This file is indexed.

/usr/include/viennacl/linalg/ichol.hpp is in libviennacl-dev 1.7.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#ifndef VIENNACL_LINALG_ICHOL_HPP_
#define VIENNACL_LINALG_ICHOL_HPP_

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/linalg/ichol.hpp
  @brief Implementations of incomplete Cholesky factorization preconditioners with static nonzero pattern.
*/

#include <vector>
#include <cmath>
#include <iostream>
#include "viennacl/forwards.h"
#include "viennacl/tools/tools.hpp"
#include "viennacl/compressed_matrix.hpp"

#include "viennacl/linalg/host_based/common.hpp"

#include <map>

namespace viennacl
{
namespace linalg
{

/** @brief A tag for incomplete Cholesky factorization with static pattern (ILU0)
*/
class ichol0_tag {};


/** @brief Implementation of a ILU-preconditioner with static pattern. Optimized version for CSR matrices.
  *
  *  Refer to Chih-Jen Lin and Jorge J. Moré, Incomplete Cholesky Factorizations with Limited Memory, SIAM J. Sci. Comput., 21(1), 24–45
  *  for one of many descriptions of incomplete Cholesky Factorizations
  *
  *  @param A       The input matrix in CSR format
  *  // param tag     An ichol0_tag in order to dispatch among several other preconditioners.
  */
template<typename NumericT>
void precondition(viennacl::compressed_matrix<NumericT> & A, ichol0_tag const & /* tag */)
{
  assert( (viennacl::traits::context(A).memory_type() == viennacl::MAIN_MEMORY) && bool("System matrix must reside in main memory for ICHOL0") );

  NumericT           * elements   = viennacl::linalg::host_based::detail::extract_raw_pointer<NumericT>(A.handle());
  unsigned int const * row_buffer = viennacl::linalg::host_based::detail::extract_raw_pointer<unsigned int>(A.handle1());
  unsigned int const * col_buffer = viennacl::linalg::host_based::detail::extract_raw_pointer<unsigned int>(A.handle2());

  //std::cout << A.size1() << std::endl;
  for (vcl_size_t i=0; i<A.size1(); ++i)
  {
    unsigned int row_i_begin = row_buffer[i];
    unsigned int row_i_end   = row_buffer[i+1];

    // get a_ii:
    NumericT a_ii = 0;
    for (unsigned int buf_index_aii = row_i_begin; buf_index_aii < row_i_end; ++buf_index_aii)
    {
      if (col_buffer[buf_index_aii] == i)
      {
        a_ii = std::sqrt(elements[buf_index_aii]);
        elements[buf_index_aii] = a_ii;
        break;
      }
    }

    // Now scale column/row i, i.e. A(k, i) /= A(i, i)
    for (unsigned int buf_index_aii = row_i_begin; buf_index_aii < row_i_end; ++buf_index_aii)
    {
      if (col_buffer[buf_index_aii] > i)
        elements[buf_index_aii] /= a_ii;
    }

    // Now compute A(k, j) -= A(k, i) * A(j, i) for all nonzero k, j in column i:
    for (unsigned int buf_index_j = row_i_begin; buf_index_j < row_i_end; ++buf_index_j)
    {
      unsigned int j = col_buffer[buf_index_j];
      if (j <= i)
        continue;

      NumericT a_ji = elements[buf_index_j];

      for (unsigned int buf_index_k = row_i_begin; buf_index_k < row_i_end; ++buf_index_k)
      {
        unsigned int k = col_buffer[buf_index_k];
        if (k < j)
          continue;

        NumericT a_ki = elements[buf_index_k];

        //Now check whether A(k, j) is in nonzero pattern:
        unsigned int row_j_begin = row_buffer[j];
        unsigned int row_j_end   = row_buffer[j+1];
        for (unsigned int buf_index_kj = row_j_begin; buf_index_kj < row_j_end; ++buf_index_kj)
        {
          if (col_buffer[buf_index_kj] == k)
          {
            elements[buf_index_kj] -= a_ki * a_ji;
            break;
          }
        }
      }
    }

  }

}


/** @brief Incomplete Cholesky preconditioner class with static pattern (ICHOL0), can be supplied to solve()-routines
*/
template<typename MatrixT>
class ichol0_precond
{
  typedef typename MatrixT::value_type      NumericType;

public:
  ichol0_precond(MatrixT const & mat, ichol0_tag const & tag) : tag_(tag), LLT(mat.size1(), mat.size2(), viennacl::context(viennacl::MAIN_MEMORY))
  {
      //initialize preconditioner:
      //std::cout << "Start CPU precond" << std::endl;
      init(mat);
      //std::cout << "End CPU precond" << std::endl;
  }

  template<typename VectorT>
  void apply(VectorT & vec) const
  {
    unsigned int const * row_buffer = viennacl::linalg::host_based::detail::extract_raw_pointer<unsigned int>(LLT.handle1());
    unsigned int const * col_buffer = viennacl::linalg::host_based::detail::extract_raw_pointer<unsigned int>(LLT.handle2());
    NumericType  const * elements   = viennacl::linalg::host_based::detail::extract_raw_pointer<NumericType>(LLT.handle());

    // Note: L is stored in a column-oriented fashion, i.e. transposed w.r.t. the row-oriented layout. Thus, the factorization A = L L^T holds L in the upper triangular part of A.
    viennacl::linalg::host_based::detail::csr_trans_inplace_solve<NumericType>(row_buffer, col_buffer, elements, vec, LLT.size2(), lower_tag());
    viennacl::linalg::host_based::detail::csr_inplace_solve<NumericType>(row_buffer, col_buffer, elements, vec, LLT.size2(), upper_tag());
  }

private:
  void init(MatrixT const & mat)
  {
    viennacl::context host_ctx(viennacl::MAIN_MEMORY);
    viennacl::switch_memory_context(LLT, host_ctx);

    viennacl::copy(mat, LLT);
    viennacl::linalg::precondition(LLT, tag_);
  }

  ichol0_tag const & tag_;
  viennacl::compressed_matrix<NumericType> LLT;
};


/** @brief ILU0 preconditioner class, can be supplied to solve()-routines.
*
*  Specialization for compressed_matrix
*/
template<typename NumericT, unsigned int AlignmentV>
class ichol0_precond< compressed_matrix<NumericT, AlignmentV> >
{
  typedef compressed_matrix<NumericT, AlignmentV>   MatrixType;

public:
  ichol0_precond(MatrixType const & mat, ichol0_tag const & tag) : tag_(tag), LLT(mat.size1(), mat.size2(), viennacl::traits::context(mat))
  {
    //initialize preconditioner:
    //std::cout << "Start GPU precond" << std::endl;
    init(mat);
    //std::cout << "End GPU precond" << std::endl;
  }

  void apply(vector<NumericT> & vec) const
  {
    if (viennacl::traits::context(vec).memory_type() != viennacl::MAIN_MEMORY)
    {
      viennacl::context host_ctx(viennacl::MAIN_MEMORY);
      viennacl::context old_ctx = viennacl::traits::context(vec);

      viennacl::switch_memory_context(vec, host_ctx);
      viennacl::linalg::inplace_solve(trans(LLT), vec, lower_tag());
      viennacl::linalg::inplace_solve(      LLT , vec, upper_tag());
      viennacl::switch_memory_context(vec, old_ctx);
    }
    else //apply ILU0 directly:
    {
      // Note: L is stored in a column-oriented fashion, i.e. transposed w.r.t. the row-oriented layout. Thus, the factorization A = L L^T holds L in the upper triangular part of A.
      viennacl::linalg::inplace_solve(trans(LLT), vec, lower_tag());
      viennacl::linalg::inplace_solve(      LLT , vec, upper_tag());
    }
  }

private:
  void init(MatrixType const & mat)
  {
    viennacl::context host_ctx(viennacl::MAIN_MEMORY);
    viennacl::switch_memory_context(LLT, host_ctx);
    LLT = mat;

    viennacl::linalg::precondition(LLT, tag_);
  }

  ichol0_tag const & tag_;
  viennacl::compressed_matrix<NumericT> LLT;
};

}
}




#endif