default color to $c$ in rectwindow $w$.
This is only implemented for the X-windows, fltk and Qt graphing engines.
Possible values for $c$ are given by the \tet{graphcolormap} default,
factory setting are

1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough.

but this can be considerably extended.

\subsec{plotcopy$(\var{sourcew},\var{destw},\var{dx},\var{dy},\{\fl=0\})$}\kbdsidx{plotcopy}\label{se:plotcopy}
Copy the contents of rectwindow \var{sourcew} to rectwindow \var{destw}
with offset (dx,dy). If flag's bit 1 is set, dx and dy express fractions of
the size of the current output device, otherwise dx and dy are in pixels. dx
and dy are relative positions of northwest corners if other bits of flag
vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners

\subsec{plotcursor$(w)$}\kbdsidx{plotcursor}\label{se:plotcursor}
Give as a 2-component vector the current
(scaled) position of the virtual cursor corresponding to the rectwindow $w$.

\subsec{plotdraw$(\var{list}, \{\fl=0\})$}\kbdsidx{plotdraw}\label{se:plotdraw}
Physically draw the rectwindows given in $list$
which must be a vector whose number of components is divisible by 3. If
$list=[w1,x1,y1,w2,x2,y2,\dots]$, the windows $w1$, $w2$, etc.~are
physically placed with their upper left corner at physical position
$(x1,y1)$, $(x2,y2)$,\dots\ respectively, and are then drawn together.
Overlapping regions will thus be drawn twice, and the windows are considered
transparent. Then display the whole drawing in a special window on your
screen. If $\fl \neq 0$, x1, y1 etc. express fractions of the size of the
current output device

\subsec{ploth$(X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{ploth}\label{se:ploth}
High precision plot of the function $y=f(x)$ represented by the expression
\var{expr}, $x$ going from $a$ to $b$. This opens a specific window (which is
killed whenever you click on it), and returns a four-component vector giving
the coordinates of the bounding box in the form
$[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.

\misctitle{Important note} \kbd{ploth} may evaluate \kbd{expr} thousands of
times; given the relatively low resolution of plotting devices, few
significant digits of the result will be meaningful. Hence you should keep
the current precision to a minimum (e.g.~9) before calling this function.

$n$ specifies the number of reference point on the graph, where a value of 0
means we use the hardwired default values (1000 for general plot, 1500 for
parametric plot, and 8 for recursive plot).

If no $\fl$ is given, \var{expr} is either a scalar expression $f(X)$, in which
case the plane curve $y=f(X)$ will be drawn, or a vector
$[f_1(X),\dots,f_k(X)]$, and then all the curves $y=f_i(X)$ will be drawn in
the same window.

\noindent The binary digits of $\fl$ mean:

\item $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
be a vector with an even number of components. Successive pairs are then
understood as the parametric coordinates of a plane curve. Each of these are
then drawn.

For instance:
\bprog
ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
ploth(X=0,2*Pi,[sin(X),cos(X)])
ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
@eprog\noindent draw successively a circle, two entwined sinusoidal curves
and a circle cut by the line $y=x$.

\item $2 = \kbd{Recursive}$: \tev{recursive plot}. If this flag is set,
only \emph{one} curve can be drawn at a time, i.e.~\var{expr} must be either a
two-component vector (for a single parametric curve, and the parametric flag
\emph{has} to be set), or a scalar function. The idea is to choose pairs of
successive reference points, and if their middle point is not too far away
from the segment joining them, draw this as a local approximation to the
curve. Otherwise, add the middle point to the reference points. This is
fast, and usually more precise than usual plot. Compare the results of
\bprog
ploth(X=-1,1, sin(1/X), "Recursive")
ploth(X=-1,1, sin(1/X))
@eprog\noindent
for instance. But beware that if you are extremely unlucky, or choose too few
reference points, you may draw some nice polygon bearing little resemblance
to the original curve. For instance you should \emph{never} plot recursively
an odd function in a symmetric interval around 0. Try
\bprog
ploth(x = -20, 20, sin(x), "Recursive")
@eprog\noindent
to see why. Hence, it's usually a good idea to try and plot the same curve
with slightly different parameters.

The other values toggle various display options:

\item $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
computed extrema. This is used in conjunction with \tet{plotscale} when
graphing multiple functions on a rectwindow (as a \tet{plotrecth} call):
\bprog
  s = plothsizes();
  plotinit(0, s[2]-1, s[2]-1);
  plotscale(0, -1,1, -1,1);
  plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")
  plotdraw([0, -1,1]);
@eprog\noindent
This way we get a proper circle instead of the distorted ellipse produced by
\bprog
  ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")
@eprog

\item $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.

\item $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.

\item $32 = \kbd{no\_Frame}$: do not print frame.

\item $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.

\item $128 = \kbd{Points\_too}$: plot both lines and points.

\item $256 = \kbd{Splines}$: use splines to interpolate the points.

\item $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.

\item $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.

\item $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.

\item $4096 = \kbd{Complex}$: is a parametric plot but where each member of
\kbd{expr} is considered a complex number encoding the two coordinates of a
point. For instance:
\bprog
ploth(X=0,2*Pi,exp(I*X), "Complex")
ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
@eprog\noindent will draw respectively a circle and a circle cut by the line
$y=x$.

\subsec{plothraw$(\var{listx},\var{listy},\{\fl=0\})$}\kbdsidx{plothraw}\label{se:plothraw}
Given \var{listx} and \var{listy} two vectors of equal length, plots (in
high precision) the points whose $(x,y)$-coordinates are given in
\var{listx} and \var{listy}. Automatic positioning and scaling is done, but
with the same scaling factor on $x$ and $y$. If $\fl$ is 1, join points,
other non-0 flags toggle display options and should be combinations of bits
$2^k$, $k \geq 3$ as in \kbd{ploth}.

\subsec{plothsizes$(\{\fl=0\})$}\kbdsidx{plothsizes}\label{se:plothsizes}
Return data corresponding to the output window
in the form of a 6-component vector: window width and height, sizes for ticks
in horizontal and vertical directions (this is intended for the \kbd{gnuplot}
interface and is currently not significant), width and height of characters.

If $\fl = 0$, sizes of ticks and characters are in
pixels, otherwise are fractions of the screen size

\subsec{plotinit$(w,\{x\},\{y\},\{\fl=0\})$}\kbdsidx{plotinit}\label{se:plotinit}
Initialize the rectwindow $w$,
destroying any rect objects you may have already drawn in $w$. The virtual
cursor is set to $(0,0)$. The rectwindow size is set to width $x$ and height
$y$; omitting either $x$ or $y$ means we use the full size of the device
in that direction.
If $\fl=0$, $x$ and $y$ represent pixel units. Otherwise, $x$ and $y$
are understood as fractions of the size of the current output device (hence
must be between $0$ and $1$) and internally converted to pixels.

The plotting device imposes an upper bound for $x$ and $y$, for instance the
number of pixels for screen output. These bounds are available through the
\tet{plothsizes} function. The following sequence initializes in a portable
way (i.e independent of the output device) a window of maximal size, accessed
through coordinates in the $[0,1000] \times [0,1000]$ range:

\bprog
s = plothsizes();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0,1000, 0,1000);
@eprog

\subsec{plotkill$(w)$}\kbdsidx{plotkill}\label{se:plotkill}
Erase rectwindow $w$ and free the corresponding memory. Note that if you
want to use the rectwindow $w$ again, you have to use \kbd{plotinit} first
to specify the new size. So it's better in this case to use \kbd{plotinit}
directly as this throws away any previous work in the given rectwindow.

\subsec{plotlines$(w,X,Y,\{\fl=0\})$}\kbdsidx{plotlines}\label{se:plotlines}
Draw on the rectwindow $w$
the polygon such that the (x,y)-coordinates of the vertices are in the
vectors of equal length $X$ and $Y$. For simplicity, the whole
polygon is drawn, not only the part of the polygon which is inside the
rectwindow. If $\fl$ is non-zero, close the polygon. In any case, the
virtual cursor does not move.

$X$ and $Y$ are allowed to be scalars (in this case, both have to).
There, a single segment will be drawn, between the virtual cursor current
position and the point $(X,Y)$. And only the part thereof which
actually lies within the boundary of $w$. Then \emph{move} the virtual cursor
to $(X,Y)$, even if it is outside the window. If you want to draw a
line from $(x1,y1)$ to $(x2,y2)$ where $(x1,y1)$ is not necessarily the
position of the virtual cursor, use \kbd{plotmove(w,x1,y1)} before using this
function.

\subsec{plotlinetype$(w,\var{type})$}\kbdsidx{plotlinetype}\label{se:plotlinetype}
This function is obsolete and currently a no-op.

Change the type of lines subsequently plotted in rectwindow $w$.
\var{type} $-2$ corresponds to frames, $-1$ to axes, larger values may
correspond to something else. $w = -1$ changes highlevel plotting.

\subsec{plotmove$(w,x,y)$}\kbdsidx{plotmove}\label{se:plotmove}
Move the virtual cursor of the rectwindow $w$ to position $(x,y)$.

\subsec{plotpoints$(w,X,Y)$}\kbdsidx{plotpoints}\label{se:plotpoints}
Draw on the rectwindow $w$ the
points whose $(x,y)$-coordinates are in the vectors of equal length $X$ and
$Y$ and which are inside $w$. The virtual cursor does \emph{not} move. This
is basically the same function as \kbd{plothraw}, but either with no scaling
factor or with a scale chosen using the function \kbd{plotscale}.

As was the case with the \kbd{plotlines} function, $X$ and $Y$ are allowed to
be (simultaneously) scalar. In this case, draw the single point $(X,Y)$ on
the rectwindow $w$ (if it is actually inside $w$), and in any case
\emph{move} the virtual cursor to position $(x,y)$.

\subsec{plotpointsize$(w,\var{size})$}\kbdsidx{plotpointsize}\label{se:plotpointsize}
This function is obsolete. It is currently a no-op.

Changes the ``size'' of following points in rectwindow $w$. If $w = -1$,
change it in all rectwindows.

\subsec{plotpointtype$(w,\var{type})$}\kbdsidx{plotpointtype}\label{se:plotpointtype}
This function is obsolete and currently a no-op.

change the type of points subsequently plotted in rectwindow $w$.
$\var{type} = -1$ corresponds to a dot, larger values may correspond to
something else. $w = -1$ changes highlevel plotting.

\subsec{plotrbox$(w,\var{dx},\var{dy})$}\kbdsidx{plotrbox}\label{se:plotrbox}
Draw in the rectwindow $w$ the outline of the rectangle which is such
that the points $(x1,y1)$ and $(x1+dx,y1+dy)$ are opposite corners, where
$(x1,y1)$ is the current position of the cursor. Only the part of the
rectangle which is in $w$ is drawn. The virtual cursor does \emph{not} move.

\subsec{plotrecth$(w,X=a,b,\var{expr},\{\fl=0\},\{n=0\})$}\kbdsidx{plotrecth}\label{se:plotrecth}
Writes to rectwindow $w$ the curve output of
\kbd{ploth}$(w,X=a,b,\var{expr},\fl,n)$. Returns a vector for the bounding box.

\subsec{plotrecthraw$(w,\var{data},\{\var{flags}=0\})$}\kbdsidx{plotrecthraw}\label{se:plotrecthraw}
Plot graph(s) for
\var{data} in rectwindow $w$. $\fl$ has the same significance here as in
\kbd{ploth}, though recursive plot is no more significant.

\var{data} is a vector of vectors, each corresponding to a list a coordinates.
If parametric plot is set, there must be an even number of vectors, each
successive pair corresponding to a curve. Otherwise, the first one contains
the $x$ coordinates, and the other ones contain the $y$-coordinates
of curves to plot.

\subsec{plotrline$(w,\var{dx},\var{dy})$}\kbdsidx{plotrline}\label{se:plotrline}
Draw in the rectwindow $w$ the part of the segment
$(x1,y1)-(x1+dx,y1+dy)$ which is inside $w$, where $(x1,y1)$ is the current
position of the virtual cursor, and move the virtual cursor to
$(x1+dx,y1+dy)$ (even if it is outside the window).

\subsec{plotrmove$(w,\var{dx},\var{dy})$}\kbdsidx{plotrmove}\label{se:plotrmove}
Move the virtual cursor of the rectwindow $w$ to position
$(x1+dx,y1+dy)$, where $(x1,y1)$ is the initial position of the cursor
(i.e.~to position $(dx,dy)$ relative to the initial cursor).

\subsec{plotrpoint$(w,\var{dx},\var{dy})$}\kbdsidx{plotrpoint}\label{se:plotrpoint}
Draw the point $(x1+dx,y1+dy)$ on the rectwindow $w$ (if it is inside
$w$), where $(x1,y1)$ is the current position of the cursor, and in any case
move the virtual cursor to position $(x1+dx,y1+dy)$.

\subsec{plotscale$(w,\var{x1},\var{x2},\var{y1},\var{y2})$}\kbdsidx{plotscale}\label{se:plotscale}
Scale the local coordinates of the rectwindow $w$ so that $x$ goes from
$x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2<x1$ and $y2<y1$ being
allowed). Initially, after the initialization of the rectwindow $w$ using
the function \kbd{plotinit}, the default scaling is the graphic pixel count,
and in particular the $y$ axis is oriented downwards since the origin is at
the upper left. The function \kbd{plotscale} allows to change all these
defaults and should be used whenever functions are graphed.

\subsec{plotstring$(w,x,\{\var{flags}=0\})$}\kbdsidx{plotstring}\label{se:plotstring}
Draw on the rectwindow $w$ the String $x$ (see \secref{se:strings}), at
the current position of the cursor.

\fl\ is used for justification: bits 1 and 2 regulate horizontal alignment:
left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical
alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small
gap between point and string: horizontal if bit 16 is set, vertical if bit
32 is set (see the tutorial for an example).

\subsec{psdraw$(\var{list}, \{\fl=0\})$}\kbdsidx{psdraw}\label{se:psdraw}
Same as \kbd{plotdraw}, except that the output is a PostScript program
appended to the \kbd{psfile}, and flag!=0 scales the plot from size of the
current output device to the standard PostScript plotting size

\subsec{psploth$(X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{psploth}\label{se:psploth}
Same as \kbd{ploth}, except that the output is a PostScript program
appended to the \kbd{psfile}.

\subsec{psplothraw$(\var{listx},\var{listy},\{\fl=0\})$}\kbdsidx{psplothraw}\label{se:psplothraw}
Same as \kbd{plothraw}, except that the output is a PostScript program
appended to the \kbd{psfile}.
%SECTION: graphic

\section{Programming in GP: control statements}
\sidx{programming}\label{se:programming}

  A number of control statements are available in GP. They are simpler and
have a syntax slightly different from their C counterparts, but are quite
powerful enough to write any kind of program. Some of them are specific to
GP, since they are made for number theorists. As usual, $X$ will denote any
simple variable name, and \var{seq} will always denote a sequence of
expressions, including the empty sequence.

\misctitle{Caveat} In constructs like
\bprog
    for (X = a,b, seq)
@eprog\noindent
the variable \kbd{X} is lexically scoped to the loop, leading to possibly
unexpected behavior:
\bprog
    n = 5;
    for (n = 1, 10,
      if (something_nice(), break);
    );
    \\ @com at this point \kbd{n} is 5 !
@eprog\noindent
If the sequence \kbd{seq} modifies the loop index, then the loop
is modified accordingly:
\bprog
    ? for (n = 1, 10, n += 2; print(n))
    3
    6
    9
    12
@eprog


\subsec{break$(\{n=1\})$}\kbdsidx{break}\label{se:break}
Interrupts execution of current \var{seq}, and
immediately exits from the $n$ innermost enclosing loops, within the
current function call (or the top level loop); the integer $n$ must be
positive. If $n$ is greater than the number of enclosing loops, all
enclosing loops are exited.

\subsec{breakpoint$()$}\kbdsidx{breakpoint}\label{se:breakpoint}
Interrupt the program and enter the breakloop. The program continues when
the breakloop is exited.
\bprog
? f(N,x)=my(z=x^2+1);breakpoint();gcd(N,z^2+1-z);
? f(221,3)
  ***   at top-level: f(221,3)
  ***                 ^--------
  ***   in function f: my(z=x^2+1);breakpoint();gcd(N,z
  ***                              ^--------------------
  ***   Break loop: type <Return> to continue; 'break' to go back to GP
break> z
10
break>
%2 = 13
@eprog

\subsec{dbg\_down$(\{n=1\})$}\kbdsidx{dbg_down}\label{se:dbg_down}
(In the break loop) go down n frames. This allows to cancel a previous call to
\kbd{dbg\_up}.

\subsec{dbg\_err$()$}\kbdsidx{dbg_err}\label{se:dbg_err}
In the break loop, return the error data of the current error, if any.
See \tet{iferr} for details about error data.  Compare:
\bprog
? iferr(1/(Mod(2,12019)^(6!)-1),E,Vec(E))
%1 = ["e_INV", "Fp_inv", Mod(119, 12019)]
? 1/(Mod(2,12019)^(6!)-1)
  ***   at top-level: 1/(Mod(2,12019)^(6!)-
  ***                  ^--------------------
  *** _/_: impossible inverse in Fp_inv: Mod(119, 12019).
  ***   Break loop: type 'break' to go back to GP prompt
break> Vec(dbg_err())
["e_INV", "Fp_inv", Mod(119, 12019)]
@eprog

\subsec{dbg\_up$(\{n=1\})$}\kbdsidx{dbg_up}\label{se:dbg_up}
(In the break loop) go up n frames. This allows to inspect data of the
parent function. To cancel a \tet{dbg_up} call, use \tet{dbg_down}

\subsec{dbg\_x$(A\{,n\})$}\kbdsidx{dbg_x}\label{se:dbg_x}
Print the inner structure of \kbd{A}, complete if \kbd{n} is omitted, up
to level \kbd{n} otherwise. This is useful for debugging. This is similar to
\b{x} but does not require \kbd{A} to be an history entry. In particular,
it can be used in the break loop.

\subsec{for$(X=a,b,\var{seq})$}\kbdsidx{for}\label{se:for}
Evaluates \var{seq}, where
the formal variable $X$ goes from $a$ to $b$. Nothing is done if $a>b$.
$a$ and $b$ must be in $\R$. If $b$ is set to \kbd{+oo}, the loop will not
stop; it is expected that the caller will break out of the loop itself at some
point, using \kbd{break} or \kbd{return}.

\subsec{forcomposite$(n=a,\{b\},\var{seq})$}\kbdsidx{forcomposite}\label{se:forcomposite}
Evaluates \var{seq},
where the formal variable $n$ ranges over the composite numbers between the
non-negative real numbers $a$ to $b$, including $a$ and $b$ if they are
composite. Nothing is done if $a>b$.
\bprog
? forcomposite(n = 0, 10, print(n))
4
6
8
9
10
@eprog\noindent Omitting $b$ means we will run through all composites $\geq a$,
starting an infinite loop; it is expected that the user will break out of
the loop himself at some point, using \kbd{break} or \kbd{return}.

Note that the value of $n$ cannot be modified within \var{seq}:
\bprog
? forcomposite(n = 2, 10, n = [])
 ***   at top-level: forcomposite(n=2,10,n=[])
 ***                                      ^---
 ***   index read-only: was changed to [].
@eprog

\subsec{fordiv$(n,X,\var{seq})$}\kbdsidx{fordiv}\label{se:fordiv}
Evaluates \var{seq}, where
the formal variable $X$ ranges through the divisors of $n$
(see \tet{divisors}, which is used as a subroutine). It is assumed that
\kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
it is possible to input a factorization matrix, i.e. the output of
\kbd{factor(n)}.

This routine uses \kbd{divisors} as a subroutine, then loops over the
divisors. In particular, if $n$ is an integer, divisors are sorted by
increasing size.

To avoid storing all divisors, possibly using a lot of memory, the following
(much slower) routine loops over the divisors using essentially constant
space:
\bprog
FORDIV(N)=
{ my(P, E);

  P = factor(N); E = P[,2]; P = P[,1];
  forvec( v = vector(#E, i, [0,E[i]]),
  X = factorback(P, v)
  \\ ...
);
}
? for(i=1,10^5, FORDIV(i))
time = 3,445 ms.
? for(i=1,10^5, fordiv(i, d, ))
time = 490 ms.
@eprog

\subsec{forell$(E,a,b,\var{seq},\{\fl=0\})$}\kbdsidx{forell}\label{se:forell}
Evaluates \var{seq}, where the formal variable $E = [\var{name}, M, G]$
ranges through all elliptic curves of conductors from $a$ to $b$. In this
notation \var{name} is the curve name in Cremona's elliptic  curve  database,
$M$ is the minimal model, $G$ is a $\Z$-basis of the free part of the
Mordell-Weil group $E(\Q)$. If flag is non-zero, select
only the first curve in each isogeny class.
\bprog
? forell(E, 1, 500, my([name,M,G] = E); \
    if (#G > 1, print(name)))
389a1
433a1
446d1
? c = 0; forell(E, 1, 500, c++); c   \\ number of curves
%2 = 2214
? c = 0; forell(E, 1, 500, c++, 1); c \\ number of isogeny classes
%3 = 971
@eprog\noindent
The \tet{elldata} database must be installed and contain data for the
specified conductors.

\synt{forell}{void *data, long (*call)(void*,GEN), long a, long b, long flag}.

\subsec{forpart$(X=k,\var{seq},\{a=k\},\{n=k\})$}\kbdsidx{forpart}\label{se:forpart}
Evaluate \var{seq} over the partitions $X=[x_1,\dots x_n]$ of the
integer $k$, i.e.~increasing sequences $x_1\leq x_2\dots \leq x_n$ of sum
$x_1+\dots + x_n=k$. By convention, $0$ admits only the empty partition and
negative numbers have no partitions. A partition is given by a
\typ{VECSMALL}, where parts are sorted in nondecreasing order:
\bprog
? forpart(X=3, print(X))
Vecsmall([3])
Vecsmall([1, 2])
Vecsmall([1, 1, 1])
@eprog\noindent Optional parameters $n$ and $a$ are as follows:

\item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
partitions to length less than $\var{nmax}$ (resp. length between
$\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
entries.

\item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
$\var{amax}$).

By default, parts are positive and we remove zero entries unless $amin\leq0$,
in which case $X$ is of constant length $\var{nmax}$.
\bprog
\\ at most 3 non-zero parts, all <= 4
? forpart(v=5,print(Vec(v)),4,3)
[1, 4]
[2, 3]
[1, 1, 3]
[1, 2, 2]

\\ between 2 and 4 parts less than 5, fill with zeros
? forpart(v=5,print(Vec(v)),[0,5],[2,4])
[0, 0, 1, 4]
[0, 0, 2, 3]
[0, 1, 1, 3]
[0, 1, 2, 2]
[1, 1, 1, 2]
@eprog\noindent
The behavior is unspecified if $X$ is modified inside the loop.

\synt{forpart}{void *data, long (*call)(void*,GEN), long k, GEN a, GEN n}.

\subsec{forprime$(p=a,\{b\},\var{seq})$}\kbdsidx{forprime}\label{se:forprime}
Evaluates \var{seq},
where the formal variable $p$ ranges over the prime numbers between the real
numbers $a$ to $b$, including $a$ and $b$ if they are prime. More precisely,
the value of
$p$ is incremented to \kbd{nextprime($p$ + 1)}, the smallest prime strictly
larger than $p$, at the end of each iteration. Nothing is done if $a>b$.
\bprog
? forprime(p = 4, 10, print(p))
5
7
@eprog\noindent Setting $b$ to \kbd{+oo} means we will run through all primes
$\geq a$, starting an infinite loop; it is expected that the caller will break
out of the loop itself at some point, using \kbd{break} or \kbd{return}.

Note that the value of $p$ cannot be modified within \var{seq}:
\bprog
? forprime(p = 2, 10, p = [])
 ***   at top-level: forprime(p=2,10,p=[])
 ***                                   ^---
 ***   prime index read-only: was changed to [].
@eprog

\subsec{forstep$(X=a,b,s,\var{seq})$}\kbdsidx{forstep}\label{se:forstep}
Evaluates \var{seq},
where the formal variable $X$ goes from $a$ to $b$, in increments of $s$.
Nothing is done if $s>0$ and $a>b$ or if $s<0$ and $a<b$. $s$ must be in
$\R^*$ or a vector of steps $[s_1,\dots,s_n]$. In the latter case, the
successive steps are used in the order they appear in $s$.

\bprog
? forstep(x=5, 20, [2,4], print(x))
5
7
11
13
17
19
@eprog\noindent Setting $b$ to \kbd{+oo} will start an infinite loop; it is
expected that the caller will break out of the loop itself at some point,
using \kbd{break} or \kbd{return}.

\subsec{forsubgroup$(H=G,\{\var{bound}\},\var{seq})$}\kbdsidx{forsubgroup}\label{se:forsubgroup}
Evaluates \var{seq} for
each subgroup $H$ of the \emph{abelian} group $G$ (given in
SNF\sidx{Smith normal form} form or as a vector of elementary divisors).

If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed

The subgroups are not ordered in any
obvious way, unless $G$ is a $p$-group in which case Birkhoff's algorithm
produces them by decreasing index. A \idx{subgroup} is given as a matrix
whose columns give its generators on the implicit generators of $G$. For
example, the following prints all subgroups of index less than 2 in $G =
\Z/2\Z g_1 \times \Z/2\Z g_2$:

\bprog
? G = [2,2]; forsubgroup(H=G, 2, print(H))
[1; 1]
[1; 2]
[2; 1]
[1, 0; 1, 1]
@eprog\noindent
The last one, for instance is generated by $(g_1, g_1 + g_2)$. This
routine is intended to treat huge groups, when \tet{subgrouplist} is not an
option due to the sheer size of the output.

For maximal speed the subgroups have been left as produced by the algorithm.
To print them in canonical form (as left divisors of $G$ in HNF form), one
can for instance use
\bprog
? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))
[2, 1; 0, 1]
[1, 0; 0, 2]
[2, 0; 0, 1]
[1, 0; 0, 1]
@eprog\noindent
Note that in this last representation, the index $[G:H]$ is given by the
determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
applications to \idx{Galois} theory.

\synt{forsubgroup}{void *data, long (*call)(void*,GEN), GEN G, GEN bound}.

\subsec{forvec$(X=v,\var{seq},\{\fl=0\})$}\kbdsidx{forvec}\label{se:forvec}
Let $v$ be an $n$-component
vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$
for $1\le i\le n$, where all entries $a_i$, $b_i$ are real numbers.
This routine lets $X$ vary over the $n$-dimensional hyperrectangle
given by $v$, that is, $X$ is an $n$-dimensional vector taking
successively its entries $X[i]$ in the range $[a_i,b_i]$ with lexicographic
ordering. (The component with the highest index moves the fastest.)
The type of $X$ is the same as the type of $v$: \typ{VEC} or \typ{COL}.

The expression \var{seq} is evaluated with the successive values of $X$.

If $\fl=1$, generate only nondecreasing vectors $X$, and
if $\fl=2$, generate only strictly increasing vectors $X$.
\bprog
? forvec (X=[[0,1],[-1,1]], print(X));
[0, -1]
[0, 0]
[0, 1]
[1, -1]
[1, 0]
[1, 1]
? forvec (X=[[0,1],[-1,1]], print(X), 1);
[0, 0]
[0, 1]
[1, 1]
? forvec (X=[[0,1],[-1,1]], print(X), 2)
[0, 1]
@eprog

\subsec{if$(a,\{\var{seq1}\},\{\var{seq2}\})$}\kbdsidx{if}\label{se:if}
Evaluates the expression sequence \var{seq1} if $a$ is non-zero, otherwise
the expression \var{seq2}. Of course, \var{seq1} or \var{seq2} may be empty:

\kbd{if ($a$,\var{seq})} evaluates \var{seq} if $a$ is not equal to zero
(you don't have to write the second comma), and does nothing otherwise,

\kbd{if ($a$,,\var{seq})} evaluates \var{seq} if $a$ is equal to zero, and
does nothing otherwise. You could get the same result using the \kbd{!}
(\kbd{not}) operator: \kbd{if (!$a$,\var{seq})}.

The value of an \kbd{if} statement is the value of the branch that gets
evaluated: for instance
\bprog
x = if(n % 4 == 1, y, z);
@eprog\noindent sets $x$ to $y$ if $n$ is $1$ modulo $4$, and to $z$
otherwise.

Successive 'else' blocks can be abbreviated in a single compound \kbd{if}
as follows:
\bprog
if (test1, seq1,
    test2, seq2,
    ...
    testn, seqn,
    seqdefault);
@eprog\noindent is equivalent to
\bprog
if (test1, seq1
         , if (test2, seq2
                    , ...
                      if (testn, seqn, seqdefault)...));
@eprog For instance, this allows to write traditional switch / case
constructions:
\bprog
if (x == 0, do0(),
    x == 1, do1(),
    x == 2, do2(),
    dodefault());
@eprog

\misctitle{Remark}
The boolean operators \kbd{\&\&} and \kbd{||} are evaluated
according to operator precedence as explained in \secref{se:operators}, but,
contrary to other operators, the evaluation of the arguments is stopped
as soon as the final truth value has been determined. For instance
\bprog
if (x != 0 && f(1/x), ...)
@eprog
\noindent is a perfectly safe statement.

\misctitle{Remark} Functions such as \kbd{break} and \kbd{next} operate on
\emph{loops}, such as \kbd{for$xxx$}, \kbd{while}, \kbd{until}. The \kbd{if}
statement is \emph{not} a loop. (Obviously!)

\subsec{iferr$(\var{seq1},E,\var{seq2}\{,\var{pred}\})$}\kbdsidx{iferr}\label{se:iferr}
Evaluates the expression sequence \var{seq1}. If an error occurs,
set the formal parameter \var{E} set to the error data.
If \var{pred} is not present or evaluates to true, catch the error
and evaluate \var{seq2}. Both \var{pred} and \var{seq2} can reference \var{E}.
The error type is given by \kbd{errname(E)}, and other data can be
accessed using the \tet{component} function. The code \var{seq2} should check
whether the error is the one expected. In the negative the error can be
rethrown using \tet{error(E)} (and possibly caught by an higher \kbd{iferr}
instance). The following uses \kbd{iferr} to implement Lenstra's ECM factoring
 method
\bprog
? ecm(N, B = 1000!, nb = 100)=
  {
    for(a = 1, nb,
      iferr(ellmul(ellinit([a,1]*Mod(1,N)), [0,1]*Mod(1,N), B),
        E, return(gcd(lift(component(E,2)),N)),
        errname(E)=="e_INV" && type(component(E,2)) == "t_INTMOD"))
  }
? ecm(2^101-1)
%2 = 7432339208719
@eprog
The return value of \kbd{iferr} itself is the value of \var{seq2} if an
error occurs, and the value of \var{seq1} otherwise. We now describe the
list of valid error types, and the attached error data \var{E}; in each
case, we list in order the components of \var{E}, accessed via
\kbd{component(E,1)}, \kbd{component(E,2)}, etc.

 \misctitle{Internal errors, ``system'' errors}

 \item \kbd{"e\_ARCH"}. A requested feature $s$ is not available on this
 architecture or operating system.
 \var{E} has one component (\typ{STR}): the missing feature name $s$.

 \item \kbd{"e\_BUG"}. A bug in the PARI library, in function $s$.
 \var{E} has one component (\typ{STR}): the function name $s$.

 \item \kbd{"e\_FILE"}. Error while trying to open a file.
 \var{E} has two components, 1 (\typ{STR}): the file type (input, output,
 etc.), 2 (\typ{STR}): the file name.

 \item \kbd{"e\_IMPL"}. A requested feature $s$ is not implemented.
 \var{E} has one component, 1 (\typ{STR}): the feature name $s$.

 \item \kbd{"e\_PACKAGE"}. Missing optional package $s$.
 \var{E} has one component, 1 (\typ{STR}): the package name $s$.

 \misctitle{Syntax errors, type errors}

 \item \kbd{"e\_DIM"}. The dimensions of arguments $x$ and $y$ submitted
 to function $s$ does not match up.
 E.g., multiplying matrices of inconsistent dimension, adding vectors of
 different lengths,\dots
 \var{E} has three component, 1 (\typ{STR}): the function name $s$, 2: the
 argument $x$, 3: the argument $y$.

 \item \kbd{"e\_FLAG"}. A flag argument is out of bounds in function $s$.
 \var{E} has one component, 1 (\typ{STR}): the function name $s$.

 \item \kbd{"e\_NOTFUNC"}. Generated by the PARI evaluator; tried to use a
\kbd{GEN} $x$ which is not a \typ{CLOSURE} in a function call syntax (as in
\kbd{f = 1; f(2);}).
 \var{E} has one component, 1: the offending \kbd{GEN} $x$.

 \item \kbd{"e\_OP"}. Impossible operation between two objects than cannot
 be typecast to a sensible common domain for deeper reasons than a type
 mismatch, usually for arithmetic reasons. As in \kbd{O(2) + O(3)}: it is
 valid to add two \typ{PADIC}s, provided the underlying prime is the same; so
 the addition is not forbidden a priori for type reasons, it only becomes so
 when inspecting the objects and trying to perform the operation.
 \var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
 2: first argument, 3: second argument.

 \item \kbd{"e\_TYPE"}. An argument $x$ of function $s$ had an unexpected type.
 (As in \kbd{factor("blah")}.)
 \var{E} has two components, 1 (\typ{STR}): the function name $s$,
 2: the offending argument $x$.

 \item \kbd{"e\_TYPE2"}. Forbidden operation between two objects than cannot be
 typecast to a sensible common domain, because their types do not match up.
 (As in \kbd{Mod(1,2) + Pi}.)
 \var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
 2: first argument, 3: second argument.

 \item \kbd{"e\_PRIORITY"}. Object $o$ in function $s$ contains
 variables whose priority is incompatible with the expected operation.
 E.g.~\kbd{Pol([x,1], 'y)}: this raises an error because it's not possible to
 create a polynomial whose coefficients involve variables with higher priority
 than the main variable. $E$ has four components: 1 (\typ{STR}): the function
 name $s$, 2: the offending argument $o$, 3 (\typ{STR}): an operator
 $\var{op}$ describing the priority error, 4 (\typ{POL}):
 the variable $v$ describing the priority error. The argument
 satisfies $\kbd{variable}(x)~\var{op} \kbd{variable}(v)$.

 \item \kbd{"e\_VAR"}. The variables of arguments $x$ and $y$ submitted
 to function $s$ does not match up. E.g., considering the algebraic number
 \kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(x\pow2+1)}.
 \var{E} has three component, 1 (\typ{STR}): the function name $s$, 2
 (\typ{POL}): the argument $x$, 3 (\typ{POL}): the argument $y$.

 \misctitle{Overflows}

 \item \kbd{"e\_COMPONENT"}. Trying to access an inexistent component in a
 vector/matrix/list in a function: the index is less than $1$ or greater
 than the allowed length.
 \var{E} has four components,
 1 (\typ{STR}): the function name
 2 (\typ{STR}): an operator $\var{op}$ ($<$ or $>$),
 2 (\typ{GEN}): a numerical limit $l$ bounding the allowed range,
 3 (\kbd{GEN}): the index $x$. It satisfies $x$ \var{op} $l$.

 \item \kbd{"e\_DOMAIN"}. An argument is not in the function's domain.
 \var{E} has five components, 1 (\typ{STR}): the function name,
 2 (\typ{STR}): the mathematical name of the out-of-domain argument
 3 (\typ{STR}): an operator $\var{op}$ describing the domain error,
 4 (\typ{GEN}): the numerical limit $l$ describing the domain error,
 5 (\kbd{GEN}): the out-of-domain argument $x$. The argument satisfies $x$
 \var{op} $l$, which prevents it from belonging to the function's domain.

 \item \kbd{"e\_MAXPRIME"}. A function using the precomputed list of prime
 numbers ran out of primes.
 \var{E} has one component, 1 (\typ{INT}): the requested prime bound, which
 overflowed \kbd{primelimit} or $0$ (bound is unknown).

 \item \kbd{"e\_MEM"}. A call to \tet{pari_malloc} or \tet{pari_realloc}
 failed. \var{E} has no component.

 \item \kbd{"e\_OVERFLOW"}. An object in function $s$ becomes too large to be
 represented within PARI's hardcoded limits. (As in \kbd{2\pow2\pow2\pow10} or
 \kbd{exp(1e100)}, which overflow in \kbd{lg} and \kbd{expo}.)
 \var{E} has one component, 1 (\typ{STR}): the function name $s$.

 \item \kbd{"e\_PREC"}. Function $s$ fails because input accuracy is too low.
 (As in \kbd{floor(1e100)} at default accuracy.)
 \var{E} has one component, 1 (\typ{STR}): the function name $s$.

 \item \kbd{"e\_STACK"}. The PARI stack overflows.
 \var{E} has no component.

 \misctitle{Errors triggered intentionally}

 \item \kbd{"e\_ALARM"}. A timeout, generated by the \tet{alarm} function.
 \var{E} has one component (\typ{STR}): the error message to print.

 \item \kbd{"e\_USER"}. A user error, as triggered by
 \tet{error}($g_1,\dots,g_n)$.
 \var{E} has one component, 1 (\typ{VEC}): the vector of $n$ arguments given
 to \kbd{error}.

 \misctitle{Mathematical errors}

 \item \kbd{"e\_CONSTPOL"}. An argument of function $s$ is a constant
 polynomial, which does not make sense. (As in \kbd{galoisinit(Pol(1))}.)
 \var{E} has one component, 1 (\typ{STR}): the function name $s$.

 \item \kbd{"e\_COPRIME"}. Function $s$ expected coprime arguments,
 and did receive $x,y$, which were not.
 \var{E} has three component, 1 (\typ{STR}): the function name $s$,
 2: the argument $x$, 3: the argument $y$.

 \item \kbd{"e\_INV"}. Tried to invert a non-invertible object $x$ in
 function $s$.
 \var{E} has two components, 1 (\typ{STR}): the function name $s$,
 2: the non-invertible $x$. If $x = \kbd{Mod}(a,b)$
 is a \typ{INTMOD} and $a$ is not $0$ mod $b$, this allows to factor
 the modulus, as \kbd{gcd}$(a,b)$ is a non-trivial divisor of $b$.

 \item \kbd{"e\_IRREDPOL"}. Function $s$ expected an irreducible polynomial,
 and did receive $T$, which was not. (As in \kbd{nfinit(x\pow2-1)}.)
 \var{E} has two component, 1 (\typ{STR}): the function name $s$,
 2 (\typ{POL}): the polynomial $x$.

 \item \kbd{"e\_MISC"}. Generic uncategorized error.
 \var{E} has one component (\typ{STR}): the error message to print.

 \item \kbd{"e\_MODULUS"}. moduli $x$ and $y$ submitted to function $s$ are
 inconsistent. As in
 \bprog
   nfalgtobasis(nfinit(t^3-2), Mod(t,t^2+1)
 @eprog\noindent
 \var{E} has three component, 1 (\typ{STR}): the function $s$,
 2: the argument $x$, 3: the argument $x$.

 \item \kbd{"e\_PRIME"}. Function $s$ expected a prime number,
 and did receive $p$, which was not. (As in \kbd{idealprimedec(nf, 4)}.)
 \var{E} has two component, 1 (\typ{STR}): the function name $s$,
 2: the argument $p$.

 \item \kbd{"e\_ROOTS0"}. An argument of function $s$ is a zero polynomial,
 and we need to consider its roots. (As in \kbd{polroots(0)}.) \var{E} has
 one component, 1 (\typ{STR}): the function name $s$.

 \item \kbd{"e\_SQRTN"}. Trying to compute an $n$-th root of $x$, which does
 not exist, in function $s$. (As in \kbd{sqrt(Mod(-1,3))}.)
 \var{E} has two components, 1 (\typ{STR}): the function name $s$,
 2: the argument $x$.

\subsec{next$(\{n=1\})$}\kbdsidx{next}\label{se:next}
Interrupts execution of current $seq$,
resume the next iteration of the innermost enclosing loop, within the
current function call (or top level loop). If $n$ is specified, resume at
the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
loops, all enclosing loops are exited.

\subsec{return$(\{x=0\})$}\kbdsidx{return}\label{se:return}
Returns from current subroutine, with
result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
result, like \kbd{print}).

\subsec{until$(a,\var{seq})$}\kbdsidx{until}\label{se:until}
Evaluates \var{seq} until $a$ is not
equal to 0 (i.e.~until $a$ is true). If $a$ is initially not equal to 0,
\var{seq} is evaluated once (more generally, the condition on $a$ is tested
\emph{after} execution of the \var{seq}, not before as in \kbd{while}).

\subsec{while$(a,\var{seq})$}\kbdsidx{while}\label{se:while}
While $a$ is non-zero, evaluates the expression sequence \var{seq}. The
test is made \emph{before} evaluating the $seq$, hence in particular if $a$
is initially equal to zero the \var{seq} will not be evaluated at all.
%SECTION: programming/control

\section{Programming in GP: other specific functions}
\label{se:gp_program}

  In addition to the general PARI functions, it is necessary to have some
functions which will be of use specifically for \kbd{gp}, though a few of these can
be accessed under library mode. Before we start describing these, we recall
the difference between \emph{strings} and \emph{keywords} (see
\secref{se:strings}): the latter don't get expanded at all, and you can type
them without any enclosing quotes. The former are dynamic objects, where
everything outside quotes gets immediately expanded.


\subsec{Strprintf$(\var{fmt},\{x\}*)$}\kbdsidx{Strprintf}\label{se:Strprintf}
Returns a string built from the remaining arguments according to the
format fmt. The format consists of ordinary characters (not \%), printed
unchanged, and conversions specifications. See \kbd{printf}.
%\syn{NO}

\subsec{addhelp$(\var{sym},\var{str})$}\kbdsidx{addhelp}\label{se:addhelp}
Changes the help message for the symbol \kbd{sym}. The string \var{str}
is expanded on the spot and stored as the online help for \kbd{sym}. It is
recommended to document global variables and user functions in this way,
although \kbd{gp} will not protest if you don't.

You can attach a help text to an alias, but it will never be
shown: aliases are expanded by the \kbd{?} help operator and we get the help
of the symbol the alias points to. Nothing prevents you from modifying the
help of built-in PARI functions. But if you do, we would like to hear why you
needed it!

Without \tet{addhelp}, the standard help for user functions consists of its
name and definition.
\bprog
gp> f(x) = x^2;
gp> ?f
f =
  (x)->x^2

@eprog\noindent Once addhelp is applied to $f$, the function code is no
longer included. It can still be consulted by typing the function name:
\bprog
gp> addhelp(f, "Square")
gp> ?f
Square

gp> f
%2 = (x)->x^2
@eprog

The library syntax is \fun{void}{addhelp}{const char *sym, const char *str}.

\subsec{alarm$(\{s = 0\},\{\var{code}\})$}\kbdsidx{alarm}\label{se:alarm}
If \var{code} is omitted, trigger an \var{e\_ALARM} exception after $s$
seconds, cancelling any previously set alarm; stop a pending alarm if $s =
0$ or is omitted.

Otherwise, if $s$ is positive, the function evaluates \var{code},
aborting after $s$ seconds. The return value is the value of \var{code} if
it ran to completion before the alarm timeout, and a \typ{ERROR} object
otherwise.
\bprog
  ? p = nextprime(10^25); q = nextprime(10^26); N = p*q;
  ? E = alarm(1, factor(N));
  ? type(E)
  %3 = "t_ERROR"
  ? print(E)
  %4 = error("alarm interrupt after 964 ms.")
  ? alarm(10, factor(N));   \\ enough time
  %5 =
  [ 10000000000000000000000013 1]

  [100000000000000000000000067 1]
@eprog\noindent Here is a more involved example: the function
\kbd{timefact(N,sec)} below tries to factor $N$ and gives up after \var{sec}
seconds, returning a partial factorisation.
\bprog
\\ Time-bounded partial factorization
default(factor_add_primes,1);
timefact(N,sec)=
{
  F = alarm(sec, factor(N));
  if (type(F) == "t_ERROR", factor(N, 2^24), F);
}
@eprog\noindent We either return the factorization directly, or replace the
\typ{ERROR} result by a simple bounded factorization \kbd{factor(N, 2\pow 24)}.
Note the \tet{factor_add_primes} trick: any prime larger than $2^{24}$
discovered while attempting the initial factorization is stored and
remembered. When the alarm rings, the subsequent bounded factorization finds
it right away.

\misctitle{Caveat} It is not possible to set a new alarm \emph{within}
another \kbd{alarm} code: the new timer erases the parent one.

The library syntax is \fun{GEN}{gp_alarm}{long s, GEN code = NULL}.

\subsec{alias$(\var{newsym},\var{sym})$}\kbdsidx{alias}\label{se:alias}
Defines the symbol \var{newsym} as an alias for the symbol \var{sym}:
\bprog
? alias("det", "matdet");
? det([1,2;3,4])
%1 = -2
@eprog\noindent
You are not restricted to ordinary functions, as in the above example:
to alias (from/to) member functions, prefix them with `\kbd{\_.}';
to alias operators, use their internal name, obtained by writing
\kbd{\_} in lieu of the operators argument: for instance, \kbd{\_!} and
\kbd{!\_} are the internal names of the factorial and the
logical negation, respectively.
\bprog
? alias("mod", "_.mod");
? alias("add", "_+_");
? alias("_.sin", "sin");
? mod(Mod(x,x^4+1))
%2 = x^4 + 1
? add(4,6)
%3 = 10
? Pi.sin
%4 = 0.E-37
@eprog
Alias expansion is performed directly by the internal GP compiler.
Note that since alias is performed at compilation-time, it does not
require any run-time processing, however it only affects GP code
compiled \emph{after} the alias command is evaluated. A slower but more
flexible alternative is to use variables. Compare
\bprog
? fun = sin;
? g(a,b) = intnum(t=a,b,fun(t));
? g(0, Pi)
%3 = 2.0000000000000000000000000000000000000
? fun = cos;
? g(0, Pi)
%5 = 1.8830410776607851098 E-39
@eprog\noindent
with
\bprog
? alias(fun, sin);
? g(a,b) = intnum(t=a,b,fun(t));
? g(0,Pi)
%2 = 2.0000000000000000000000000000000000000
? alias(fun, cos);  \\ Oops. Does not affect *previous* definition!
? g(0,Pi)
%3 = 2.0000000000000000000000000000000000000
? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
? g(0,Pi)
%5 = 1.8830410776607851098 E-39
@eprog

A sample alias file \kbd{misc/gpalias} is provided with
the standard distribution.

The library syntax is \fun{void}{alias0}{const char *newsym, const char *sym}.

\subsec{allocatemem$(\{s=0\})$}\kbdsidx{allocatemem}\label{se:allocatemem}
This special operation changes the stack size \emph{after}
initialization. $x$ must be a non-negative integer. If $x > 0$, a new stack
of at least $x$ bytes is allocated. We may allocate more than $x$ bytes if
$x$ is way too small, or for alignment reasons: the current formula is
$\max(16*\ceil{x/16}, 500032)$ bytes.

If $x=0$, the size of the new stack is twice the size of the old one.

This command is much more useful if \tet{parisizemax} is non-zero, and we
describe this case first. With \kbd{parisizemax} enabled, there are three
sizes of interest:

\item a virtual stack size, \tet{parisizemax}, which is an absolute upper
limit for the stack size; this is set by \kbd{default(parisizemax, ...)}.

\item the desired typical stack size, \tet{parisize}, that will grow as
needed, up to \tet{parisizemax}; this is set by \kbd{default(parisize, ...)}.

\item the current stack size, which is less that \kbd{parisizemax},
typically equal to \kbd{parisize} but possibly larger and increasing
dynamically as needed; \kbd{allocatemem} allows to change that one
explicitly.

The \kbd{allocatemem} command forces stack
usage to increase temporarily (up to \kbd{parisizemax} of course); for
instance if you notice using \kbd{\bs gm2} that we seem to collect garbage a
lot, e.g.
\bprog
? \gm2
  debugmem = 2
? default(parisize,"32M")
 ***   Warning: new stack size = 32000000 (30.518 Mbytes).
? bnfinit('x^2+10^30-1)
 *** bnfinit: collecting garbage in hnffinal, i = 1.
 *** bnfinit: collecting garbage in hnffinal, i = 2.
 *** bnfinit: collecting garbage in hnffinal, i = 3.
@eprog\noindent and so on for hundred of lines. Then, provided the
\tet{breakloop} default is set, you can interrupt the computation, type
\kbd{allocatemem(100*10\pow6)} at the break loop prompt, then let the
computation go on by typing \kbd{<Enter>}. Back at the \kbd{gp} prompt,
the desired stack size of \kbd{parisize} is restored. Note that changing either
\kbd{parisize} or \kbd{parisizemax} at the break loop prompt would interrupt
the computation, contrary to the above.

In most cases, \kbd{parisize} will increase automatically (up to
\kbd{parisizemax}) and there is no need to perform the above maneuvers.
But that the garbage collector is sufficiently efficient that
a given computation can still run without increasing the stack size,
albeit very slowly due to the frequent garbage collections.

\misctitle{Deprecated: when \kbd{parisizemax} is unset}
This is currently still the default behavior in order not to break backward
compatibility. The rest of this section documents the
behavior of \kbd{allocatemem} in that (deprecated) situation: it becomes a
synonym for \kbd{default(parisize,...)}. In that case, there is no
notion of a virtual stack, and the stack size is always equal to
\kbd{parisize}. If more memory is needed, the PARI stack overflows, aborting
the computation.

Thus, increasing \kbd{parisize} via \kbd{allocatemem} or
\kbd{default(parisize,...)} before a big computation is important.
Unfortunately, either must be typed at the \kbd{gp} prompt in
interactive usage, or left by itself at the start of batch files.
They cannot be used meaningfully in loop-like constructs, or as part of a
larger expression sequence, e.g
\bprog
   allocatemem(); x = 1;   \\@com This will not set \kbd{x}!
@eprog\noindent
In fact, all loops are immediately exited, user functions terminated, and
the rest of the sequence following \kbd{allocatemem()} is silently
discarded, as well as all pending sequences of instructions. We just go on
reading the next instruction sequence from the file we are in (or from the
user). In particular, we have the following possibly unexpected behavior: in
\bprog
   read("file.gp"); x = 1
@eprog\noindent were \kbd{file.gp} contains an \kbd{allocatemem} statement,
the \kbd{x = 1} is never executed, since all pending instructions in the
current sequence are discarded.

The reason for these unfortunate side-effects is that, with
\kbd{parisizemax} disabled, increasing the stack size physically
moves the stack, so temporary objects created during the current expression
evaluation are not correct anymore. (In particular byte-compiled expressions,
which are allocated on the stack.) To avoid accessing obsolete pointers to
the old stack, this routine ends by a \kbd{longjmp}.

The library syntax is \fun{void}{gp_allocatemem}{GEN s = NULL}.

\subsec{apply$(f, A)$}\kbdsidx{apply}\label{se:apply}
Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}. If \kbd{A}
is a scalar, return \kbd{f(A)}. If \kbd{A} is a polynomial or power series,
apply \kbd{f} on all coefficients. If \kbd{A} is a vector or list, return
the elements $f(x)$ where $x$ runs through \kbd{A}. If \kbd{A} is a matrix,
return the matrix whose entries are the $f(\kbd{A[i,j]})$.
\bprog
? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]

[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4
@eprog\noindent Note that many functions already act componentwise on
vectors or matrices, but they almost never act on lists; in this
case, \kbd{apply} is a good solution:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
  ***   at top-level: lift(L)
  ***                 ^-------
  *** lift: incorrect type in lift.
? apply(lift, L);
%2 = List([1, 2])
@eprog
\misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{LIST} or \typ{MAT},
the alternative set-notations
\bprog
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
@eprog\noindent
are available as shortcuts for
\bprog
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
@eprog\noindent respectively:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? [ lift(x) | x<-L ]
%2 = [1, 2]
@eprog

\synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.

\subsec{call$(f, A)$}\kbdsidx{call}\label{se:call}
$A=[a_1,\dots, a_n]$ being a vector and $f$ being a function, returns the
evaluation of $f(a_1,\dots,a_n)$.
$f$ can also be the name of a built-in GP function.
If $\# A =1$, \tet{call}($f,A$) = \tet{apply}($f,A$)[1].
If $f$ is variadic, the variadic arguments must grouped in a vector in
the last component of $A$.

This function is useful

\item when writing a variadic function, to call another one:
\bprog
fprintf(file,format,args[..]) = write(file,call(Strprintf,[format,args]))
@eprog

\item when dealing with function arguments with unspecified arity

The function below implements a global memoization interface:
\bprog
memo=Map();
memoize(f,A[..])=
{
  my(res);
  if(!mapisdefined(memo, [f,A], &res),
    res = call(f,A);
    mapput(memo,[f,A],res));
 res;
}
@eprog
for example:
\bprog
? memoize(factor,2^128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##
  ***   last result computed in 76 ms.
? memoize(factor,2^128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##
  ***   last result computed in 0 ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)
? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? fibo(100)
%7 = 354224848179261915075
@eprog

\item to call operators through their internal names without using
\kbd{alias}
\bprog
matnbelts(M) = call("_*_",matsize(M))
@eprog

The library syntax is \fun{GEN}{call0}{GEN f, GEN A}.

\subsec{default$(\{\var{key}\},\{\var{val}\})$}\kbdsidx{default}\label{se:default}
Returns the default corresponding to keyword \var{key}. If \var{val} is
present, sets the default to \var{val} first (which is subject to string
expansion first). Typing \kbd{default()} (or \b{d}) yields the complete
default list as well as their current values. See \secref{se:defaults} for an
introduction to GP defaults, \secref{se:gp_defaults} for a
list of available defaults, and \secref{se:meta} for some shortcut
alternatives. Note that the shortcuts are meant for interactive use and
usually display more information than \kbd{default}.

The library syntax is \fun{GEN}{default0}{const char *key = NULL, const char *val = NULL}.

\subsec{errname$(E)$}\kbdsidx{errname}\label{se:errname}
Returns the type of the error message \kbd{E} as a string.

The library syntax is \fun{GEN}{errname}{GEN E}.

\subsec{error$(\{\var{str}\}*)$}\kbdsidx{error}\label{se:error}
Outputs its argument list (each of
them interpreted as a string), then interrupts the running \kbd{gp} program,
returning to the input prompt. For instance
\bprog
error("n = ", n, " is not squarefree!")
@eprog\noindent
 % \syn{NO}

\subsec{extern$(\var{str})$}\kbdsidx{extern}\label{se:extern}
The string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output fed into \kbd{gp}, just as if read from a file.

The library syntax is \fun{GEN}{gpextern}{const char *str}.

\subsec{externstr$(\var{str})$}\kbdsidx{externstr}\label{se:externstr}
The string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output is returned as a vector of GP strings, one component per output
line.

The library syntax is \fun{GEN}{externstr}{const char *str}.

\subsec{fold$(f, A)$}\kbdsidx{fold}\label{se:fold}
Apply the \typ{CLOSURE} \kbd{f} of arity $2$ to the entries of \kbd{A},
in order to return \kbd{f(\dots f(f(A[1],A[2]),A[3])\dots ,A[\#A])}.
\bprog
? fold((x,y)->x*y, [1,2,3,4])
%1 = 24
? fold((x,y)->[x,y], [1,2,3,4])
%2 = [[[1, 2], 3], 4]
? fold((x,f)->f(x), [2,sqr,sqr,sqr])
%3 = 256
? fold((x,y)->(x+y)/(1-x*y),[1..5])
%4 = -9/19
? bestappr(tan(sum(i=1,5,atan(i))))
%5 = -9/19
@eprog

The library syntax is \fun{GEN}{fold0}{GEN f, GEN A}.
Also available is
\fun{GEN}{genfold}{void *E, GEN (*fun)(void*,GEN, GEN), GEN A}.

\subsec{getabstime$()$}\kbdsidx{getabstime}\label{se:getabstime}
Returns the CPU time (in milliseconds) elapsed since \kbd{gp} startup.
This provides a reentrant version of \kbd{gettime}:
\bprog
my (t = getabstime());
...
print("Time: ", getabstime() - t);
@eprog
For a version giving wall-clock time, see \tet{getwalltime}.

The library syntax is \fun{long}{getabstime}{}.

\subsec{getenv$(s)$}\kbdsidx{getenv}\label{se:getenv}
Return the value of the environment variable \kbd{s} if it is defined, otherwise return 0.

The library syntax is \fun{GEN}{gp_getenv}{const char *s}.

\subsec{getheap$()$}\kbdsidx{getheap}\label{se:getheap}
Returns a two-component row vector giving the
number of objects on the heap and the amount of memory they occupy in long
words. Useful mainly for debugging purposes.

The library syntax is \fun{GEN}{getheap}{}.

\subsec{getrand$()$}\kbdsidx{getrand}\label{se:getrand}
Returns the current value of the seed used by the
pseudo-random number generator \tet{random}. Useful mainly for debugging
purposes, to reproduce a specific chain of computations. The returned value
is technical (reproduces an internal state array), and can only be used as an
argument to \tet{setrand}.

The library syntax is \fun{GEN}{getrand}{}.

\subsec{getstack$()$}\kbdsidx{getstack}\label{se:getstack}
Returns the current value of $\kbd{top}-\kbd{avma}$, i.e.~the number of
bytes used up to now on the stack. Useful mainly for debugging purposes.

The library syntax is \fun{long}{getstack}{}.

\subsec{gettime$()$}\kbdsidx{gettime}\label{se:gettime}
Returns the CPU time (in milliseconds) used since either the last call to
\kbd{gettime}, or to the beginning of the containing GP instruction (if
inside \kbd{gp}), whichever came last.

For a reentrant version, see \tet{getabstime}.

For a version giving wall-clock time, see \tet{getwalltime}.

The library syntax is \fun{long}{gettime}{}.

\subsec{getwalltime$()$}\kbdsidx{getwalltime}\label{se:getwalltime}
Returns the time (in milliseconds) elapsed since the UNIX Epoch
(1970-01-01 00:00:00 (UTC)).
\bprog
my (t = getwalltime());
...
print("Time: ", getwalltime() - t);
@eprog

The library syntax is \fun{GEN}{getwalltime}{}.

\subsec{global$(\var{list} \var{of} \var{variables})$}\kbdsidx{global}\label{se:global}
Obsolete. Scheduled for deletion.
% \syn{NO}

\subsec{inline$(x,...,z)$}\kbdsidx{inline}\label{se:inline}
(Experimental) declare $x,\ldots, z$ as inline variables. Such variables
behave like lexically scoped variable (see my()) but with unlimited scope.
It is however possible to exit the scope by using \kbd{uninline()}.
When used in a GP script, it is recommended to call \kbd{uninline()} before
the script's end to avoid inline variables leaking outside the script.

\subsec{input$()$}\kbdsidx{input}\label{se:input}
Reads a string, interpreted as a GP expression,
from the input file, usually standard input (i.e.~the keyboard). If a
sequence of expressions is given, the result is the result of the last
expression of the sequence. When using this instruction, it is useful to
prompt for the string by using the \kbd{print1} function. Note that in the
present version 2.19 of \kbd{pari.el}, when using \kbd{gp} under GNU Emacs (see
\secref{se:emacs}) one \emph{must} prompt for the string, with a string
which ends with the same prompt as any of the previous ones (a \kbd{"? "}
will do for instance).

The library syntax is \fun{GEN}{gp_input}{}.

\subsec{install$(\var{name},\var{code},\{\var{gpname}\},\{\var{lib}\})$}\kbdsidx{install}\label{se:install}
Loads from dynamic library \var{lib} the function \var{name}. Assigns to it
the name \var{gpname} in this \kbd{gp} session, with \emph{prototype}
\var{code} (see below). If \var{gpname} is omitted, uses \var{name}.
If \var{lib} is omitted, all symbols known to \kbd{gp} are available: this
includes the whole of \kbd{libpari.so} and possibly others (such as
\kbd{libc.so}).

Most importantly, \kbd{install} gives you access to all non-static functions
defined in the PARI library. For instance, the function
\bprog
  GEN addii(GEN x, GEN y)
@eprog\noindent adds two PARI integers, and is not directly accessible under
\kbd{gp} (it is eventually called by the \kbd{+} operator of course):
\bprog
? install("addii", "GG")
? addii(1, 2)
%1 = 3
@eprog\noindent
It also allows to add external functions to the \kbd{gp} interpreter.
For instance, it makes the function \tet{system} obsolete:
\bprog
? install(system, vs, sys,/*omitted*/)
? sys("ls gp*")
gp.c            gp.h            gp_rl.c
@eprog\noindent This works because \kbd{system} is part of \kbd{libc.so},
which is linked to \kbd{gp}. It is also possible to compile a shared library
yourself and provide it to gp in this way: use \kbd{gp2c}, or do it manually
(see the \kbd{modules\_build} variable in \kbd{pari.cfg} for hints).

Re-installing a function will print a warning and update the prototype code
if needed. However, it will not reload a symbol from the library, even if the
latter has been recompiled.

\misctitle{Prototype} We only give a simplified description here, covering
most functions, but there are many more possibilities. The full documentation
is available in \kbd{libpari.dvi}, see
\bprog
  ??prototype
@eprog

\item First character \kbd{i}, \kbd{l}, \kbd{v} : return type int / long /
void. (Default: \kbd{GEN})

\item One letter for each mandatory argument, in the same order as they appear
in the argument list: \kbd{G} (\kbd{GEN}), \kbd{\&}
(\kbd{GEN*}), \kbd{L} (\kbd{long}), \kbd{s} (\kbd{char *}), \kbd{n}
(variable).

 \item \kbd{p} to supply \kbd{realprecision} (usually \kbd{long prec} in the
 argument list), \kbd{P} to supply \kbd{seriesprecision}
 (usually \kbd{long precdl}).

 \noindent We also have special constructs for optional arguments and default
 values:

 \item \kbd{DG} (optional \kbd{GEN}, \kbd{NULL} if omitted),

 \item \kbd{D\&} (optional \kbd{GEN*}, \kbd{NULL} if omitted),

 \item \kbd{Dn} (optional variable, $-1$ if omitted),

For instance the prototype corresponding to
\bprog
  long issquareall(GEN x, GEN *n = NULL)
@eprog\noindent is \kbd{lGD\&}.

\misctitle{Caution} This function may not work on all systems, especially
when \kbd{gp} has been compiled statically. In that case, the first use of an
installed function will provoke a Segmentation Fault (this should never
happen with a dynamically linked executable). If you intend to use this
function, please check first on some harmless example such as the one above
that it works properly on your machine.

The library syntax is \fun{void}{gpinstall}{const char *name, const char *code, const char *gpname, const char *lib}.

\subsec{kill$(\var{sym})$}\kbdsidx{kill}\label{se:kill}
Restores the symbol \kbd{sym} to its ``undefined'' status, and deletes any
help messages attached to \kbd{sym} using \kbd{addhelp}. Variable names
remain known to the interpreter and keep their former priority: you cannot
make a variable ``less important" by killing it!
\bprog
? z = y = 1; y
%1 = 1
? kill(y)
? y            \\ restored to ``undefined'' status
%2 = y
? variable()
%3 = [x, y, z] \\ but the variable name y is still known, with y > z !
@eprog\noindent
For the same reason, killing a user function (which is an ordinary
variable holding a \typ{CLOSURE}) does not remove its name from the list of
variable names.

If the symbol is attached to a variable --- user functions being an
important special case ---, one may use the \idx{quote} operator
\kbd{a = 'a} to reset variables to their starting values. However, this
will not delete a help message attached to \kbd{a}, and is also slightly
slower than \kbd{kill(a)}.
\bprog
? x = 1; addhelp(x, "foo"); x
%1 = 1
? x = 'x; x   \\ same as 'kill', except we don't delete help.
%2 = x
? ?x
foo
@eprog\noindent
On the other hand, \kbd{kill} is the only way to remove aliases and installed
functions.
\bprog
? alias(fun, sin);
? kill(fun);

? install(addii, GG);
? kill(addii);
@eprog

The library syntax is \fun{void}{kill0}{const char *sym}.

\subsec{listcreate$(\{n\})$}\kbdsidx{listcreate}\label{se:listcreate}
This function is obsolete, use \kbd{List}.

Creates an empty list. This routine used to have a mandatory argument,
which is now ignored (for backward compatibility).
% \syn{NO}

\subsec{listinsert$(L,x,n)$}\kbdsidx{listinsert}\label{se:listinsert}
Inserts the object $x$ at
position $n$ in $L$ (which must be of type \typ{LIST}). This has
complexity $O(\#L - n + 1)$: all the
remaining elements of \var{list} (from position $n+1$ onwards) are shifted
to the right.

The library syntax is \fun{GEN}{listinsert}{GEN L, GEN x, long n}.

\subsec{listkill$(L)$}\kbdsidx{listkill}\label{se:listkill}
Obsolete, retained for backward compatibility. Just use \kbd{L = List()}
instead of \kbd{listkill(L)}. In most cases, you won't even need that, e.g.
local variables are automatically cleared when a user function returns.

The library syntax is \fun{void}{listkill}{GEN L}.

\subsec{listpop$(\var{list},\{n\})$}\kbdsidx{listpop}\label{se:listpop}
Removes the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}). If $n$ is omitted,
or greater than the list current length, removes the last element.
If the list is already empty, do nothing. This runs in time $O(\#L - n + 1)$.

The library syntax is \fun{void}{listpop0}{GEN list, long n}.

\subsec{listput$(\var{list},x,\{n\})$}\kbdsidx{listput}\label{se:listput}
Sets the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}) equal to $x$. If $n$ is omitted,
or greater than the list length, appends $x$. The function returns the
inserted element.
\bprog
? L = List();
? listput(L, 1)
%2 = 1
? listput(L, 2)
%3 = 2
? L
%4 = List([1, 2])
@eprog

You may put an element into an occupied cell (not changing the
list length), but it is easier to use the standard \kbd{list[n] = x}
construct.
\bprog
? listput(L, 3, 1) \\ insert at position 1
%5 = 3
? L
%6 = List([3, 2])
? L[2] = 4 \\ simpler
%7 = List([3, 4])
? L[10] = 1  \\ can't insert beyond the end of the list
 ***   at top-level: L[10]=1
 ***                  ^------
 ***   non-existent component: index > 2
? listput(L, 1, 10) \\ but listput can
%8 = 1
? L
%9 = List([3, 2, 1])
@eprog

This function runs in time $O(\#L)$ in the worst case (when the list must
be reallocated), but in time $O(1)$ on average: any number of successive
\kbd{listput}s run in time $O(\#L)$, where $\#L$ denotes the list
\emph{final} length.

The library syntax is \fun{GEN}{listput0}{GEN list, GEN x, long n}.

\subsec{listsort$(L,\{\fl=0\})$}\kbdsidx{listsort}\label{se:listsort}
Sorts the \typ{LIST} \var{list} in place, with respect to the (somewhat
arbitrary) universal comparison function \tet{cmp}. In particular, the
ordering is the same as for sets and \tet{setsearch} can be used on a sorted
list.
\bprog
? L = List([1,2,4,1,3,-1]); listsort(L); L
%1 = List([-1, 1, 1, 2, 3, 4])
? setsearch(L, 4)
%2 = 6
? setsearch(L, -2)
%3 = 0
@eprog\noindent This is faster than the \kbd{vecsort} command since the list
is sorted in place: no copy is made. No value returned.

If $\fl$ is non-zero, suppresses all repeated coefficients.

The library syntax is \fun{void}{listsort}{GEN L, long flag}.

\subsec{localbitprec$(p)$}\kbdsidx{localbitprec}\label{se:localbitprec}
Set the real precision to $p$ bits in the dynamic scope. All computations
are performed as if \tet{realbitprecision} was $p$:
transcendental constants (e.g.~\kbd{Pi}) and
conversions from exact to floating point inexact data use $p$ bits, as well as
iterative routines implicitly using a floating point
accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
But \kbd{realbitprecision} itself is unaffected
and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
In effect, this is similar to
\bprog
my(bit = default(realbitprecision));
default(realbitprecision,p);
...
default(realbitprecision, bit);
@eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
a global variable, which in fact never changes and is only temporarily masked)
and more robust: if the above computation is interrupted or an exception
occurs, \kbd{realbitprecision} will not be restored as intended.

Such \kbd{localbitprec} statements can be nested, the innermost one taking
precedence as expected. Beware that \kbd{localbitprec} follows the semantic of
\tet{local}, not \tet{my}: a subroutine called from \kbd{localbitprec} scope
uses the local accuracy:
\bprog
? f()=bitprecision(1.0);
? f()
%2 = 128
? localbitprec(1000); f()
%3 = 1024
@eprog\noindent Note that the bit precision of \emph{data} (\kbd{1.0} in the
above example) increases by steps of 64 (32 on a 32-bit machine) so we get
$1024$ instead of the expected $1000$; \kbd{localbitprec} bounds the
relative error exactly as specified in functions that support that
granularity (e.g.~\kbd{lfun}), and rounded to the next multiple of 64
(resp.~32) everywhere else.

\misctitle{Warning} Changing \kbd{realbitprecision} or \kbd{realprecision}
in programs is deprecated in favor of \kbd{localbitprec} and
\kbd{localprec}. Think about the \kbd{realprecision} and
\kbd{realbitprecision} defaults as interactive commands for the \kbd{gp}
interpreter, best left out of GP programs. Indeed, the above rules imply that
mixing both constructs yields surprising results:

\bprog
? \p38
? localprec(19); default(realprecision,1000);  Pi
%1 = 3.141592653589793239
? \p
  realprecision = 1001 significant digits (1000 digits displayed)
@eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
\kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
we leave the \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
it is not ``restored'' to the original value.
%\syn{NO}

\subsec{localprec$(p)$}\kbdsidx{localprec}\label{se:localprec}
Set the real precision to $p$ in the dynamic scope. All computations
are performed as if \tet{realprecision} was $p$:
transcendental constants (e.g.~\kbd{Pi}) and
conversions from exact to floating point inexact data use $p$ decimal
digits, as well as iterative routines implicitly using a floating point
accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
But \kbd{realprecision} itself is unaffected
and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
In effect, this is similar to
\bprog
my(prec = default(realprecision));
default(realprecision,p);
...
default(realprecision, prec);
@eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
a global variable, which in fact never changes and is only temporarily masked)
and more robust: if the above computation is interrupted or an exception
occurs, \kbd{realprecision} will not be restored as intended.

Such \kbd{localprec} statements can be nested, the innermost one taking
precedence as expected. Beware that \kbd{localprec} follows the semantic of
\tet{local}, not \tet{my}: a subroutine called from \kbd{localprec} scope
uses the local accuracy:
\bprog
? f()=precision(1.);
? f()
%2 = 38
? localprec(19); f()
%3 = 19
@eprog\noindent
\misctitle{Warning} Changing \kbd{realprecision} itself in programs is
now deprecated in favor of \kbd{localprec}. Think about the
\kbd{realprecision} default as an interactive command for the \kbd{gp}
interpreter, best left out of GP programs. Indeed, the above rules
imply that mixing both constructs yields surprising results:
\bprog
? \p38
? localprec(19); default(realprecision,100);  Pi
%1 = 3.141592653589793239
? \p
    realprecision = 115 significant digits (100 digits displayed)
@eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
\kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
we leave \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
it is not ``restored'' to the original value.
%\syn{NO}

\subsec{mapdelete$(M,x)$}\kbdsidx{mapdelete}\label{se:mapdelete}
Removes $x$ from the domain of the map $M$.
\bprog
? M = Map(["a",1; "b",3; "c",7]);
? mapdelete(M,"b");
? Mat(M)
["a" 1]

["c" 7]
@eprog

The library syntax is \fun{void}{mapdelete}{GEN M, GEN x}.

\subsec{mapget$(M,x)$}\kbdsidx{mapget}\label{se:mapget}
Returns the image of $x$ by the map $M$.
\bprog
? M=Map(["a",23;"b",43]);
? mapget(M,"a")
%2 = 23
? mapget(M,"b")
%3 = 43
@eprog\noindent Raises an exception when the key $x$ is not present in $M$.
\bprog
? mapget(M,"c")
  ***   at top-level: mapget(M,"c")
  ***                 ^-------------
  *** mapget: non-existent component in mapget: index not in map
@eprog

The library syntax is \fun{GEN}{mapget}{GEN M, GEN x}.

\subsec{mapisdefined$(M,x,\{\&z\})$}\kbdsidx{mapisdefined}\label{se:mapisdefined}
Returns true ($1$) if \kbd{x} has an image by the map $M$, false ($0$)
otherwise. If \kbd{z} is present, set \kbd{z} to the image of $x$, if it exists.
\bprog
? M1 = Map([1, 10; 2, 20]);
? mapisdefined(M1,3)
%1 = 0
? mapisdefined(M1, 1, &z)
%2 = 1
? z
%3 = 10
@eprog

\bprog
? M2 = Map(); N = 19;
? for (a=0, N-1, mapput(M2, a^3%N, a));
? {for (a=0, N-1,
     if (mapisdefined(M2, a, &b),
       printf("%d is the cube of %d mod %d\n",a,b,N)));}
0 is the cube of 0 mod 19
1 is the cube of 11 mod 19
7 is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19
@eprog

The library syntax is \fun{GEN}{mapisdefined}{GEN M, GEN x, GEN *z = NULL}.

\subsec{mapput$(M,x,y)$}\kbdsidx{mapput}\label{se:mapput}
Associates $x$ to $y$ in the map $M$. The value $y$ can be retrieved
with \tet{mapget}.
\bprog
? M = Map();
? mapput(M, "foo", 23);
? mapput(M, 7718, "bill");
? mapget(M, "foo")
%4 = 23
? mapget(M, 7718)
%5 = "bill"
? Vec(M)  \\ keys
%6 = [7718, "foo"]
? Mat(M)
%7 =
[ 7718 "bill"]

["foo"     23]
@eprog

The library syntax is \fun{void}{mapput}{GEN M, GEN x, GEN y}.

\subsec{print$(\{\var{str}\}*)$}\kbdsidx{print}\label{se:print}
Outputs its (string) arguments in raw format, ending with a newline.
%\syn{NO}

\subsec{print1$(\{\var{str}\}*)$}\kbdsidx{print1}\label{se:print1}
Outputs its (string) arguments in raw
format, without ending with a newline. Note that you can still embed newlines
within your strings, using the \b{n} notation~!
%\syn{NO}

\subsec{printf$(\var{fmt},\{x\}*)$}\kbdsidx{printf}\label{se:printf}
This function is based on the C library command of the same name.
It prints its arguments according to the format \var{fmt}, which specifies how
subsequent arguments are converted for output. The format is a
character string composed of zero or more directives:

\item ordinary characters (not \kbd{\%}), printed unchanged,

\item conversions specifications (\kbd{\%} followed by some characters)
which fetch one argument from the list and prints it according to the
specification.

More precisely, a conversion specification consists in a \kbd{\%}, one or more
optional flags (among \kbd{\#}, \kbd{0}, \kbd{-}, \kbd{+}, ` '), an optional
decimal digit string specifying a minimal field width, an optional precision
in the form of a period (`\kbd{.}') followed by a decimal digit string, and
the conversion specifier (among \kbd{d},\kbd{i}, \kbd{o}, \kbd{u},
\kbd{x},\kbd{X}, \kbd{p}, \kbd{e},\kbd{E}, \kbd{f}, \kbd{g},\kbd{G}, \kbd{s}).

\misctitle{The flag characters} The character \kbd{\%} is followed by zero or
more of the following flags:

\item \kbd{\#}: the value is converted to an ``alternate form''. For
\kbd{o} conversion (octal), a \kbd{0} is prefixed to the string. For \kbd{x}
and \kbd{X} conversions (hexa), respectively \kbd{0x} and \kbd{0X} are
prepended. For other conversions, the flag is ignored.

\item \kbd{0}: the value should be zero padded. For
\kbd{d},
\kbd{i},
\kbd{o},
\kbd{u},
\kbd{x},
\kbd{X}
\kbd{e},
\kbd{E},
\kbd{f},
\kbd{F},
\kbd{g}, and
\kbd{G} conversions, the value is padded on the left with zeros rather than
blanks. (If the \kbd{0} and \kbd{-} flags both appear, the \kbd{0} flag is
ignored.)

\item \kbd{-}: the value is left adjusted on the field boundary. (The
default is right justification.) The value is padded on the right with
blanks, rather than on the left with blanks or zeros. A \kbd{-} overrides a
\kbd{0} if both are given.

\item \kbd{` '} (a space): a blank is left before a positive number
produced by a signed conversion.

\item \kbd{+}: a sign (+ or -) is placed before a number produced by a
signed conversion. A \kbd{+} overrides a space if both are used.

\misctitle{The field width} An optional decimal digit string (whose first
digit is non-zero) specifying a \emph{minimum} field width. If the value has
fewer characters than the field width, it is padded with spaces on the left
(or right, if the left-adjustment flag has been given). In no case does a
small field width cause truncation of a field; if the value is wider than
the field width, the field is expanded to contain the conversion result.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.

\misctitle{The precision} An optional precision in the form of a period
(`\kbd{.}') followed by a decimal digit string. This gives
the number of digits to appear after the radix character for \kbd{e},
\kbd{E}, \kbd{f}, and \kbd{F} conversions, the maximum number of significant
digits for \kbd{g} and \kbd{G} conversions, and the maximum number of
characters to be printed from an \kbd{s} conversion.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.

\misctitle{The length modifier} This is ignored under \kbd{gp}, but
necessary for \kbd{libpari} programming. Description given here for
completeness:

\item \kbd{l}: argument is a \kbd{long} integer.

\item \kbd{P}: argument is a \kbd{GEN}.

\misctitle{The conversion specifier} A character that specifies the type of
conversion to be applied.

\item \kbd{d}, \kbd{i}: a signed integer.

\item \kbd{o}, \kbd{u}, \kbd{x}, \kbd{X}: an unsigned integer, converted
to unsigned octal (\kbd{o}), decimal (\kbd{u}) or hexadecimal (\kbd{x} or
\kbd{X}) notation. The letters \kbd{abcdef} are used for \kbd{x}
conversions;  the letters \kbd{ABCDEF} are used for \kbd{X} conversions.

\item \kbd{e}, \kbd{E}: the (real) argument is converted in the style
\kbd{[ -]d.ddd e[ -]dd}, where there is one digit before the decimal point,
and the number of digits after it is equal to the precision; if the
precision is missing, use the current \kbd{realprecision} for the total
number of printed digits. If the precision is explicitly 0, no decimal-point
character appears. An \kbd{E} conversion uses the letter \kbd{E} rather
than \kbd{e} to introduce the exponent.

\item \kbd{f}, \kbd{F}: the (real) argument is converted in the style
\kbd{[ -]ddd.ddd}, where the number of digits after the decimal point
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision} for the total number of printed digits. If the precision
is explicitly 0, no decimal-point character appears. If a decimal point
appears, at least one digit appears before it.

\item \kbd{g}, \kbd{G}: the (real) argument is converted in style
\kbd{e} or \kbd{f} (or \kbd{E} or \kbd{F} for \kbd{G} conversions)
\kbd{[ -]ddd.ddd}, where the total number of digits printed
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision}. If the precision is explicitly 0, it is treated as 1.
Style \kbd{e} is used when
the decimal exponent is $< -4$, to print \kbd{0.}, or when the integer
part cannot be decided given the known significant digits, and the \kbd{f}
format otherwise.

\item \kbd{c}: the integer argument is converted to an unsigned char, and the
resulting character is written.

\item \kbd{s}: convert to a character string. If a precision is given, no
more than the specified number of characters are written.

\item \kbd{p}: print the address of the argument in hexadecimal (as if by
\kbd{\%\#x}).

\item \kbd{\%}: a \kbd{\%} is written. No argument is converted. The complete
conversion specification is \kbd{\%\%}.

\noindent Examples:

\bprog
? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
floor: 3, field width 3:   1, with sign:  +2

? printf("%.5g %.5g %.5g\n",123,123/456,123456789);
123.00 0.26974 1.2346 e8

? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
P :PARI:PARIG

\\ min field width and precision given by arguments
? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
x=+23.00 y=-00.04

\\ minimum fields width 5, pad left with zeroes
? for (i = 2, 5, printf("%05d\n", 10^i))
00100
01000
10000
100000  \\@com don't truncate fields whose length is larger than the minimum width
? printf("%.2f  |%06.2f|", Pi,Pi)
3.14  |  3.14|
@eprog\noindent All numerical conversions apply recursively to the entries
of vectors and matrices:
\bprog
? printf("%4d", [1,2,3]);
[   1,   2,   3]
? printf("%5.2f", mathilbert(3));
[ 1.00  0.50  0.33]

[ 0.50  0.33  0.25]

[ 0.33  0.25  0.20]
@eprog
\misctitle{Technical note} Our implementation of \tet{printf}
deviates from the C89 and C99 standards in a few places:

\item whenever a precision is missing, the current \kbd{realprecision} is
used to determine the number of printed digits (C89: use 6 decimals after
the radix character).

\item in conversion style \kbd{e}, we do not impose that the
exponent has at least two digits; we never write a \kbd{+} sign in the
exponent; 0 is printed in a special way, always as \kbd{0.E\var{exp}}.

\item in conversion style \kbd{f}, we switch to style \kbd{e} if the
exponent is greater or equal to the precision.

\item in conversion \kbd{g} and \kbd{G}, we do not remove trailing zeros
 from the fractional part of the result; nor a trailing decimal point;
 0 is printed in a special way, always as \kbd{0.E\var{exp}}.
%\syn{NO}

\subsec{printsep$(\var{sep},\{\var{str}\}*)$}\kbdsidx{printsep}\label{se:printsep}
Outputs its (string) arguments in raw format, ending with a newline.
Successive entries are separated by \var{sep}:
\bprog
? printsep(":", 1,2,3,4)
1:2:3:4
@eprog
%\syn{NO}

\subsec{printsep1$(\var{sep},\{\var{str}\}*)$}\kbdsidx{printsep1}\label{se:printsep1}
Outputs its (string) arguments in raw format, without ending with a
newline.  Successive entries are separated by \var{sep}:
\bprog
? printsep1(":", 1,2,3,4);print("|")
1:2:3:4
@eprog
%\syn{NO}

\subsec{printtex$(\{\var{str}\}*)$}\kbdsidx{printtex}\label{se:printtex}
Outputs its (string) arguments in \TeX\ format. This output can then be
used in a \TeX\ manuscript.
The printing is done on the standard output. If you want to print it to a
file you should use \kbd{writetex} (see there).

Another possibility is to enable the \tet{log} default
(see~\secref{se:defaults}).
You could for instance do:\sidx{logfile}
%
\bprog
default(logfile, "new.tex");
default(log, 1);
printtex(result);
@eprog
%\syn{NO}

\subsec{quit$(\{\var{status} = 0\})$}\kbdsidx{quit}\label{se:quit}
Exits \kbd{gp} and return to the system with exit status
\kbd{status}, a small integer. A non-zero exit status normally indicates
abnormal termination. (Note: the system actually sees only
\kbd{status} mod $256$, see your man pages for \kbd{exit(3)} or \kbd{wait(2)}).

\subsec{read$(\{\var{filename}\})$}\kbdsidx{read}\label{se:read}
Reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is the result of the last expression evaluated.

If a GP \tet{binary file} is read using this command (see
\secref{se:writebin}), the file is loaded and the last object in the file
is returned.

In case the file you read in contains an \tet{allocatemem} statement (to be
generally avoided), you should leave \kbd{read} instructions by themselves,
and not part of larger instruction sequences.

The library syntax is \fun{GEN}{gp_read_file}{const char *filename}.

\subsec{readstr$(\{\var{filename}\})$}\kbdsidx{readstr}\label{se:readstr}
Reads in the file \var{filename} and return a vector of GP strings,
each component containing one line from the file. If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}.

The library syntax is \fun{GEN}{readstr}{const char *filename}.

\subsec{readvec$(\{\var{filename}\})$}\kbdsidx{readvec}\label{se:readvec}
Reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is a vector whose components are the evaluation of all sequences
of instructions contained in the file. For instance, if \var{file} contains
\bprog
1
2
3
@eprog\noindent
then we will get:
\bprog
? \r a
%1 = 1
%2 = 2
%3 = 3
? read(a)
%4 = 3
? readvec(a)
%5 = [1, 2, 3]
@eprog
In general a sequence is just a single line, but as usual braces and
\kbd{\bs} may be used to enter multiline sequences.

The library syntax is \fun{GEN}{gp_readvec_file}{const char *filename}.
The underlying library function
\fun{GEN}{gp_readvec_stream}{FILE *f} is usually more flexible.

\subsec{select$(f, A, \{\fl = 0\})$}\kbdsidx{select}\label{se:select}
We first describe the default behavior, when $\fl$ is 0 or omitted.
Given a vector or list \kbd{A} and a \typ{CLOSURE} \kbd{f}, \kbd{select}
returns the elements $x$ of \kbd{A} such that $f(x)$ is non-zero. In other
words, \kbd{f} is seen as a selection function returning a boolean value.
\bprog
? select(x->isprime(x), vector(50,i,i^2+1))
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %)
%2 = [2, 5, 17, 37]
@eprog\noindent returns the primes of the form $i^2+1$ for some $i\leq 50$,
then the elements less than 100 in the preceding result. The \kbd{select}
function also applies to a matrix \kbd{A}, seen as a vector of columns, i.e. it
selects columns instead of entries, and returns the matrix whose columns are
the selected ones.

\misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{LIST} or \typ{MAT},
the alternative set-notations
\bprog
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
@eprog\noindent
are available as shortcuts for
\bprog
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
@eprog\noindent respectively:
\bprog
? [ x | x <- vector(50,i,i^2+1), isprime(x) ]
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
@eprog

\noindent If $\fl = 1$, this function returns instead the \emph{indices} of
the selected elements, and not the elements themselves (indirect selection):
\bprog
? V = vector(50,i,i^2+1);
? select(x->isprime(x), V, 1)
%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
? vecextract(V, %)
%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
@eprog\noindent
The following function lists the elements in $(\Z/N\Z)^*$:
\bprog
? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])
@eprog

\noindent Finally
\bprog
? select(x->x, M)
@eprog\noindent selects the non-0 entries in \kbd{M}. If the latter is a
\typ{MAT}, we extract the matrix of non-0 columns. Note that \emph{removing}
entries instead of selecting them just involves replacing the selection
function \kbd{f} with its negation:
\bprog
? select(x->!isprime(x), vector(50,i,i^2+1))
@eprog

\synt{genselect}{void *E, long (*fun)(void*,GEN), GEN a}. Also available
is \fun{GEN}{genindexselect}{void *E, long (*fun)(void*, GEN), GEN a},
corresponding to $\fl = 1$.

\subsec{self$()$}\kbdsidx{self}\label{se:self}
Return the calling function or closure as a \typ{CLOSURE} object.
This is useful for defining anonymous recursive functions.
\bprog
? (n->if(n==0,1,n*self()(n-1)))(5)
%1 = 120
@eprog

The library syntax is \fun{GEN}{pari_self}{}.

\subsec{setrand$(n)$}\kbdsidx{setrand}\label{se:setrand}
Reseeds the random number generator using the seed $n$. No value is
returned. The seed is either a technical array output by \kbd{getrand}, or a
small positive integer, used to generate deterministically a suitable state
array. For instance, running a randomized computation starting by
\kbd{setrand(1)} twice will generate the exact same output.

The library syntax is \fun{void}{setrand}{GEN n}.

\subsec{system$(\var{str})$}\kbdsidx{system}\label{se:system}
\var{str} is a string representing a system command. This command is
executed, its output written to the standard output (this won't get into your
logfile), and control returns to the PARI system. This simply calls the C
\kbd{system} command.

The library syntax is \fun{void}{gpsystem}{const char *str}.

\subsec{trap$(\{e\}, \{\var{rec}\}, \var{seq})$}\kbdsidx{trap}\label{se:trap}
This function is obsolete, use \tet{iferr}, which has a nicer and much
more powerful interface. For compatibility's sake we now describe the
\emph{obsolete} function \tet{trap}.

This function tries to
evaluate \var{seq}, trapping runtime error $e$, that is effectively preventing
it from aborting computations in the usual way; the recovery sequence
\var{rec} is executed if the error occurs and the evaluation of \var{rec}
becomes the result of the command. If $e$ is omitted, all exceptions are
trapped. See \secref{se:errorrec} for an introduction to error recovery
under \kbd{gp}.

\bprog
? \\@com trap division by 0
? inv(x) = trap (e_INV, INFINITY, 1/x)
? inv(2)
%1 = 1/2
? inv(0)
%2 = INFINITY
@eprog\noindent
Note that \var{seq} is effectively evaluated up to the point that produced
the error, and the recovery sequence is evaluated starting from that same
context, it does not "undo" whatever happened in the other branch (restore
the evaluation context):
\bprog
? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
%1 = 0
@eprog

\misctitle{Note} The interface is currently not adequate for trapping
individual exceptions. In the current version \vers, the following keywords
are recognized, but the name list will be expanded and changed in the
future (all library mode errors can be trapped: it's a matter of defining
the keywords to \kbd{gp}):

\kbd{e\_ALARM}: alarm time-out

\kbd{e\_ARCH}: not available on this architecture or operating system

\kbd{e\_STACK}: the PARI stack overflows

\kbd{e\_INV}: impossible inverse

\kbd{e\_IMPL}: not yet implemented

\kbd{e\_OVERFLOW}: all forms of arithmetic overflow, including length
or exponent overflow (when a larger value is supplied than the
implementation can handle).

\kbd{e\_SYNTAX}: syntax error

\kbd{e\_MISC}: miscellaneous error

\kbd{e\_TYPE}: wrong type

\kbd{e\_USER}: user error (from the \kbd{error} function)

The library syntax is \fun{GEN}{trap0}{const char *e = NULL, GEN rec = NULL, GEN seq = NULL}.

\subsec{type$(x)$}\kbdsidx{type}\label{se:type}
This is useful only under \kbd{gp}. Returns the internal type name of
the PARI object $x$ as a  string. Check out existing type names with the
metacommand \b{t}. For example \kbd{type(1)} will return "\typ{INT}".

The library syntax is \fun{GEN}{type0}{GEN x}.
The macro \kbd{typ} is usually simpler to use since it returns a
\kbd{long} that can easily be matched with the symbols \typ{*}. The name
\kbd{type} was avoided since it is a reserved identifier for some compilers.

\subsec{uninline$()$}\kbdsidx{uninline}\label{se:uninline}
(Experimental) Exit the scope of all current \kbd{inline} variables.

\subsec{version$()$}\kbdsidx{version}\label{se:version}
Returns the current version number as a \typ{VEC} with three integer
components (major version number, minor version number and patchlevel);
if your sources were obtained through our version control system, this will
be followed by further more precise arguments, including
e.g.~a~\kbd{git} \emph{commit hash}.

This function is present in all versions of PARI following releases 2.3.4
(stable) and 2.4.3 (testing).

Unless you are working with multiple development versions, you probably only
care about the 3 first numeric components. In any case, the \kbd{lex} function
offers a clever way to check against a particular version number, since it will
compare each successive vector entry, numerically or as strings, and will not
mind if the vectors it compares have different lengths:
\bprog
   if (lex(version(), [2,3,5]) >= 0,
     \\ code to be executed if we are running 2.3.5 or more recent.
   ,
     \\ compatibility code
   );
@eprog\noindent On a number of different machines, \kbd{version()} could return either of
\bprog
 %1 = [2, 3, 4]    \\ released version, stable branch
 %1 = [2, 4, 3]    \\ released version, testing branch
 %1 = [2, 6, 1, 15174, ""505ab9b"] \\ development
@eprog

In particular, if you are only working with released versions, the first
line of the gp introductory message can be emulated by
\bprog
   [M,m,p] = version();
   printf("GP/PARI CALCULATOR Version %s.%s.%s", M,m,p);
 @eprog\noindent If you \emph{are} working with many development versions of
 PARI/GP, the 4th and/or 5th components can be profitably included in the
 name of your logfiles, for instance.

 \misctitle{Technical note} For development versions obtained via \kbd{git},
 the 4th and 5th components are liable to change eventually, but we document
 their current meaning for completeness. The 4th component counts the number
 of reachable commits in the branch (analogous to \kbd{svn}'s revision
 number), and the 5th is the \kbd{git} commit hash. In particular, \kbd{lex}
 comparison still orders correctly development versions with respect to each
 others or to released versions (provided we stay within a given branch,
 e.g. \kbd{master})!

The library syntax is \fun{GEN}{pari_version}{}.

\subsec{warning$(\{\var{str}\}*)$}\kbdsidx{warning}\label{se:warning}
Outputs the message ``user warning''
and the argument list (each of them interpreted as a string).
If colors are enabled, this warning will be in a different color,
making it easy to distinguish.
\bprog
warning(n, " is very large, this might take a while.")
@eprog
% \syn{NO}

\subsec{whatnow$(\var{key})$}\kbdsidx{whatnow}\label{se:whatnow}
If keyword \var{key} is the name of a function that was present in GP
version 1.39.15, outputs the new function name and syntax, if it
changed at all. Functions that where introduced since then, then modified
are also recognized.
\bprog
? whatnow("mu")
New syntax: mu(n) ===> moebius(n)

moebius(x): Moebius function of x.

? whatnow("sin")
This function did not change
@eprog When a function was removed and the underlying functionality
is not available under a compatible interface, no equivalent is mentioned:
\bprog
? whatnow("buchfu")
This function no longer exists
@eprog\noindent (The closest equivalent would be to set \kbd{K = bnfinit(T)}
then access \kbd{K.fu}.)

\subsec{write$(\var{filename},\{\var{str}\}*)$}\kbdsidx{write}\label{se:write}
Writes (appends) to \var{filename} the remaining arguments, and appends a
newline (same output as \kbd{print}).
%\syn{NO}

\subsec{write1$(\var{filename},\{\var{str}\}*)$}\kbdsidx{write1}\label{se:write1}
Writes (appends) to \var{filename} the remaining arguments without a
trailing newline (same output as \kbd{print1}).
%\syn{NO}

\subsec{writebin$(\var{filename},\{x\})$}\kbdsidx{writebin}\label{se:writebin}
Writes (appends) to
\var{filename} the object $x$ in binary format. This format is not human
readable, but contains the exact internal structure of $x$, and is much
faster to save/load than a string expression, as would be produced by
\tet{write}. The binary file format includes a magic number, so that such a
file can be recognized and correctly input by the regular \tet{read} or \b{r}
function. If saved objects refer to polynomial variables that are not
defined in the new session, they will be displayed as \kbd{t$n$} for some
integer $n$ (the attached variable number).
Installed functions and history objects can not be saved via this function.

If $x$ is omitted, saves all user variables from the session, together with
their names. Reading such a ``named object'' back in a \kbd{gp} session will set
the corresponding user variable to the saved value. E.g after
\bprog
x = 1; writebin("log")
@eprog\noindent
reading \kbd{log} into a clean session will set \kbd{x} to $1$.
The relative variables priorities (see \secref{se:priority}) of new variables
set in this way remain the same (preset variables retain their former
priority, but are set to the new value). In particular, reading such a
session log into a clean session will restore all variables exactly as they
were in the original one.

Just as a regular input file, a binary file can be compressed
using \tet{gzip}, provided the file name has the standard \kbd{.gz}
extension.\sidx{binary file}

In the present implementation, the binary files are architecture dependent
and compatibility with future versions of \kbd{gp} is not guaranteed. Hence
binary files should not be used for long term storage (also, they are
larger and harder to compress than text files).

The library syntax is \fun{void}{gpwritebin}{const char *filename, GEN x = NULL}.

\subsec{writetex$(\var{filename},\{\var{str}\}*)$}\kbdsidx{writetex}\label{se:writetex}
As \kbd{write}, in \TeX\ format.
%\syn{NO}
%SECTION: programming/specific

\section{Parallel programming}

These function are only available if PARI was configured using
\kbd{Configure --mt=\dots}. Two multithread interfaces are supported:

\item POSIX threads

\item Message passing interface (MPI)

As a rule, POSIX threads are well-suited for single systems, while MPI is used
by most clusters. However the parallel GP interface does not depend on the
chosen multithread interface: a properly written GP program will work
identically with both.


\subsec{parapply$(f, x)$}\kbdsidx{parapply}\label{se:parapply}
Parallel evaluation of \kbd{f} on the elements of \kbd{x}.
The function \kbd{f} must not access global variables or variables
declared with local(), and must be free of side effects.
\bprog
parapply(factor,[2^256 + 1, 2^193 - 1])
@eprog
factors $2^{256} + 1$ and $2^{193} - 1$ in parallel.
\bprog
{
  my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));
  parapply(p->ellcard(E,p), V)
}
@eprog
computes the order of $E(\F_p)$ for $12$ random primes of $200$ bits.

The library syntax is \fun{GEN}{parapply}{GEN f, GEN x}.

\subsec{pareval$(x)$}\kbdsidx{pareval}\label{se:pareval}
Parallel evaluation of the elements of \kbd{x}, where \kbd{x} is a
vector of closures. The closures must be of arity $0$, must not access
global variables or variables declared with \kbd{local} and must be
free of side effects.

The library syntax is \fun{GEN}{pareval}{GEN x}.

\subsec{parfor$(i=a,\{b\},\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parfor}\label{se:parfor}
Evaluates in parallel the expression \kbd{expr1} in the formal
argument $i$ running from $a$ to $b$.
If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $i$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $i$ takes the
corresponding argument.

The computations of \kbd{expr1} are \emph{started} in increasing order
of $i$; otherwise said, the computation for $i=c$ is started after those
for $i=1, \ldots, c-1$ have been started, but before the computation for
$i=c+1$ is started. Notice that the order of \emph{completion}, that is,
the order in which the different $r$ become available, may be different;
\kbd{expr2} is evaluated sequentially on each $r$ as it appears.

The following example computes the sum of the squares of the integers
from $1$ to $10$ by computing the squares in parallel and is equivalent
to \kbd{parsum (i=1, 10, i\^{}2)}:
\bprog
? s=0;
? parfor (i=1, 10, i^2, r, s=s+r)
? s
%3 = 385
@eprog
More precisely, apart from a potentially different order of evaluation
due to the parallelism, the line containing \kbd{parfor} is equivalent to
\bprog
? my (r); for (i=1, 10, r=i^2; s=s+r)
@eprog
The sequentiality of the evaluation of \kbd{expr2} ensures that the
variable \kbd{s} is not modified concurrently by two different additions,
although the order in which the terms are added is non-deterministic.

It is allowed for \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}. If that happens for $i=c$,
then the evaluation of \kbd{expr1} and \kbd{expr2} is continued
for all values $i<c$, and the return value is the one obtained for
the smallest $i$ causing an interruption in \kbd{expr2} (it may be
undefined if this is a \kbd{break}/\kbd{next}).
In that case, using side-effects
in \kbd{expr2} may lead to undefined behavior, as the exact
number of values of $i$ for which it is executed is non-deterministic.
The following example computes \kbd{nextprime(1000)} in parallel:
\bprog
? parfor (i=1000, , isprime (i), r, if (r, return (i)))
%1 = 1009
@eprog

%\syn{NO}

\subsec{parforprime$(p=a,\{b\},\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parforprime}\label{se:parforprime}
Behaves exactly as \kbd{parfor}, but loops only over prime values $p$.
Precisely, the functions evaluates in parallel the expression \kbd{expr1}
in the formal
argument $p$ running through the primes from $a$ to $b$.
If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $p$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $p$ takes the
corresponding argument.

It is allowed fo \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}; see the remarks in the documentation
of \kbd{parfor} for details.

%\syn{NO}

\subsec{parforvec$(X=v,\var{expr1},\{j\},\{\var{expr2}\},\{\fl\})$}\kbdsidx{parforvec}\label{se:parforvec}
Evaluates the sequence \kbd{expr2} (dependent on $X$ and $j$) for $X$
as generated by \kbd{forvec}, in random order, computed in parallel. Substitute
for $j$ the value of \kbd{expr1} (dependent on $X$).

It is allowed fo \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}, however in that case, \kbd{expr2} will
still be evaluated for all remaining value of $p$ less than the current one,
unless a subsequent \kbd{break}/\kbd{next}/\kbd{return} happens.
%\syn{NO}

\subsec{parselect$(f, A, \{\fl = 0\})$}\kbdsidx{parselect}\label{se:parselect}
Selects elements of $A$ according to the selection function $f$, done in
parallel.  If \fl is $1$, return the indices of those elements (indirect
selection) The function \kbd{f} must not access global variables or
variables declared with local(), and must be free of side effects.

The library syntax is \fun{GEN}{parselect}{GEN f, GEN A, long flag}.

\subsec{parsum$(i=a,b,\var{expr},\{x\})$}\kbdsidx{parsum}\label{se:parsum}
Sum of expression \var{expr}, initialized at $x$, the formal parameter
going from $a$ to $b$, evaluated in parallel in random order.
The expression \kbd{expr} must not access global variables or
variables declared with \kbd{local()}, and must be free of side effects.
\bprog
parsum(i=1,1000,ispseudoprime(2^prime(i)-1))
@eprog
returns the numbers of prime numbers among the first $1000$ Mersenne numbers.
%\syn{NO}

\subsec{parvector$(N,i,\var{expr})$}\kbdsidx{parvector}\label{se:parvector}
As \kbd{vector(N,i,expr)} but the evaluations of \kbd{expr} are done in
parallel. The expression \kbd{expr} must not access global variables or
variables declared with \kbd{local()}, and must be free of side effects.
\bprog
parvector(10,i,quadclassunit(2^(100+i)+1).no)
@eprog\noindent
computes the class numbers in parallel.
%\syn{NO}
%SECTION: programming/parallel

\section{GP defaults}
\label{se:gp_defaults} This section documents the GP defaults, be sure to
check out \tet{parisize} and \tet{parisizemax} !


\subsec{TeXstyle}\kbdsidx{TeXstyle}\label{se:def,TeXstyle}
The bits of this default allow
\kbd{gp} to use less rigid TeX formatting commands in the logfile. This
default is only taken into account when $\kbd{log} = 3$. The bits of
\kbd{TeXstyle} have the following meaning

2: insert \kbd{\bs right} / \kbd{\bs left} pairs where appropriate.

4: insert discretionary breaks in polynomials, to enhance the probability of
a good line break.

The default value is \kbd{0}.

\subsec{breakloop}\kbdsidx{breakloop}\label{se:def,breakloop}
If true, enables the ``break loop'' debugging mode, see
\secref{se:break_loop}.

The default value is \kbd{1} if we are running an interactive \kbd{gp}
session, and \kbd{0} otherwise.

\subsec{colors}\kbdsidx{colors}\label{se:def,colors}
This default is only usable if \kbd{gp}
is running within certain color-capable terminals. For instance \kbd{rxvt},
\kbd{color\_xterm} and modern versions of \kbd{xterm} under X Windows, or
standard Linux/DOS text consoles. It causes \kbd{gp} to use a small palette of
colors for its output. With xterms, the colormap used corresponds to the
resources \kbd{Xterm*color$n$} where $n$ ranges from $0$ to $15$ (see the
file \kbd{misc/color.dft} for an example). Accepted values for this
default are strings \kbd{"$a_1$,\dots,$a_k$"} where $k\le7$ and each
$a_i$ is either

\noindent\item the keyword \kbd{no} (use the default color, usually
black on transparent background)

\noindent\item an integer between 0 and 15 corresponding to the
aforementioned colormap

\noindent\item a triple $[c_0,c_1,c_2]$ where $c_0$ stands for foreground
color, $c_1$ for background color, and $c_2$ for attributes (0 is default, 1
is bold, 4 is underline).

The output objects thus affected are respectively error messages,
history numbers, prompt, input line, output, help messages, timer (that's
seven of them). If $k < 7$, the remaining $a_i$ are assumed to be $no$. For
instance
%
\bprog
default(colors, "9, 5, no, no, 4")
@eprog
\noindent
typesets error messages in color $9$, history numbers in color $5$, output in
color $4$, and does not affect the rest.

A set of default colors for dark (reverse video or PC console) and light
backgrounds respectively is activated when \kbd{colors} is set to
\kbd{darkbg}, resp.~\kbd{lightbg} (or any proper prefix: \kbd{d} is
recognized as an abbreviation for \kbd{darkbg}). A bold variant of
\kbd{darkbg}, called \kbd{boldfg}, is provided if you find the former too
pale.

\emacs In the present version, this default is incompatible with PariEmacs.
Changing it will just fail silently (the alternative would be to display
escape sequences as is, since Emacs will refuse to interpret them).
You must customize color highlighting from the PariEmacs side, see its
documentation.

The default value is \kbd{""} (no colors).

\subsec{compatible}\kbdsidx{compatible}\label{se:def,compatible}
Obsolete. This default is now a no-op.

\subsec{datadir}\kbdsidx{datadir}\label{se:def,datadir}
The name of directory containing the optional data files. For now,
this includes the \kbd{elldata}, \kbd{galdata}, \kbd{galpol}, \kbd{seadata}
packages.

The default value is \kbd{/usr/local/share/pari}, or the override specified
via \kbd{Configure --datadir=}.

\subsec{debug}\kbdsidx{debug}\label{se:def,debug}
Debugging level. If it is non-zero, some extra messages may be printed,
according to what is going on (see~\b{g}).

The default value is \kbd{0} (no debugging messages).

\subsec{debugfiles}\kbdsidx{debugfiles}\label{se:def,debugfiles}
File usage debugging level. If it is non-zero, \kbd{gp} will print
information on file descriptors in use, from PARI's point of view
(see~\b{gf}).

The default value is \kbd{0} (no debugging messages).

\subsec{debugmem}\kbdsidx{debugmem}\label{se:def,debugmem}
Memory debugging level. If it is non-zero, \kbd{gp} will regularly print
information on memory usage. If it's greater than 2, it will indicate any
important garbage collecting and the function it is taking place in
(see~\b{gm}).

\noindent {\bf Important Note:} As it noticeably slows down the performance,
the first functionality (memory usage) is disabled if you're not running a
version compiled for debugging (see Appendix~A).

The default value is \kbd{0} (no debugging messages).

\subsec{echo}\kbdsidx{echo}\label{se:def,echo}
This toggle is either 1 (on) or 0 (off). When \kbd{echo}
mode is on, each command is reprinted before being executed. This can be
useful when reading a file with the \b{r} or \kbd{read} commands. For
example, it is turned on at the beginning of the test files used to check
whether \kbd{gp} has been built correctly (see \b{e}).

The default value is \kbd{0} (no echo).

\subsec{factor\_add\_primes}\kbdsidx{def,factor_add_primes}\label{se:def,factor_add_primes}
This toggle is either 1 (on) or 0 (off). If on,
the integer factorization machinery calls \tet{addprimes} on prime
factors that were difficult to find (larger than $2^{24}$), so they are
automatically tried first in other factorizations. If a routine is performing
(or has performed) a factorization and is interrupted by an error or via
Control-C, this lets you recover the prime factors already found. The
downside is that a huge \kbd{addprimes} table unrelated to the current
computations will slow down arithmetic functions relying on integer
factorization; one should then empty the table using \tet{removeprimes}.

The default value is \kbd{0}.

\subsec{factor\_proven}\kbdsidx{def,factor_proven}\label{se:def,factor_proven}
This toggle is either 1 (on) or 0 (off). By
default, the factors output by the integer factorization machinery are
only pseudo-primes, not proven primes. If this toggle is
set, a primality proof is done for each factor and all results depending on
integer factorization are fully proven. This flag does not affect partial
factorization when it is explicitly requested. It also does not affect the
private table managed by \tet{addprimes}: its entries are included as is in
factorizations, without being tested for primality.

The default value is \kbd{0}.

\subsec{format}\kbdsidx{format}\label{se:def,format}
Of the form x$.n$, where x (conversion style)
is a letter in $\{\kbd{e},\kbd{f},\kbd{g}\}$, and $n$ (precision) is an
integer; this affects the way real numbers are printed:

\item If the conversion style is \kbd{e}, real numbers are printed in
\idx{scientific format}, always with an explicit exponent,
e.g.~\kbd{3.3 E-5}.

\item In style \kbd{f}, real numbers are generally printed in
\idx{fixed floating point format} without exponent, e.g.~\kbd{0.000033}. A
large real number, whose integer part is not well defined (not enough
significant digits), is printed in style~\kbd{e}. For instance
\kbd{10.\pow 100} known to ten significant digits is always printed in style
\kbd{e}.

\item In style \kbd{g}, non-zero real numbers are printed in \kbd{f} format,
except when their decimal exponent is $< -4$, in which case they are printed
in \kbd{e} format. Real zeroes (of arbitrary exponent) are printed in \kbd{e}
format.

The precision $n$ is the number of significant digits printed for real
numbers, except if $n<0$ where all the significant digits will be printed
(initial default 28, or 38 for 64-bit machines). For more powerful formatting
possibilities, see \tet{printf} and \tet{Strprintf}.

The default value is \kbd{"g.28"} and \kbd{"g.38"} on 32-bit and
64-bit machines, respectively.

\subsec{graphcolormap}\kbdsidx{graphcolormap}\label{se:def,graphcolormap}
A vector of colors, to be
used by hi-res graphing routines. Its length is arbitrary, but it must
contain at least 3 entries: the first 3 colors are used for background,
frame/ticks and axes respectively. All colors in the colormap may be freely
used in \tet{plotcolor} calls.

A color is either given as in the default by character strings or by an RGB
code. For valid character strings, see the standard \kbd{rgb.txt} file in X11
distributions, where we restrict to lowercase letters and remove all
whitespace from color names. An RGB code is a vector with 3 integer entries
between 0 and 255. For instance \kbd{[250, 235, 215]} and
\kbd{"antiquewhite"} represent the same color. RGB codes are cryptic but
often easier to generate.

The default value is [\kbd{"white"}, \kbd{"black"}, \kbd{"blue"},
\kbd{"violetred"}, \kbd{"red"}, \kbd{"green"}, \kbd{"grey"},
\kbd{"gainsboro"}].

\subsec{graphcolors}\kbdsidx{graphcolors}\label{se:def,graphcolors}
Entries in the
\tet{graphcolormap} that will be used to plot multi-curves. The successive
curves are drawn in colors

\kbd{graphcolormap[graphcolors[1]]}, \kbd{graphcolormap[graphcolors[2]]},
  \dots

cycling when the \kbd{graphcolors} list is exhausted.

The default value is \kbd{[4,5]}.

\subsec{help}\kbdsidx{help}\label{se:def,help}
Name of the external help program to use from within \kbd{gp} when
extended help is invoked, usually through a \kbd{??} or \kbd{???} request
(see \secref{se:exthelp}), or \kbd{M-H} under readline (see
\secref{se:readline}).

The default value is the path to the \kbd{gphelp} script we install.

\subsec{histfile}\kbdsidx{histfile}\label{se:def,histfile}
Name of a file where
\kbd{gp} will keep a history of all \emph{input} commands (results are
omitted). If this file exists when the value of \kbd{histfile} changes,
it is read in and becomes part of the session history. Thus, setting this
default in your gprc saves your readline history between sessions. Setting
this default to the empty string \kbd{""} changes it to
\kbd{$<$undefined$>$}

The default value is \kbd{$<$undefined$>$} (no history file).

\subsec{histsize}\kbdsidx{histsize}\label{se:def,histsize}
\kbd{gp} keeps a history of the last
\kbd{histsize} results computed so far, which you can recover using the
\kbd{\%} notation (see \secref{se:history}). When this number is exceeded,
the oldest values are erased. Tampering with this default is the only way to
get rid of the ones you do not need anymore.

The default value is \kbd{5000}.

\subsec{lines}\kbdsidx{lines}\label{se:def,lines}
If set to a positive value, \kbd{gp} prints at
most that many lines from each result, terminating the last line shown with
\kbd{[+++]} if further material has been suppressed. The various \kbd{print}
commands (see \secref{se:gp_program}) are unaffected, so you can always type
\kbd{print(\%)} or \b{a} to view the full result. If the actual screen width
cannot be determined, a ``line'' is assumed to be 80 characters long.

The default value is \kbd{0}.

\subsec{linewrap}\kbdsidx{linewrap}\label{se:def,linewrap}
If set to a positive value, \kbd{gp} wraps every single line after
printing that many characters.

The default value is \kbd{0} (unset).

\subsec{log}\kbdsidx{log}\label{se:def,log}
This can be either 0 (off) or 1, 2, 3
(on, see below for the various modes). When logging mode is turned on, \kbd{gp}
opens a log file, whose exact name is determined by the \kbd{logfile}
default. Subsequently, all the commands and results will be written to that
file (see \b{l}). In case a file with this precise name already existed, it
will not be erased: your data will be \emph{appended} at the end.

The specific positive values of \kbd{log} have the following meaning

1: plain logfile

2: emit color codes to the logfile (if \kbd{colors} is set).

3: write LaTeX output to the logfile (can be further customized using
\tet{TeXstyle}).

The default value is \kbd{0}.

\subsec{logfile}\kbdsidx{logfile}\label{se:def,logfile}
Name of the log file to be used when the \kbd{log} toggle is on.
Environment and time expansion are performed.

The default value is \kbd{"pari.log"}.

\subsec{nbthreads}\kbdsidx{nbthreads}\label{se:def,nbthreads}
Number of threads to use for parallel computing.
The exact meaning an default depend on the \kbd{mt} engine used:

\item \kbd{single}: not used (always one thread).

\item \kbd{pthread}: number of threads (unlimited, default: number of core)

\item \kbd{mpi}: number of MPI process to use (limited to the number allocated by \kbd{mpirun},
default: use all allocated process).

\subsec{new\_galois\_format}\kbdsidx{def,new_galois_format}\label{se:def,new_galois_format}
This toggle is either 1 (on) or 0 (off). If on,
the \tet{polgalois} command will use a different, more
consistent, naming scheme for Galois groups. This default is provided to
ensure that scripts can control this behavior and do not break unexpectedly.

The default value is \kbd{0}. This value will change to $1$ (set) in the next
major version.

\subsec{output}\kbdsidx{output}\label{se:def,output}
There are three possible values: 0
(=~\var{raw}), 1 (=~\var{prettymatrix}), or 3
(=~\var{external} \var{prettyprint}). This
means that, independently of the default \kbd{format} for reals which we
explained above, you can print results in three ways:

\item \tev{raw format}, i.e.~a format which is equivalent to what you
input, including explicit multiplication signs, and everything typed on a
line instead of two dimensional boxes. This can have several advantages, for
instance it allows you to pick the result with a mouse or an editor, and to
paste it somewhere else.

\item \tev{prettymatrix format}: this is identical to raw format, except
that matrices are printed as boxes instead of horizontally. This is
prettier, but takes more space and cannot be used for input. Column vectors
are still printed horizontally.

\item \tev{external prettyprint}: pipes all \kbd{gp}
output in TeX format to an external prettyprinter, according to the value of
\tet{prettyprinter}. The default script (\tet{tex2mail}) converts its input
to readable two-dimensional text.

Independently of the setting of this default, an object can be printed
in any of the three formats at any time using the commands \b{a} and \b{m}
and \b{B} respectively.

The default value is \kbd{1} (\var{prettymatrix}).

\subsec{parisize}\kbdsidx{parisize}\label{se:def,parisize}
\kbd{gp}, and in fact any program using the PARI
library, needs a \tev{stack} in which to do its computations; \kbd{parisize}
is the stack size, in bytes. It is recommended to increase this
default using a \tet{gprc}, to the value you believe PARI should be happy
with, given your typical computation. We strongly recommend to also
set \tet{parisizemax} to a much larger value, about what you believe your
machine can stand: PARI will then try to fit its computations within about
\kbd{parisize} bytes, but will increase the stack size if needed (up to
\kbd{parisizemax}). Once the memory intensive computation is over, PARI
will restore the stack size to the originally requested \kbd{parisize}.

The default value is 4M, resp.~8M on a 32-bit, resp.~64-bit machine.

\subsec{parisizemax}\kbdsidx{parisizemax}\label{se:def,parisizemax}
\kbd{gp}, and in fact any program using the PARI library, needs a
\tev{stack} in which to do its computations.  If non-zero,  \kbd{parisizemax}
is the maximum size the stack can grow to, in bytes.  If zero, the stack will
not automatically grow, and will be limited to the value of \kbd{parisize}.

We strongly recommend to set \tet{parisizemax} to a non-zero value, about
what you believe your machine can stand: PARI will then try to fit its
computations within about \kbd{parisize} bytes, but will increase the stack
size if needed (up to \kbd{parisizemax}). Once the memory intensive
computation is over, PARI will restore the stack size to the originally
requested \kbd{parisize}.

The default value is $0$.

\subsec{path}\kbdsidx{path}\label{se:def,path}
This is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to read a file whose name is not given by an absolute path
(does not start with \kbd{/}, \kbd{./} or \kbd{../}), \kbd{gp} will look for
it in these directories, in the order they were written in \kbd{path}. Here,
as usual, \kbd{.} means the current directory, and \kbd{..} its immediate
parent. Environment expansion is performed.

The default value is \kbd{".:\til:\til/gp"} on UNIX systems,
\kbd{".;C:\bs;C:\bs GP"} on DOS, OS/2 and Windows, and \kbd{"."} otherwise.

\subsec{prettyprinter}\kbdsidx{prettyprinter}\label{se:def,prettyprinter}
The name of an external prettyprinter to use when
\kbd{output} is~3 (alternate prettyprinter). Note that the default
\tet{tex2mail} looks much nicer than the built-in ``beautified
format'' ($\kbd{output} = 2$).

The default value is \kbd{"tex2mail -TeX -noindent -ragged -by\_par"}.

\subsec{primelimit}\kbdsidx{primelimit}\label{se:def,primelimit}
\kbd{gp} precomputes a list of
all primes less than \kbd{primelimit} at initialization time, and can build
fast sieves on demand to quickly iterate over primes up to the \emph{square}
of \kbd{primelimit}. These are used by many arithmetic functions, usually for
trial division purposes. The maximal value is $2^{32} - 2049$ (resp $2^{64} -
2049$) on a 32-bit (resp.~64-bit) machine, but values beyond $10^8$,
allowing to iterate over primes up to $10^{16}$, do not seem useful.

Since almost all arithmetic functions eventually require some table of prime
numbers, PARI guarantees that the first 6547 primes, up to and
including 65557, are precomputed, even if \kbd{primelimit} is $1$.

This default is only used on startup: changing it will not recompute a new
table.

\misctitle{Deprecated feature} \kbd{primelimit} was used in some
situations by algebraic number theory functions using the
\tet{nf_PARTIALFACT} flag (\tet{nfbasis}, \tet{nfdisc}, \tet{nfinit}, \dots):
this assumes that all primes $p > \kbd{primelimit}$ have a certain
property (the equation order is $p$-maximal). This is never done by default,
and must be explicitly set by the user of such functions. Nevertheless,
these functions now provide a more flexible interface, and their use
of the global default \kbd{primelimit} is deprecated.

\misctitle{Deprecated feature} \kbd{factor(N, 0)} was used to partially
factor integers by removing all prime factors $\leq$ \kbd{primelimit}.
Don't use this, supply an explicit bound: \kbd{factor(N, bound)},
which avoids relying on an unpredictable global variable.

The default value is \kbd{500k}.

\subsec{prompt}\kbdsidx{prompt}\label{se:def,prompt}
A string that will be printed as
prompt. Note that most usual escape sequences are available there: \b{e} for
Esc, \b{n} for Newline, \dots, \kbd{\bs\bs} for \kbd{\bs}. Time expansion is
performed.

This string is sent through the library function \tet{strftime} (on a
Unix system, you can try \kbd{man strftime} at your shell prompt). This means
that \kbd{\%} constructs have a special meaning, usually related to the time
and date. For instance, \kbd{\%H} = hour (24-hour clock) and \kbd{\%M} =
minute [00,59] (use \kbd{\%\%} to get a real \kbd{\%}).

If you use \kbd{readline}, escape sequences in your prompt will result in
display bugs. If you have a relatively recent \kbd{readline} (see the comment
at the end of \secref{se:def,colors}), you can brace them with special sequences
(\kbd{\bs[} and \kbd{\bs]}), and you will be safe. If these just result in
extra spaces in your prompt, then you'll have to get a more recent
\kbd{readline}. See the file \kbd{misc/gprc.dft} for an example.

\emacs {\bf Caution}: PariEmacs needs to know about the prompt pattern to
separate your input from previous \kbd{gp} results, without ambiguity. It is
not a trivial problem to adapt automatically this regular expression to an
arbitrary prompt (which can be self-modifying!). See PariEmacs's
documentation.

The default value is \kbd{"? "}.

\subsec{prompt\_cont}\kbdsidx{def,prompt_cont}\label{se:def,prompt_cont}
A string that will be printed
to prompt for continuation lines (e.g. in between braces, or after a
line-terminating backslash). Everything that applies to \kbd{prompt}
applies to \kbd{prompt\_cont} as well.

The default value is \kbd{""}.

\subsec{psfile}\kbdsidx{psfile}\label{se:def,psfile}
Name of the default file where
\kbd{gp} is to dump its PostScript drawings (these are appended, so that no
previous data are lost). Environment and time expansion are performed.

The default value is \kbd{"pari.ps"}.

\subsec{readline}\kbdsidx{readline}\label{se:def,readline}
Switches readline line-editing
facilities on and off. This may be useful if you are running \kbd{gp} in a Sun
\tet{cmdtool}, which interacts badly with readline. Of course, until readline
is switched on again, advanced editing features like automatic completion
and editing history are not available.

The default value is \kbd{1}.

\subsec{realbitprecision}\kbdsidx{realbitprecision}\label{se:def,realbitprecision}
The number of significant bits used to convert exact inputs given to
transcendental functions (see \secref{se:trans}), or to create
absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
instance). Unless you tamper with the \tet{format} default, this is also
the number of significant bits used to print a \typ{REAL} number;
\kbd{format} will override this latter behaviour, and allow you to have a
large internal precision while outputting few digits for instance.

Note that most PARI's functions currently handle precision on a word basis (by
increments of 32 or 64 bits), hence bit precision may be a little larger
than the number of bits you expected. For instance to get 10 bits of
precision, you need one word of precision which, on a 64-bit machine,
correspond to 64 bits. To make things even more confusing, this internal bit
accuracy is converted to decimal digits when printing floating point numbers:
now 64 bits correspond to 19 printed decimal digits
($19 <  \log_{10}(2^{64}) < 20$).

The value returned when typing \kbd{default(realbitprecision)} is the internal
number of significant bits, not the number of printed decimal digits:
\bprog
? default(realbitprecision, 10)
? \pb
      realbitprecision = 64 significant bits
? default(realbitprecision)
%1 = 64
? \p
      realprecision = 3 significant digits
? default(realprecision)
%2 = 19
@eprog\noindent Note that \tet{realprecision} and \kbd{\bs p} allow
to view and manipulate the internal precision in decimal digits.

The default value is \kbd{128}, resp.~\kbd{96}, on a 64-bit, resp~.32-bit,
machine.

\subsec{realprecision}\kbdsidx{realprecision}\label{se:def,realprecision}
The number of significant digits used to convert exact inputs given to
transcendental functions (see \secref{se:trans}), or to create
absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
instance). Unless you tamper with the \tet{format} default, this is also
the number of significant digits used to print a \typ{REAL} number;
\kbd{format} will override this latter behaviour, and allow you to have a
large internal precision while outputting few digits for instance.

Note that PARI's internal precision works on a word basis (by increments of
32 or 64 bits), hence may be a little larger than the number of decimal
digits you expected. For instance to get 2 decimal digits you need one word
of precision which, on a 64-bit machine, actually gives you 19 digits ($19 <
\log_{10}(2^{64}) < 20$). The value returned when typing
\kbd{default(realprecision)} is the internal number of significant digits,
not the number of printed digits:
\bprog
? default(realprecision, 2)
      realprecision = 19 significant digits (2 digits displayed)
? default(realprecision)
%1 = 19
@eprog
The default value is \kbd{38}, resp.~\kbd{28}, on a 64-bit, resp.~32-bit,
machine.

\subsec{recover}\kbdsidx{recover}\label{se:def,recover}
This toggle is either 1 (on) or 0 (off). If you change this to $0$, any
error becomes fatal and causes the gp interpreter to exit immediately. Can be
useful in batch job scripts.

The default value is \kbd{1}.

\subsec{secure}\kbdsidx{secure}\label{se:def,secure}
This toggle is either 1 (on) or 0 (off). If on, the \tet{system} and
\tet{extern} command are disabled. These two commands are potentially
dangerous when you execute foreign scripts since they let \kbd{gp} execute
arbitrary UNIX commands. \kbd{gp} will ask for confirmation before letting
you (or a script) unset this toggle.

The default value is \kbd{0}.

\subsec{seriesprecision}\kbdsidx{seriesprecision}\label{se:def,seriesprecision}
Number of significant terms
when converting a polynomial or rational function to a power series
(see~\b{ps}).

The default value is \kbd{16}.

\subsec{simplify}\kbdsidx{simplify}\label{se:def,simplify}
This toggle is either 1 (on) or 0 (off). When the PARI library computes
something, the type of the
result is not always the simplest possible. The only type conversions which
the PARI library does automatically are rational numbers to integers (when
they are of type \typ{FRAC} and equal to integers), and similarly rational
functions to polynomials (when they are of type \typ{RFRAC} and equal to
polynomials). This feature is useful in many cases, and saves time, but can
be annoying at times. Hence you can disable this and, whenever you feel like
it, use the function \kbd{simplify} (see Chapter 3) which allows you to
simplify objects to the simplest possible types recursively (see~\b{y}).
\sidx{automatic simplification}

The default value is \kbd{1}.

\subsec{sopath}\kbdsidx{sopath}\label{se:def,sopath}
This is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to \tet{install} an external symbol from a shared library whose
name is not given by an absolute path (does not start with \kbd{/}, \kbd{./}
or \kbd{../}), \kbd{gp} will look for it in these directories, in the order
they were written in \kbd{sopath}. Here, as usual, \kbd{.} means the current
directory, and \kbd{..} its immediate parent. Environment expansion is
performed.

The default value is \kbd{""}, corresponding to an empty list of
directories: \tet{install} will use the library name as input (and look in
the current directory if the name is not an absolute path).

\subsec{strictargs}\kbdsidx{strictargs}\label{se:def,strictargs}
This toggle is either 1 (on) or 0 (off). If on, all arguments to \emph{new}
user functions are mandatory unless the function supplies an explicit default
value.
Otherwise arguments have the default value $0$.

In this example,
\bprog
  fun(a,b=2)=a+b
@eprog
\kbd{a} is mandatory, while \kbd{b} is optional. If \kbd{strictargs} is on:
\bprog
? fun()
 ***   at top-level: fun()
 ***                 ^-----
 ***   in function fun: a,b=2
 ***                    ^-----
 ***   missing mandatory argument 'a' in user function.
@eprog
This applies to functions defined while \kbd{strictargs} is on. Changing \kbd{strictargs}
does not affect the behavior of previously defined functions.

The default value is \kbd{0}.

\subsec{strictmatch}\kbdsidx{strictmatch}\label{se:def,strictmatch}
Obsolete. This toggle is now a no-op.

\subsec{threadsize}\kbdsidx{threadsize}\label{se:def,threadsize}
In parallel mode, each thread needs its own private \tev{stack} in which
to do its computations, see \kbd{parisize}. This value determines the size
in bytes of the stacks of each thread, so the total memory allocated will be
$\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$.

If set to $0$, the value used is the same as \kbd{parisize}.

The default value is $0$.

\subsec{threadsizemax}\kbdsidx{threadsizemax}\label{se:def,threadsizemax}
In parallel mode, each threads needs its own private \tev{stack} in which
to do its computations, see \kbd{parisize}. This value determines the maximal
size in bytes of the stacks of each thread, so the total memory allocated will
be between $\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$. and
$\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsizemax}$.

If set to $0$, the value used is the same as \kbd{threadsize}.

The default value is $0$.

\subsec{timer}\kbdsidx{timer}\label{se:def,timer}
This toggle is either 1 (on) or 0 (off). Every instruction sequence
in the gp calculator (anything ended by a newline in your input) is timed,
to some accuracy depending on the hardware and operating system. When
\tet{timer} is on, each such timing is printed immediately before the
output as follows:
\bprog
? factor(2^2^7+1)
time = 108 ms.     \\ this line omitted if 'timer' is 0
%1 =
[     59649589127497217 1]

[5704689200685129054721 1]
@eprog\noindent (See also \kbd{\#} and \kbd{\#\#}.)

The time measured is the user \idx{CPU time}, \emph{not} including the time
for printing the results. If the time is negligible ($< 1$ ms.), nothing is
printed: in particular, no timing should be printed when defining a user
function or an alias, or installing a symbol from the library.

The default value is \kbd{0} (off).
%SECTION: default

\vfill\eject