/usr/include/viennacl/linalg/qr-method.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 | #ifndef VIENNACL_LINALG_QR_METHOD_HPP_
#define VIENNACL_LINALG_QR_METHOD_HPP_
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
#include "viennacl/vector.hpp"
#include "viennacl/matrix.hpp"
#include "viennacl/linalg/qr-method-common.hpp"
#include "viennacl/linalg/tql2.hpp"
#include "viennacl/linalg/prod.hpp"
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix.hpp>
/** @file viennacl/linalg/qr-method.hpp
@brief Implementation of the QR method for eigenvalue computations. Experimental.
*/
namespace viennacl
{
namespace linalg
{
namespace detail
{
template <typename SCALARTYPE>
void final_iter_update_gpu(matrix_base<SCALARTYPE> & A,
int n,
int last_n,
SCALARTYPE q,
SCALARTYPE p
)
{
(void)A; (void)n; (void)last_n; (void)q; (void)p;
#ifdef VIENNACL_WITH_OPENCL
viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(A).context());
if(A.row_major())
{
viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE, row_major>::program_name(), SVD_FINAL_ITER_UPDATE_KERNEL);
viennacl::ocl::enqueue(kernel(
A,
static_cast<cl_uint>(A.internal_size1()),
static_cast<cl_uint>(n),
static_cast<cl_uint>(last_n),
q,
p
));
}
else
{
viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE, column_major>::program_name(), SVD_FINAL_ITER_UPDATE_KERNEL);
viennacl::ocl::enqueue(kernel(
A,
static_cast<cl_uint>(A.internal_size1()),
static_cast<cl_uint>(n),
static_cast<cl_uint>(last_n),
q,
p
));
}
#endif
}
template <typename SCALARTYPE, typename VectorType>
void update_float_QR_column_gpu(matrix_base<SCALARTYPE> & A,
const VectorType& buf,
viennacl::vector<SCALARTYPE>& buf_vcl,
int m,
int n,
int last_n,
bool //is_triangular
)
{
(void)A; (void)buf; (void)buf_vcl; (void)m; (void)n; (void)last_n;
#ifdef VIENNACL_WITH_OPENCL
viennacl::ocl::context & ctx = const_cast<viennacl::ocl::context &>(viennacl::traits::opencl_handle(A).context());
viennacl::fast_copy(buf, buf_vcl);
if(A.row_major())
{
viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE, row_major>::program_name(), SVD_UPDATE_QR_COLUMN_KERNEL);
viennacl::ocl::enqueue(kernel(
A,
static_cast<cl_uint>(A.internal_size1()),
buf_vcl,
static_cast<cl_uint>(m),
static_cast<cl_uint>(n),
static_cast<cl_uint>(last_n)
));
}
else
{
viennacl::ocl::kernel& kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::svd<SCALARTYPE, column_major>::program_name(), SVD_UPDATE_QR_COLUMN_KERNEL);
viennacl::ocl::enqueue(kernel(
A,
static_cast<cl_uint>(A.internal_size1()),
buf_vcl,
static_cast<cl_uint>(m),
static_cast<cl_uint>(n),
static_cast<cl_uint>(last_n)
));
}
#endif
}
template<typename SCALARTYPE, typename MatrixT>
void final_iter_update(MatrixT& A,
int n,
int last_n,
SCALARTYPE q,
SCALARTYPE p
)
{
for (int i = 0; i < last_n; i++)
{
SCALARTYPE v_in = A(i, n);
SCALARTYPE z = A(i, n - 1);
A(i, n - 1) = q * z + p * v_in;
A(i, n) = q * v_in - p * z;
}
}
template<typename SCALARTYPE, typename MatrixT>
void update_float_QR_column(MatrixT& A,
const std::vector<SCALARTYPE>& buf,
int m,
int n,
int last_i,
bool is_triangular
)
{
for (int i = 0; i < last_i; i++)
{
int start_k = is_triangular?std::max(i + 1, m):m;
SCALARTYPE* a_row = A.row(i);
SCALARTYPE a_ik = a_row[start_k];
SCALARTYPE a_ik_1 = 0;
SCALARTYPE a_ik_2 = 0;
if (start_k < n)
a_ik_1 = a_row[start_k + 1];
for (int k = start_k; k < n; k++)
{
bool notlast = (k != n - 1);
SCALARTYPE p = buf[5 * static_cast<vcl_size_t>(k)] * a_ik + buf[5 * static_cast<vcl_size_t>(k) + 1] * a_ik_1;
if (notlast)
{
a_ik_2 = a_row[k + 2];
p = p + buf[5 * static_cast<vcl_size_t>(k) + 2] * a_ik_2;
a_ik_2 = a_ik_2 - p * buf[5 * static_cast<vcl_size_t>(k) + 4];
}
a_row[k] = a_ik - p;
a_ik_1 = a_ik_1 - p * buf[5 * static_cast<vcl_size_t>(k) + 3];
a_ik = a_ik_1;
a_ik_1 = a_ik_2;
}
if (start_k < n)
a_row[n] = a_ik;
}
}
/** @brief Internal helper class representing a row-major dense matrix used for the QR method for the purpose of computing eigenvalues. */
template<typename SCALARTYPE>
class FastMatrix
{
public:
FastMatrix()
{
size_ = 0;
}
FastMatrix(vcl_size_t sz, vcl_size_t internal_size) : size_(sz), internal_size_(internal_size)
{
data.resize(internal_size * internal_size);
}
SCALARTYPE& operator()(int i, int j)
{
return data[static_cast<vcl_size_t>(i) * internal_size_ + static_cast<vcl_size_t>(j)];
}
SCALARTYPE* row(int i)
{
return &data[static_cast<vcl_size_t>(i) * internal_size_];
}
SCALARTYPE* begin()
{
return &data[0];
}
SCALARTYPE* end()
{
return &data[0] + data.size();
}
std::vector<SCALARTYPE> data;
private:
vcl_size_t size_;
vcl_size_t internal_size_;
};
// Nonsymmetric reduction from Hessenberg to real Schur form.
// This is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
template <typename SCALARTYPE, typename VectorType>
void hqr2(viennacl::matrix<SCALARTYPE>& vcl_H,
viennacl::matrix<SCALARTYPE>& V,
VectorType & d,
VectorType & e)
{
transpose(V);
int nn = static_cast<int>(vcl_H.size1());
FastMatrix<SCALARTYPE> H(vcl_size_t(nn), vcl_H.internal_size2());//, V(nn);
std::vector<SCALARTYPE> buf(5 * vcl_size_t(nn));
//boost::numeric::ublas::vector<float> buf(5 * nn);
viennacl::vector<SCALARTYPE> buf_vcl(5 * vcl_size_t(nn));
viennacl::fast_copy(vcl_H, H.begin());
int n = nn - 1;
SCALARTYPE eps = 2 * static_cast<SCALARTYPE>(EPS);
SCALARTYPE exshift = 0;
SCALARTYPE p = 0;
SCALARTYPE q = 0;
SCALARTYPE r = 0;
SCALARTYPE s = 0;
SCALARTYPE z = 0;
SCALARTYPE t;
SCALARTYPE w;
SCALARTYPE x;
SCALARTYPE y;
SCALARTYPE out1, out2;
// compute matrix norm
SCALARTYPE norm = 0;
for (int i = 0; i < nn; i++)
{
for (int j = std::max(i - 1, 0); j < nn; j++)
norm = norm + std::fabs(H(i, j));
}
// Outer loop over eigenvalue index
int iter = 0;
while (n >= 0)
{
// Look for single small sub-diagonal element
int l = n;
while (l > 0)
{
s = std::fabs(H(l - 1, l - 1)) + std::fabs(H(l, l));
if (s <= 0)
s = norm;
if (std::fabs(H(l, l - 1)) < eps * s)
break;
l--;
}
// Check for convergence
if (l == n)
{
// One root found
H(n, n) = H(n, n) + exshift;
d[vcl_size_t(n)] = H(n, n);
e[vcl_size_t(n)] = 0;
n--;
iter = 0;
}
else if (l == n - 1)
{
// Two roots found
w = H(n, n - 1) * H(n - 1, n);
p = (H(n - 1, n - 1) - H(n, n)) / 2;
q = p * p + w;
z = static_cast<SCALARTYPE>(std::sqrt(std::fabs(q)));
H(n, n) = H(n, n) + exshift;
H(n - 1, n - 1) = H(n - 1, n - 1) + exshift;
x = H(n, n);
if (q >= 0)
{
// Real pair
z = (p >= 0) ? (p + z) : (p - z);
d[vcl_size_t(n) - 1] = x + z;
d[vcl_size_t(n)] = d[vcl_size_t(n) - 1];
if (z <= 0 && z >= 0) // z == 0 without compiler complaints
d[vcl_size_t(n)] = x - w / z;
e[vcl_size_t(n) - 1] = 0;
e[vcl_size_t(n)] = 0;
x = H(n, n - 1);
s = std::fabs(x) + std::fabs(z);
p = x / s;
q = z / s;
r = static_cast<SCALARTYPE>(std::sqrt(p * p + q * q));
p = p / r;
q = q / r;
// Row modification
for (int j = n - 1; j < nn; j++)
{
SCALARTYPE h_nj = H(n, j);
z = H(n - 1, j);
H(n - 1, j) = q * z + p * h_nj;
H(n, j) = q * h_nj - p * z;
}
final_iter_update(H, n, n + 1, q, p);
final_iter_update_gpu(V, n, nn, q, p);
}
else
{
// Complex pair
d[vcl_size_t(n) - 1] = x + p;
d[vcl_size_t(n)] = x + p;
e[vcl_size_t(n) - 1] = z;
e[vcl_size_t(n)] = -z;
}
n = n - 2;
iter = 0;
}
else
{
// No convergence yet
// Form shift
x = H(n, n);
y = 0;
w = 0;
if (l < n)
{
y = H(n - 1, n - 1);
w = H(n, n - 1) * H(n - 1, n);
}
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
for (int i = 0; i <= n; i++)
H(i, i) -= x;
s = std::fabs(H(n, n - 1)) + std::fabs(H(n - 1, n - 2));
x = y = SCALARTYPE(0.75) * s;
w = SCALARTYPE(-0.4375) * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30)
{
s = (y - x) / 2;
s = s * s + w;
if (s > 0)
{
s = static_cast<SCALARTYPE>(std::sqrt(s));
if (y < x) s = -s;
s = x - w / ((y - x) / 2 + s);
for (int i = 0; i <= n; i++)
H(i, i) -= s;
exshift += s;
x = y = w = SCALARTYPE(0.964);
}
}
iter = iter + 1;
// Look for two consecutive small sub-diagonal elements
int m = n - 2;
while (m >= l)
{
SCALARTYPE h_m1_m1 = H(m + 1, m + 1);
z = H(m, m);
r = x - z;
s = y - z;
p = (r * s - w) / H(m + 1, m) + H(m, m + 1);
q = h_m1_m1 - z - r - s;
r = H(m + 2, m + 1);
s = std::fabs(p) + std::fabs(q) + std::fabs(r);
p = p / s;
q = q / s;
r = r / s;
if (m == l)
break;
if (std::fabs(H(m, m - 1)) * (std::fabs(q) + std::fabs(r)) < eps * (std::fabs(p) * (std::fabs(H(m - 1, m - 1)) + std::fabs(z) + std::fabs(h_m1_m1))))
break;
m--;
}
for (int i = m + 2; i <= n; i++)
{
H(i, i - 2) = 0;
if (i > m + 2)
H(i, i - 3) = 0;
}
// float QR step involving rows l:n and columns m:n
for (int k = m; k < n; k++)
{
bool notlast = (k != n - 1);
if (k != m)
{
p = H(k, k - 1);
q = H(k + 1, k - 1);
r = (notlast ? H(k + 2, k - 1) : 0);
x = std::fabs(p) + std::fabs(q) + std::fabs(r);
if (x > 0)
{
p = p / x;
q = q / x;
r = r / x;
}
}
if (x <= 0 && x >= 0) break; // x == 0 without compiler complaints
s = static_cast<SCALARTYPE>(std::sqrt(p * p + q * q + r * r));
if (p < 0) s = -s;
if (s < 0 || s > 0)
{
if (k != m)
H(k, k - 1) = -s * x;
else
if (l != m)
H(k, k - 1) = -H(k, k - 1);
p = p + s;
y = q / s;
z = r / s;
x = p / s;
q = q / p;
r = r / p;
buf[5 * vcl_size_t(k)] = x;
buf[5 * vcl_size_t(k) + 1] = y;
buf[5 * vcl_size_t(k) + 2] = z;
buf[5 * vcl_size_t(k) + 3] = q;
buf[5 * vcl_size_t(k) + 4] = r;
SCALARTYPE* a_row_k = H.row(k);
SCALARTYPE* a_row_k_1 = H.row(k + 1);
SCALARTYPE* a_row_k_2 = H.row(k + 2);
// Row modification
for (int j = k; j < nn; j++)
{
SCALARTYPE h_kj = a_row_k[j];
SCALARTYPE h_k1_j = a_row_k_1[j];
p = h_kj + q * h_k1_j;
if (notlast)
{
SCALARTYPE h_k2_j = a_row_k_2[j];
p = p + r * h_k2_j;
a_row_k_2[j] = h_k2_j - p * z;
}
a_row_k[j] = h_kj - p * x;
a_row_k_1[j] = h_k1_j - p * y;
}
//H(k + 1, nn - 1) = h_kj;
// Column modification
for (int i = k; i < std::min(nn, k + 4); i++)
{
p = x * H(i, k) + y * H(i, k + 1);
if (notlast)
{
p = p + z * H(i, k + 2);
H(i, k + 2) = H(i, k + 2) - p * r;
}
H(i, k) = H(i, k) - p;
H(i, k + 1) = H(i, k + 1) - p * q;
}
}
else
{
buf[5 * vcl_size_t(k)] = 0;
buf[5 * vcl_size_t(k) + 1] = 0;
buf[5 * vcl_size_t(k) + 2] = 0;
buf[5 * vcl_size_t(k) + 3] = 0;
buf[5 * vcl_size_t(k) + 4] = 0;
}
}
// Timer timer;
// timer.start();
update_float_QR_column<SCALARTYPE>(H, buf, m, n, n, true);
update_float_QR_column_gpu(V, buf, buf_vcl, m, n, nn, false);
// std::cout << timer.get() << "\n";
}
}
// Backsubstitute to find vectors of upper triangular form
if (norm <= 0)
{
return;
}
for (n = nn - 1; n >= 0; n--)
{
p = d[vcl_size_t(n)];
q = e[vcl_size_t(n)];
// Real vector
if (q <= 0 && q >= 0)
{
int l = n;
H(n, n) = 1;
for (int i = n - 1; i >= 0; i--)
{
w = H(i, i) - p;
r = 0;
for (int j = l; j <= n; j++)
r = r + H(i, j) * H(j, n);
if (e[vcl_size_t(i)] < 0)
{
z = w;
s = r;
}
else
{
l = i;
if (e[vcl_size_t(i)] <= 0) // e[i] == 0 with previous if
{
H(i, n) = (w > 0 || w < 0) ? (-r / w) : (-r / (eps * norm));
}
else
{
// Solve real equations
x = H(i, i + 1);
y = H(i + 1, i);
q = (d[vcl_size_t(i)] - p) * (d[vcl_size_t(i)] - p) + e[vcl_size_t(i)] * e[vcl_size_t(i)];
t = (x * s - z * r) / q;
H(i, n) = t;
H(i + 1, n) = (std::fabs(x) > std::fabs(z)) ? ((-r - w * t) / x) : ((-s - y * t) / z);
}
// Overflow control
t = std::fabs(H(i, n));
if ((eps * t) * t > 1)
for (int j = i; j <= n; j++)
H(j, n) /= t;
}
}
}
else if (q < 0)
{
// Complex vector
int l = n - 1;
// Last vector component imaginary so matrix is triangular
if (std::fabs(H(n, n - 1)) > std::fabs(H(n - 1, n)))
{
H(n - 1, n - 1) = q / H(n, n - 1);
H(n - 1, n) = -(H(n, n) - p) / H(n, n - 1);
}
else
{
cdiv<SCALARTYPE>(0, -H(n - 1, n), H(n - 1, n - 1) - p, q, out1, out2);
H(n - 1, n - 1) = out1;
H(n - 1, n) = out2;
}
H(n, n - 1) = 0;
H(n, n) = 1;
for (int i = n - 2; i >= 0; i--)
{
SCALARTYPE ra, sa, vr, vi;
ra = 0;
sa = 0;
for (int j = l; j <= n; j++)
{
SCALARTYPE h_ij = H(i, j);
ra = ra + h_ij * H(j, n - 1);
sa = sa + h_ij * H(j, n);
}
w = H(i, i) - p;
if (e[vcl_size_t(i)] < 0)
{
z = w;
r = ra;
s = sa;
}
else
{
l = i;
if (e[vcl_size_t(i)] <= 0) // e[i] == 0 with previous if
{
cdiv<SCALARTYPE>(-ra, -sa, w, q, out1, out2);
H(i, n - 1) = out1;
H(i, n) = out2;
}
else
{
// Solve complex equations
x = H(i, i + 1);
y = H(i + 1, i);
vr = (d[vcl_size_t(i)] - p) * (d[vcl_size_t(i)] - p) + e[vcl_size_t(i)] * e[vcl_size_t(i)] - q * q;
vi = (d[vcl_size_t(i)] - p) * 2 * q;
if ( (vr <= 0 && vr >= 0) && (vi <= 0 && vi >= 0) )
vr = eps * norm * (std::fabs(w) + std::fabs(q) + std::fabs(x) + std::fabs(y) + std::fabs(z));
cdiv<SCALARTYPE>(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi, out1, out2);
H(i, n - 1) = out1;
H(i, n) = out2;
if (std::fabs(x) > (std::fabs(z) + std::fabs(q)))
{
H(i + 1, n - 1) = (-ra - w * H(i, n - 1) + q * H(i, n)) / x;
H(i + 1, n) = (-sa - w * H(i, n) - q * H(i, n - 1)) / x;
}
else
{
cdiv<SCALARTYPE>(-r - y * H(i, n - 1), -s - y * H(i, n), z, q, out1, out2);
H(i + 1, n - 1) = out1;
H(i + 1, n) = out2;
}
}
// Overflow control
t = std::max(std::fabs(H(i, n - 1)), std::fabs(H(i, n)));
if ((eps * t) * t > 1)
{
for (int j = i; j <= n; j++)
{
H(j, n - 1) /= t;
H(j, n) /= t;
}
}
}
}
}
}
viennacl::fast_copy(H.begin(), H.end(), vcl_H);
// viennacl::fast_copy(V.begin(), V.end(), vcl_V);
viennacl::matrix<SCALARTYPE> tmp = V;
V = viennacl::linalg::prod(trans(tmp), vcl_H);
}
template <typename SCALARTYPE>
bool householder_twoside(
matrix_base<SCALARTYPE>& A,
matrix_base<SCALARTYPE>& Q,
vector_base<SCALARTYPE>& D,
vcl_size_t start)
{
vcl_size_t A_size1 = static_cast<vcl_size_t>(viennacl::traits::size1(A));
if(start + 2 >= A_size1)
return false;
prepare_householder_vector(A, D, A_size1, start + 1, start, start + 1, true);
viennacl::linalg::house_update_A_left(A, D, start);
viennacl::linalg::house_update_A_right(A, D);
viennacl::linalg::house_update_QL(Q, D, A_size1);
return true;
}
template <typename SCALARTYPE>
void tridiagonal_reduction(matrix_base<SCALARTYPE>& A,
matrix_base<SCALARTYPE>& Q)
{
vcl_size_t sz = A.size1();
viennacl::vector<SCALARTYPE> hh_vector(sz);
for(vcl_size_t i = 0; i < sz; i++)
{
householder_twoside(A, Q, hh_vector, i);
}
}
template <typename SCALARTYPE>
void qr_method(viennacl::matrix<SCALARTYPE> & A,
viennacl::matrix<SCALARTYPE> & Q,
std::vector<SCALARTYPE> & D,
std::vector<SCALARTYPE> & E,
bool is_symmetric = true)
{
assert(A.size1() == A.size2() && bool("Input matrix must be square for QR method!"));
/* if (!viennacl::is_row_major<F>::value && !is_symmetric)
{
std::cout << "qr_method for non-symmetric column-major matrices not implemented yet!" << std::endl;
exit(EXIT_FAILURE);
}
*/
vcl_size_t mat_size = A.size1();
D.resize(A.size1());
E.resize(A.size1());
viennacl::vector<SCALARTYPE> vcl_D(mat_size), vcl_E(mat_size);
//std::vector<SCALARTYPE> std_D(mat_size), std_E(mat_size);
Q = viennacl::identity_matrix<SCALARTYPE>(Q.size1());
// reduce to tridiagonal form
detail::tridiagonal_reduction(A, Q);
// pack diagonal and super-diagonal
viennacl::linalg::bidiag_pack(A, vcl_D, vcl_E);
copy(vcl_D, D);
copy(vcl_E, E);
// find eigenvalues of symmetric tridiagonal matrix
if(is_symmetric)
{
viennacl::linalg::tql2(Q, D, E);
}
else
{
detail::hqr2(A, Q, D, E);
}
boost::numeric::ublas::matrix<SCALARTYPE> eigen_values(A.size1(), A.size1());
eigen_values.clear();
for (vcl_size_t i = 0; i < A.size1(); i++)
{
if(std::fabs(E[i]) < EPS)
{
eigen_values(i, i) = D[i];
}
else
{
eigen_values(i, i) = D[i];
eigen_values(i, i + 1) = E[i];
eigen_values(i + 1, i) = -E[i];
eigen_values(i + 1, i + 1) = D[i];
i++;
}
}
copy(eigen_values, A);
}
}
template <typename SCALARTYPE>
void qr_method_nsm(viennacl::matrix<SCALARTYPE>& A,
viennacl::matrix<SCALARTYPE>& Q,
std::vector<SCALARTYPE>& D,
std::vector<SCALARTYPE>& E
)
{
detail::qr_method(A, Q, D, E, false);
}
template <typename SCALARTYPE>
void qr_method_sym(viennacl::matrix<SCALARTYPE>& A,
viennacl::matrix<SCALARTYPE>& Q,
std::vector<SCALARTYPE>& D
)
{
std::vector<SCALARTYPE> E(A.size1());
detail::qr_method(A, Q, D, E, true);
}
template <typename SCALARTYPE>
void qr_method_sym(viennacl::matrix<SCALARTYPE>& A,
viennacl::matrix<SCALARTYPE>& Q,
viennacl::vector_base<SCALARTYPE>& D
)
{
std::vector<SCALARTYPE> std_D(D.size());
std::vector<SCALARTYPE> E(A.size1());
viennacl::copy(D, std_D);
detail::qr_method(A, Q, std_D, E, true);
viennacl::copy(std_D, D);
}
}
}
#endif
|