This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/monotone_smooth.m is in octave-statistics 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
## Copyright (C) 2011 Nir Krakauer <nkrakauer@ccny.cuny.edu>
## Copyright (C) 2011 Carnë Draug <carandraug+dev@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{yy} =} monotone_smooth (@var{x}, @var{y}, @var{h})
## Produce a smooth monotone increasing approximation to a sampled functional
## dependence y(x) using a kernel method (an Epanechnikov smoothing kernel is
## applied to y(x); this is integrated to yield the monotone increasing form.
## See Reference 1 for details.)
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{x} is a vector of values of the independent variable.
##
## @item
## @var{y} is a vector of values of the dependent variable, of the same size as
## @var{x}. For best performance, it is recommended that the @var{y} already be
## fairly smooth, e.g. by applying a kernel smoothing to the original values if
## they are noisy.
##
## @item
## @var{h} is the kernel bandwidth to use. If @var{h} is not given, a "reasonable"
## value is computed.
##
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{yy} is the vector of smooth monotone increasing function values at @var{x}.
##
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## x = 0:0.1:10;
## y = (x .^ 2) + 3 * randn(size(x)); %typically non-monotonic from the added noise
## ys = ([y(1) y(1:(end-1))] + y + [y(2:end) y(end)])/3; %crudely smoothed via
## moving average, but still typically non-monotonic
## yy = monotone_smooth(x, ys); %yy is monotone increasing in x
## plot(x, y, '+', x, ys, x, yy)
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Holger Dette, Natalie Neumeyer and Kay F. Pilz (2006), A simple nonparametric
## estimator of a strictly monotone regression function, @cite{Bernoulli}, 12:469-490
## @item
## Regine Scheder (2007), R Package 'monoProc', Version 1.0-6,
## @url{http://cran.r-project.org/web/packages/monoProc/monoProc.pdf} (The
## implementation here is based on the monoProc function mono.1d)
## @end enumerate
## @end deftypefn

## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>
## Description: Nonparametric monotone increasing regression

function yy = monotone_smooth (x, y, h)

  if (nargin < 2 || nargin > 3)
    print_usage ();
  elseif (!isnumeric (x) || !isvector (x))
    error ("first argument x must be a numeric vector")
  elseif (!isnumeric (y) || !isvector (y))
    error ("second argument y must be a numeric vector")
  elseif (numel (x) != numel (y))
    error ("x and y must have the same number of elements")
  elseif (nargin == 3 && (!isscalar (h) || !isnumeric (h)))
    error ("third argument 'h' (kernel bandwith) must a numeric scalar")
  endif

  n = numel(x);

  %set filter bandwidth at a reasonable default value, if not specified
  if (nargin != 3)
    s = std(x);
    h = s / (n^0.2);
  end

  x_min = min(x);
  x_max = max(x);

  y_min = min(y);
  y_max = max(y);

  %transform range of x to [0, 1]
  xl = (x - x_min) / (x_max - x_min);

  yy = ones(size(y));

  %Epanechnikov smoothing kernel (with finite support)
  %K_epanech_kernel = @(z) (3/4) * ((1 - z).^2) .* (abs(z) < 1);

  K_epanech_int = @(z) mean(((abs(z) < 1)/2) - (3/4) * (z .* (abs(z) < 1) - (1/3) * (z.^3) .* (abs(z) < 1)) + (z < -1));

  %integral of kernels up to t
  monotone_inverse = @(t) K_epanech_int((y - t) / h);

  %find the value of the monotone smooth function at each point in x
  niter_max = 150; %maximum number of iterations for estimating each value (should not be reached in most cases) 
  for l = 1:n

    tmax = y_max;
    tmin = y_min;
    wmin = monotone_inverse(tmin);
    wmax = monotone_inverse(tmax);
    if (wmax == wmin)
      yy(l) = tmin;
    else
      wt = xl(l);
      iter_max_reached = 1;
      for i = 1:niter_max
        wt_scaled = (wt - wmin) / (wmax - wmin);
        tn        = tmin + wt_scaled * (tmax - tmin) ;
        wn        = monotone_inverse(tn);
        wn_scaled = (wn - wmin) / (wmax - wmin);

        %if (abs(wt-wn) < 1E-4) || (tn < (y_min-0.1)) || (tn > (y_max+0.1))
        %% criterion for break in the R code -- replaced by the following line to
        %% hopefully be less dependent on the scale of y
        if (abs(wt_scaled-wn_scaled) < 1E-4) || (wt_scaled < -0.1) || (wt_scaled > 1.1)
          iter_max_reached = 0;
          break
        endif
        if wn > wt
          tmax = tn;
          wmax = wn;
        else
          tmin = tn;
          wmin = wn;
        endif
      endfor
      if iter_max_reached
        warning("at x = %g, maximum number of iterations %d reached without convergence; approximation may not be optimal", x(l), niter_max)
      endif
      yy(l) = tmin + (wt - wmin) * (tmax - tmin) / (wmax - wmin);
    endif
  endfor
endfunction