/usr/include/viennacl/linalg/lanczos.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | #ifndef VIENNACL_LINALG_LANCZOS_HPP_
#define VIENNACL_LINALG_LANCZOS_HPP_
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/linalg/lanczos.hpp
* @brief Generic interface for the Lanczos algorithm.
*
* Contributed by Guenther Mader and Astrid Rupp.
*/
#include <cmath>
#include <vector>
#include "viennacl/vector.hpp"
#include "viennacl/compressed_matrix.hpp"
#include "viennacl/linalg/prod.hpp"
#include "viennacl/linalg/inner_prod.hpp"
#include "viennacl/linalg/norm_2.hpp"
#include "viennacl/io/matrix_market.hpp"
#include "viennacl/linalg/bisect.hpp"
#include "viennacl/tools/random.hpp"
namespace viennacl
{
namespace linalg
{
/** @brief A tag for the lanczos algorithm.
*/
class lanczos_tag
{
public:
enum
{
partial_reorthogonalization = 0,
full_reorthogonalization,
no_reorthogonalization
};
/** @brief The constructor
*
* @param factor Exponent of epsilon - tolerance for batches of Reorthogonalization
* @param numeig Number of eigenvalues to be returned
* @param met Method for Lanczos-Algorithm: 0 for partial Reorthogonalization, 1 for full Reorthogonalization and 2 for Lanczos without Reorthogonalization
* @param krylov Maximum krylov-space size
*/
lanczos_tag(double factor = 0.75,
vcl_size_t numeig = 10,
int met = 0,
vcl_size_t krylov = 100) : factor_(factor), num_eigenvalues_(numeig), method_(met), krylov_size_(krylov) {}
/** @brief Sets the number of eigenvalues */
void num_eigenvalues(vcl_size_t numeig){ num_eigenvalues_ = numeig; }
/** @brief Returns the number of eigenvalues */
vcl_size_t num_eigenvalues() const { return num_eigenvalues_; }
/** @brief Sets the exponent of epsilon. Values between 0.6 and 0.9 usually give best results. */
void factor(double fct) { factor_ = fct; }
/** @brief Returns the exponent */
double factor() const { return factor_; }
/** @brief Sets the size of the kylov space. Must be larger than number of eigenvalues to compute. */
void krylov_size(vcl_size_t max) { krylov_size_ = max; }
/** @brief Returns the size of the kylov space */
vcl_size_t krylov_size() const { return krylov_size_; }
/** @brief Sets the reorthogonalization method */
void method(int met){ method_ = met; }
/** @brief Returns the reorthogonalization method */
int method() const { return method_; }
private:
double factor_;
vcl_size_t num_eigenvalues_;
int method_; // see enum defined above for possible values
vcl_size_t krylov_size_;
};
namespace detail
{
/** @brief Inverse iteration for finding an eigenvector for an eigenvalue.
*
* beta[0] to be ignored for consistency.
*/
template<typename NumericT>
void inverse_iteration(std::vector<NumericT> const & alphas, std::vector<NumericT> const & betas,
NumericT & eigenvalue, std::vector<NumericT> & eigenvector)
{
std::vector<NumericT> alpha_sweeped = alphas;
for (vcl_size_t i=0; i<alpha_sweeped.size(); ++i)
alpha_sweeped[i] -= eigenvalue;
for (vcl_size_t row=1; row < alpha_sweeped.size(); ++row)
alpha_sweeped[row] -= betas[row] * betas[row] / alpha_sweeped[row-1];
// starting guess: ignore last equation
eigenvector[alphas.size() - 1] = 1.0;
for (vcl_size_t iter=0; iter<1; ++iter)
{
// solve first n-1 equations (A - \lambda I) y = -beta[n]
eigenvector[alphas.size() - 1] /= alpha_sweeped[alphas.size() - 1];
for (vcl_size_t row2=1; row2 < alphas.size(); ++row2)
{
vcl_size_t row = alphas.size() - row2 - 1;
eigenvector[row] -= eigenvector[row+1] * betas[row+1];
eigenvector[row] /= alpha_sweeped[row];
}
// normalize eigenvector:
NumericT norm_vector = 0;
for (vcl_size_t i=0; i<eigenvector.size(); ++i)
norm_vector += eigenvector[i] * eigenvector[i];
norm_vector = std::sqrt(norm_vector);
for (vcl_size_t i=0; i<eigenvector.size(); ++i)
eigenvector[i] /= norm_vector;
}
//eigenvalue = (alphas[0] * eigenvector[0] + betas[1] * eigenvector[1]) / eigenvector[0];
}
/**
* @brief Implementation of the Lanczos PRO algorithm (partial reorthogonalization)
*
* @param A The system matrix
* @param r Random start vector
* @param eigenvectors_A Dense matrix holding the eigenvectors of A (one eigenvector per column)
* @param size Size of krylov-space
* @param tag Lanczos_tag with several options for the algorithm
* @param compute_eigenvectors Boolean flag. If true, eigenvectors are computed. Otherwise the routine returns after calculating eigenvalues.
* @return Returns the eigenvalues (number of eigenvalues equals size of krylov-space)
*/
template<typename MatrixT, typename DenseMatrixT, typename NumericT>
std::vector<NumericT>
lanczosPRO (MatrixT const& A, vector_base<NumericT> & r, DenseMatrixT & eigenvectors_A, vcl_size_t size, lanczos_tag const & tag, bool compute_eigenvectors)
{
// generation of some random numbers, used for lanczos PRO algorithm
viennacl::tools::normal_random_numbers<NumericT> get_N;
std::vector<vcl_size_t> l_bound(size/2), u_bound(size/2);
vcl_size_t n = r.size();
std::vector<NumericT> w(size), w_old(size); //w_k, w_{k-1}
NumericT inner_rt;
std::vector<NumericT> alphas, betas;
viennacl::matrix<NumericT, viennacl::column_major> Q(n, size); //column-major matrix holding the Krylov basis vectors
bool second_step = false;
NumericT eps = std::numeric_limits<NumericT>::epsilon();
NumericT squ_eps = std::sqrt(eps);
NumericT eta = std::exp(std::log(eps) * tag.factor());
NumericT beta = viennacl::linalg::norm_2(r);
r /= beta;
viennacl::vector_base<NumericT> q_0(Q.handle(), Q.size1(), 0, 1);
q_0 = r;
viennacl::vector<NumericT> u = viennacl::linalg::prod(A, r);
NumericT alpha = viennacl::linalg::inner_prod(u, r);
alphas.push_back(alpha);
w[0] = 1;
betas.push_back(beta);
vcl_size_t batches = 0;
for (vcl_size_t i = 1; i < size; i++) // Main loop for setting up the Krylov space
{
viennacl::vector_base<NumericT> q_iminus1(Q.handle(), Q.size1(), (i-1) * Q.internal_size1(), 1);
r = u - alpha * q_iminus1;
beta = viennacl::linalg::norm_2(r);
betas.push_back(beta);
r = r / beta;
//
// Update recurrence relation for estimating orthogonality loss
//
w_old = w;
w[0] = (betas[1] * w_old[1] + (alphas[0] - alpha) * w_old[0] - betas[i - 1] * w_old[0]) / beta + eps * 0.3 * get_N() * (betas[1] + beta);
for (vcl_size_t j = 1; j < i - 1; j++)
w[j] = (betas[j + 1] * w_old[j + 1] + (alphas[j] - alpha) * w_old[j] + betas[j] * w_old[j - 1] - betas[i - 1] * w_old[j]) / beta + eps * 0.3 * get_N() * (betas[j + 1] + beta);
w[i-1] = 0.6 * eps * NumericT(n) * get_N() * betas[1] / beta;
//
// Check whether there has been a need for reorthogonalization detected in the previous iteration.
// If so, run the reorthogonalization for each batch
//
if (second_step)
{
for (vcl_size_t j = 0; j < batches; j++)
{
for (vcl_size_t k = l_bound[j] + 1; k < u_bound[j] - 1; k++)
{
viennacl::vector_base<NumericT> q_k(Q.handle(), Q.size1(), k * Q.internal_size1(), 1);
inner_rt = viennacl::linalg::inner_prod(r, q_k);
r = r - inner_rt * q_k;
w[k] = 1.5 * eps * get_N();
}
}
NumericT temp = viennacl::linalg::norm_2(r);
r = r / temp;
beta = beta * temp;
second_step = false;
}
batches = 0;
//
// Check for semiorthogonality
//
for (vcl_size_t j = 0; j < i; j++)
{
if (std::fabs(w[j]) >= squ_eps) // tentative loss of orthonormality, hence reorthonomalize
{
viennacl::vector_base<NumericT> q_j(Q.handle(), Q.size1(), j * Q.internal_size1(), 1);
inner_rt = viennacl::linalg::inner_prod(r, q_j);
r = r - inner_rt * q_j;
w[j] = 1.5 * eps * get_N();
vcl_size_t k = j - 1;
// orthogonalization with respect to earlier basis vectors
while (std::fabs(w[k]) > eta)
{
viennacl::vector_base<NumericT> q_k(Q.handle(), Q.size1(), k * Q.internal_size1(), 1);
inner_rt = viennacl::linalg::inner_prod(r, q_k);
r = r - inner_rt * q_k;
w[k] = 1.5 * eps * get_N();
if (k == 0) break;
k--;
}
l_bound[batches] = k;
// orthogonalization with respect to later basis vectors
k = j + 1;
while (k < i && std::fabs(w[k]) > eta)
{
viennacl::vector_base<NumericT> q_k(Q.handle(), Q.size1(), k * Q.internal_size1(), 1);
inner_rt = viennacl::linalg::inner_prod(r, q_k);
r = r - inner_rt * q_k;
w[k] = 1.5 * eps * get_N();
k++;
}
u_bound[batches] = k - 1;
batches++;
j = k-1; // go to end of current batch
}
}
//
// Normalize basis vector and reorthogonalize as needed
//
if (batches > 0)
{
NumericT temp = viennacl::linalg::norm_2(r);
r = r / temp;
beta = beta * temp;
second_step = true;
}
// store Krylov vector in Q:
viennacl::vector_base<NumericT> q_i(Q.handle(), Q.size1(), i * Q.internal_size1(), 1);
q_i = r;
//
// determine and store alpha = <r, u> with u = A q_i - beta q_{i-1}
//
u = viennacl::linalg::prod(A, r);
u += (-beta) * q_iminus1;
alpha = viennacl::linalg::inner_prod(u, r);
alphas.push_back(alpha);
}
//
// Step 2: Compute eigenvalues of tridiagonal matrix obtained during Lanczos iterations:
//
std::vector<NumericT> eigenvalues = bisect(alphas, betas);
//
// Step 3: Compute eigenvectors via inverse iteration. Does not update eigenvalues, so only approximate by nature.
//
if (compute_eigenvectors)
{
std::vector<NumericT> eigenvector_tridiag(alphas.size());
for (std::size_t i=0; i < tag.num_eigenvalues(); ++i)
{
// compute eigenvector of tridiagonal matrix via inverse:
inverse_iteration(alphas, betas, eigenvalues[eigenvalues.size() - i - 1], eigenvector_tridiag);
// eigenvector w of full matrix A. Given as w = Q * u, where u is the eigenvector of the tridiagonal matrix
viennacl::vector<NumericT> eigenvector_u(eigenvector_tridiag.size());
viennacl::copy(eigenvector_tridiag, eigenvector_u);
viennacl::vector_base<NumericT> eigenvector_A(eigenvectors_A.handle(),
eigenvectors_A.size1(),
eigenvectors_A.row_major() ? i : i * eigenvectors_A.internal_size1(),
eigenvectors_A.row_major() ? eigenvectors_A.internal_size2() : 1);
eigenvector_A = viennacl::linalg::prod(project(Q,
range(0, Q.size1()),
range(0, eigenvector_u.size())),
eigenvector_u);
}
}
return eigenvalues;
}
/**
* @brief Implementation of the Lanczos FRO algorithm
*
* @param A The system matrix
* @param r Random start vector
* @param eigenvectors_A A dense matrix in which the eigenvectors of A will be stored. Both row- and column-major matrices are supported.
* @param krylov_dim Size of krylov-space
* @param tag The Lanczos tag holding tolerances, etc.
* @param compute_eigenvectors Boolean flag. If true, eigenvectors are computed. Otherwise the routine returns after calculating eigenvalues.
* @return Returns the eigenvalues (number of eigenvalues equals size of krylov-space)
*/
template< typename MatrixT, typename DenseMatrixT, typename NumericT>
std::vector<NumericT>
lanczos(MatrixT const& A, vector_base<NumericT> & r, DenseMatrixT & eigenvectors_A, vcl_size_t krylov_dim, lanczos_tag const & tag, bool compute_eigenvectors)
{
std::vector<NumericT> alphas, betas;
viennacl::vector<NumericT> Aq(r.size());
viennacl::matrix<NumericT, viennacl::column_major> Q(r.size(), krylov_dim + 1); // Krylov basis (each Krylov vector is one column)
NumericT norm_r = norm_2(r);
NumericT beta = norm_r;
r /= norm_r;
// first Krylov vector:
viennacl::vector_base<NumericT> q0(Q.handle(), Q.size1(), 0, 1);
q0 = r;
//
// Step 1: Run Lanczos' method to obtain tridiagonal matrix
//
for (vcl_size_t i = 0; i < krylov_dim; i++)
{
betas.push_back(beta);
// last available vector from Krylov basis:
viennacl::vector_base<NumericT> q_i(Q.handle(), Q.size1(), i * Q.internal_size1(), 1);
// Lanczos algorithm:
// - Compute A * q:
Aq = viennacl::linalg::prod(A, q_i);
// - Form Aq <- Aq - <Aq, q_i> * q_i - beta * q_{i-1}, where beta is ||q_i|| before normalization in previous iteration
NumericT alpha = viennacl::linalg::inner_prod(Aq, q_i);
Aq -= alpha * q_i;
if (i > 0)
{
viennacl::vector_base<NumericT> q_iminus1(Q.handle(), Q.size1(), (i-1) * Q.internal_size1(), 1);
Aq -= beta * q_iminus1;
// Extra measures for improved numerical stability?
if (tag.method() == lanczos_tag::full_reorthogonalization)
{
// Gram-Schmidt (re-)orthogonalization:
// TODO: Reuse fast (pipelined) routines from GMRES or GEMV
for (vcl_size_t j = 0; j < i; j++)
{
viennacl::vector_base<NumericT> q_j(Q.handle(), Q.size1(), j * Q.internal_size1(), 1);
NumericT inner_rq = viennacl::linalg::inner_prod(Aq, q_j);
Aq -= inner_rq * q_j;
}
}
}
// normalize Aq and add to Krylov basis at column i+1 in Q:
beta = viennacl::linalg::norm_2(Aq);
viennacl::vector_base<NumericT> q_iplus1(Q.handle(), Q.size1(), (i+1) * Q.internal_size1(), 1);
q_iplus1 = Aq / beta;
alphas.push_back(alpha);
}
//
// Step 2: Compute eigenvalues of tridiagonal matrix obtained during Lanczos iterations:
//
std::vector<NumericT> eigenvalues = bisect(alphas, betas);
//
// Step 3: Compute eigenvectors via inverse iteration. Does not update eigenvalues, so only approximate by nature.
//
if (compute_eigenvectors)
{
std::vector<NumericT> eigenvector_tridiag(alphas.size());
for (std::size_t i=0; i < tag.num_eigenvalues(); ++i)
{
// compute eigenvector of tridiagonal matrix via inverse:
inverse_iteration(alphas, betas, eigenvalues[eigenvalues.size() - i - 1], eigenvector_tridiag);
// eigenvector w of full matrix A. Given as w = Q * u, where u is the eigenvector of the tridiagonal matrix
viennacl::vector<NumericT> eigenvector_u(eigenvector_tridiag.size());
viennacl::copy(eigenvector_tridiag, eigenvector_u);
viennacl::vector_base<NumericT> eigenvector_A(eigenvectors_A.handle(),
eigenvectors_A.size1(),
eigenvectors_A.row_major() ? i : i * eigenvectors_A.internal_size1(),
eigenvectors_A.row_major() ? eigenvectors_A.internal_size2() : 1);
eigenvector_A = viennacl::linalg::prod(project(Q,
range(0, Q.size1()),
range(0, eigenvector_u.size())),
eigenvector_u);
}
}
return eigenvalues;
}
} // end namespace detail
/**
* @brief Implementation of the calculation of eigenvalues using lanczos (with and without reorthogonalization).
*
* Implementation of Lanczos with partial reorthogonalization is implemented separately.
*
* @param matrix The system matrix
* @param eigenvectors_A A dense matrix in which the eigenvectors of A will be stored. Both row- and column-major matrices are supported.
* @param tag Tag with several options for the lanczos algorithm
* @param compute_eigenvectors Boolean flag. If true, eigenvectors are computed. Otherwise the routine returns after calculating eigenvalues.
* @return Returns the n largest eigenvalues (n defined in the lanczos_tag)
*/
template<typename MatrixT, typename DenseMatrixT>
std::vector< typename viennacl::result_of::cpu_value_type<typename MatrixT::value_type>::type >
eig(MatrixT const & matrix, DenseMatrixT & eigenvectors_A, lanczos_tag const & tag, bool compute_eigenvectors = true)
{
typedef typename viennacl::result_of::value_type<MatrixT>::type NumericType;
typedef typename viennacl::result_of::cpu_value_type<NumericType>::type CPU_NumericType;
typedef typename viennacl::result_of::vector_for_matrix<MatrixT>::type VectorT;
viennacl::tools::uniform_random_numbers<CPU_NumericType> random_gen;
std::vector<CPU_NumericType> eigenvalues;
vcl_size_t matrix_size = matrix.size1();
VectorT r(matrix_size);
std::vector<CPU_NumericType> s(matrix_size);
for (vcl_size_t i=0; i<s.size(); ++i)
s[i] = CPU_NumericType(0.5) + random_gen();
detail::copy_vec_to_vec(s,r);
vcl_size_t size_krylov = (matrix_size < tag.krylov_size()) ? matrix_size
: tag.krylov_size();
switch (tag.method())
{
case lanczos_tag::partial_reorthogonalization:
eigenvalues = detail::lanczosPRO(matrix, r, eigenvectors_A, size_krylov, tag, compute_eigenvectors);
break;
case lanczos_tag::full_reorthogonalization:
case lanczos_tag::no_reorthogonalization:
eigenvalues = detail::lanczos(matrix, r, eigenvectors_A, size_krylov, tag, compute_eigenvectors);
break;
}
std::vector<CPU_NumericType> largest_eigenvalues;
for (vcl_size_t i = 1; i<=tag.num_eigenvalues(); i++)
largest_eigenvalues.push_back(eigenvalues[size_krylov-i]);
return largest_eigenvalues;
}
/**
* @brief Implementation of the calculation of eigenvalues using lanczos (with and without reorthogonalization).
*
* Implementation of Lanczos with partial reorthogonalization is implemented separately.
*
* @param matrix The system matrix
* @param tag Tag with several options for the lanczos algorithm
* @return Returns the n largest eigenvalues (n defined in the lanczos_tag)
*/
template<typename MatrixT>
std::vector< typename viennacl::result_of::cpu_value_type<typename MatrixT::value_type>::type >
eig(MatrixT const & matrix, lanczos_tag const & tag)
{
typedef typename viennacl::result_of::cpu_value_type<typename MatrixT::value_type>::type NumericType;
viennacl::matrix<NumericType> eigenvectors(matrix.size1(), tag.num_eigenvalues());
return eig(matrix, eigenvectors, tag, false);
}
} // end namespace linalg
} // end namespace viennacl
#endif
|